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As we have suggested above, the earliest impulse toward the
development of what is now commutative algebra came from the
desire of the number theorists to make use of unique factorization in
rings of integers in number fields other than ©@. When it became
clear that unique factorization did net always hold, the search for
the strongest available alternative began. The theory of primary
decomposition is the direct result of that search. Given an ideal lin
a Noetherian ring R, the theory identifies a finite set of "asscciated”
prime ideals of R, and tells how to "decompose” 1 as an intersection
of ideals called pritnary ideals that are closely connected with these
prime ideals. More generally, the theory produces such a set of
associated primes and a decomposition of any submodule of a finitely
generated R-meodule.

In the geometric setting, where R = klxy, .., %, ]1is a polynomial
ring over an algebraically closed field, part of the geometric
significance of primary decomposition may be seen as follows: Call
an algebraic set X in affine r-space irreducible if it cannot be
expressed as the union of two properly smaller algebraic sets. If ] C
kixy, .. .x,] is the ideal of X, then [ is prirne iff X is irreducible --
that is, not the union of two smaller algebraic sets (Proof: If X is
irreducible and fg € 1, then Z(I,f)UZ(l,g) = X, so f or g must vanish on
X and be in I. Conversely suppose X = X1UX3. If each X, is an
algebraic set smaller than X, then there is a function f; vanishing on
X; but not X. Since fifz vanishes on X we have fif; € I though
neither f; is in 1.} If X is any algebraic set, then [ is the intersection
of prime ideals. In this case the primary decomposition of @s the
unique minimal expression of | as a finite intersection of primes.
This corresponds to writing X in a unique way as a minimal union of
irreducible algebraic sets X;. We may think of it as specifying I as
the set of polynomials that vanish on each of the X;. More
generally, given any ideal I C kfxy, .. , x.], the theory produces a
finite set of irreducible algebraic sets X; —- possibly with some
embedded in others ~- and says that I can be specified as the set of
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pelynornial functions with certain "higher” vanishing conditions at
the "generic points” of the X;.

One measure of the significance of the associated primes is that
they determine many homological properties, via the theory of
depth that we shall develop in Chapters 17 and 18.

Two simple examples will be useful to bear in mind while
studying the theory below:

1) Corresponding to the unique prime factorization

n = tpldl... Ptdt

of an integer in Z into powers of distinct prirnes we may write the
ideal {(n) as

(n) = (p19)A _nipdh).

(Proof: By induction on t we have J '= {pgd2... pdt) =
(P292)n..n(pIY), and it suffices to show that if I = (py91) then 1J =
Ind. If I, J € R are ideals in any commutative ring, then 1J C INJ,
but generally the containment is strict. However, if [+J = R, as in
our case, we can write 1 = i+j with i€ I and jeJ. Thusif f € 1n.J

then f = 1f = if+jf € IJ +J[ = 1J, so InJ = IJ. For a generalization, see
Exercise A317.)

In this case we shall see that the associated primes are the
primes (p;).

2) The ideal (x%,xy) kix,y]l may be written as
(xz,xy) = (X)ﬁ(x'z,xy-yz);

and described as the ideal of polynomials vanishing along the line
x=0 and vanishing to order at least two at the point X = y = {,
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Note that the given decornposition is not unique: we could also write
(xz,xy) = (x)n(xz,y), which corresponds to saying that a polynomial f
is in (x%,xy) if it vanishes along the line x = 0 and its derivative

of /9x vanishes at the point x=y=0.

In this case we shall see that the associated primes are the
primes (%) and (x,y).

Besides the search for an analog of unique prime factorization,
there is another reason why primary decomposition is historically
important in commutative algebra. Lasker formulated the theory
originally only for affine rings and converger.! ower series rings.
The proofs, by induction on the number of variables, used
complicated arguments from elimination theory. Emmy Noether
rewrote the subject in her classic paper [1921]. Here she developed
the general theory of primary decomposition from the ascending
chain condition alone. This paper and her subsequent paper on
Dedekind domains {1927] were the first to show the importance of
the rings now named for her.

Associated Primes

Let R be a ring and let M be an R-module.

Definitions : A prime P of R is associated to M if P is the
annihilator of an element of M. The set of all primes associated to M
is written Assg M or simply Ass M when there can be no

confusion.

Tradition dictates one exception to this terminology: I [ is an
ideal of R, then the associated primes of the module R/] are called
associated primes of I. Confusion rarely arises in this way, since the
associated primes of | as a module are usually not interesting. For
example, if R is a domain then the only associated prime of the
module 1 is 0.
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From the definition we see that P is an associated prime of M iff
R/P is isomorphic to a submodule of M. Clearty all the associated
primes of M contain the annihilator of M.

The central result about associated primes is:

Theorem 3 1: let R be a Noetherian ring and let M be a finitely
generated nonzero R-module.

a) Ass M 15 a finite, nonempty set of primes, each containin
ann M. The set Ass M includes all the primes minimal among
primes containing ann M.

b} The union of the associated primes of M consists of 0 and the
set of zerodivisors on M.

c¢) The formation of the set Ass M commutes with localization at
an arbitary multiplicatively closed set U, in the sense that

Ass MUY = {PRIUTY|P € AssMand PN U= g. )

The proof will be given after a series of preliminary results and
corollaries.

Essentially because of the second part of conelusion a), the primes
minimal among those primes containing a given ideal | appears

rather often in what follows. To simplify our language, we usually
call them primes minimal over I.

The primes of Ass M that are not minimal are called embedded
primes of M. If M=R/I corresponds to a subscheme X = Spec R/I of

Spec R, then the varieties associated to minimal primes over | are

called isolated components of X, and the varieties associated to

other associated primes are called embedded components of X
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(geometrically, they occur "embedded in" the isolated components).
We shall draw some pictures after we have discussed primary
decornposition.

If R is a graded ring Noetherian ring and M is a finitely generated
graded R-module, then the associated primes of R are homogeneous,
as we shall see in Proposition 3 12. This allows one to rmake graded
versions of Theorem 3 1 and all the other results in this chapter.

One important consequence of Theorem 3 1 is:

Corollary 3 2: Let R be a Noetherian ring and let M be a finitely
generated nonzero R-module. Every ideal consisting entirely of
zerodivisors on M actually annihilates some element of M.

To prove this we need to know that an ideal contained in a union
of primes is contained in one of them. This somewhat surprising but
elemenentary fact often goes under the name “prime avoidance":

Prime Avoidance

Lemma 3 3 (Prime Avoidance) : Suppose thatly, .. I, , J are
ideals of a ring R, and suppose that J € U; 1. If R contains an
infinite field or if at most 2 of the [j are not prime, then Jis
contained in one of the I

If R is graded, J is generated by homogeneous elements of degree
> 0, and all the I are prime, then it is enough to assume that the
homogeneous elements of J are contained in U I;.

Despite the odd hypotheses, the Lemma is rather sharp; see
Exercise 3 17. The r. .me "Prime Avoidance” comes from the
following typical application: if an ideal I is not contained in any of
a finite number of primes P;, then there is an element of | that
"avoids® being contained in any of the P;. In the geornetric setting
we can translate this by saying that if a finite number of

Wednesday, March 2, 1994 --35 -~

subvarieties Xj of a variety X are given, along with polynomial
functions fy, .. ,f; on X, not all vanishing on any of the X, then
there is some polynomial linear combination f = Zg;f; that does not
vanish on any of the Xj. The last part will be used in Chapter 14.
In fact, the first of the g; can often be chosen to be 1; see

Exercise 3 19 for this and a refinement, and McAdam [1974] for

further refinements and a history of the ring theoretic formulations
of this result.

Proof of Lemmma 3 3: If R contains an infinite field, the result is

trivial: No vector space over an infinite field can be a finite union of
proper subspace ..

In the other case, we do induction on n, the case n=1 being

trivial. By induction we may suppose that J is not contained in any
smaller union of the Ij, so we can find elermnents x;€J, x; not in U juj
I;. Supposing that J ¢ UIj, we must have x;€l;.

If n=2, then x3+x2 is in neither Iy nor I2, contradicting the
supposition. If on the other hand n > 2 then we may assume that iy
is prime, and ®xy+X2x3.. is not in any of the I}, again a contradiction.

For the graded case we can use the same proof after raising the
X;j to a power, chosen so that xy and the product %2x3.. have the
same degree. We need the hypothesis that each I; is prime to
ensure that for each j the powers of Xj are not in [j for j » i.//

Note that in Lemma 3 3 we did not assume that R was
Noetherian; we shall have occasion to use the result in a {possibly)
non-Noetherian case in Proposition 13.10. Also, in the cases not

involving a ground field, the proof given above uses only that J is a
subring -- without unit-- of R.

Proof of Corollary 3 2: By Theorem 3 1 an ideal consisting of
zereodivisors on M is contained in the union of the associated primes
of M. By Lemma 3 3, it is in one of them.// |
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Theocrem 3 1 clearly imnplies that if M is nonzero then Ass M is
nonempty. For example, since the intersection of a descending chain
of primes is certainly prime, there are {(even without Noetherian
hypotheses) always primes minimal over a given ideal. The first
step in the proof is to establish the existence of an associated prime
directly:

Proposition 3 4: Let R be a ring and let M be an R-module. If Iis
an ideal of R maximal among all ideals of R that are annihilators of
elements of M, then | is prime {and thus belongs to Ass M), In
particular, if R is a Noetherian ring then Ass M s nonempty.

Proof: If rs €] and s ¢ | then we must show r €. If meM is an
elemment with ann m = I, then rsm = 0 but sm « 0; Thus (r,I} is
contained in the annihilator of sm, and since [ was maximal, (r)+] =
1. Thusr € 1.//

Proposition 3 4 is the basis for one of the characteristic
applications of the theory of associated primes. If x € M 1s an
element of any module over any (not necessarily Noetherian) ring R,
then by Lemma 2.8 we can test whether x = 0 by seeing whether x
goes to 0 in the localization Mp for each prime, or even each

maximal ideal P. Now we see that if R is Noetherian we can restrict
our attention to the associated primes. If M is finitely generated
there will be only finitely many of these, a great improvement.

Corollary 3 5: Suppose that M is a module over a Noetherian ring
R.

a)lf m € M, then m = 0 iff m goes to 0 in Mp for each of the

maximal associated primes of M.

b) If K ¢ M is a submodule, then K = 0 iff Kp = 0 for all P €
Ass M.
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c) If ¢ M - N is a homomorphism {from M to an R-module N,
then ¢ is a monomorphism iff the localization gp: Mp — Np is a

monomorphism for each associated pritme P of M.

Proof: a) Suppose rmn # 0. Since R is Noetherian, there is a prime
maximal among the annihilators of elements of M that contain ann
m, and this prime is an associated prime of M by Proposition 3 4.

Thus ann m is contained in a maximal associated prime P, so m/1 »
0 in Mp.

b) If K = 0 then clearly Kp = 0 for all P. If K » 0, choose 0 #+ m €
K and apply 1).

c) By Proposition 25, (ker ¢)p = ker {(gp). The result follows by
putting K = ker g in part ii). //

Proposition 3 4 makes the proof of part b) of the Theorem

immediate: if r annihilates a nonzero element of M, then r is
contained in a maximal annihilator ideal.

To prove part a) we shall apply the following tool:
Lemma 36: a) It M = M' § M" then Ass M = (Ass M') U (Ass M").

b) More generally, 1 0 - M' = M —+ M" = 0 is a short exact
sequence of R-modules, then Ass M' € Ass M C {Ass M') U (Ass M").

Proof: b) The first containment is clear from the definition. For the
second, suppose that P € Ass M - Ass M'. If x ¢ M has annihilator P,
so that Rx = R/P, then since P is prime every nonzero submodule of
Rx also has annihilator P. It follows that Rx N M' = 0, so Rx is
isomorphic to its image in M". Thus P € Ass M" as required.

a) Given part b), it is enough to observe that Ass M" C Ass M.//
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The first exact sequences on which we shall use Lemma 3 § are
produced as follows:

Proposition 3 7: If R is a Noetherian ring and M is a finitely
generated R-module, then M has a filtration

G=MgcMyCc..CM, =M
with each M;,1/M; & R/P,; for some prime ideal P,

Proof: By Proposition 3 4, M has at least one associated prime, say
P4, so that there is a submodule My = R/Py. Appl sing this reasoning
again to M/M; we produce M3, and continue in this way. The
process must come to an end because the submodules of M satisfy
the ascending chain condition, and this means that some M, = M, as
required.//

Using Lemma 3 6 inductively, we see that the associated primes
of M are among the primes P; appearing in Proposition 3 7. This

proves the finiteness statement of Theorem 3 1.

One might ask which modules M admit a filtration as in 3 7,
where in addition, every P, is an associated prime of M. Such
modules are called clean. For example, when R is a domain and M
Is torsion-free but not free, M is not clean, as the -eader may verify.
Unfortunately 1 know (1994} of no interesting characterization of
cleanliness -- perhaps the reader will find one! An interesting class
of filtrations where the associated primes do split up nicely is
provided by Proposition 3 13.

Conclusion of the Proof of Theorem 3 1: We first prove part c):
If P € Ass M, then there is an inclusion R/P C¢ M. Localizing, we get
an injection RIUT1I/PRIU-1] € MIU™1). Thus if PRIU 11 is a prime
ideal of R[U"1] -- that is, if P N U = & so PR{U"1] is still a proper
ideal -- then PR[U1] € Ass M[U™1].
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Conversely, suppose Q is a prime of RIU1] that is associated to
MIU-1). We may write Q = PRIU™!] with P a primeof Rand P N U
= @. There is an injection ¢: RIU™1]/PRIU™1] = MIU-1l. Since P is
finitely generated, we have

Hompqy-1jt RIUTN/PRIUY], MIU™1]) = Homp(R/P , M U1

by Proposition 2.10 so we may write ¢ = u~1f for some f ¢
Hompg(R/P , M} and u € U. Since u is a nonzercdivisor on R/P, it
follows that f is an injection, concluding the proof of c).

It remains to show that if P is any prime minimal over ann M
then P € Ass M. By part c), we may localize and suppose that R is
local with maximal ideal P. By Proposition 3 4 the set Ass M is

nenempty, and since P is the only prime that contains ann M, it
follows that P € Ass M.//

Primary Decomposition

To avoid endlessly repeating the hypotheses, we shall assume
throughout the rest of this Chapter that R is a Noetherian

ring, and we shall assume that M is a finitely generated R-
module.

If nis an integer, then the associated primes of (n) ¢ Z in the
ring of integers are just the ideals generated by the primes dividing
n. But for the factonzatlon of n, we need powers of these primes.
Instead of writing n = py 1. Pn n for the prime factorlzatxon, we
may write the ideal (n) as a product, (n) = (py¥1) :-. (pn n), or, if the
pi are distinct primes, even as an intersection, (n) = (p;*1)n ..
ﬂ(pn nj, Primary decomposition is an extension of prime
factorization to arbitrary rings, which consists in writing an ideal as

the intersection of certain ideals that play the role of prime powers:
these are called primary ideals.
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As often happens, it is advantageous to work with modules
instead of ideals, and we shall define primary decompositions for a

submodule M’ of a finitely generated module M: That is, we shall
write M' as the intersection of certain submodules M; that

correspond to the prime powers above. These are defined as follows:
A submodule N of a module M is primary if Ass(M/N) consists of
just a one prime; if Ass{M/N} = (P}, we say that N is P~primary
Since this is really a condition on M/N, it is convenient to say that a
module M is coprimary if 0 is a primary submodule -~ that is, if
Ass{M) consists of just one prime ideal.

From Lemma 3 6 we easily see that an intersection of P-primary
submodules is P-primary:

Corollary 3 8: Suppose that P is a prime ideal of a ring R and
Njy,.,Ny € M are R-modules. If each Nj is a P-primary submodule of
M then n;N; is P-primary.

Proof: First suppose that t = 2. By hypothesis M/N; and M/N; are

P-coprimary. Lemma 3 6 a) shows that P is the only associated
prime of M/N; @ M/Nz. Since M/{N1NN3) injects into M/My &
M/M,, Lemma 3 6 b) shows that M/(NjNN3} is also coprimary.//

Definitions : M is coprimary if it has exactly one associated prime.
if Ass M = {P}, then M is called P-coprimary. A submodule M'Cc M
is called primary (or P-primary) if M/M'is co-primary (or P-
coprimary).

The results of Theorem 3 1 lead to the following interpretation of
this condition:

Proposition 3 9: Let P be a prime ideal of R. The following are
equivalent:

a) M is P-coprimary.
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b} P is minimal over ann M, and every element not in P is a
nonzerodivisor on M.

c) A power of P annihilates M, and every element not in P is a
nonzerodivisor on M.

Proof: a}) = b) Since P is the only associated prime of M, Theorem
3 1 a) shows that P is minimal over ann M, and Theorem 3 1 b)
shows that every element not in P is a nonzerodivisor on M,

b) = c): Since the elements not in P are nonzerodivisors on M, it
suffices to prove the statement after localizing at P, so we may
assume that R is a local ring with maximal ideal P. Since P is
minimal over ann M, it follows by Corollary 2.12 that P is the
radical of ann M, so P is nilpotent modulo ann M.

c) = a) Since P is nilpotent modulo ann M, it is certainly
minimal among primes containing ann M, and is an associated
prime of M by Theorem 3 1 a). Since every element cutside of P is a
nonzerodivisor, every associated prime of M is contained in P by
Theorem 3 1 b). Thus P is the only associated prime of M.//

The most important case is the one where M = R/I, for some ideal
I of R. In this setup, Proposition 3 9 ¢) shows that I is P-primary iff
I contains a power of P and for every r,s € R, the conditions rs € |
and r ¢ P imply s € I. This is the classical definition.

1t is often convenient to think of the definitions above in terms of

localizations: Proposition 3 9, b) shows that M is P-coprimary iff P is
minimal over the annihilator of M and M injects into Mp. In

general, if M is any module and P is a minimal prime over the
annihilator of M, then the submodule M' ¢ M defined by

M' = ker (M — Mp).
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is P-primary because M/M' injects into (M/M')p = Mp. In this
situation, M' is called the P-primary component of 0 in M. Note
that it depends only on M and on P.

Primary decomposition consists in writing an arbitrary
submodule M' of M as the intersection of primary submodules:

Theorem 3 10: Let R be a Noetherian ring, and let M be a finitely
generated R-module. Any proper submodule M' of M is the
intersection of primary submodules. Further, if Py, ... ,P,, are prime
ideals and we write M' = N, M; with M; a Pj-primary submodule
then

a) Every associated prime of M/M' occurs among the P;.

b} If the intersection is irredundant (meaning no M; can be
dropped) then the P; are precisely the associated primes of M/M'.

¢) If the intersection is minimal, in the sense thzt there is no
such intersection with fewer terms, then each associated prime of
M/M' is equal to P, for exactly one index i. In this case, if P, is
minimal over the annihilator of M/M', then M, is the P;-primary

component of M.
d} Minimal primary decompositions localize in the following
sense: Suppose that M' = My M; is a minimal primary

decomposition. If U is any multiplicatively closed set of R, and
Pj, .. . Py are the primes among the P; that do not meet U, then

MTU™1] = Ny MU~
is a minimal primary decomposition over R[U™1},
Proof: We first prove the existence of a slightly finer but less

cancnical decomposition. We shall say that a submodule N C M is
irreducible if N is not the intersection of two strictly larger
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submodules. We first claim -- and this is Emmy Noether's
fundamental observation -- that every submedule of M can be
expressed as the intersection of irreducible submodules. Otherwise,
by the ascending chain condition on submodules of M, we could
choose a submodule N € M maximal among those submodules that
are not the intersection of irreducible submodules. In particular, N
is not itself irreducible, so it is the intersection of two strictly larger
submodules Ny and N;. By the maximality of N, both the N, are
intersections of irreducible submodules, and it follows that N is teo.
The contradictio « proves our claim, and shows that there is an
irreducible decomposition M = N;M; with each M; irreducible.

We next show that every irreducible decomposition is a primary
decomposition. That is, we show that any irreducible submodule N
C M is primary, or equivalently that M/N is coprimary. Otherwise,
M/N would have at least two associated primes, P and Q say, so it
would contain a submodule isomorphic to R/P and another
isomorphic to R/Q. The annihilator of every nonzero element of R/P
is P, and similarly for Q, so these two submodules of M/N can only
meet in 0. Thus 0 is reducible. Taking preimages of these
submodules in M, we see that N is reducible, a contradiction. This
proves that M/N is coprimary, and thus that irreducible
decompositions are primary decompositions.

Since a)-d) are really statements about M/M'. To simplify the

notation, we begin by factoring out M', and assume henceforward
that M' = 0.

a) Now suppose that 0 = }; M, is a primary decomposition. Note .

that M € ® M/M; so by Lemma 3 6 every prime in Ass M occurs
ameong the primes P;. This proves assertion a).

b) Next suppose that the given decomposition is irredundant, so
that for each j, nigj M; = 0. Note that because M;n ﬂ;..j Mi=20
we have
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Minj My = (MNyiay M) / (M; 0 Miej My
& (Myey My + Mj/M; © M/M;.

As this module is Pj-coprimary, sois {145 M;. By Lemma 3 6, Pjis
an associated prime of M. Together with a), this proves b).

¢) Finally, suppose that the given decomposition is minirmal. By
Corollary 3 8 the intersection of P-primary submodules is P-
primary, so minimality implies that the primes P; are distinct.
With b), this proves the first staternent of c).

For the last statement, suppose that P; is minimal over the
annihilator of M. We must show that M; is the kernel of the
localization map o: M — Mpi' Consider the commutative diagram

cx/' \Y\
(M/Mi)Pi

h/s'

M

where B is the projection rmap, § is the localization map, and ¥ is the
projection of Mp, to Mp,/M,p; = {(M/Mj)p,. The kernel of p is M;. To
show that the kernel of o is also My, it suffices te show that both ¥
and & are monomorphisms. Since Mj is Pj-primury, this is
immediate for §.

Since NjM; = 0 the natural map ¢: M - ®M/M;is a
monomorphism. By Proposition 2.5 localization preserves
monomorphisms, so ¢p;; Mp;, = ®(M/Mjlp, is a monemorphism. The
map ¥ is the ith component of ¢p;- Because P; is minimal over the
annihilator of M we know that P; is not contained in P; for j » i
Since M/Mj is Pj-coprimary, we have (M/M; )p = 0 for j + i, so the
Jth component of ¢py vanishes, and we see that Yis a
monomorphism as required.
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d) U N P;= & then PlU 1] is a prirae ideal of R[U™1], and by
Theorem 3 1 ¢), MU 1)is P,[U"!] primary. We see from Proposition
3 9 ¢) that M;[U"] = M[U"!]. Thus

0 = Ny MiIUY

is a primary decomposition. To see that it is minimal, it suffices by
part b} to show that the associated primes of M[U™1] are the

associated primes of M that do not meet U, and this also follows
from Theorem 3 1 c¢). //

In Exercise A3.6 we present a different view of primary
decomposition: It is the reflection, in M, of the fact that the injective
envelope of M decornposes in a nice way. This point of view also
explains the meaning of the irreducible decormnpositions defined in the

procf above.
Primary Decomposition And Factoriality

It is easy to express the relationship between primary
decompesition wnd unique factorization in the classical sense:

Proposition 3 11: lLet R be a Noetherian domain.
al) If f € Randf = ullp;®, in such a way that u is a unit of R,
the p; are primes generating distinct ideals (p;), and each ¢; is a

positive integer, then (f) = A(p;®) is the minimal primary
decompaosition of (f).

b) R is factorial iff every prime ideal minirnal over a principal
ideal is itself principal.

Proof: a) First we show that (p;®l) is a (p;)-primary ideal. If Q is
an associated prime of (p;®i) then since Q contains a power of p we

Wednesday, March 2, 1994 --3.16 --



have Q D (p3). If q is any element of Q, then q annihilates some
element of R/(pi®1), that is for some {f ¢ (p;®!) we have gf = p;*ig .
Since pj* divides gf but not {, and since p; is prime, we see that p;
divides q. this shows Q € (p;) as required.

Clearly we have (f) € N(p;*i); we wish to show equality. By
induction on the number of primes p; involved, it suffices to show
that if g is not divisible by a prime p, then {g)n(p®) = (gp®). But if Ig
€ (p*), then since p does not divide g and p is prime, p must divide f,
and (f/p)g € (p* ). Repeating this argument, we eventually see
that p*® divides f, so fg € {gp®).

We now see that (f) = N{p,*1) is an primary decomposition. Thus
every prime of Ass R/(f) is one of the {p;). Each (p;) is contained in
an associated prime of (f) because p; is a zerodivisor modulo (f); For
pi divides f and p(f/p)) € (f). Thus the given primary decomposition
is minimal.

b) Suppose R is factorial. If f = ulTp;®l is the prime factorization
of an element, then by part a} the associated primes of (f}, and thus
in particular the minimal primes of R that contain {, are the
principal primes (p;).

Converely, suppose that every prime ideal minimal over a
principal ideal is itself principal. To prove that R is factorial, the
argument given in Chapter 0 shows that, since R is Noetherian, 1t is
enough to check that any irreducible element f € R is prime. But if
P is a prime minimal over {f) then by hypothesis we may write P =
(p) for some p € R, and f € P becornes f = rp for some r € R. Since f
is irreducible, r must be a unit, so (f) = (p) = P is prime.//

We shall sharpen this result a little in Chapter 10.

Primary Decomposition In The Graded Case
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If R is a graded Noetherian ring anc¢ M a finitely generated
graded R-module then the associated primes of M are homogeneous,
a primary decomposition of 0 in M can be made in terms of
homogeneous modules, and M has a filtration as in Proposition 3 7
where the M; and P; are homogeneous. The proofs of these things
involve only one new idea, given in Proposition 3 12 below, and we
leave the details to the reader. We state the Proposition here for
ordinary graded rings R = Rg®R®..., but in fact it holds {with the
same proof!) for Z-graded rings and modules, and much more
generally. See Exercise 3 5.

Proposition 3 12: Suppose that R = Rg®R®... is a graded ring,
and M is a graded R-module. Let m € M be any element, and set P

=ann m C R. If P is prime, then P is homogeneocus and P is the
annihilator of a homogeneous element.

Proof: Any f € R may be expressed in a unique way as a sum f =
Z3-1 f;, where each f; is nonzero and homogeneous of some degree d;,
and dy < .. <d;. We may prove that P is homogeneous by showing
that if f € P then f; € P for each i. By induction on s it suffices to

show that f; € P. Thus we suppose that fm = 0 and we wish to
prove that fym = Q.

We may also write rn = Xﬁzl my, in a unique way so that each m;
1s nonzero and homeogeneous of some degree ej, and eq < ... <ey. We do
induction on the number of terms t. Since fm = fomo+{terms of
higher degree), we see that fym = 0. Thusif t = 1 we are done.

Suppese t > 1, and that the result has been proven for all smaller
values of 1.

The element fym = Zti=2 fym; is a sum of fewer homomgeneous
terms than ism. Set [ = ann fym. Notethat Pc I. If P =1 then P
is homogenous by the induction, and we are done. Otherwise we
may choose an element g € 1, such that g ¢ P. We have gfim = 0,
so gfy € ann m = P. Since g ¢ P, and P is prime, we have f1 € P as
claimed, proving that P is homogeneous.
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From the fact that P is homogeneous it follows that Pm; = 0 for
each i. Since P = ann m 5 Ni{ann m;) D P, we see that P = N;{ann
my} D TT{ann m;,). Since P is prime, we have P 2 ann m, for some i,
whence P = ann mjy, and we are done. //

Extracting Information From Primary Decomposition

We maintain the assumptions that R is a Noetherian ring,
and we shall assume that M is a finitely generated R-
module.

We have already seen that if 0 = N; M; is the minimal primary
decomposition, then the M; corresponding to minimal primes of
Ass M, are uniquely determined by M, and thus might be expected
to shed some light on the structure of M, whereas the M;
corresponding to emnbedded primes are not in general uniquely
determined {we shall analyze this phenomeneon in a moment). The
same mechanism that leads to the uniqueness of the M;
corresponding to the minimal primes carries us a little further, and
shows that certain intersections of primary components are well-
defined. It turns out that these intersections correpond to the sets
of associated primes containing a given ideal -- that is, to the closed
subsets of Spec A in the Zariski topology introduced in Chapter 1.

To express the intersections above, we shall make the following
definition: For anvy ideal ]l € R, we set

HIO(M)=[m€MII“m=0forn>>0),

the set of elemen s annihilated by some power of I. The notation

comes from local cohomology; see Appendix 4, in which functors
HXM) are defined for all i. (Pursuing the analogy with sheaf theory

from which local cohomology arises, some authors also write I'i{(M)
for what we have called H?(M).)
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The set H?(M) 1s easily seen to be a submodule of M. It actually
depends only on the radical of I, in the sense that H?(M) - H?}(M) if
rad(l) = rad(J).

Proposition 3 13: Let I be an ideal of R, and let
A=(P€Ass MIP 2 I}

a) Let 0 = N; M, be a primary decomposition of 0 C M, and
suppose M; is Pj-primary. The submeodule H?(M) is the intersection
of those M; such that P; £ A. In particular, this intersection is

independent of the primary decomposition chosen.

b) There is an elerment f € 1 such that P € A iff P € Ass M and f
€ P. For any such [ we have

HYM) = ker (M — Mt 1)),

c) We have Ass H?(M) = A, and Ass M/H([)(M) = (Ass M) - A.
These properties characterize H(])(M) uniquely.

Proof: a} We may write H?(M) = (0} I} := UL(0 g 1IM), where
(0:mI™) ={m € M| [™"m = 0}. Using the given primary
decomposition we get

HYM) = (00 M) iy 199 = 1, (M oy 1%,

A power of P; annihilates M/M; so if P; 2 I then (M, : I®) = M, and
we may drop this component from the intersection. On the other
hand, if P; 2 | then [ contains a nonzerodivisor on M/M;, so

(Mj :m I} = M;. The desired formula for H?(M) follows.

b) By Prime Avoidance we may choose f € | not in any of the
finitely many primes Q € (Ass M) - A. Set N = ker (M — M[f~1]).
By Proposition 2.1 we have N = {0:f*). By the argument of part a),
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applied to the ideal (f) in place of I, this is the intersection of those
M; such that P 2 f, the same as H?(M).

c} By part a) the primary decomposition of H?{M) in M is
0
HI(M) = N gych that PirA M;.

If we choose the primary decomposition 0 = N;M; to be irredundant,
then we get an irredundant primary decompostion of H?(M), and it
follows from Theorem 3 10 that Ass M/H)(M) = (Ass M) - A.
Further, by Lemma 3 6 b} we see that Ass H?(M\ i< a subset of
primes of Ass M that contains (Ass M) - A. Since every element of
HYM) is annihilated by a power of I, it follows that the primes of Ass
Hj(M) all contain I. Thus Ass H?(M) = A.

Conversely, let N be any submodule of M such that Ass N = A and
Ass M/N = Ass M - A. If we choose f as in part b), then a power of f
annihilates N and f is a nonzerodivisor on M/N. If follows that N =
ker (M — MIf1]), so N = HY(M) by part b). //

The mechanism of part b} could be applied with an% localization,
but it does not yield any submodules other than the Hj(M). See

Exercise 3 12.

A typical application of part a) of the Proposition is to show that
the intersection of all primary components corresponding to primes
of dimension 2 some number d is well defined. (See Chapter 9 for
the definition of dimension.)

The most interesting case of Proposition 3 13 occurs when the
ideal I is a prime P. The module Hp(M)p C Mp is then the unique
largest submodule of finite length. It's length is called the
multiplicity of P in M.  We see from the Proposition (or directly
fromn Theoremn 3 1) that P is associated to M iff the multiplicity of P
in M is nonzero. In general, one may think of the multiplicity as
measuring "how associated” P is to M.
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Somewhat surprisingly, there seermns no general way to extract
"invariant® information about M from a primary decomposition that
is not covered by Proposition 3 13 (but in some special
circumstances there is -- see for example Exercise 3 11). This has
led some people to the view that one should ignore primary
decomposition entirely; localization and the set of associated primes
are together enough.

Why Primary Decomposition Is Not Unique

We take a moment to "explain why” the terms in a primary
decomnposition corresponding to ernbedded primes are not unique,
and to explore some related ideas. Assume for simplicity that R is a
local Noetherian ring, and that the finitely generated module M has
two associated primes, a minimal prime Q and the maximal ideal P
itself. If we write a minimal primary decompostion 0 = M' n M" ,
where M’ is Q-primary and M" is P-primary, then by Theorem 3 10
¢} M' = ker (M — Mg) is uniquely determined. However, as the

reader may easily check, M" may be taken to be any submodule
such that

a) For some integer d, M" > P9M
and
b) M"n M'= 0.

In particular, we could simply take M" = P9M for any sufficiently
large d.

One may try to avoid the problem by taking M" maximal
satisfying properties a,b. However, uniqueness is prevented even
then, essentially by the fact that the complement of a vector space
is not unique. For example, let k be a field and let R = kix](y) be a
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localization of the polynomial ring in one variable. Let M = R &
R/(x), and let e be a generator for the second summand. With
notation as above, @ = 0, P = (x}, and M' = Re, the second summand.
Here M", may be any nonzero submodule meeting Re in 0. The
maximal choices for M" are precisely the complements of the second
summand, Re; these are the modules generated by elements of the
form (1,ue), with u € k. Since any two such elements are carried
into one another by an automorphism of M, there is no distinguished
choice for M". (Some more examples are given in Exercise 3 10.)

In situations where "nice” subspaces have distinguished
compiements {for example in the presence of a suitable group action)

there are sometimes distinguished primary decompositions, however.

See Exercise 3 11.
Geometric Interpretation Of Primary Decomposition

If k is an algebraically closed field and | € S = ki{xy, .. ,x, ] is an
ideal, we can hope to "see” some of the meaning of a primary
d :composition of [. Let I = Njlj be a minirmal primary
decomposition. [t follows of course that Z(I} = U; Z(I;). If 1is a
radical ideal, then each of the Ij is a prime ideal minimal over [, and
the primary decomposition simply expresses the algebraic set Z(I) as
the union of the irreducible algebraic sets (algebraic varieties) Z(1;).
But in more general cases the algebra suggests more. What we shall
do here informally is formalized in the theory of schemes; see for
example Eisenbud-Harris [1992] for an expository treatment in the
spirit of this text, and Hartshorne [1977, Ch. 2] for more technical
detail.

Let us begin with the case of an ideal I C S = kix,y] that is
primary to the maximal ideal (x,y), so that Z(1} is the origin in the
affine plane. For example, what geometric object X should be
associated with the primary ideal (x2,y}? The idea is that X shouid
be that geometric object that determines the coordinate ring /1. If
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2 34

f=ag+ aix + azy + azx“ + agxy + a5y2 + agx
is a polynomial, then the class of f modulo (x2,y) we can read off the
scalars ag = £(0,0) and ay = 3f/9x(0,0}. That is, if we restrict a
function to X, then we "see” the value of the function at the origin ~
- so the point (0,0} should be “in” X -- and the value of the first
derivative of f in the horizontal direction. There is a standard
geometric object of this kind: it is the origin plus the horizontal
tangent vector at the origin!

I =(x%,y)

corresponds to X, X
a point with

tangent vector

In a similar way, if we take I = (xz, XY, yz), then the class of f
modulo [ reveals the value of f at 0 and the value of the first
derivative of f in any direction. Thus it is natural to think of the

corresponding X as the whole first order infinitesimal neighborhood
of the origin in the piane,

I = (x2, xy, y2)
corresponds to X, the
first-order infinitesimal
neighborhc . of (0,0}

If we replace | by, for example, the n'" power (x,y)", then all the
derivatives of { up to order n-1 are visible modulo I, so the

corresponding geornetric object X is the nt? infinitesimal
neighborhood.

Similar considerations are suggestive in higher-dimensional cases,
too. For example, the ideal (x) ¢ klx,y] corresponds to Z({x)), the
vertical line in the plane, while modulo {(x2) one can see the values
of a function f(x,y) at every point on the vertical line together with
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the values of it's first derivatives in the horizontal direction at any
point of the line. Thus (x2) corresponds to the vertical line with all
the horizontal tangent vectors at points of the line -~ that is the
first order neighborhood of the vertical line:

I = (x2) corresponds to X
X, the first-order

infinitesimal

neighborhood of the

vertical line.

From these ideas it is easy to see how to interpret more or less
arbitary primary decompositions. For example, | = (x)N(x2,xy,y?)
corresponds to the vertical line together with the first order
neighberhood at the origin

I = (x)N(x2, xy, y2)
corresponds to X, the
vertical line plus the
first-order infinitesimal
neighborhoeod of (0,0).

Here the primary decomnposition is not unique, and we could also
write [ = (xz,xy) = (x)n(xz,y), corresponding to the fact that the
only information about a function f that is available on the first
order infinitesimal neighborhood of the origin but not on the vertical
line is the derivative of the function in the horizontal direction.

Symbelic Powers and Functions Vanishing to High Order

If P is a maximal ideal of R and 1 is any proper ideal containing a
power of P, then | is P-primary: for in this case P is the only prime
containing the annihilator I of R/I, so Theorem 3 1 a) shows that Ass
R/l = {P). This generalizes the fact that any power of a prime in the
integers is primary.
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In particular, the powers of a maximal ideal are all primary.
One would be ternpted to hope that a power of any prime ideal P
would be P-primary, but this is not the case. In general, the P-
primary component of the nth power of P is called the nth
symbolic power of P, and is written P In the geometric case, !

the symbolic powers of P have a nice geometric description, due to
Zariski and Nagata:

PR

Suppose that k is an algebraically closed field of characteristic 0
and 3 = k[xy, .. ,x.}is a polynomial ring Let X be the variety
corresponding to the prime ideal P C S, so that P is the set of all
polynomials vanishing on X. For nz1, let

P*" = {f € S| 1 vanishes to order > n at every point of XJ.

The condition that f vanishes to order n at a point x € A’ means
that if My is the maxirnal ideal of S consisting of functions vanishing
at x, then f € m,",; equivalently, the Taylor expansion of f around x
begins with terms of order 2 n. Thus we may also write

<n>
P - Nyex mM,"

Hf the characteristic of k is 0, then P*™ can be defined in another
way as well: it is the set of polynornials that vanish together with
their partial derivatives of orders < n at all the points of X. (In
characteristic p, this is a weaker condition, and not so interesting:

the derivatives of order z p of the function x3™ are identically 0.)
We have: 4

Theorem 3 14 (Zariski, Nagata): Suppose that k is an
algebraically closed field and S is a polynomial ring over k. If P is a

prime ideal of S, then P> = p(n) tho pth symbolic power.

Theorem 3 14 is true (with suitable interpretation) in a much
broader setting. See Eisenbud-Hochster [1979] for history and
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details,

Partial Proof: We shall prove in characteristic 0 that P?” js P-
primary and contains P™. It follows that P contains P{"), we
only sketch the opposite inclusion; for a full proof see the paper
mentioned above, and the references there. It is obvious that P is
an ideal and that P D P™. To show that P*"” is P-primary we
rnust show that if r ¢ P, but rs € P*"” then s € P,

If m is a maximal ideal of S containing P such that r ¢ m then
since rs € M® and m™ is M-primary we must have s € m™. [t
folluws that the derivatives of order < n of s all vanish on the set Y
={x € X | r(x)»0 ). Let g be such a derivative. Since rg vanishes at
every point of X, we have rg € P by the Nullstellensatz. Sincer ¢ P
by hypothesis, it follows that g € P. Under the hypothesis that k has
characteristic 0 we deduce that s vanishes to order 2 n on X,
proving that P“"” is P-primary. Because of the unigueness of

primary components associated to minimal associated primes, we
deduce also P<7> 5 p{n),

Here is the idea of the proof that P C P Since Pn) 45 p-
primary, it is enough to show that (P*™)}U" 1] c (PN U1 for some
multiplicatively closed set U not meeting P. We shall later show
that there exists an element u € P such that for any point x€X with
u(x} » 0, with correspending maximal ideal m = m,, there is a set of
generators yy, ... ,yy of My such that Py is generated by a subset of
the y;. Under these circumstances the y; act like a set of
“variables" (see Corollary 10.14 and Exercise 17.13).

To see how the argurment should go, we shift to the simpler case
where P is generated by a subset of variables: P = {yq, ... , y.} €
klyy, - ., ¥rl. The polynorials f(y1, ... , ¥,) all of whose derivatives
of order < n are in {y4, .. , y.) are precisely the polynomials whose
terms are all of degree at least n in yi, .. ,¥c —- that is, the nth
power of P, and P™ = P, The n'P power of (yq, .., y.) is also
primary by Exercise 3 6, so P! = p(n) The analogous statements are
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also true in the original case. In particular, after inverting u we
have P = P = P("), concluding the sketch. //

A Determinantal Example

These ideas suggest an explicit exarmple of a prime whase square
is not equal to its symbolic square (and we shall check the example
directly). A good general reference for the material that follows is
the book of Bruns and Vetter {1988], and the example we shall give
is very close to the paper of DeConcini-Eisenbud-Procesi [1982]; in

particular, all the unproved assertions encountered below are
proved in these sources.

Consider the polynomial ring in 9 variables 5 = kllxy) 141 353! and
the generic 3x3 matrix G = (x;;) over 5. Let P be the radical of the
ideal 13(G) generated by the 2x2 minors of G. The algebraic set X
defined by I2(G) in the set M3z = A? of all 3x3 matrices is the set of
3x3 matrices of rank 1. This set is irreducible, so that P is prime,
as the following very typical geometric argument shows:

First, the algebraic set

Y = GL3K) = Ug,y) € A%xAl | g a 3x3 matrix and (det gly=1)

1s irreducible because the corresponding ring is

kl{xi3)15i je3ll{det g)71], a localization of the polynornial ring in 9
variables. The same is true of the algebraic set YxY C Azo; its ring
is a localization of the ring of polynomials in 18 variables. Let Mz =
A% be the set of 3x3 matrices over k. Choose any matrix m of rank
exactly 1, and consider the morphism YxY — M3z defined by (g,h) -
gmh. Because any two nonzero matrices of rank 1 differ only by a
change of basis in source and target, the image of ¢ is exactly X. If
X = X1UX32, with X3 and X5 algebraic subsets of X, then tp'i(xl) U

¢ 1X2) = YxY. Since YxY is irreducible, either ¢~1(X;) = YxY or
cp’l()(z) = YxY, and thus Xy = X or Xz = X, showing that X is
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irreducivle, too.

It is obvious that no linear form vanishes on all rank 1 matrices,
so P contains no linear form. In fact [2(G) is prime, so P = 15(G) is
the prime ideal of functions vanishing on the set of rank 1 matrices,
but we shall not need this here.

Let g = det G, the determinant of G. We claim that g € p(2},
Since P contains no linear forms P2 is generated by forms of degree
z 4 and g is of degree 3, so this will show that PZ = p(2),

Checking Theorem 3 14 against this example, we note that the
partial derivatives of g with respect to the variables x;; are 2x2
minors of G, so g € P“?>. If k has characteristic 0, then Thecrem

3 14 applies to show that g € P2 as claimed.

We now give a direct proof. We must show that g becomes an
element of P2 after we localize at P. Now xj; ¢ P, so it suffices to
show that x11g € IZ(G)Z. This is easy to check: after multiplying the
second and third columns of G by %11, which changes the
determinant to xnzg, we may add multiples of the first column to
the two other columns {not changing the determinant} to make the
1,2 and 1,3 elernents of the matrix 0, as in Figure 3.1:

X11 %12 xw] [xn X11X12 X11X13]
x21 X22 x23| ** X21 X11¥22  X11X23|
K3§  X32 X33 X314 X11X32  X11¥33

xz1 X11X22-X12X21 X11¥237X13X21
\X31  X11X32°X12X3) X11X337X13%31

ST 0 0 ]

Figure 3.1

Thus the determinant xuzg is the product of x11 and the
determinant of the lower 2x2 submatrix
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X11%23-X13X21]
x11%33-X13%31) ,

G - [x11%22-x12%21
[x11x32-%12%31

so that x13g = det G'. Since the entries of G' ar: 2x2 minors of the
original matrix, det G' € [5(G)2, and thus g € P{2),

In fact, it is known that P{2} = (P?, g), and tnat a primary
decomposition of P?Z is P? = pi2) n m4, where m is the ideal
generated by all the x;;

Here is a geometric proof that g vanishes to order z 2 at any
point a € X. Since we are in characteristic 0, it suffices to show that
the partial derivative 0g/dx%;; vanishes at a for every i,j. If we write
ejj for the matrix which has all its entries equal to 0 except for the
i,j entry, and whose i,j entry is 1, then
E)g/axi_} = dg(a+teij)/dt, where t is a new variable. But since both a
and e;; have rank 1, every matrix of the form a+te;; has rank 2.
Thus g vanishes identially on matrices of the form a+teyj, and we see
that the derivative is 0 as required.

More generally, we might ask for the primary decomposition of
any power of any “"determinantal” ideal. To be specific, if G = (xu) is
the “generic” pxq matrix over the ring S = klxj1<i<p 1sjsql then for
each n the ideal P, generated by the nxn minors of G is prime. If
1 < n < min{(p,q) then the powers of P,, are not primary; however,
the symbolic powers of P, are known ~- they are generated by
certain products of minors of various orders -~ and a primary
decomposition of the powers has the form

#) P,M = pn(m) n Pn_lizm) n..nN pl(nm).

The decomposition #) can be made minimal by taking only the first
a(k,n} terms for a certain function a(k,n) -- see DeConcini-

Eisenbud-Procesi [1982] for a precise statement, proof, and history of
these matters.
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Exercises

Exercise 31 : Let R = Z, the ring of integers. Identify the
associated primes of a finitely generated abelian group (Z-module} in
terms of the usual structure theory of finitely generated abelian
groups.

Exercise 3 2 : If M' = M{NM3 are submodules of a module M, show
that Ass M/M' C Ass M/M; U Ass M/Mj.

Exercise 3 3 *: If R is Noetherian and M and N are finitely
generated R-modules, show that

Ass Homg{M,N} = Supp M N Ass N,

where Supp M is the set of all primes containing the annihilator of
M. (Hint: Show that it suffices to assume R is local and prove that
the maximal ideal is in the set on the left hand side iff it is in the
set on the right hand side. You will need to use Nakayama's
lemma.) Taking M = R/I, and setting (0 ;y 1) = {n € N | In=0}, show
that Homg(M,N) = (0 :y 1}, and thus

Ass(O:NI)=AssN N (P c R{Pisaprimeideal and [ ¢ P).
Exercise 3 4 " (Gauss’ Lemma): Let R be any ring, and set S =
RIxi, .. , %,], the polynomial ring in r variables. If f € Sis a
polynomial write Content(f) for the ideal generated by the
coefficients of f.

a) If f,g € S then

Content(fg) C Content({f)Content(g) C rad{Content(fg}).

Deduce that if Content(f) contains a nonzerodivisor of R, then f is a
nonzerodivisor of S.
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b) If R is Noetherian and f is a nonzerodivisor of S, show
conversely that Content(f) contains a nonzerodivisor of R.

c) We say that f is primitive if Content{f) = (1). Gauss proved, in
the case R = 7 and r = 1, that the product of primitive pelynomials
is primitive, essentially to prove that if a primitive polynomial is
irreducible in Q[x] then it is irreducible in 2{x]. Prove that if R is a
factorial domain with quotient field K, and if f is irreducible in Rlx],
then f is irreducible in K[x]. Then show that R[x] is again factorial.

(The key step i* Gauss' Lemma, applied to products of primitive
polynomials.)

General Graded Primary Decomposition

Exercise 3 5 : Let I be an abelian monoid (that is, a set with a
commutative associative addition operation posessing an identity
element 0}, and let R = @R, be a ring graded by I, in the sense
that each Ry is an abelian group and RyRy' C Ryyyp- We say that T
acts on a set A if we are given a map ['xA = A, denoted (y,A)~ ¥+
and the associative law y+{y+}) = (y+{'}+A holds. We say that I acts
freely on A if Y+A = A only when ¥ = 0. If M is an R-module, we say
that M 1s graded ™ A if M = @, .4 M, as abelian groups and RyM, ¢
Mysa for any yo I, A € A, An elemnent of R is called homogeneous if
it belengs to one of the R,, and similarly for M. Every element of R
or M can be written as a surm of nonzero homogeneous elements in a
unique way; these are called its homogeneous components. An ideal
I € R is called hormogeneous if it can be generated by hormogeneous
elements. Show that | is homogeneous iff [ contains the
homogenecus components of each of its elements.

a) Suppose that both I" and A are totally ordered sets and that I
acts freely on A in such a way thatif Yy sy € Tand AsA' € A then
¥*A = y'+A" Prove that with this notation, if y < ¥' , A s A\'and f+A =
¥+, then ¥y = y' and A = 2. We say that the action of " on A is
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compatible with the orders.

b) Suppose that T is a totally ordered abelian monoid and R is a
ring graded by I'. Suppose also that M is an R-module, graded by a
totally ordered set A on which T acts freely in a way compatible
with the order. If P C R is a prime ideal that is the annihilator of
an element of M adapt the argument of Proposition 3 12 to show
that P is homogeneous and that P is in fact the annihilater of a
homogeneous element of M.

c) Suppose that R is a Noetherian ring, M is a finitely generated
R-module, and that R and M are graded as in part b). Show that
Ass M consists of hemogeneous prirme ideals. Show that 0 ¢ M has a
primary decomposition into homogeneous subrmodules. Show that in
the filtration of Proposition 3 7 the M and the P; may be taken to
be homogeneous.

d) Let R = k[x,y], Let T be the abelian group Z/{2) with elements
written 0 and 1. We give R a grading by I', letting Ry be the set of
polynornials whose terms all have even degree in y, and Ry the set
of all polynomials whose terms have odd degree in y. The element
x2+y2 is homogeneous of degree 0. Let M = R/(x2+y2). Show that M
is also graded by I'. Show that the prime ideal P = (x-y) is the
annihilator of an element of M, but that P is not homogeneous. (By
part b), this shows that Z/(2} cannot be ordered in such a way that
the action of Z/(2) on itself is compatible with the order. Prove this
directly.) Show that 0 C M does not have a primary decomposition
by homogeneous submodules of M.

Primary Decomposition Of Monomial Ideals:

Comnputing the primary decomposition of the ideal generated by
an arbitrary set of polynomials is quite difficult. See for example
Eisentud-Huneke-Vasconcelos [1992] for algorithms and references.

But for monomial ideals the job is relatively easy. See Heinzer,
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Ratliff, and Shah [##n] and Sturmfels, Trung and Vogel {#==] for
further information on monomial primary decomposition. See
Eisenbud and Sturrmfels {#x=] for the case of binomial ideals.

Let k be a field {or any dornain}. A monomial ideal is an ideal
I € klxg,...,x,] generated by monomials in the variables xg,...,x,. .

Exercise 3 6 ®: Which monomial ideals are prime? Irreducible?
Radical? Primary?

Exercise 3 7 *: Find an algorithm for computing the radical of a
monomial ideal.

Exercise 3 8 ": Find an algorithm for computing an irreducible

decomposition, and thus a primary decomposition, of a monomial
ideal.

Exercise 3 9 ®: Products of linear primes

a) Let = (xg){xg,x1)* ... -(xg,...,%,). Show that the associated
primes of I are (xp), {xg,x1}, .. , (xg,... %)

b} More generally, for any subset I ¢ {0, ... ,r} let P(I) be the
prime ideal generated by {x;l i € I}. Let Iy, .. ,I; be subsets of
{0, .. r), and set I = TT;P(I;}. Let T be the “incidence graph®, whose
vertices are the sets I, with an edge joining I; and Iy iff iNl; » &,
Show that the associated primes of | are precisely those primes that
may be expressed as P(lJiu...UIJS) where ljq, .. ,1j, forms a

connected subgraph of I'. (It may not be easiest to use the general
algorithm above.}

The Question Of Uniqueness

Exercise 3 10 : a)" Let R = kla,bl/I where I = (a) n (a,b)° = (a2,
ab). Show that (b"™) is (a,b)-primary in R, and that
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0 = (a) N (b™
is a minimal primary decomposition of 0 in R for any nz1.

b) Show that (a+xb") is also {(a,b) primary for any nonzero A € k,
and that '

0 = (a) N (a+ab").
Show that each (a+Ab"™) is maximal among those ideals J C R with
0=(a)n J;

thus the length of the rings R/J, for J a "maximal (a,b)-primary
component of 07, is actually unbounded.

¢} It may be objected that example b i1s unnatural in the sense
that it gives an inhomogeneous primary decomposition of a
homeogeneous ideal. However, it can be "homogenized” as follows: Let
S = Rlc]. Show that 0 = {(a) N {ac” " 1+ab™} are primary
decompositions of 0 in S, and that (ac" 1+Ab™) is maximal among
homogeneous ideals that can be used as primary components.

d)* (Huneke, unpublished): For maximal associated primes in the
homogeneous case there is a small positive result: Let ] C
klx4, .. , x,] be 2 hormnogeneous ideal and suppose that R = kixq, ...,
x.1/1 has the maximal ideal (xy, .. , %) as an associated prime.
Show that there exists a number B such that if

0=JynJdxn ...

is a primary decomposition of I by homogeneous ideals, and Jj is
maximal among the homogeneous ideals that can appear as an
(x4, .. , ¥y )-primary component, then the length of the ring R/J is
bounded above by B.
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Exercise 3 11 ": Uniqueness of maximal monomial primary
decomposition (Bayer, Galligo, Stillman, unpublished): Show that if
I € klxq, .. , x,) is a monomial ideal, then there is a unique minimal
primary decomposition I = NIj of 1 for which each Ij is a monomial
ideal, primary to an ideal P; generated by a subset of the variables,
and I is maximal among the possible monomial Pj-primary
componernts.

Exercise 3 12 : Let M be a finitely generated rmodule over the
Noetherian ring R. Given any multiplicatively closed set U € R, the
intersection of the primary components of 0 in M corresponding to
those primes of Ass M not meeting U is the kernel of the localization
map M = MIU™1), and is thus independent of the primary
decomposition chosen. Any such kernel may be written as H?(M) for
some ideal [ € R.

Determinantal Ideals

Exercise 3 13 : a) Let M, = Arz be the affine space of rxr matrices
over an algebraically closed field k. Show that if a polynomial f
vanishes on all the matrices of rank s in M, then it must vanish on
all matrices of rank s-1.

b) Use part a) and the idea of the proof given in the text for *he
case of 3x3 matrices of rank 1 to show that the set of rxr matrices
of rank < s is irreducible. (In fact the ideal of (s+1)x(s+1) minors of
the generic rxr matrix is prime -- but this is somewhat harder to
prove: see for example Bruns-Vetter [1988).)

c) Now show that, if P is the radical of the ideal of (s+1)}x(s+1)

minors of the generic rxr matrix, then the (s+2)x{(s+2)} minors are in
the symbolic square of P.

Total Quotients
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Exercise 3 14 : Use the finiteness of the set of associated primes of
a Noetherian ring R to show that the total quotient ring K(R) has
only finitely many maximal ideals -- they are the localizations of
the maximal associated primes.

Exercise 3 15 : The construction of the ring of total quotients K{R)
of a ring R (obtained from R by inverting all the nonzerodivisors of
R) commutes with localization if the ring is reduced, but not in the
general case. The problem has to do with embedded primes:

a)* If R is a reduced ring, show that for any multiplicatively
closed set U € R we have K(R[U™1]) = K(R)U™1].

b) If R is any ring and U is any multiplicatively closed subset,
show that K(RIU™1]) = K{ K(R)U™11) is a localization of K(R)}{U™})

c) Let k be a field, let R = k[x,y,z]/(xz, xy, xz), and let P = (x,y).
Show that

K(R) = R(x,y,z)

Rp = kly,zl(y) ;
and thus K(Rp) » Rp®K(R) = Rp.
Exercise 3 16 : Give an example of an extension of finitely
generated abelian groups for which the second inclusion of Lemma
% 6 b) is proper.

Prime Avoidance

Exercise 3 17 : The Prime Avoidance Lemnma 3 3 is sharp:

a)} Show that if k = Z/(2) then the ideal (x,y} Ckix,y] is the union
of 3 properly smaller ideals.
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b) Let k be any field. In the ring klx,y)/(xy, y?), consider the
ideals I3 = (x), Iz = (y), and J = (x%, y). Show that the hornogeneous
elements of J are contained in I1Ulp, but that J € 13 and J & I5.
Note that one of the [; is prime.

Exercise 3 18 : Prime avoidance usually fails for infinite sets of
primes -- but not always.

a) Show that in kix,y] the ideal (x,y) is contained in an infinite
union of primes P; such that no P; contains {x,y).

b) Suppose that R = kl(x;}jca) is a pelynomial ring with infinitely
many variables indexed by a set A. Let (Aj}ip be a (possibly)
infinite collection of mutually disjoint subsets of A, and for each i €
B let P; be the prime ideal generated by {xj)jea;- Show that any ideal
contained in the union of the P, is contained in one of them.
Conclude that if U is the multiplicative set U = R - UiegPi then the
maximal ideals of S = R[U™!] are precisely the ideals SPj. See
Exercise 9.6 for more about this example.

Exercise 3 19 " (Refinements of prime avoidance): Prove the
following useful variants of Prime Avoidance:

a) Suppose R it a ring containing a field k, and let 14, .. I, be
ideals of R. If (fy, ... ,f,) ¢ I;for i = 1, .. ,5, then there is a nonzero

homogeneous polynomial g(ty, ... ,t,,) € kltq, .. ,ty] with the property
that

(w) Eaifi qUJ lj
for all (a3, ... ,a,) € k™ such that glay, ... ,a,) » O.

In particular, if k is infinite, then there is an element (ag, .. ,ap) €
k"1 so that f; + 0, ayf; ¢ uy I
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b) Suppose R is a ring, and let Iy, ... Jn be prime ideals of R. If f
€ R and J is an idea! of R such that f+J ¢ I; fori =1, .. ,n, then

there is an element g € J with the property that
f+g ¢ Uj IJ-

In particular, if {fy, .. ,f;) € I, for i = 1, .. n, then there is an
element (az, .. ,a,} € R ! 5o that fy + o af;, ¢ uj ;.

Exercise 3 20 : Let M be a finitely generated module M over a
Noetherian ring R. Proposition 3 4 immediately implies that the set
of elements of R that are zerodivisors on M i< - union of primes.
Here is a method, due to Kaplansky, tfor showing directly that this
set is a finite union of primes: Consider

¥ = {{P,m} | P is a maximal annihilator ideal and P = ann m}.
Let M' C M be the submodule generated by all the m's that occur as
second members of pairs in . Let mj, .. ,m, be a finite set of these

m; that generate M', and let Py, .. ,P, be the corresponding primes.
Show that the set of zerodivisors on M is PyU ... UP, .

?—g L. (O‘L%,
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Hints

Exercise 3 3 : Since all the sets of primes involved behave well
with respect to localization, it suffices to prove that if R is a local
ring then a prime P is in Ass Homg{M,N) iff it is in Supp M N Ass N.
If P isin Supp M, show using Nakayama's Lemma that there is a
surjection M »R/P. 1f P is also in Ass N, there is an inclusion R/P C
N. The composition ¢ € Homp(M,N) of these two maps is annihilated
by P, so P € Ass Homg(M,N). Conversely, if P € Ass Hompg(M,N),
then we can choose 0 # ¢ € Hompg(M,N) with annihilator P. It

follows that M # 0, so P € Supp M, and that im ¢ C N is annihilated
by P, so P € Ass N.

Exercise 3 4 : a) The inequality Content(fg) ¢ Content{f)Content(g)
is obvious. To prove the second inequality, it is encugh to show that
if a prime P C R contains Content({g) then it contains
Content(f)Content(g) Factoring out P, we may assume that R is a
domain and P is 0, and we must show that if fg = 0 then f or g = Q.
Since S is now a domain, this is obvious.

b} If R is Noetherian and Content(f) consists of zerodivisors, then
Content(f) annihilates a nonzero element of R by Theorern 3 1. It

follows that f annihilates this same element viewed as an elernent of
S.

== Cited Itern Has Been Deleted == : To show that R is

factorial, 1t suffices to show that irreducible elements are prime.

Exercise 3 6 : Answers: ldeals generated by subsets of the
variables; ideals generated by powers of some of the variables; ideals
generated by square-free (that is, multilinear} monomials; ideals
containing a power of each of a certain subset of the variables, and
generated by elements involving no further variables.

Exercise 3 7 , Exercise 38 : Let]bea monomial ideal. The key
point is that if m is a minimal generator of I, and we can factor m
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into relatively primeparts m=m' m" then I = (I + (m') N (1 +
{(m")). It is also useful to note that a monomial n is in I iff it is
divisible by one of the minimal generators of 1.

Exercise 3 9 : a) Do induction on r, inverting x, and using Theorem
31.

b) With an induction as in the Hint for part a, it suffices to show
that m = (xg, .. , %,) is an associated prime iff I is connected. If I is
connected, let T be a spanning tree (that is, a connected subgraph of
I’ containing all the vertices, and whose edges form no loops). For
each edge e of T, let i, be an element of the intersection of the two
sets corresponding to the vertices incident to e. Show that m is
associated by showing that m Tt xj, € I. Conversely, if [ is not
connected, we rnay partition T into two subgraphs I'y and 'y that
are not connected to each other. Let I3 and 12 be the corresponding
subproducts of primes, so that I = I1]5, and I and I involve disjoint
subsets of the variables. Show that [11; = I3 N I3, and thus the
associated primes of R/I are those of I (which involve only the first
set of variables) and those of I, involving only the second.

Exercise 3 10 a): As a vector space the ring R is klb] @ ka.

d) Jq must contain all forms of degree 2d, wheie d is the
maximal degree of a nonzero homogeneous elernent of {0 : (xy, ..,
X 0.

Exercise 3 11 : First, let 3 = %4, .. ,Xs be a subset of the variables
Xy, - Xy Relating each monomial ideal to its minimal set of
monomial generators, observe that there is a one to one
correspondence between monomial ideals primary to (3) and
monomial ideals primary to the irrelevant ideal in Klxy, .. ,xsl,
where K = k(Xg41, . ,Xr) is the field of rational functions in the

remaining variables.
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Use this observation, together with the fact that primary
decompositions localize, to reduce the problem to the following
special case:

Let m be the irrelevant ideal of S = klxy, .. ,x,). Suppose that if ]
is a rmonomial ideal of S, and 1 = I' N J where I' is a monomial ideal
having no M-primary component and J is an M-primary moneomial
ideal. In this case the unique maximal monomial choice of J is the
ideal generated by all those monomials NOT dividing any of the
finitely many monomials in I' but not in 1. {The finiteness of this set

implies that J contains a power of each variable -- and is thus m-
primary).

Exercise 3 15 a): In this case all the prime ideals of K{R) are
maximal ideals of K(R).

Exercise 3 18 : Suppose that f € UgP; and suppose that
Py, .. .Pn} = { Pi | sorne monomial of { is in P;}.

Show that if g is a polynomial such that g and f+g are in U pgP;,
then g € U=1P,,, Conclude that if f € [ € U;Pj, then I € UmeiPm
and thus I is contained in one of the Py, ... ,Pj,.

Exercise 5 19 : a) Regard the subspace in R generated by fy, .. ,in
as an image of an n-dimensional vector space V. Let Wj be the
preimage of 1; in V, and write {3, .. f, again for the basis elements
of V. Let mj be the dimension of W;. Consider the nx(mj+1) matrix
M; whose first column is (14, .. ,t;) and whose other mj columns
represent a basis for W;. The (mj+1)x(mj+1) minors of M; are linear
forms in the t;. For each j, the condition X a;f; ¢ W is the condition
that one of these forms is nonzero at {aj,..,a,). Since not all the f;
are in W;, one of these linear form is not identically 0; call it L; The
polynomial g may be taken to be TT; L;.
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b) We do induction on n, the case n = 1 being trivial. We may
suppose that none of the primes Iy, .. In contains another of the I.
By induction we may choose jj€J such that f +j; ¢ UR=2 Ix. If f+j;
¥ Iy we are done, so suppose that f+j1 € 1.

Since f + j; + J = f+J ¢ Iy we must have J ¢ I1. Since 14 is prime

we therefore have J~ N}.5 Iy 11 Let jo € Jn Nk=2 Iy be an
element outside I. It is easy to see that f + J1+ 2 & Ukaq L.
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