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Chapter 15: Grobner Bases

Man kann dieses Verfahren dazu
benutzen, den Restkalssenring eines
nulldimensionalen Polynomideals wirklich
zu berechnen...

(One can use this process to actually
compute a zero-dimensicnal residue class
ring of a polynomial ring...)

W. Grobner [1939]
We will werk throughout this chapter with a pelynomial ring S =
klxq, .. ,Xrl over a field k. The elements of k wili be called scalars. All S-
modules mentioned will be assumed finitely generated.

A great deal of modern commutative algebra and aigebraic geometry
Is formulated in an essentially nonconstructive fashion. To take a simple
examnple, Hilbert's basis theorem assures us that there exists a finite basis
of the syzygies for any finite set of elements of S, but at first glance it
would seern that one must investigate syzygies of all degrees to find one.
Nevertheless, one can find generators for such a wyzygy module
algorithmically (Hilbert's original proof was algorithmic!), and one can
effectively perform a very large proportion of the other central
operations as well. In fact practical algorithms are known and
implemented i1 various camputer algebra packages. In this chapter we
will take up a netien that is central to many such algorithms, the notion
of a Grobner basis. Grobner bases have had interesting theoretical
applications as well as computational ones, and there are currently
many open problems in the theory.

In brief, a Grobner basis for an ideal I in S is a set of generators for
I with an additional property; Buchberger's Algorithm  yields a simple
and effective method for computing Grobner bases and syzygies. Through
the use of Grobner bases, many questions about ideals in polynomial rings
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can be rzduced to questions about monomial ideals, which are far easier.
The kinds of problerns that can be attacked with G. cbner bases can be
very roughly divided into two groups:

¢ Constructive Module Theory

In this heading we group all the operations carried out on modules
over a fixed ring. A few samples:

¢ Division with remainder and ideal membership : Given
generators for an ideal [ ¢ §, determine a vector space basis for
S/1, and given a polynomial f, compute its image in S/1 in terms
of this basis. If f € 1 (that is, if the image is 0) compute an
expression for {f as a linear combination of the generators of I

o Compute syzygies ; that is, compute the kernel of a map
¢: G — F of free S-modules. Equivalently, solve a systern of
linear equations over S.

¢ Compute the intersection of two ideals.

e Compute the annihilator of a module.

s For ideals I, J € S, compute the saturation (I : J ).

¢ Compute the module of homomorphisms between two
given modules; rmore generally, compuie Ext and Tor.

¢ Compute the Hilbert Function and Polynomial of a
graded module.

s Elimination Theory

In this heading we group the operations that involve two different
rings. The most basic operation in this class is

¢ Elimination : Compute the intersecti_n J of an ideal |
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€ klx 4, .. ,x ;] with a subring R' = klx 1, .. ,x 4.

The geornetric meaning of elimination is projection: Given an
algebraic variety X C A" defined by the vanishing of the polynomials in
I, the projection of X to A% is a set whose closure (in the Zariski topology)
1s defined by J. One of the main uses of elimination is in actually finding
solutions for a system of polynomial equations -- that is, finding points of
a variety: The idea is to reduce the problem to a problem in fewer
variables, and eventually to a problem in c¢ne variable, where other
techniques (factorization of polynomials) can be used. We will take up
the solution of equations by elimination in a later chapter. In this

chapter we will explain how to use it to solve problems such as:

¢ Compute the equations satisfied by given elements of
an affine ring; geometrically, compute the closure of the
image of an affine or projective variety under a morphism.

in particular:

sFind a presentation of the blowup algebra and
associated graded ring of a ring R = S/I, with respect
to an ideal m.

* Given a variety V ¢ A ¥, find equations for its closure
inPr.

This long chapter is sarnewhat inhomeogeneous. The main results, on
which the computational uses of Grobner Bases are based, are proved in
the first part, ending with the treatment of syzygies and the special
property of the reverse lexicographic order. In a phrase of Sturmfels’,
these are the Grobner Basics. Subsequent sections on flat families and
generic imitial ideals present rmore advanced topics. Some of the ways of
applying Grobner Basis techniques in constructive module theory are
then described. At the end | have collected some historical remarks. The
novice might want to read just the "Basics”and browse a little arrong the
applications to get a flavor of what is possible. For those wishing to go
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deeper inte the use of computers in commutative algebra and algebraic
geometry, | have provided some "computer algebra projects, with
suggestions for implementation, in addition to more traditicnal exercises.

Another part of constructive commutative algebra that certainly
deserves mention, but that we will not treat here, concerns methods for
factoring polynomials. This field is deminated by ideas of E. Berlekamp; a
beautiful exposition may be found in the bock of D. Knuth (1969, Vol. 11,
Sect. 4.6].

Monomials and terms

Since the main idea in the use of Grobner bases is to reduce all
questions to questions about monomials, we begin with these.

We write monomials in S using multi-indices: If a = (ay, .. ,a,) then

%2 will denote the monomial

xlal Tt xral’,
An ideal gererated by such monemials will be called a monomial ideal.
More generally, let F be a finitely generated free module with basis {e;}.

A monomial in F is an element of the form

m = x%ey
for some i; we will say that such an m involves the basis element e ;.
A monomial submodule of F  is a submodule generated by elements of
this form. Any monomial submodule M of F may be written as

M=®IJEJ C@SQJ:F

with Ij the monomial ideal generated by those monornials m such that
me; € M.
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A term in F is a monomial multiplied by a scalar. Since the
moncemials form a vector space basis for F, every element f € F is
uniquely expre:sible as a finite sum of nonzere terms involving distinct
monomials, which we call the terms of f; the monomials in these terms
will be called the monomials of f. Since we have assumed that kis a
tielc , the distinction between terms and monoemials will not play much of
a role in our theory.

These definitions ail depend on the chosen basis (e;) of F. Whenever
possible, we will suppress the actual basis {e;! from our notation, and
speak simply of F as a free module with basis

It m, n are monemials of § and u,v € k, and v = 0, then we say that
the term ume; is divisible by the term vne;if i = j and m is divisible
by n in S; the quotient is then um/vn € S.

A number of operations are far simpler for monornials than for
arbitrary polynomials. For example, the greatest common divisor
and least common multiple of two monomials in S are ohtained
componentwise: If b = (by, .. ,b,) then

GCD( x2, xb) = xlmin(al,bl) xzmin(az,bg) . xrmin(ar,br)'
LCM( x2, xP) = xlmax(ai,b1)x2max(a2.b2) e xrmax(a,—,br)_

We extend these operatisns to terrns in any free module with basis F: 'f
M, n € F are terms involving the same basis element e; of F, then the
GCD of m and n will be taken to be the largest monomial in F by which
both m and n can be divided. It is easy to write down the intersection or
quotient of monomial submodules in terms of these operations; see
Exercise 15 3 and Exercise 15 7.

If M C F is a submodule generated by monomials myp, .. ;/my, it is
trivial to decide whether a monomial m belongs to M: It does iff it is
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divisible by at least one of the m;. More generally, the "membership
problem” is easy to solve for a monormial submodule: An arbitrary
element { € F belongs to M iff each of its monomial- belongs to M.

Given any set of meonomial generators for M, we may remove any
that are divisible by others in the set and still have a set of generators

for M. In this way we get the unique minimal set of monomials
generating M: The set of monomials in M that are minimal elements in
the partial order by divisibility on the monomials f F. We will refer to
the monornials in this set as minimal generators of M.

Hilbert function and polynomial

These simple ideas already suffice to comput - the Hilbert function
and polynomial of a monomial submeoedule M € F, or equivaiently of the
quotient P = F/M, quite efficiently. Because the submodule M is a direct
sum of modules of the form IJ- ej, where the ej are basis elements of F, we
get P = & 5/1;. Since the Hilbert function is additive, it suffices to treat

the case P = 3/1, where | is a monomial ideal.

We make an induction using the following idea: Choosing one of the
minimal generators n of [, we write ! = (I''n), where I' is a monomial
ideal generated by fewer monomials than 1, and let d be the degree of n.
There is an exact sequence of graded modules and degree 0 maps

0]
S{-d} = S/1' = 5/1 — 0,

where 5(-d) is the free module with generator in degree d and ¢ is the
map that sends the generator of S{-d) to the class of n in S/1". Now the
kernel of ¢ is easy to compute: It is the monomial ideal

J:=(I'"n)=(m € S|mn €Il

shifted in degree to be a submodule of 5(-d). By Fxercise 15 3,
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a suitable sense. Nevertheless, in many cases of interest, the method

J = (my/GCD(my,n}, ... , m{/GCD(my,n}), works quite quickly.

so like I', the ideal J has fewer minimal generators than I, and we can . |
suppose by induction that we know the Hilbert function and polynomial Syzygies of monomial submodules
of 5/1' and S5/J.

Syzygies of monornial submodules are also quite simple. The following

From the short exact sequence of graded modules result not only gives generators for the syzygies of a monomial
submodule, bu. gives precise information on the coefficients necessary to
0 - (8/0)-d) = S/T' =+ S/1 = 0, express arbitrary syzygies in terms of the generators.
i [ ‘ M be a
we get for each integer v a short exact sequence of vector spaces In the following, we let F be a fre? muodule with basis, and let e
submodule of F generated by monomials my, .. .m;. Let
0 - (S/M), 4 — (5/1), - (S/I), — 0. t
¢: Pj=15e; = F, plejl = m;
Thus, on the level of Hilbert functions, . | .
be a homornorphism from a free module whose image is M. For eac
Hg/i(v) = Hg/p (v} - Hgglv-d} pair of indices i,j such that m; and m; involve the same basis element of

F, we define
solving our problem.
mjj = m,;/GCD(m;, mj),
By choosing n sensibly, we can make the process much faster: If n ) t of ker iven by
contains the largest power of some variable x; of any of the minimal and we define ojj to be the element o v e
generators of 1, then the minirnal generators of the resulting ideal J will
not involve xy at all, and thus will involve strictly fewer of the variables Tij = mMji € - myj £
than do the minimal generators of I. .
& Lemma 15 1: With notation as above, ker ¢ is generated by the g;;.

This process leads to an expression for the Hilbert function or

polynomial as an alternating sum. A variant of the method, which leads Proof: We first observe that as a vector space over k, ker g is the
directly to an expression for the Hilbert function as a sum of binomial direct sum, over all monemials n € F, of the vector spaces

coefficiznts (all terms positive) is presented in Exercise 15 4. The worst vid = n/m.. and av € k J.
case behavior of these methods (with the best known choices for the (ker ¢)n = [ Zaynyey € ker ¢ | my divides n, ny = n v v
monemial n) is exponential in the nurmnber of variables, and Bayer and

Stillman, in [1992] (fror. which the method above is taken), show that Indeed, suppose that

finding the Hilbert function of a monomial ideal is an NP-hard problem in
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o = Zpisi € St, p; € S
The syzygies o in Lernma 15 1 are sormnetimes called divided

is a syzygy, so that Zp;m; = 0. For any monomial n of F that occurs in Koszul relations because of their similarity to the relations in the
one of the pjm;j, and for each i let p; , be the term of p; (if any) such Koszul complex that we shall study in Chapter 17. We have shown that
that p; ,m; is a scalar times n. We rnust have Ip;am; = 0, so Zpi,nt € they generate all the syzygies on monomial ideals, but they do not in
(ker ¢),. The representation is clearly unique. general form a minimal set of generators (see Exercise 15 6).
In Exercise 17.11 we will see that a very similar construction gives a
We now do induction on the number of nonzero terms of 0. [f o » 0 whole (nonminimal) free resolution of a monomial submodule, which is a
then because o is a syzygy, at least two of the a,n, must be nonzero, kind of "divided Koszul complex”.

say the it" and the jtP, with i < j. It follows that n is divisible both by
mj and mj, and thus n; is divisible by

LCM(mi, mJ)/ml = mJ/GCD(m“ mJ) = m_ﬁ.

Consequently we may subtract a scalar times (n;/mjj)aj; from o to get a
relation with fewer terms. //

The proof actually gives a stronger result, which we will use in the
proof of Theorem 15 8:

Lemma 15 1 bis: With notation as in Lemma 15 1, every element of
ker ¢ is uniquely expressible as a sum of elements 7 = Za,nyty € ker ¢
such that all the nym, are equal to the same monomial n € F. For such
an element we may write

T=Znijcij,

where the sum is over all i<) such that LCM{m;, mj) divides n and where
nij is a scalar times the monomial n/LCM(my;, mj) = n;/mj;.

Proof: The first paragraph of the proof of Lemma 15 1 above proves the
first staternent. For the second, look again at the last paragraph of the
proof of Lemma 15 1. The element ¢;j used there meets the conditions of
Lermma 15 1 bis, and we never introduce any new term in T in the
course of the induction.//
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Monomial orders

If J € 3is a monomial ideal, then the set B of all monomials net in J
forms a vector space basis for $/J that makes computation in 5/J quite
convenient. If [ is an arbitrary ideal of 8, we would like to obtain a
similarly simple picture of 3/1. Since the monomials of S form a vector
space basis, their images span S/1, and a maximal linearly independent

subset B will be a basis. These exist by Zorn’s Lemma, so any 5/] has
such a monomial basis

If we can choose B to be the complement of the set of monomials in a
rmonomial ideal J, as in the case where I is itself a monomial ideal, we get
an extra advantage. Because a monomial ideal can be specified by giving
finitely many monomial generators, it is easy to determine whether a
given monomial is in B: We must simply test for divisibility by one of
the generators of J We will show in Theorem 15 3 that there is a
monommial basis B for any 5/I obtained in this way. We begin with some
remarks to motivate the construction:

First, if J is a monomial ideal and B is the set of monomials not in J,
then it is not hard to see that the elements of B remain linearly
independent moadulo an ideal I iff

»} J contains at least one monomial from every polynomial in L.

For the set B to be a basis of 5/1, the ideal J must (at least!} be minimal
with property =).

As a first example, let [ = (mj+m3) be a principal ideal generated by
the sum of twe monomials mj. A monomial ideal contains at least one
monomial frermn each polynomial in 1 iff it contains one of the rnonemial
ideals (mj). However, if my divides my and we take J = {my), then B will
not be a basts, since J is not minimal: my itself is superflucus. Taking J
= {mp) in these circurmctances DOES make B a basis, however; we will
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prove a much more general statement in a moment, but the reader may
wish to pause to think through this special case.

To find a monomial ideal J that contains at least one monomial from
each polynomial of I it seems natural to look for a methed of choosing one
monomial from each polynomial of 5. Given such a method, we can
apply it to choose a monomial from each polynomial in I, and use the
chosen monocmials to generate J. To make J minimal , some interesting
additional conditions must be met.

Suppose for example that myq, myp, m3 are distinct monormmials of the
same degree d and that

I = {my + my, my + m3) + (all monomials of degree > d}.

Suppose that we have chosen my from mj + mz and mp from mgz + m3 to
put into J. The ideal I also contains

(my + mg) - (my + m3) = m - m3.

We must at this point choose mj (rather than m3) to put 1ate J; for if we
put ms3 into J, then J would not be minimal. Thus if we write "'mq > ms"
for the relation "my is chosen over mp", then > must satisfy the axiom
for an order relation, rmy > ms > m3 = my > m3. A more careful analysis
shows that the same thing is true even when the m; have different

degrees.

Thus we must totally order the monomials of 5, and put into J the
greatest monomial in each polynomial of 1. Because we wish to take J to
be an ideal, there are two further requirements that the order > must
satisfy with respect to multiplication:

First, as shown in the first example above, » must refine the partial

order defined by divisibility: That is if my is divisible by my, we must
take mg > my.
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Second, > must be preserved by multiplication: Suppose that I = {(my
+ m3) and that we have chosen mj > mp so that my € J and my does not
divide ms5. Then nmj + nmgj € [, but already, since J is an ideal, nmy €
J, so choosing nm3 > nmy, would lead (under many circumstances) to
nonmimimal sets J. Thus we must have nmjy > nmp.

The following definition encapsulates these canditions:
Definition : Let F be a free S-module with basis. A monomial order on
F is a total order > on the monomials of F such that if mj, mp, are
monomials of F and n # 1 is a monomial of S then

mq > m3 implies nmy > nmz > ma.

Bearing in mind that we are suppesing F to be finitely generated, the

second inequality has an extremely useful consequence:

Lemma 15 2: Let F be a free S-module with basis. Any monomial
ordzr on F is Artinian {every subset has a least element).

Proof: If X is a set of monomials of F, then since S is Noetherian the
submodule of F generated by X is already generated by a finite subset Y
C X. The least element of Y will be the least elernent in X because every
element of X is a multiple, by a monomial in S, of an element of Y. /7

We will extend this notation to terms: If um and vn are terms with
C + u,v € k, and m, n rmonomials with m > n {respectively m 2z n) then
we say um > vn {respectively um z vn). Note that thic is NOT a partial

order on terms, since even if usxv we haveum 2 vim and vm 2 um. Itis
neonetheless convenient,

If > is a monomial order, then for any f € F we define the initial
term of f, written in,(f) to be the greatest term of f with respect to the
order >, and if M is a submodule of F we define in,{M) to be the monomial
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submodvle generated by the elements in,(f) for all f € M. When there is
no danger of confusion we will simply write in in ;lace of in,.

Note that if p € S and {f € F and we write n for the (unique) term of
p such that n in{f) is greatest, then

in(pf) = n in{{).

For if m is a term of f other than in(f) and n'is a term of p other than n
we will have

n in(f) > n' in(f) {by hypothesis)

>n'm (hecause > is a monormmial order).

Monomial orders do all that we might have hor °d:

Theorem 15 3 (Macaulay) : Let F be a free S-m .dule with basis, and
let M be an arbitrary submeodule. For any monomial order > on F, the
set B of all monomials not in in,(M) forms a basis for F/M.

Proof: To show that B is linearly independent, note that if there were a
dependence relation

p=Zuimi€M miEB,Otu-,Ek

then in(p) € in(M). Since in{p) is one of the m;, which are suppesed to be
in B, this is a contradiction.

Now suppose that B does not span F/M. Among the set of elements of
F that are not in the span of M and B, we may take f to be one with
minimal initial term. If in{f) were in B, we could subtract it, getting a
polynomial with a still smaller initial term. Thus we may suppose that
in{f) € in{M). Subtracting an element of M with tl, same initial term as
f we arrive again at a contradiction. //
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Moneomial orders abound. Here are some significant examples with F
= 5. We write a = (a3, .. ,a,) and b = {by, ... ,b;} for multi-indices, and
set

By renaming the variables, we may always achieve xy > xp > ... >%,, and
we will only describe orders with this property.

Lexicographic order : m >, niff a; > b for ilie first index i with a; =
b;.

Hermnogeneous Lexicographic order : m >pjoy n iff degree m > degree n
or degree m = degree n and a; > b; for the first index i with a; # b;.

If we are given a sequence of partial orders >q, >3, ... then we may
define the partial order that is their lexicographic product to be the
order in which m > n if m > n for the first i such that m and n are
comparable with respect to the order »>;. We sometimes say that the
lexicographic product order is the order >; refined by the order »5,
refined by ... The homogenecus lexicographic order above is the
lexicographic preduct : f the partial order by degree {m > n if degree m >
degree n) refined by the partial orders by the degree in xy, the degree in
X2, ...

If r = 1 then the requirement that nmy > mg for a menomial n not
equal to 1 shows that there is a unique monomial order on S: The order
by degree. Similarly, if r = 2, then there is only one monomial order on
5 that refines the order by degree and satisfies our convention X1 > X3.
To see this, suppese m = x1?1x,%2 and n = x1b1x2b2 have the same
degree aj+ap = hy+by. If Ay > by, 50 € := ag-by > 0 then writing p =
xlblxzaz for the greatest common divisor we have

rn = x1%p,
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n = x2%p.

But xy > x3 implies %1% > xp® (in fact induction gives %17 > x1¥ txp > x2°),

som > n.

There are in general many other orders. By far the most important
is:

Reverse Lexicographic order: m >pleyx N Uf degree m > degree n or
degree m = degree n and a; < b; for the last index i with a; # b;.

Note the direction of the inequality a; < b; ! The name "reverse
lexicographic” comes from the fact that on the monomials of a given
degree, this is the reverse of the order obtained b reversing the order of
the variables and using homogeneous lexicographic order. Reverse
lexicographic order was introduced by Macaulay in [1927]. The difference
between the homogeneous lexicographic and reverse lexicographic orders
is subtle, but the use of reverse lexicographic order in piace of
homogeneous lexicographic order in the algerithms described below
sometimes improves the efficiency of computation enormously (Bayer-
Stillman [1987a and b]). See the section on generic coordinates, below, for
a hint of a possible reason.

The first case in which > and >,1sy could differ is for quadratic

monomials in 3 variables. Here indeed we have
5 2
X1X3 “hlex *2
while
< 2
X1X3 “rlex X2 -
Roughly, we can describe the difference by saying that if n. and n have

the same degree, then m >p)gx n iff m involves more from the
beginning of the list of variables while m >, n iff m involves less
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from the end of the list of variables. Most of the uses made of these
orders depend on the following easily verified properties {(which actually
characterize trem -- see Exercise 15 10). These properties make it clear
that the subtlety above is the difference between a subring and an ideal.

Characteristic properties of lex, hlex, and rlex 15 4:
a) If injex(f) € kixq, ... , .1 for some s, then f € klxg, .., %l

b) >h1ex refines the order by total degree; and if f is homogeneous
with inpjex(f) € kixs, .. , x,] for some s, then f € klxg, .. , Xl

¢} > 1ex refines the order by total degree; and if f is homeogeneous with
iNglexlf) € (xs, ... , %) for some s, then f € (x5, ..., Xp).

Weight orders: We define a weight function 2 for S to be a linear
function RY — R; A will be called integral if it comes from a linear map
Z' — Z. Any weight function A defines a partial order >, called the
weight order associated to A , by therulem =x® > n = xP iff Aa)>
Mb). We say that x is compatible with a given monomial order > if m
>, n implies m > n. Similar things could be done for a free module, but
we shall not use this. There are always compatible weight orders: In
fact it can be shown (Robbiano [1986]; see Exercise 15 11 Exercise 15 12
and Exercise 15 13) that every monomial order is the lexicographic
product of r weight orders, the first of which is necessarily compatible
with the given order. For example, defining m;: R” — R to be the
projection onto the it coordinate, the lexicographic order is the
lexicographic precduct of the weight orders corresponding te the m;, while
reverse lexicographic order is the lexicographic product of the weight
orders corresponding to the total degree function o = Zm; and the
functions -1, -m,_q, .. , -7y {the last of which may of course be
omitted). In fact any monomial order > can be approximated by a single
weight order >, in the sense that », can be made to agree with > on any
given finite set of pairs of monomials: See Exercise 15 12.
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in Proposition 15 16 we will have occasion to use a small extension of
the notion of initial term: Given a weight order A sn the polynomial ring N
8, we define in,(f) to be the sum of all these terms of f that are maxirmal
for >,.

One way of getting monomial orders on a frez medule F with given
basis {e;} is to choose a monemial order > on S5, choose an order > armong
the e;, and use a lexicographic product of the partial orders on the
monomials of F induced by > and ». In particular, a reverse
lexicographic order on F  is the result of refining the reverse
lexicographic order on the monemials of S by an orcer of the basis ¢; in
this way.

EL)

Now let F be a free S-module with basis and iet M be a submodule of
F. It turns out to be extremely useful to know the modules in,(M) with
respect to various orders >, "Knowing" such a meodule means of course
having a systern of generators for it. It turns out to be practical to ask
for a little more in‘ormation: A system of generators for in,(M), and for
each one an element of M whose initial form it is. The following central
definition encapsulates a convenient description of this information:

Definition: A Grobner basis with respect to an order > on a free

module with basis F is a set of elermnents g4, .., g1 € F such that if M is i
the submodule of F generated by g1, .., gy then in.{gy), ... , in.{gy) i
generate in,(M); we then say that gy, ... g is a Grobner hasis for M. '
Examples : The case of no variables: Let S be a field and let F be a

vector space of dimension s, with basis {e;); we may identify elements of
F with columns vectors of length s. The only monomials of F are the e;;
let > be the monomial order in which ey > eg > ...

With this ordering, a set of elernents gq, ... ,gy € F is simply an sxt
matrix G over S. We claim that G is a Grobner basis iff it contains a
maximal linearly independent set in "echelon form"; that is if some
maximal independent subset of the column vectors g; have their first &

e
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nonzero entries in distinct rows, as in Figure 15.1.

[ ]
®
L J
L 4
®
®
L ]
Figure 15.1
The case of one variable: Next consider the case S = k[x], a

polynomial ring over k in ane variable, and take F = $. The only
monomial order is the order by degree. A submodule M C F is then Just
an ideal. The monomial ideal in(M) is generated by x? where d is the
smallest degree of any polynornial in M; thus a Grobner basis of M
consists of any set of generators of M containing an element of minimal
degree. Note that Lermma 15 5 provides a proof that an ideal is generated
by any element of minimal degree.

There is a Grobner basis for any submodule M of F, with respect to
any monomial order: If gy, .. gt are generators for M that are not a
Grobrer basis, then to get a Grobner basis we simply adjoin elements
gt+1, - Bt' of M until the initial terms in(gy), ..., in(gy) generate in{M);
this 1s possible by the Hilbert Basis Theorem.

The following Lemma shows that any set of elerments of M whose
initial terrns generate in(M) actually generate M; thus to check that a set
of elernents is a Grobner basis for M, it is enough to check that their
initial terms generate in{M):

Lemma 15 5: |f N ¢ M C F are submodules and in(N} = in(M) with
respect to a monomial urder, then N = M.
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Proof: If not, then there would be an element { . M whose initial term
is smallest among initial terms of elements not in N. Since in(f) € in(M) =
in{N), we may write in(f) = in(g) with g € N. But then f - g € M-N, and
has smaller initial term than f -- a contradiction. //

Once we can compute Grobner bases, Lemma 15 5 suffices to solve
the "submodule membership” problerm: Given a subrnodule M of a free
module with basis F and an element f € F, decide whether f € M. Te do
this, choose a monomial order on F and find in(M) and in(M+5f). By
Lemma 15 5, the element f is in M iff in(M) = in{M+Sf), and this is easy
to test because in(M) and in(M+Sf) are monom al submodules. (In
practice one would probably use the Division Algerithm presented in the
next section instead of this method).

A Grobner basis g1, ... ,g; such that in(g;) does not divide in(g;) for any
i#j (that is, such that the in{g;) are a minimal set of generators for the
rmonomial submodule they generate) is called a minimal Grobner basis.
We can make a Grobner basis for M into a minimal Grobner basis Just by
leaving out some elements. More interesting perhaps, a Grobner basis
g1, - &t such that in(g;) does not divide any term of g; for i=j is called
reduced . If we assume in addition that in(g;) is a monomial {that is, the
coefficient from k is 1} then we get something uniquely defined in terms
of the subrmodule, the basis of F, the choice of variables in S, and the
choice of order -- see Exercise 15 14.
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The Division Algorithm

One of the most elementary and useful operations with polynomials
in one variable is "division with remainder”; given polynomials f and g
this algerithm constructs an expression of the form

f=fig+f

with degree f1g = degree f and degree f' < degree g {or possibly f'=0}.
Given such an expression, f' is called the remainder on division. If we
order the monomials of S by degree (that is: x45< x1' iff s < t; this is the
unique monomial order en S, as the reader niay easily verify) then we
can restate the conditions on fy and f' above by saying that f has no
monomials in the initial ideal of (g}, and in{f) = in{f1g) (actually the
monomials in question are equal). We will now extend this process to the

general case. A side effect will be an algorithm for computing a Grobner
basis,

Proposition - Definition 15 6: Let F be a free S-module with basis
and monomial order >. If f, g4, .., gt € F then there is an expression

f=%f g +f with f' € F, f; € S,
where none of the monormnials of f' is in (in{gy), ... ,in(g)) and
in(f) z in(f; g;)
for every i. Any such f'is called a remainder of f with respect to

€1, ., €, and an expression f = £ {; g; + {' satisfying the condition of the
Proposition is called a standard expression for f in terms of the g;.

The proof consists of an algerithm for finding a standard expression of
the desired sort:
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Division Algorithm 15 7: Let F be a free S-modu'e with basis and a
fixed monomial order. If f, g4, .., g € F then we may produce a
standard expression

f=EmugSu+f'

for f with respect to ¢y, .., gt by defining the indices s, and the terms
m,; inductively: Having choesen sq, ..., Sp and my, ..., my, if

f'p = f - Zﬂ=1 my, gsu * 0

and m is the maximal term of ', that is divisible b sorne in(g;}, then we
choose

Sp+l = i
mp.1 =~ m/in(g;).

This process termin ites when either 'y = 0 or no in(g;) divides a
monomial of f'p; the remainder {' is then the last f'p produced. //

Lemma 15 2 guarantees that the algorithm terrminates after finitely
many steps because the maximal term of f', divisible by some g;
decreases at each step.

The division algorithm is most important in the case when the g
form a Grobner basis for a submodule M of F; then from the conditions of
a standard expression, we see that the remainder {' gives the expression
for f mod M in terms of the basis of F/M guaranteed us by Theorem 15 3.
In fact, since Grobner bases always exist, the Division algorithm gives us
another, more constructive version of the second half of the proof of
Theorem 15 3.

Note that standard expressions are far from unique: The division
algorithm as we have stated it is indeterminate, in that the remainder
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depends on some choices made in carrying out the process. This is
oceasionally useful to make the computations in the Algorithms given
below more efficient. In fact the division algerithm still terminates if at
each stage we simply choose some monomial of f'p divisible by seme
in{g;), instead of the greatest such. This gives a still more indeterminate
version of the division algorithm, which works just as well for the
purposes of this chapter. See Exercise 15 16.

[t is sometimes useful to have a determinate Division Algorithm

we can do this by specifying (for example) that at each step we take m
to be the greatest monomial of f'y that is divisible by some in(g;), and

Sp+1 the smallest i for which this division is pessible. Such determinate
division gives a unique standard expression satisfying certain auxiliary
conditions. See Exercise 15 17.

It is easy to check that the division algorithm works just as well for
weight orders and other monomial partial orders, so long as the initial
forrms of all the polynomials considered are monomials (the initial form is
by definition the sum of all the maximal terms).
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Grobner bases

The division algorithm leads to a computation of Grobner bases and
syzygies on them, the two major topics of this chapter. We will make
use of the following notation:

Let F be a free meodule over S with basis and monomial order > Let
B1, - » Bt be nonzero elements of F. Let @S¢, be a free module with basis
(i} corresponding to the elements {g;} of F, and let

(PZ@SEi — F y By 7 g

be the corresponding map.

For each pair of indices 1,j such that in(g;) and inlg;) involve the

same basis element of F, we define

m;j = in(g;) / GCD(in{g;}, inlg;)} € S
and we set

Tij = Mjj € - Myj €j,

5o that the oj; generate the syzygies on the elemen*s in(g;) by Lemma
15 1. For each such pair i,j, we choose a standard expression

mjig -myg; = g, + hy

for mj; g; - mij g with respect to g1, ... ,g;- Note that in(fL(liJ) gu) <
in{mj; g; ). For convenience we set hj; = 0 if in{g;} and in(g;) involve
distinct basis elements of F.

With this notation we have:
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Theorem 15 8 (Buchberger's Criterion): The elements gy, ..., g¢ form
a Grobner basis iff h;j = 0 for all ij.

Proof: Let M =(g;, .. ,g4) € F. From the expression for hjj we see that
hij € M, and thus in(h;j) € in(M). If g1, .. .g, is a Grobner basis, then, as
remarked just after the proof of the division algorithm, the definition of
a standard expression shows that h;j = 0.

Conversely, suppose that all hy; = 0, so that (p(cru) =2 fl(li-i) gy Wwith
in(£{4) g} < in(mjj g; ). 1f g1, .. ,g is not a Grobner basis then we may

choose an exprussion
f =2, f, gy with in{f) ¢ (in(gqy), .., in{gy)).

Let m be the maximum among the terms in{f g,). We may suppose that
the expression for f has been chosen so that m is as small as possible.
Now let %' f, g, be the surn of all those f.,g, for which in{f,g,) is m times
a scalar. We may write in{f,g,) = n, in{g,) for some term n, of f,. If
the sum of the corresponding initial terms Z' n, in{g,) is nonzero, then it
is the initial term of f; as it is a multiple of m, it is a multiple of in{gy),
contradicting the choice of f. Thus

' nyinfg,) = 0

-0 that £' n, €, is a syzygy among the in{g,).

By Lemnma 15 1 bis, we may write Z' n, £y = Zjj ai(i_cij where a;; is a
scalar times m/(in(g;}. If we apply ¢ and substitute Z fu‘-i) gy for glojj),

we find a relation of the form
Z'ny gy =2 hggs
with all in{hg g,} < m. Subtracting the expression £' n, g, - Z hggs

from the expression for f and cancelling the terms of £' n,, in(gy), we get
a new expression for f of the same form but where the maximum of the
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in{fg,,) is smaller, contradicting our construction. //

One can slightly sharpen the criterion in a way that is occasionally
useful in practice: It is enough for h;j to be zero for any subset of pairs
i,j such that the corresponding o;; generate all the syzygies on the
elernents in(g;), and if F = S we may further omit any pair i,j such that
GCD{in(g;), in{gy)} = 1; see Exercise 15 19 and Exercise 15 20.

From Theorem 15 8 we get an effective method for commputing
Grobner bases and syzygies

Buchberger's Algorithm 15 9: In the situation of Thecrem 15 8,
suppose that M is a submodule of F, and let g1, ..., g € M be a set of
generators of M. Compute the remainders hi;. If all the h;; = 0, then the
gi form a Grobner basis for M. If some h;; # 0, then replace gy, .., g
with g1, .., g4, hij and repeat the process. As the .abrodule generated
by the initial forms of gy, .., g, hjj is strictly larger than that generated
by the initial forms of g1, .., g, this process must terminate after
finitely many steps.

The process involved in Buchberger's Algorithm is even more useful
than first appears: Theorem 15 10 below shows that the equations h;; =
0 that result if the g; are a Grobner basis give all the syzygies on M (this
is Schreyer's Algorithm for computing syzygies).

A worked example is g.ven at the end of the following subsection.

There is a fairly sharp "worst case” upper bound b for the degree of
the elements of the Grobner basis for a homogeneous ideal (gy, .. , g4} € S
{the inhomogeneous case can be reduced to this} with respect to the
lexicographic order. The bound, which is due to H. M. Moller and F. Mora
{1984} is in terrns of:

r = the number of variables,

[=9
|

= the maximum degree of the polynomials g,
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s = the degree of the Hilbert polynomial (this will be studied
extensively beluw as the dimension; it ranges from 0 to < r-1).

The bound is
(s+1)
b= ((r+1)(ds1)+1)2  (r+1),
and thus is potentially doubly exponential in the number of variables.

For exarnple, for the homogeneous ideal of a curve of degree § in IPS,
it is known that we can taker = 4,s = 2,d = §5-1, and we get

b ~ (45+1)32,

This estimate is so large as to suggest that Buchberger's Algorithm and
Grobner bases would be useless in practice. Fortunately this is not at all
the case: In actual use the algorithm terminates quite quickly on very
many problems of interest. There is a partial understanding of why this
1s 50, and various other bounds are known in some special cases; see for
example Gruson-Lazarsfeld-Peskine[1983], F. Winkler [1984], and Bayer~-
Stillman [1987al.
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Syzygies

We retain the notation intreduced in the previous section.

There is a bonus from Buchberger's algorithm: An effective method
for computing syzygies. The process in Algorithm 15 9 gives a linear
combination of the g, that is equal to h;;. Thus it hjj = 0 we get a linear
relation among the g, -- that is, a syzygy. It turns out that these

syzygies generate the entire meodule of syzygies o the g;.

We retain the notation developed for Theorem 15 8. In addition, for i
< j such that in(g;) and in(g;) invelve the sarme basis elemment of F, we set

= (ij)
Tij = mji Ej — miJ- Ej - Zu fu‘J Ey-

Thecrem 15 10 (Schreyer): With notation as above, suppose that
Els -~ » Bt i5 A Grobner basis. Let > be the monomial order on Qtjzi Sg;
defined by taking me, > ne,, iff

in{mg,) > in{ng,) with respect te the given order on F
or
in{mg,) = inlng,} {(up to a scalar} but u < v.

The T;; generate the syzygies on the g;. In fact, the 1;j are a Grobner
basis for the syzygies with respect to the order >, and in{7jj} = mj; ;.

Proof: We show first that the initial term of 7;;is mjg;. We have
myj; in(g;) = my; in(g;),

and these terms are by hypothesis greater than any that appear in the
.8y Thus in(Tj;) is either mjje; or -m;; £ by the first part of the
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definition of >, and since i < j we have mjg; > myj £j.

Now we show that the 1y form a Grobner basis. Let T = Zf, €, be
any syzygy. We must show that in(1) is divisible by one of the in{T;;);
that is, in{t) is a multiple of some mjig; with i < j.

For each index v, set n,t, = in{f,e,). Since these terms cannot
cancel with each other, we have in(Zf, £,) = n; g; for some i. Let o =
$'n, £, be the sum over all indices v for which n, in(gy) = n; in(g;} up to
a scalar; all indices v in this surm must be z i because we have assumed
that nje; is the initial term of T.

Thus o is a syzygy on the in(gy) with v 2 i. By Lemma 15 1, all such
syzygies are generated by the o, for u,v z i, and the ones in which g;
appears are the o for j > i It follows that the coefficient n, is in the
ideal generated by the mj; for j > i, and we are done. //

As with Buchberger's Criterion, we can sharpen this result slightly in
a useful way: To find a set of 1,;j, which generate all the syzygies on the
gi, it is enough to take a set of pairs i,j such that the g;j; generate the
syzygies of the elements in{g;). See Exercise 15 18.

If we wish to use Theorem 15 10 to compute syzygies on a fixed set of
elements gy, .., g;, we first use Buchberger's Algorithm to obtain a
Grobner basis for (g1, -- ,8¢t) and the syzygies on the Grobner basis
elements. To get the syzygies on the g;, we need only substitute into these
the expressions for the Grobner basis elements in terms of the g;.

This process usually will not give us a minimal set of syzygies: To
replace it with a minimal set (say in the case where everything is
homogeneous, so the minimal resolutions are well defined; see Chapter
21} we must do sorne further work, finding at least the degree 0 syzygies
among the nonminimal syzygies, and using themn to eliminate
superfluous relations. Nevertheless, this process is by far the most
efficient method known for computing syzygies.
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An example will help to clarify all this:

Example: The simplest nontrivial Grobner basis computation :
Take g1 = x4, g2 = xy+y?. We will find a Grobner basis with respect to
the lexicographic order, taking x > y. We have in{g;) = x2. in{gs) = xy.
The GCD is x. We apply the Division algorithm to

{in{g2)/x) g1 - (in{g1)/x) gp = -xy2.

In the first step we add ygp, getting y3. Since this is not divisible by
either initial form, it is the remainder; as it is not o, we take 1t as

g =y,
and we have the syzygy
T12 YEL-~XEx+yED - €3 .
Since gy and g3 are monomials, we get from them a syzygy
3 2

TL3: Y 81 - %X £3.

The only other pair to check is gz and g3 Applying the division algorithm
to

{in{g3)/y) g2 - (inlga)/y) gz = v,
we subtract y gz and find a remainder of 0. Thus we get the syzygy
Lyl _ _ — 2 _
T3 Y E2-xez-yez=y ep-(x+ylez.

Froem Buchberger's Criterion we see now that
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is a Grobner basis, and from Theorem 15 10 we know that T4 5, T2 3 and
T1,5 generate the syzygies on them. If we wish to derive from this a set
of generators for the sysygies on the original generators gy, g2, we must

substitute the expression for g3 in terms of gy and gy given by the syzygy
Ty, 2 into the other syzygies. We get

"(1‘2: n
1.3 y3£1 - x2( Yye1-XEp+yeEp)= (y3—x2y) g1+ (xs-xzy) £2

T2‘31y2€2-(x+y)83=y2E2—(X+}’)(YE1-sz+yEz)

= x%ey - “xy+y?) £1.

We see that 11 3 = (x-y)tq 2, so in fact the syzygies are generated by
2,3 {In this simple case it is easy to see directly that T2 3 generates the
syzygles on g4, go: Just use unique factorization and the fact that g1 and
g2 are relatively prime.)

One Corollary of Theorem 15 10 is a sharpened form of the Hilbert
Syzygy Theorem, which says that every finitely generated S-module has
a free resolution of tenath < r. We will give a rore abstract proof in
Chapter 19.

Corollury 15 11: With notation as in Theorem 15 10 suppose that the
g; are arranged sc that whenever in(g;), in{g;} involve the same basis

vector e of F, say in(g;) = nje and in(g;) = nje with n;, nj € 5 we have

1<J = ny>nj in the lexicographic order.

If the variables x1, ... ,x; are missing from the initial terms of the Eis
then the variables xy, .. ,x;,1 are missing from the in{ty;), and

F/( g1, .. .24 ) has a free resolution of length < r - s.
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In particular, every finitely generated S-module has a free
resolution of length < r.

Remark: The last statement is true for all 5-modules: The Hilbert
Syzygy Theorermn with Auslander’'s Lemma (Lemma A3.18) shows that
every S-rmodule has a projective resolution of length < r, and in fact
Quillen has showed that every projective 3-module is free. (See for
example Lam [1978] for an exposition.)

Proof: By Theorem 15 10 we have in{t;;) = my; £, and mj; =
m;/GCD(mj,m;). Since m; = in(g;} is > m; = in(g;) in the lexicographic
order, X..1 appears to at least as high a power in m; as in m;j, and thus
does not appear at all in mj;. This proves the first statement.

We next show that F/(gy, ... .g() has a free resolution of length < r - s
by induction on r-s. Suppose first that r-s = 0, so that none of the
variables x; appear in the terms in(g;); we must show that F/(gq, .. .gy) is
free.

Since the initial terms of the g, must be scalars times basis elements
of F, we see that in{gy, ... ,g¢) is the free submodule of F generated by the
e; that appear among the in(g;). Let F' be the free submodule spanned by
the other ej, and consider the composite map

F' ¢ F - F/Agy, - 81)

By Theorem 15 3, F/{gy, .. ,g¢) has a basis consisting of precisely the
monomials coming from F', so the map is an isormerphism and
F/(gq, .. ,g4} = F'is free as required.

Now suppose r-s > 0. By the first statement, xy, .. ,Xg,1 are missing
from the initial terms of the t;;. We may order the 1;; so as to satisty
the same hypothesis as that on the g;. It follows from the induction that
F1/{{1;;}) has a free resolution of length < r - s - 1, and putting this
together with the map Fy — F, we get the desired free resolution of
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F/(Sl» -y gl).//

A property of reverse lexicographic order

The reverse lexicographic order on a S satisfies a key property not
shared by other orders that makes the connection between an ideal and
its initial ideal particularly tight. As Bayer and Stillman show in [1987al,
it also has practical consequences that make the reverse lexicographic
order preferable for computation in some circumstances.

Since we wish to be able to work with modules, we need the following
definition:

Definition: Let F be a graded free S-module with basis {eg, .. ,ep). A
monomial order > on F is called a reverse lexicographic order  if it
refines the order by total degree and satisfies the following property: If
f € F is a homogeneous elernent and in{f) € {xg,..,x.)F for some 1ss <,
then f € (xg,..,x)F.

Equivalently, as the reader may check, a reverse lexicographic order
is defined by choosing an order on the e;, say e1 > ... > e, and setting mey
> nej iff either degree me, > degree ne; or the degrees are the same and
m > oylex N orm=nandi< j.

The defining property of reverse lcxicographic orders translates into
good behavier uipon factoring out the last variable. The following easy
result is the key:

Proposition 15 12: Suppose that F is a free S-meodule with basis .
{e4, .. ,en} and reverse lexicographic order, and suppose that gy, .. .t 1s 2
homogeneous Grobner basis of a graded submodule M.

a} in{M+x,F)} = in(M) +x,F. Thus g1, .. .8, Xre1, - ,%rep is a Grobner
basis of M+xF.
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b) (in(M) :F %,) = in(M F x,). Further, if we set g; = g;/{(GCD{x,, g;),
then g3, .. ,g; is a Grobner basis for (M FoXp )

The Proposition remains true, by virtually the same proof, if x, is
replaced by xrd. See Exercise 15 41 for an application.

Proof: a) We must show that in{ M + x.F ) = in(M) + x,.F. The inclusion
= is clear. To prove the opposite inclusion, choose f € M + x.F

homogeneous; we must show that in{f) € in(M) + x,F. Writef =g + h,
with g € M homogeneous and h € x.F. If in(f) is 1.0t a scalar multiple of
in(g), then in(f) = in(h) € x,F, and it follows that every term of g is = this
monomial in x,.F. From the definition of a reverse lexicographic order,
we see that every term of g, and thus g itself, is in %, F. Thus f € =F,
and so also in(f) € % F, as required.

b) If x, divides in(g) for some homogeneous ¢ € F then since we are

using reverse lexicographic order, x,. divides g. The first statement of b)
follows at once,

By the same reasoning, {in(g;):F x,) is generated by in(g,) for every i,
whence

(in(M) :F %) = (in(gy), .. ,in{gy).

since clearly g1, .. gt € (M :F x,), this shows that the in(g,) form a
Grobner basis.//

Using these properties, we get a criterion for x, to be a
nonzerodivisor on an S-module, or more generally for the last variables
in reverse order to be a regular sequence. (Recall from Chapter 10 that
Xr. - , Xg form a regular sequence on an S-module N if, first, (x,, .., Xg)N

= N, and second, x, is a nonzeredivisor on N, %,_; is a nonzerecdivisor on
N/%,N, and so on.)

Theorem 15 13 (Bayer-Stillman [1987]): Let F be a free module with
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basis and a reverse lexicographic monomial order. Suppose M C F is a
homogeneous submodule. The elements %, ..., X, form a regular
sequence on F/M iff x,, .., x5 form a regular sequence on F/in(M).

These results may be used to show that certain homolegical
properties of F/M may be deduced from F/in{M}; see Corollary 19.11 and
Corollary 20.21.

We note that if M is a graded submodule of F then any permutation
of a regular sequence on F/M is again a regular sequence on /M. Thus
we could make the same statement with the variables in the natural
order xg, .. ,x,. But this "permutability of regular sequences” is
somewhat subtle: It is not true without either local or graded
hypotheses. We shall return to this issue in Chapter 17.

Before proving the Thecrem we need an elementary criterion:

Propesition 15 14: Let F be a free module with basis {ey, .. ,en). If N C
F is a monomial submodule minimally generated by ny, .. ,ny, then a
sequence of monornials my, .. . my, € S is a regular sequence modulo N iff
each mj is relatively prime to each n, and to each mj for j = i

Proof: Suppose first that each m;j is relatively prime to each n; and to
each m; for j # i. Since al the m; and n; are monomials, any polynomial

annihilating m,, module N + (rmq, .. ;my_1JF is a sum of monomials from
the sets (Sn, : m,) = Sn; and {rm;F: m,) = m;F. This shows that
my, .. ,m; s a regular sequence on F/N.

Conversely, suppose that my, .. ,m,, is a regular sequence on F/N. We

will do induction o u. First we show that m is relatively prime to each
ni. 1If GCD{my, n;) = n, then mq n;/n € N, and since my is a
nonzerodivisor on F/N, we see that nj/n € N. Since n, is part of a

minimal set of generators of N, we must have ny/n=n;,son=1.

Since in addition no mye; is in N, it is immediate that
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ng, .., Ng, Mmyey, .. ,Mmyen is a minimal set of generators for N + myF.
Now mgy, ... ,m, satisfy the hypothesis of the Proposition with respect to
the submeodule N + mF, so by induction these mj are relatively prime to
each other and to each n; and to each mje;. From the last condition we
deduce that they are relatively prime to my, and we are done.//

The next result is a generalization of one irnplication of Theorem
15 13. We will say that a monomial order » on a free S~module F with
basis (e;] is compatible with a monomial order > on S itself if for h € &
and f € F we have in(hf) = in(h} in(f). Equivalently, a compatible
monornial order on F is one that compares mon«< mials me; and m'e;
involving the same basis vector by using the given ordering on rm and m'.
Meost monomial orders used in practice have this property.

Proposition 15 15: Let F be a free S-module with basis and monormnial
order compatible with a given monomial order on 5. [f M C F is any
submodule and hy, .. ,h, € 8 are such that in(hy), . ,in(h,) is a regular
sequence on F/in{M), then hy, .. ,h, is a regular sequence on F/M.

Proof: Note that the condition of Proposition 15 14 is symmetric, so that
any permutation of inlhy}, .. \in(hy) is a regular sequence on F/in(M),
and, in particular, each of the in(h;} is a nonzeredivisor modulo in{M).
Further, the condition of the Praposition implies the corresponding
condition with N = 0, so the in(h;) form a regular sequence on F.

We proceed by induction on u; using the symmetry of Proposition
15 14 we may assume that every proper subset of the h, forms a regular
sequence. Suppose that f = Z;2{ hif; € M. We will show that, for some v,
in{fy) € in(M) + (inthy), .. ,in(h,_{))F.
We may then subtract an element of M + (hq, ... .h,_{)F from f, and

lower in(f,). Proceeding in this way, we arrive at a situation where
some fy = 0. By our induction, the h; other than h, form a regular
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sequence, and we conclude that f, € M + {hy, .. ,hy_1)F, showing that
hs, .. ,h, is a regular sequence on F/M as required.

Let n be the maximal monomial that appears among the in(hy)in(f;),
and let v be one of the i for which it appears. If

Zi such that in(fj)in(hj)=n in(h;} in(f;) = 0,

then we must have in{f,} € (in(hj), .. ,in(hy.1))F because the in(h;) form
a regular sequence on F, and we are done. If, on the contrary, the sum

is not 0, then it is in{f), and thus an elerment of in{(M). Since each of the
in(h,) is a nonzerodivisor modulo in{M), it follows that in(f,) € in{M}, and
again we are done.//

Proof of Theorem 15 13: If x,, .. X is a regular sequence on F/in(M)
then x,, .. ,x is a regular sequence on F/M by Proposition 15 15.

It rermains to prove the converse. In the case s = r, Proposition 1512
b’ shows that x, is a nonzerodivisor on F/in{M), as required. Factoring
out x.F and using Proposition 15 12 a) we are done by induction.//

Grobner bases and flat families

All the applications of the idea of Grobner bases work by comparing
an arbritrary ideal with its "initial" ideal, which is a monornial ideal (and
more generally, by comparing a submodule of a free module with an
associated initial submodule). Why should these two he similar enough to
make the comparison profitable? The situation is quite similar to that of
the associated graded ring treated in Chapter 5. As in the case of the
Rees algebra construction defined in Chapter 6, an "explanation” is
provided by the existence of certain flat families, which we will now
describe. For simplicity we give the constructions below for ideals, rather
than for arbitrary submodules of a free module with basis; the (easy)
extension to the case of modules is left to the interested reader.
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The flat family that we will describe is defined in terms of an integral
weight furnction A: Z¥ — Z. For convenience of notation, we think of A as
a function on moneomials, and if m = x®, we write AM{m) € Z in place of
a(a). Let >, be the weight order defined by A on the monomials of 8.
Although it is only a partial order, much of cur formalism for monomial
orders can be imitated for »,. For example, given g ¢ S we write iny(g)
for the sumn of all the terms of g that are maximal with respect to >,,

and if | is an ideal we write in,{l) for the ideal generated by in,(g) for all
g €1l

Before describing the flat family, we will show that integral weight
orders are potent enough to capture the transition from a given ideal to
its initial ideal with respect to an arbitrary monomial erder. Suppose
that > is a monomial order on S, and I C S is an idr1l. Given any finite
set of pairs of monomials 3 = {{rm; > n;}}, Exercise 15 12 shows that there
is an integral weight order >, such that m; >, n; for all i. Thus we may
apply the following Proposition.

Proposition 15 16: Let > be a monomial order on S, and suppose that
g1, -- »&t is a Grobner basis for an ideal [ with respect to >. There is a
finite set 3 = ((my > nj), ... {mg > ngl) of pairs of rmonornials such that if
>, Is a weight order on S with {mj >, ny), .. ,img >, ng), then gy, .. gy is a
Grobner basis for [ with respect to >, and in, (I) = in(I).

Proof: For each i = 1, .. ,t we put into .4 all the pairs of monomials of
the form (in(g;) > n), where n is a monomial ot g;. lvext, we use use the
Buchberger criterion, Theorem 15 8, to verify that the g; are a Grobner
basis with respect to »; the verification depends on computing the initial
terms of finitely many polynomials, and involves finitely many uses of
the division algorithm. For each polynomial g whose initial term we
must compute, we put the pairs (in.(g), n) into 3 for every monomial n
of g. Similarly, each use of the division algorithm involves finitely many
comparisons of pairs of rmonomials. We expand the ist of monomials by
including the pairs of monomials involved.
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Now the Division algorithm and the proof of Buchberger's Criterion
wark for weight orders and other monormial partial orders satisfying the
multiplicative properties in the definition of monomial orders Just as well

as for total orders, so long as all the initial terms involved are monomials.

Thus & second use of the Buchberger algorithm shows that the g; form a
Grobn :r basis with respect to >x In particular, the in(g;) generate iny{1).
Since in.{g;) = in,(g,;), we are done. //

We may describe the flat family of algebras informally as follows:
Let A be an integral weight function. For any 0 = t € k, there is an
automorphism of S car ying x; to t"‘(xi)xi, and we write I} for the image
of I under this automeorphism. Clearly all the rings S/1; for t # 0 are
tsornorphic. But as t appreaches 0, the initial terms of polynomials in I} -
- those whose values under » are largest -- come to dominate the
polynomials, and the limit, the fiber over t = 0, will be 5/in,(I).

To make precise mathernatics out of this description, let S(t] be a
polynomial ring in one variable over S. For any g € S, we define g € S[t]
as follows. Write g = I ujm; where the m; are monomials and 0 = u; € k.
Let b = max A{m;), and set

g = thg(e7 Mty Gy
Becau.e of the way b was defined, we see that £ iz in,(g) plus t times a
polynomial in t and x4, .. , x,. For any ideal 1 € 3, let T be the ideal of
Sit] generated by (g | g € I}. It follows that SltiZ/( (1) +1 ) = S/in,(1). The

next result extends this and gives a more sophisticated interpretation:

Theorem 15 17: For any ideal I € S, the klt]-algebra S[t}/T is free --
and thus flat ~-- as a k[t}-module. Furthermore,

S/ T @y bt 1] = 5/1([0,¢71],

whiie
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S{tl/T @y k[t1At) = S/iny(D).

Thus S[t)/T is a flat family over k[t] of quotients of S whose fiber over
0 is S/in,(1) and whose fiber over any (t-u), for 0 # u € k, is S/L

(To give the flat family constructively, in the spirit of this chapter,
we should specify a finite set of generators for the ideal 1. Results of this
sort may be found in Exercise 15 25)

Praof: From the fact that g is in,{g} plus t times a polynomial in t and

Xi, = , Xp, 1t is clear that
SItI/T @yqyy kltl/(t) = ST + (1)) = S/iny(1)

Let ¢ be the automorphism of 5 @[y k[t,t7'] = S[t.t71] defined by ¢(x;)
= t"(xi)xi. This automorphism takes the ideal I5[1,t 1] to the ideal
18[t,t1]; it follows that ¢ induces an isomorphism S[t]/ ] @ klt,t 1] =
S/1 Ittt

It thus remains to prove the first statement of the Theorem. Let > be
a monomial order refining >, and let B be the set of monornials not in
in.(I}. B is a basis of $/1 by Theorem 15 3. We claim that B is also a

klt}-basis for S[tl/ 1.

First, to prove linear independence, it is encugh to show that the
elements of B are linearly independent over klt,t1], as elements of
S[t,t"1). From Theorem 15 3 we deduce that the elements of B form a
k{t,t‘il—basis of S[t,t711/150t,t71. Thus cp'l(B) is a basis for
S[t,t" 11/ 1st,t™1). But the automorphism ¢! carries any monomial m
inte t"‘(m)m, that is, a unit of S[t,t"1] times m. Thus B itself is a k[t,t”il—
basis of S{t,t"11/TS[t,t~11. In particular its elemnents are linearly
independent in S[t1/T.

Finally, we must show that B generates S[t)/T as a k[t]-module.
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Regarding B as .. subset of S[t], we must show that the kit}-span of B
contains, modulo elements of I, every monomial m in the %;. Because
the order > is Artinian, we may inductively assume that this has been
verified for every monomial n < m. The monomial m is either in B or
else m = in,(g) for some g € 1. In the latter case m - § is a klt]-linear
combination of monomials that are < m, and we are done by induction.

’

The technique embeodied in the preceding result can be used to give a
flat family connecting any given finite set of ideals to their initial ideals.
(If one is willing to exchange the simple “base” kit] of the family used
above for sormething more complicated -- generally not Noetherian -- one
can give a deformation that works for all ideals at once; see
Exercise 15 26.)

Here are some examples in pictures. We treat the case of 3 points in
the projective plane (Figures 15.3 and 15.4) and the case of a smooth
conic in the projective plane (Figures 155 and 15.6; first with the
lexicographic and then the reverse lexicographic orders. We thus work in
the polynomial ring in 3 variables, klx,y,z]l, with x > y > z. The coordinate
triangle of lines x = 0, y = 0, and z = 0 is distinguished by the choice of
coordinates, shown in Figure 15.2.

\/x=z=0

z=0

e
x=y=0/ y=0 \

Figure 15.2

To simulate the lexicographic order we use two weight orders. First
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we deform according te the family corresponding t. wetghts (1, 0, 0).
This may be interpreted either as "attract to x=0" or as “repel from
y=z=0. Next we deform according to the family corresponding to weights
(0,1,0). This may be interpreted either as "attract to y=0" or as "repel
from x=2=0"

Sirnilarly, to simulate the reverse lexicographic order we use first the
deformation corresponding to the welight vector (1,1,0), or equivalently
(0,0,-1). Its effect is to attract to the point x=y=0 and repel from the line
z=0. Next we use the weight vector (1,0,1) or equivalently (0,-1,0); The
effect is to attract to x=2=0 and repel from y=0.

When looking at the Figures, bear in mind that in each deformation
each corner of the coordinate triangle is fixed under the deformations,
and each of the three lines of the triangle is sent into itself.

Here is the case of a set I" of 3 general points in the plane. If we take
these to be the points (1,1,1), (1/3,1/2,1), and (1/2,1/3,1), then the ideal
of T is

Y= ( x%2+xy - (11/6)x2 - yz + (5/6)22,
Xy + y2 - xz - (11/6)yz + (5/6)22,
y2 - (2/7)xz - (47/42)yz + (17/42)z2 ).

With a little computation one sees that in lexicographic erder the initial

ideal is (xz, Xy, Xz, y3) = (x(x,y,z}, y3). This last ideal is not saturated; its
saturation is (x,y3). Thus the limiting position for this deformation is the
2nd grder neighborhood of the point x=y=0 in the line x=0. It is perhaps
easier to see that in reverse lexicographic order the initial ideal is (xz, Xy
y2), so the limiting pesition is the first order neighborhood of the point

x=y=0 in the plane. From these computations we see that the twao
deformations have nenisomorphic limits.

»
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Lexicographic deformation of 3 points of the equation is y2, corresponding to the double line with reduced line
Start with general points y=0. We have added a picture of the stage in which the first
(1.1,1), (1/2,1/3,1), (1/3,1/2,1). deformation is merely approaching its limit.
\ Lexicographic defoermation of conic
.‘ Start with the conic
1
;
>

2 _ .
xz-y© =0 Continue with
[ - the same
- \ deformation
Limit is triple
Deform by weight Deform by weight point aligned B
vector 1, 0, 0 vector 0,1, 0 on x=0. = )
Figure 15.3 /
Reverse lexicographic deformation of 3 points Defofm by weight J__;
Start with genera. points vector 1, 0, 0 {‘,_-F
(1,1,1), (1/2,1/3,1), (1/3,1/2,1). A

\ 8 §

. +

Limit is non- \ \
. . i i Limit is two
D b eight colinear triple ]
Deformlby \A(r)elght E‘fil‘ml )6‘&;'918 point Deform by weight lines, x=0 and
vector %, 1, vector 1, 0, 1 vector 0,1, 0 Figure 155 z=0.
Figure 154 .

Next we try the sarne deforrmations on the conic with equation
Xz - y% = 0. We draw this as an ellipse tangent to the lines x=0 and z=0
along the line y=0. In lexicographic order the initial term is xz,
corresponding to a limiting position that is the union of the lines x=0 and
z=0. In reverse lexicographic order, on the other hand, the initial term
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Reverse lexicographic deformation of conic
Start with the conic
xz-y2 = 0.

N N
P o 5

Continue with the
same deformation

Deform by weight /
vector 1,1, 0

Limit is thé\
deouble line

along y=0.

Deform by weight

vector 1, 0, 1 Figure 15.6

There is more to be seen in Figures 155 and 15.6. For example, as a conic
undergoes the degeneration corresponding to one of the two orders, the
dual conic (the set of its tangent lines) undergoes the other. This
phenomenon is "visible" in the pictures; can the reader spot it?

Generic [nitial Ideals
So far we have always considered Grobner bases with respect to some
fixed set of variables in a polynomial ring, and fixed set of generators of a

free module. The results of Grobner basis computations depend heavily
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on the choice of variables and basis made. By allowing a generic change
of basis and coordinates, we may eliminate this dependence, and we get a
generic initial ideal that depends only on a choice of monomial order.
Sorne of the properties of generic initial ideals were exploited by
Hartshorne in his 1963 thesis to prove the connectedness of Hilbert
schemes [1966]. We will prove stronger properties below; these sections
should give the reader a good preparation for the algebraic part of
Hartshorne's paper. Generic initial ideals were als considered by Grauert
[1972] in the case of power series rings. He seerns to have been the first
to observe that the generic initial ideal is a combinatorial invariant that
contains quite a lot of information. Generic initial ideals have also been
exploited to bound the invariants of projective varieties {see Cook [ = %]
and Braun-Flgystad [sxsxn]).

To get a sense of the information contained in the generic initial ideal,
suppose | C 3 is an ideal and we take reverse lexicorraphic order on S. In
generic coordinates we can read off from in(l) the depth of 5/1 (= the
largest t such that x,_ 441, .. ,x, ¢ in{I}) and the regularity of I (= the
regularity of in(l); in characteristic 0 this is just the maximal degree of a
minimal generator of in(I})), as well as things like the Hilbert function of
3/1 that we could read off from in{l) in any coordir 1te system. See
Bayer-Stillman [1987b] for more information.

In this section we will explain the basic facts about generic initial
ideals. The first treatment, in characteristic 0, is that of Galligo [1974).
The theory was done in arbitrary characteristic by Bayer-Stillman
[1987al. The combinatorial analysis and the properties of Borel-fixed
ideals in characteristic p were worked out by Pardue [#»#x], who has
given a treatment covering many other group actions. We shall follow
his treatment here, adapted to our special case. Although everything we
do can be extended to the case of submodules of a graded free module
with basis, we will stick for simplicity to the case of ideals.

Throughout this section we will work with a fixed monomial order >
on S = klxy, .. , x.} that refines the partial order by degree and that
satisfies x4 > ... > x.. We assume that the ground field k is infinite. All
ideals considered will be homogeneous.

It is convenient to speak of taking initial ideals with respect to a
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given coordinate system and corder, so instead of making a generic trans-
formation of coordinates, we will transform an ideal by a generic linear
transformation and take its initial ideal in the given coordinates.

We begin by establishing sorme notation for the groups of
transformations that we will use. The general linear group @ = GL{r k) of
inve.tible rxr matrices over k acts as a group of algebra automorphisms
on S as follows: If g € § then g acts on A" as a linear transformation,
and acts or, the x;, regarded as a basis for the space of linear functionals

on A", as (7)1, the inverse of the transpose of g. Explicitly, if m =

TMix;%i and (g'7)7! = (hyy), then gm = TT{(S,hy;x;)20

Because we have distinguished an ordering of the variables, certain
subgroups of @ play an important role. Let B be the Borel subgroup of
G consisting of upper triangular invertible matrices, and let B' be the
group of invertible lower triangular matrices. Let U ¢ B be the
Unipotent subgroup consisting of upper triangular matrices with ones
on the diagonal. U is generated by the elementary upper triangular
matrices §§j for i < jand c € k, where ¥{; x; = ex+xj and ¥§; x,, = x, for
u # j. Similarly, B' is generated by the diagonal matrices and the
elementary lower triangular matrices Vij for 1 £ 1< j s r whose

action is given by ¥'j; x; = x; + exjand {'j;© x, = %y for u # i.

If V C 34 is a t-dimensional space of forms of degree d, then we may
represent V as a one-t mensional subspace L = AW ¢ AlS4 If V has
basis f1, .. ,f} then the subspace L is spanned by { := {1 ~..~f;. The reader
unfamiliar with multilinear algebra will find more information in
Appendix 2. We define a monomial of A'S; to be an element of the
form n = ny~..~ny, where the n; are degree d monoemials of S. If the n;
are not distinct, then n = 0; in the contrary case the line kn determines
and is determined by the finite set {ny, .. ,ny). We define a term in A'Sy
to be a product an, where a € k and n is a monomial. We will say that

arn = a:ni~..~nyis a normal expression if the n; are ordered so that
ny > ...>ng.

We order the monomials of A'Sy by ordering their normal
expressions lexicographically. Thatis, if n = ny~..~n; and n' = n'y~..an'y
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are normal expressions, then n > n' iff n; > n'; for the smallest | such that
n; * n'i. As usual, we extend the order to terms, and define the initial

term of an element f € /\tSd to be the greatest term with respect to the
given order.

Write m; for in(f;). We may replace the f; by some linear combina-
tions of themnselves {without changing V) to ensure that the m; are
distinct and that my > .. >m;. With this choeice, my~ .. ~my is the
normal expression for the initial term of f.

Existence of the generic initial ideal

Theorem 15 18: Let ] C S be a homogeneous ideal. There is a Zariski
open set U = B'U € ¢, meeting U nontrivially, and a monemial ideal J <
S such that for all g € U we have in(gl) = J. For e.ch d = 0, if the degree
d part Jgq of J has dimension t, then /\tJd is spanned by the greatest

monomial of AtSy that appears in any Al(gly) with g ¢ g.

Definition: With I, J as in the Theorem, J is called the generic initial
ideal of I, written J = Gin(I}.

The significance of the assertion U = B'U, is that all the action takes
place in the coset space B'\ §. This ix a much-studied object, which
may be identified with the space of complete flags of linear subspaces of
AT,

Proof: First consider the degree d part Ig of 1. Let fy, .. ,f; be a basis for
Ig- If h = (hjj) is a matrix of indeterminates, then h(fy~..~f}) =
h(f1)~..~h{f;} is a linear combination of monomials of A'Sy with coeffi-
cients that are polynomials in the hjj. Suppose that m = myj~..~my is
the earliest monomial that appears with a nonzero coefficient, and let
Pa(hiy, .. \hyp) be that coefficient. Let Ug be the set of g = (g;;) € § such
that pg(g11, - ,8rr) * 0. The degree d part of the initial ideal of gl will be
(my, .. ,my) iff g € Ug. Write Jg for the subspace of Sy spanned by

mi, ... M.

We next show that J := @Jgq is an ideal. [t suffices to show for each d

Thursday, March 3, 1994 --15.48 --



that SyJg € Jgq,1. Since Uy and U4, are open and dé!}sq,'_there is an
element g € UgnNUq,1. We have in{glly = Jg and in(gl}ds+1 = Jd+1, and the
assertion follows.

The ideal J satisfies the last staternent of the Theorem by definition,
and we will show that U = N3-1Uq is Zariski open and dense in . Since
each Uy is Zariski open and dense, it suffices to show that U is equal to a
finite intersection of Ug's. Supposing that J is generated by forms of

degree s e, we will show that in fact U = n?j=1Ud.

Suppose that g € NG-1Ugy. We know that in(gig} = Jg for all d s e.
Thus in(gl) > J. Since dim) Jq = dimy Ig = dimy (gl)g for every d, we see
that in{gl) = J as required.

We next show that U = B'U. In fact, a little more is true:

Lemmma 15 19: If Iy € S4 is a subspace of dimension t and b € B', then
in(AYg) = in(Atbl).

Proof: Since B'is generated by diagonal matrices and elementary lower
triangular matrices, it suffices to check the assertion when b is of cne of
these types. Choose a basis f1, .. ,f; for Iq and let m; = in f;. Changing
basis if necessary we may assume that mj> .. >m;. The diagonal
matrices simply alter the coefficients of the terms of f = f{ ~..~f; by
nonzero scalars, so the assertion is true if b is diagonal.

Next suppose that b = ¥'ij° is an elementary lower triangular matrix.
For any monomial n = x,"'m € 54, where m is not divisible by x;, bn is n
Plus a linear combination of monomials of the form n' = x; ~5x;°m with

0 <s < w. Since x; > xj, we see that each n' < n. Thus in(bf;) = m; for
1 2ix<t,soin(bf) = my~..~my =~ in{f).//

To complete the proof of 15 18 we check that U meets the unipotent
subgroup U nontrivially. Since the Uq are Zariski open and U is
irreducible {it is an affine space), the intersection Ug N U is Zariski open
and dense in U if it is nonempty. Since U is a finite intersection of Uy, it
thus suffices to show that each Uq meets U nontrivially. The set B'll is a

Thursday, Marech 3, 1994 -- 15.49 --

dense open subset of Y; see Exercise 15 24 and its hint for a proof. Thus
the dense set U contains an element of the form bu with b € B' and u €
U. Since U = B'U, it follows that u = b bu ¢ U ac required. //

The generic initial ideal is Borel-fixed

The next result shows that generic initial ideals are quite special

among monomial ideals. The description will be made explicit in Theorermn
15 23.

Theorem 15 20 {Galligo, Bayer-5Stiliman): [t 1 € Sis a homogeneous
ideal then Gin(l) is Borei-fixed in the sense that for all g € B, g(Gin(I)) =
Gin{1).

Proof: Replacing I by gl for generic g, we may assume by Theorem

15 18 that in{l) = Gin(I). Fixi < j, and let ‘{iJ-l = 1+Y be an elementary
upper triangular matrix, where ¢ is a strictly upper triangular matrix
with a single nonzero entry. Along with diagonal matrices, such matrices
generate the Borel group B. Since the diagonal matrices stabilize any
monomial ideal, it stiffices to show that for each d.gree d we have
(1+yMin(Ig)) = in(Ig).

We may choose a basis fy,..f for Ig with in(fy)>.> in(f,). Let f
=f1 ~...~fy be the corresponding generator of the one dimensional subspace
Ay € A'Sy. We have in(f) = in{fy)~...~in(f;).

Write Yin{f) = agm, where ag is a nonzero scalar and m is a
monomia! of A' S4. If (1+yXin(I4)) » in(I3) then, since v is strictly upper
triangular, m > in{f). We shail show that for neariy all diagonal matrices
& the monomial m appears with nonzero coefficient in (1+y)8f. This will
contradict the last statement of Theorem 15 18, proving that (1+¢¥in(I4))
= in(I4) after all.

For each term n = any ~..~ny € A'Sy we define the weight of n to
be the monomial w(xy, .. , x,) = Ty n; € S. Let f,, € A'Sy be the sum of
all the terms of f having weight w, so that we have f = Zw fw- Note that
if wg is the weight of in{f}, then fwg = inff) is nonzero. If 5 is a diagonal
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matrix and 6(x;) = 8;x; with & € k¥, then
6 = X, wi(by,..8,.),,.

Thus

(1+Y)8f = T, (1+¢0wiby,...5, ) )
= Fyy Wib1,..,8,} (1+9)f,,
wolb1,..,8,} ¥in(f) + wq(8q,..,86,) in(f)
+ Zw#‘WO w(Sl,...,Sr) (1+¥)fw~

It

Since f,, is a sum of terms of weight w, the terms of ¥f,, have weight

Yw. Thus if we break the final sum above into terms of given weights,
the term of weight Ywg has the form

) W{](&I,.H,Br) Yin{f) + Zw*wo W(Sl,...,Br) Y.,

the surn extending over all those w # wyq such that the weight of ¥f,, is
¥wp. The coefficient of m in {(1+Y)8f is the same as the coefficient of m in
#}), and may be written as

u) agwp(bq,....5,) zw#woaww(glr":&r)-

where again the sum is over a certain collection of w = wg. We may
regard =x) as a polynomial in 81,..,8,. Since the monomials in the 5; that
appear are distinct, and at least the term agwpl(d1,..,8,) is nonzero, we
see that the polynomial is nonzero. It follows that for sufficiently general
values of §1,..8,, the \ :lue of the polynomial is nonzero, and this is what
we had to prove.//

The nature of Borel-fixed ideals

We next investigate the nature of Borel-fixed ideals. If the
characteristic of k is p, ther it is useful to introduce a partial order <, on
the natural numbers as follows: We say that a <p b if the binomial

coefficient (:) # 0 (mod p). Of course <g is the usual total order. For p>
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0 it was described by Gauss:

Proposition 15 21 (Gauss); Suppose p is a prime number. We have
a <p b iff each digit in the base p expansion of a is < the corresponding
digit in the base p expansion of bh.

The proof is immediate from a more refined result of Lucas:

Lemmma 15 22 (Lucas): If a =¥ ajp' and b = Tb;p' with 0 < aj, b; < p,
then (i’) = 10, (};ii) (mod p).

Proof: Compare the coefficients of t2 in the e:.pressions
i i
(t+1)P = (t+1)ZPiP o [r(ren)PiP

i .
= TT(tP +1)b' (mod p}. //
We now give the combinatorial characterization of Borel-fixed ideals.

Theorem 15 23: Let J C S = klxy, .. , x,] be an ideal, and let char k = p
> 0.

a} Jis fixed by the group of diagonal matrices iff J is generated by
monomials.

b) Jis fixed by the group B of upper-triangular matrices (that is, J
is Borel-fixed ) iff J is generated by monomials and the following
condition is satisfied for all i < j and all moncmial generators m of J:

If m is divisible by xJ—t but by no higher power of xj,

then {x;/x;)®*m € Jfor alli < jand s <p t.

Proof: a) Clearly any monomial ideal is fixed by the group of diagonal
matrices. To prove the converse, let f € J; it is enough te show that some
monomial of { is in J. Choose a weight vector x such that in,{f} is a
monomial; that is, only one monomial of f has maxirmal weight with
respect to A. We will show that in,{f) € J.
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Let w be the weight of the term in,(f). If we act on f with a diagonal
matrix g, having diagonal terms (c‘7‘1, o ,c-Mr), we replace each variable

x; by ¢~ M X, so in,(f) is multiplied by %, and the other terms of f are
multiplied by strictly less negative powers of ¢. Thus we may write
cWgf = iny{f) + ¢ Flc,x} for some polynomial F(c,x). Consider the
morphism ¢: A|r1_ — S defined by ¢{¢) = cWg.f = in,{f) + cF(c,x). Since
For ¢ » 0 the matrix g, is invertible. Since J is fixed under the group of
diagonal matrices, ¢(c) € J for ¢ » 0. Since J is a Zariski closed subset, in
fact a linear subspace, this implies that ¢(c) € J for all c. (The fact that
S is infinite dimensional is not a problem: if J is the commeon zero locus
of a set of linear functions o;; S — k, then composing the «; with ¢ we
get polynomial functions from Aﬁ to k that vanish siznultaneously on
precisely those ¢ for which ¢(c) € J. Since these polynornials vanish for
all nonzero ¢, they vanish for all c.)

b) If Jis Borel-fixed then, by a), J is generated by monomials.
If m € Jis a monomial generater, we consider the action on m of an
elementary upper triangular matrix y = ¥;;5, with 0 » ¢ € k. We may
i

write m = x;'m', where m' is not divisible by x;, and we get

¥m = (cx;+x;)'m' = Tagpt Dy e (/%) m.

Since J is fixed under Y = y,;°, we see that each {xi/%;®m with s <p tis a
monomial belonging to some polynomial in J. Being a monomial ideal, J
contains all the monomials that appear in polynomials from J, and J
thus contains the monomial (x;/x;}*m as required.

Conversely, suppose J is a monomial ideal satisfying the condition in
b). The formula above shows that for every monomial generator of J the
pelynomial ym is a surmn of monomials in J. Since J is generated by
monomials, ¥J = J. Since the group of upper triangular matrices is
generated by diagonal matrices and matrices I'Uc, we are done. //

A few examples will clarify the Theorem. For simplicity we take only
examples with all generators in a single degree. First in characteristic 0:
In 2 variables the Borel fixed ideals are precisely the ideals generated by
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"initial segments of the monomials” in each degree, such as (x1°, x12xg,
x1x22). But already in 3 variables there are more possibilities. For

example the ideals
(%13, x1%x2, x1%22)
and

(x1°, 1222, x1%x3)

are both Borel-fixed in any characteristic. In characteristic p > 0 any

e e

ideal of the form (xlp ) e ,xup ) is Borel-fixed. Froducts, intersections,
sums, and quotients of Borel-fixed ideals are Borel-.ixed, so it is easy to
make further examples.

To exploit the results on generic initial ideals we use the following
fundamental property of Borel-fixed ideals:

Proposition 15 24 (Bayer-Stillman):  Suppose that [ ¢ § = k{x;, ..
%l is a Borel-fixed ideal. For any j =1, .. ,r we have

(T %) = (1:(xq, .. , %)
If char k = 0, then in addition

(Lo x3®) = (T {xy, o2 )
for every s z 0.

Proof: Suppose that for some integer s and some monomial m we have
x;°m € 1. For the first statement it suffices to show that if 1 < i < j then
for some &' 2 s we have x;°m € I. For if s is sufficiently large, then

(T:%™) = (1: x5}
C (g™, o g®) € (T Goeq, v P8 ) € (10 (g, o %)% );
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and the reverse inclusion is sbvious.

Increasing s if necessary we may assume that xj does not divide m. If
char k = p > 0 and we choose ¢ so that §' = E® 2 s, then x_jslrn € [, and it
follows from the condition of Theorem 15 23 that xislm € | as required.

Suppose now that char k = 0. If %;°m € I then by the
characterization of Theorermn 15 23, any monemial n = x1°1. x;% with
Zysy = s satisfies nrm € 1, so (I - xj%) € (1 (xyq,..,7;) ). Again, the reverse
inclusion is obvious.//

Corollary 15 25: [f]is a Borel-fixed ideal in 5, and P is an associated

prime of I, then P = (=1, -, %j) for some j. If Q = (x1,...%¢) is a maximal
asseciated prime, then Xt+1,-Xy {in any order) is a maximal S/l-regular
sequence in (xg, .. , x,.).

Proof: Since I is a monomial ideal, every associated prime of I is
generated by a set of variables. Suppose that j is the largest index such
that xj € P; we must show that Xi € P for i < j. Since P is an associated
prime we may write P = (I : {) for some polynomial f. Since x;f € 1it
follows from Proposition 15 24 that x;i°f € I for some s. Thus X € P, s0 x;
€ P as required.

It Q= (x1,..,%¢) is a maximal associated prime, then the variables
¥t+1,-Xp Cannot appeat in the minimal generators of I. Thus x,1,..,%,
(in any order) is a regular sequence modulo I. Since Q is associated to |
there is a monomial m ¢ I such that Om C L. Since the generators of I
do not involve X{+1,Xr, Wwe may factor these variable out of m, and
assunie that m ¢ I + (xy,4,..,%,). It follow that QH(xggg,Xy) = (x9, ., %)
Is associated to I + (xy,1,.,%,), so Xt41,-,Xp Is @ maximal S/I-regular
sequence in {xy, .. , x,.). //

For an analysis of these ideas and a different proof of Corollary 15 25
see Exercise 15 22 and Exercise 15 23.
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Applications

We now apply these methods to the problems mentioned at the
beginning of this section.

1) Ideal membership : Given generators for an ideal I C 5,
determine a vector space basis for S/I, and given a polynomial f, compute
its image in S/I in terms of this basis. If f € [ (that is, if the image is 0)
cornpute an expression for f as a linear combination of the generators of
I.

This problern is solved by Theorern 15 3 and the division algorithm:
Choose a monormial order on S, and from the original generators fg, .., fs

of I, compute a Grobner basis g1, ... ,g, for [. The set of monomials not in
in(1), that is, not divisible by any one of the in(g;), is a basis for S/I. The
remainder of any f € S on division by g1, .. ,gt has no monomials in in(D)

and is thus the unique expression for the image of { in terms of this basis.

If f € I, then the division process exhibits f as a linear combination of
the generators g;. Since the algorithm that produces the g; exhibits them
as linear combinations of the original fj, we are done.

For a generalization and a more formal treatment of the second part,
see application 8), below.

2} Hilbert Function and Polynomial: Following Hilbert, we could
deduce the Hilbert function or polynomial of a graded module from a
graded free resolution for the module, computed with the algorithms
above. Hewever, this is extremely inefficient, and better schemes are
based on the following fundamental result of Macaulay (1927). This
theorem was the reason for Macaulay's introduction of monomial orders,
and is thus historically at the very root of the material in this chapter.

Theorem 15 26: Let P be a finitely generated graded S-module, given
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by generators and relatiors as P = F/M, where F is a free module with a
homogeneous basis and M is a submodule generated by homogeneous
elements. The Hilbert function of P is the same as the Hilbert function of
F/in{M).

Proof: Let B be the set of monomials not in in{M). Write Fj for the set

of elernents of degree d of F, and similarly for M, P, and B. Because P is
graded, we have P = @4 Py, where Pg = Fg/My.

By Theorem 15 3, B inaps to a {vector space} basis for P, so Bg maps
to a basis for Pg. Thus dim Pg is the number of elements of Bg. Since
the argument applies as well to P' = F/in{M), we are done. //

Theorem 15 26 shows that to compute the Hilbert function of an
arbitrary module, it is enough to compute the Hilkert function of the
quotient of a free module by a monornial submodu 2, and this we have
already done in the section on monomials, above.

Macaulay's original application of Theorem 15 26 was to give a char-
acterization of all possible Hilbert functions of ideals: By virtue of the
Theorem, it is enough to characterize the Hilbert functions of monomial
ideals, and this leads to a complex but manageable combinatorial
problem.

3) Associated Graded -ing

Let R = S/I, and set m = (x4, .. ,X,). The associated graded ring
E'm R of R with respect to m is significant geometrically, algebraically,
and computationally: The geometric and algebraic significance has been
explained in Chapter 4; its main computational significance comes from
the fact that its Hilbert function is the same as that of R, and is easier to
compute, for instance by the method above. To und:rstand & R we
must find a present.tion of the form gr_ R = S/I', where [' is the
homogeneous ideal consisting of the sum fpottem of the monomials of
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lowest degree from each polynomial f in I. Qur geal is thus to produce
finitely many elements g; of I such that I' is generated by the forms
€i bottom - Interestingly, in order to do this we need only compute
Grobner bases of homogeneous ideals! A similar idea will suffice to

compute the associated graded module of any S5-module with respect to
m; see Exercise 15 36. Of course we could also ask for the associated

graded ring of R (or any S-module) with respect to an arbitrary ideal L
This can be done by using elimination theory; see Exercise 15 38.

Choose any set of generators fy, .., f; of I, and for each i let F; be the
homogenization of f; with respect to a new variable xg, that is,

deg f;

Filxp, x1, .. ,%X,) = xg f-l(xllxo, v X /%g).

Proposition 15 28: With notation as above, let {Gy, .. ,G}) be a Grobner

basis of the ideal (Fy, ... ,F;) with respect to any monomial order on S[xgl
that refines the partial order by degree in xg. If we set Gi(1, xq, .. ,x,) =
gilx1, . .x¢) € S, then I' = (g1 pattom. - » Bt bottom).

Proof: Suppose g € I; ~e must show that gpaitem i @ linear combination
of the g pottom. Write g = X pif;. If G, P, and F; are the homogenizations
of g, pj, and {; respectively then for some integers a,b we have

Fad

<
[
o]

1

ZPF, € (Fq, .. FJ)
x0% G = XpPEpottom + (terms of lower degree in xg).

Because the G; form a Lrobner basis for (Fy, .. ,F|), there is a standard

expression
%0 G =X 06, , in{GiG) < in{xg? G).
In particular, the degree in xg of Q;Gjis £ b for each i.

It follows that xobgbottom is the sum of the products of the terrns of
highest degree in xg in Q; and G;. Setting xg = 1, we see that gpotiom itself
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is the sum of the products of the terms of lowest degree in Q;(1, xy, .. ,x,)
and Gi(l, x3, .. ,%.); that is, it is a linear combination of the 2i bottom, a5
claimed. //

4} Elimination

Given an ideal I < Slyg, ... ,y5l, we wish to compute J =111 8. The
name elimination comes from thinking of the generators of [ as a sirstern
of equations in x; and y; from which one wants to eliminate the
variables y;.

Elimination was a popular topic in the nineteenth century, partly
because of its relation to the problem of solving equations. We have
already discussed a part of Elimination Theory in Chapter 14.

To do elimination using Grobner bases, one uses an order on T =
kX1, - .X¢, ¥1, - -¥s] satisfying:

Iffe€Tandin(f) € S, then f € S.

An order with this property is called an elimination order (with re-
spect to ¥ 1,...,¥ g}

Examples: 1) The simplest way to make an elimination order is to take
the partial order by total degree in y{, ... .y, refined by any monomial

order; in practice it is often most efficient to take reverse lexicographic
order as the second order.

2) Lexicographic order is an elimination order with respect to every
initial subset of the variables.

To find J = S N [ we need only compute a Grobner basis with respect
to an order satisfying E:

Proposition 15 29: Let > be a monomial order on T = Slys:, .. ,v.] =

Thursday, March 3, 1994 -- 1560 -~



klx1, .. ,Xp, Y1, - ,¥sl, and suppose that > has property E with respect to
the variables yj, .. ,ys. If I C T is an ideal, then with respect to the
monomial order on S gotten by restricting the given one from T, we have

in(INS) = in(I) NS.

Further, if g1, ... ,gt is a Grobner basis for I, and g1, .. ,&y are those g; that
do not involve the variables y;, then g1, .. ,gu is a Grobner basis in S for
Ins.

Proof: LetJ=1n S Clearly in{J} C in{I) N S. We will show that the
in(g;) for i = u generate in{I) N . By Lemma 15 5, this will prove both
statements.

Suppose m € in{l) N S. Since gy, ... ,g¢ form a Grobner basis, m is a
multiple of in(g;) for sorme i < t. Because m € 5, we must have in{gy) € S,
50 g; € S by property E, whence i = u as required. //

There is an analogue of Proposition 15 29 for submodules of a free

module; if M € F:= ®Te;, then it gives us a way to construct M N @Se;.
See Exercise 15 37.

One of the most frequent applications of elimination is solving the
following problem:

Find the equations satisfied by given elements of an affine
ring. (Geometrically: find the closure of the image of a variety
under an arbitrary map.)

Let R = klyy, .. ,y /K for some ideal K, and let fj, .. ,f, be elements of
R. Define a map

9: 5 = kixq, .. x, ] = R, x; = fy

We wish to find ker ¢. Geornetrically, this is the ideal defining the Zariski
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closure of the image of algebraic set corresponding to K under the map
corresponding to fy, .. , f,.

To this end, set Q = klyy, ... ,¥5], and consider the ring T =
klx1, - ,%Xy, ¥1, - ,¥sl. For each i, let F; € Q be a polynomial that maps to
f; € R. Regarding the F; as elements of T, let | € T be the ideal

I =KT+(F1-xq, .. .Fe-xp)
Proposition 15 30: ker ¢ =1 1N S.

Proof: Consider the map ¢: T — Q sending x; = r|. The ideal J =
{Fy-%4, .. ,Fr=X%;) is obviously contained in ker ¢. #e clairm that J =

ker ¢. Indeed, it is clear that J € ker ¢, and the reverse inclusion follows
because each x; is equal to a polynomial in the y; modulo J.

It follows that the kernel of the composite mmap T —» Q@ — R is I, so
the kernel of the composite S T — Q — Ri1s SN |, as claimed. //

If K and the f; are homogeneous, then ker ¢ will be a homogeneous
ideal too if we take the variables x; to have the same degrees as the f;.
if, for example, all the f; were of the sarme degree. then we could
afterwards change gradings to give the x; all degree 1, and the ideal ker ¢
would remain homogeneous. In this case we are cormputing the equations
for the projective variety that is the irnage of V(K) under the map
corresponding to ¢ -- in this case the image is already closed, by the
"Main Theorem of Elimination Theory”, Theorem 14.1.

5) Projective closure and ideal at infinity
Given an algebraic set V € A", we wish to compute the ideal I' of the
closure V of V in P® x A" % and the ideal 1, of the intersection of V with

the "hyperplane at infinity ~ P51 x AT™S ¢ PS x AT™S.

To describe them, it is convenient to introduc: the term s-degree to
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denote the degree of a polynomial with respect to the first s variables of
the polynornial ring S. The s-homogenization of a p<'ynomial gxy, ..
*r) of s-degree d, with respect to a new variable %y, is then defined as

g'{xg, x1, . , x,.) = xodg(xllxo, X/ KQ, Xgut, o Xy )

Less fcrmally, p' is the sum of the terms of p, each niultiplied by a power
of xg 1o bring it up to s-degree d.

M f € Sxgd = kixg, xq, .., x,.] is a form homogeneous with respect to
X0 - .Xg, and W C PS « AY™S {5 the correspondir g hypersurface, then
WN{A® x AT"%) = WNAT is defined by the equation f(1, x4, ... , Xe) =00 It

follows easily that I' is the set of elements in the preimage of I under the
map

¢ Slxgl —» 5 ; Xg — 1

that are homogeneous in the variables X0: - » X5. Equivalently, I' is the
ide 1l generated by the s-homogenizations g' of all the elerments g €L
From this second description and the fact that the hyperplane at infinity
has equation %y = 0, we see that we may write I, = (g, | g € I}, where g.,
denotes the sum of all those terms of g with maximal s-degree.

The problem is th t these description of I' and I, involve infinitely
many polynomiais. (it is easy to show that if {(h;} Clis any set of
elements such that the set {lhj)e} generates I, then I' is generated by
the set of s-homogenizations of the hj, but this still dees not solve the
problem.} The following result shows how to compute Loth I' and 1, in
finite terms, using Grobner bases:

Proposition 15 31: with notation as above, suppose that > is a
monomial order on § refining the order by degree in X1, - uXe I gy, gy

is a Grobner basis of | with respect to >, then

a) in{l} = in(D) a..d ({g1)e, - {&)u} is & Grotner basis for o
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b) in(I') = in(I) and {g'y, .. ,g'y} is a Grobrer basis of I'.

Proof: a) We have in(g,,) ~ in(g) for any g € 5 by our choice of order. It
follows that in(le) = in(I') and this ideal is generated by the in(g')) = in(g;).

b) Again, we have in(g') = in(g) for any g € 5 by our choice of order.
As in part a) it follows that in(I') = in(I) and this ideal is generated by the
in(g'i) = in(gi).//

6) Saturation

If M is a submedule of a free S-rodule F and J 1s an ideal of S, we
define

M:D=({feF|tJcM)CF
(M:J®)= UJy (M ¢ F

The submodule ( M : J® } is called the saturation of M with respect

to J. Saturations arise in the theory of primary decomposition and in
local cohomology theory, both of which will he treated in later chapters.
They can also be used for finding projective closures -- see

Exercise 15 40.

In the section on applications of syzygies, we will see that we can
compute (M : J9). we could compute these one at a time, increasing d
until we obtained (I : J9) w (I :.J9*1) (which rnust happen eventually
because 5 is Noetherian). For this value of d we have (I:J%) =(1:J9),
and this is a rather practical method in many cases. However, part a) of
Exercise 15 41, with d = o, shows that if J is the ideal generated by a
single variable, then the problem can be solved using a single Grobner
basis computation with respect to a suitable order. The general case car.
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easily be reduced to the special case, using the other ideas in
Exercise 15 41. e

7) Lifting homomorphisms

The following generalization of the ideal membership problem is
central to many constructions involving maps of modules and
homological algebra. The application to the kernels of maps of modules
below is an example.

Let F, G, and H be free S-modules with basis, and suppose we are

given maps
G
Y¢
9

H—wF

such that im ¥ € im y. We would like to construct a “lift* ¢: G — H such
that ¢ = y.

To this end, we choose a monomial order on F. Write g1, - .85 for the
images under ¢ of the basis vectors of H. Using Buchberger’s algorithm,
we may find a Grobner basis hy, .., hy for im ¢. Let

¢ H =@ Se; - F; e; — hj
be the corresponding map. Buchberger's algorithm produces at the same
time an expression for each h; in terms of the gj; that is, a "change of
basis map” o: H' — H such that ¢' = go. For each basis vector g; € G, we
use the division algorithm to find an expression ¥(g) = Z py hj. We may
define a map

ll}':G—’HI; Sir—priei,

so that ¢'y' = ¥ (see Figure 15.7). It follows that ¢ = o' is the desired
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lifting.

Figure 157

8) Syzygies and constructive module theory

A module may be determined in many ways by giving its properties.

-By contrast, we will say that we have constructed a module P only if

we can give generators and relations for it -- that is, if we can write it
as F/M where F is a free module and M is a submodule generated by
explicitly given elements of F, or equivalently as the cokernel of a map

g: G = F of free modules with image M. Since we can compute ker ¢, we
may also regard the submodule M as having been constructed. If we
have constructed a module P = F/M, and have specified a submodule P' €
P by giving a set of generators for it as the images of given elements of F
then it is clear that we can construct the quotient P/P'; we simply adjein
the new elements of F to the list of relations for P. It is not quite so
obvious that we can find the relations for the su module P', but this will
follow from the pullback construction below (Exercise 15 45). In the
remainder of this section we will make a few of the central operations on

modules constructive in this sense. The list here could be prolonged very
greatly.

a) Pullbacks, intersections, annihilators

If¢:G— Fand ¢: H— F are maps of free modules, it is often useful
to find the "pullback” of ¢ and ¢, by which we mean the submodule of
G@H consisting of clements {g,h) such that yp{g) = ¢(h). We construct this
pullback as the kernel of (¢, -¢): GBH — F. Since we are able to compute
syzygies, we can find a free module PB mapping onto the kernel -- that
is, we can find a set of generators for the pullback. We will often need
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the projection to one of the factors; we will write g :PB = G and nmy:

P3 — H for the compositions of PB — G®H with the projections. We get
a commutative diagram

G
PB — G
Ty | lg
H — F
Y

This gives us a way to compute the intersection of two submodules of
F, the images of ¢ and ¢ say: The intersection is simnply the image of
Y MG = Y. See Exercise 15 42 for another construction of

intersections, and Exercise 15 45, Exercise 15 46 for further uses of
pullbacks.

b) The kernel of a map between arbitrary rmeodules
Given S-modules P and Q by means of free presentations

Kp
Gp = Fp =P — 0

KQ
GQ“’FQ*’O — 0,

and given a homornorphism P — Q presented as a map ¢: Fp — Fq taking
the image of Gp into the image of Gg, we may construct the kernel of the

map induced by ¢ as follows:

Proposition 1% 32: With notation as above, let Fg be a free module
mapping onto the pullback of kg, ¢, and let §: Fy — Fp be the composite

Fg — Go®Fp — Fp.

Let kg'* G — Fg be a r..ap onto the kernel of Y. Let ¢1:Gp = Gg be a
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map lifting the map ¢kp along kg and let kg': Gp — Fk be a lifting of the
map (-¢4, kp): Gp = Go®Fp, which maps into the kernel of {~xq. @)
Then

g = (kg', k") : Gp B G — Fk = K -0

is a free presentation of the kernel of P — , and the injection K € P is
defined by the map yg.

We leave the proof to the reader (Exercise 15 4.1}

c) Hom, Ext, Tor, and all that
Much can be computed by putting together what we have already
done. We give only some hints, and leave the working out of these

constructions to the reader with sufficient background.

If P and Q are 5-modules given by free presentations as in a) above,
then

Hormng(P,Q) = ker (Hom (Fp,Q) — Hom(Gp, Q) },
while Hom(Fp,Q) is a module with free presentation

Hom(Fp, Gg} = Hom{Fp, Fq) - Hom{Fp,Q) — 0O,
and similarly for Hom(Gp,Q).

Once we can compute free resolutions, Horn, and kernels, Ext is easy;
and the same is true for Tor if we can compute tensor products. But
tensor products are elementary (that is, one doesn't need to solve

equations} because, for example, the tensor product of P and Q is
presented as
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Fp®Gq ® Fq®Gp — Fp®fqg — P®Q — 0,
by the right exactness of tensor products.

Multiplicities {in the sense of Samuel or Serre) can be computed from
computations of Tor; those in the sense of Vogel can also be found, using
the computation of saturations.

The cohomology of coherent sheaves can be handled from this using
either duality theory or directly, since the usual expression for the
cohemology as the limit of certain Ext groups actually converges, in each
degree, in a predictable, finite number of steps. More generally, local
cohomology can be approximated. The interested readzr may find details
of these and other constructions in Vasconcelos [se e m].

What's left?

Many further things can be done with Grobner bases well enough to
have been implemented on computers, for example in the program

Macaulay . In this category fall for example

e Finding syzygies over factor rings

e Computing the radical of an ideal.

Other algorithms are known, but not imolemented for various
reasons. A few examples frorm many:

e Primary Decomposition (the first algorithm was by Grete Hermann,
a student of Emmy Noether [1926]; for recent work see Seidenberg [1984],
Gianni-Trager-Zacharias [1988], and Eisenbud-Huneke-Vasconcelos {1992].

e Normalization of a ring (this was studied by Seidenberg (1974]; for
recent work see Vasconcelos {1992])

¢ Flattening stratifications
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There are also plenty of problermns where no algurithrms are known as
of this writing. Again a few examples:

e Decide whether a module can be written as a direct sum of
submodules nontrivially; if so, decompose it. For example, decide
whether a projective module is free.

e Decide whether two varieties are in the same cornponent of the
Hilbert scheme.

» Compute the versal deformation of a factor ri g 5/0 in the case
that this is finite dimensional.

s Decide the growth rate of the (infinite} free resolution of a module
over a factor ring of 5.

s Given generators for an ideal, decide whether a smaller number of
generators can generate an ideal with the same racical; in particular,
decide whether an algebraic variety is a "set theoretic complete
intersection” -- that is, set theoretically the intersection of c
hypersurfaces, where ¢ is the codimension. The leading open case is
perhaps the ideal of the rational quartic curve in p3

(x9°-x1%32, X1X2-X0X3, x12-x0%x2, xgxp%-%x1%x%7) C klxg, .. , x3],
which is the kernel of the map

klxg, .. , x3]1 = kls,t]
xg = st
X1 = Sst
Xp = sto
2 st
—

X3 td,

It is known that if the characteristic of k is positive hen this ideal has
the same radical as an ideal generated by 2 elements {(the elements
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depend on the characteristic). It is not known whether this is true in
characteristic 0. See Jaffe [1989] for recent results and an exposition. History

The earliest use of what amounts to the existence of Grobner bases
may be that of P. Gordan [1900, pp 141-156]. Gordan uses Grobner bases
("le systeme irreducible N" on page 152 is one) and the finite generation of
monomial ideals to deduce Hilbert's Basis Theorern, Just as in
Exercise 15 15, below.

A major step towards the theory presented in this chapter was taken
by F. S. Macaulay, who introduced total orderings of the set of monomials
of a ring in [1927] and used them to characterize the possible Hilbert
functions of graded ideals by comparing them with monomial ideals.

W. Grobner published applications of Macaulay's idea of ardering
moneornials and explicitly finding a basis for a zero-dimensional factor
ring as early as [1939], though his use of them apparently goes back even
earlier, perhaps to 1932, In a paper on elimination theory [1950] he
writes, "Ich habe diese Methode seit etwa 17 Jahren in den
verschiedensten, auch kemplizierten Fallen verwendet und erprobt and
glaube auf Grund meiner Erfahrungen sagen zu kcnnen, dass sie
tatsachlich in allen Fallen en brauchbares und wertvolles Werkzeuyg zur
Losung von diesen und ahnlichen idealtheoretischen Aufgaben darstellt.”
("I have used and tested these methods for ahout 17 years in the most
varied and sometimes cornplicated cases, and 1 belicve that [ can say on
the basis of my experience that they represent in all cases a useful and
worthwhile tool for the solution of these and similar ideal-theoretic
problems.”) In 1964 he posed to his student B. Buchberger the problem of
computing such bases as a thesis problem. As was also his practice in
some other cases, he apparently did not mention to Buchberger that he
already had a solution of the problem! It was not until 1984 that
Buchberger learned the early part of the story (see Buchberoer [1987] for
this and related history).

As Grobner must have hoped, Buchberger's solution to his thesis
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problem contaired ideas going beyond what Grobner had himself known.
The thesis [1965; University of Innsbruck] contained Buchberger's
Criterion and Algorithm (our 15 8 and 1% 9) in implicit form. The
essential added ingredient was the notion of critical pairs. Buchberger
made his ideas more explicit and usable in his papers [1970] and [1976].

There were several independent streams of activity that produced
closely related methods and algorithms. H. Hironaka used a division
algorithm closely related to the one we have presented in his landmark
paper on resolution of singularities [1964]. He introduced “standard
bases”, which are analogous to what we have called Grobner bases,
following a now more common usage. It is worth noting that Hironaka's
work was done for power series {with questions of convergence treated)
-- in some ways a deeper form of the division algorithm than the one
treated here; he thought of it as generalizing the classical Weierstrass

preparation and division theorems for convergent power series in cne
variable.

H. Grauert independently introduced "standard bases” and a division
algorithm in power series rings in his [1972], applying them to the
construction of versal deformation spaces. Grauert also studied in this
pPaper the effect of a general change of coordinates.

G. Bergman studied a more general version of Grobner bases, aimed
at associative (noncommutative) algebras and still more general algebraic
systems in his paper [1978 especially sect. 10.3]. Bergman’'s ideas
specialize to Buchberger's Algorithm in the cornmutative case. He
remarked that the ideas had already been used -- and called “obvious” --
by P. M. Cohn [1966] and others. QOther sources for the noncommutative
theory include Priddy [1970] and Knuth-Bendix [1967].

D. A. Spear [1977] and F.-0. Schreyer [1980] seem to be the first to
have written dovwsn a method for the computation of syzygies by means
of the division algorithm. (Spear's work, written as a report on a package
he was developing for Macsyma, contains no mathematical details.) The
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formulation of Theorem 15 10 and the proof of the Hilbert Syzygy

Theorem that we have given are Schreyer's.
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Exercises

In Exercises 1-6 below the letters m, n mj, n; denote monomials.

Exercise 15 1 ™: Solve the "elimination problem” in the rmonomial case:
IfI=(my, ., my) € Sands<r, find I N kixy, .. .

The next two (easy) exercises are used in the computation of Hilbert
functions and polynomials:

Exercise 15 2 ™ Show that any monomial submodule of a free module
®Se; is a direct sum of modules of the form l,e; with I; a monomial ideal
of S.

Exercise 15 3 *: Let I = (my,. ,my) be a monornial ideal, and let n be a
monoemial of 5. Prove that the ideal

(I:m)={feS|fn el
is generated by the monomials m;/GCD(rm;,n).

Exercise 15 4 : Show that if I is a monomial ideal, then the Hilbert
function or pelynomiai of S/I can be computed as a surm of binomial
coefficients by using the following "divide and conguer” strategy:

a) First, if 1 is generated by sorme number s of the r variables of S,
then

- s -t

Hg,i(w) = Hilxy, . ,Xr_s](v) =" oM
Note that we can think of the binomial coefficient "combinatorially” -~ so
that it is O for all sufficiently srnall v -- in which case it is the Hilbert

function, or as a pelyromial in v of degree r-s-1, in which case it is the
Hilbert polynomial.
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b) If I is not generated by such a subset of variables, let n € S be
any monomial properly dividing one of the minimal generators of 1, and
let d be the degree of n. Write J := {{ : n). Show that there is an exact
sequence of graded modules and degree 0 maps

9P
0 - 5/J{(-d) —» S/ - S/(I,n) - O

and thus
Hg/1{v) = Hg,g(v-d) + Hg/ () n){v).

It is an open problem to determine the most efficient choice for n, but an
obvious idea would be to take it to be "half” the "largest” monormial
among the generators of 1.

Exercise 15 5 : Let I = (x1x3, X1%4, ¥pX4). Compute the Hilbert function
and the Hilbert polynomial of 1.

Exercise 15 6 : For each of the following ideals, compute a minimal set
of divided Koszul relations that generates the syzygies:

a) (X134X27, xl23x219)

b} (xq, x2, x3) c) {x1%2, X1X3, X2X3) .
Exercise 15 7 ™. Let I} = (my, .., my) and I3 = (ny, .. ,ny) be monomial
ideals of S. Show that [1 N Iz is generated by the elements LCM{mj,n;).
When is this equal to the ideal 1117

Exercise 15 8 : a) If F is a free module with basis, M C F is any
monomial submodule, and > is any monomial order on F, then in,(M) =
M.

b} For any submeodule M show that in.(M) is spanned as a vector
space by the elements {in.(f) | f € M}; that is, we do not need to impose
the condition that in.(M) is a submodule.
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Exercise 15 9 : If I € S is a homogeneaus ideal, show that in.(I) is
generated by the monomials {in(f) |f € I is a homogeneous polynomiall.

Exercise 15 10 : Show that the following properties characterize the
orders 1oy , *hlex: and >pjgx among monomial orders on S: '

a) If injg(f) € klx., .. , x.] for some s, then f € klxg, ., %]

b} >Llex refines the order by total degree; and if f is heomogeneous
with inpe,(f) € klxg, ., x,] for some s, then f € klxg, . , x/]

¢} >plex refines the order by total degree; and if f .s hormmogeneous with
inplex(f) € (%, .., %)} for some s, then f € {x,, .., x.). More generally,
suppose F is a free module with basis over S having a reverse
lexicographic monomial order, and f € F. If inpje(f) € {xs, ... , % )F for
some s, then f € (xg, .., x,.)F.

Exercise 15 11 : Given a monomial order < on S, define the positive
cone P_ C Z' of > to be the set of differences a-b such that a, b are vec-
tors of nonnegative integers and (in multi-index notation for monomials)
x® > xP. Show that P is a convex cone in the sense that

u, v € P. = putqv € P. whenever 0 < p, q € Q and pu+qv € Z¥
and is even strictly convex in the sense that

u € P, = -u¢P.

Exercise 15 12 *: Let > be a monomial order on S, and suppose that m;,

n; are monomials such that m; > n; for i = 1, .. ,t. Show that there is an
integral weight order defined by some Xt IV = Z such that A is
compatible with > and m; >, n; for i = 1, .. ,t. (I learned this from Bayer
[1982]).
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Exercise 15 13 *: Show that every monomial order on S is
a lexicographic product of at most r weight order: (L. Robbiano, [1986]).

Exercise 15 14 : Let F be a free module with basis, and fix a monemial
order on F. Suppose that gq, ... ,g¢ € M C F.

a) Prove that if in(M} is generated by in(gy), .,in{g), then gy, .. ,gs

is also a Grobner basis for M. If in{gy), .. ,in{g) is a minimal set of
generators for in{M}, then gy, .. ,g5 is called a minimal Grobner basis
of M.

b) Show that there exists a Grobner basis hyq, .. ,h, for M with the

properties

1) in(h;} is a monomial (that is, the coefficient from k is 1}

ii) in(h;) does not divide any term of hj for i = j.
Show that for such a Grobner basis, the elements in(h;) are the minimal
generators of in{M). Show that if g1, .. ,g5 also has properties i and ii,
then g; = h; for every i. The Grobner basis hy, .. ,} . is called the
reduced Grobner basis of M.

Exercise 15 15 ({(Gordan's Proof of the Hilbert Basis Theorem):

Gordan, initially shocked by Hilbert's proof of the finite generation of
certain rings of invariants by means of the Basis Theorem, recovered
quickly and gave his own, simplified proof in [1900} This proof represents
an early (the earliest?7) use of the idea of an "init1al” ideal of monomials
associated to an ideal in a polynomial ring. Here is a proof of the Hilbert
Basis Theorem in the spirit of Gordan. (Gordan needed only a special case,
and thus proved only a special case, though his argument works
generally. It can even be extended to give a proof of the form of the
Basis Theorem saying that if R is a Noetherian ring then Rlx] is too.)

a) Give a combinatorial proof that any set of monomials of S =
k{xy, .. , x] has only finitely many minimal elements in the partial
order by divisibility. (This part is sometimes calle. "Dickson’s Lemma®).
In particular, every monomial ideal is finitely gener ated.
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b} By a), ary ideal in S has a finite Grobner basis (with respect to
any given monemial order). Deduce that S is Noetherian.

Exercise 15 16 ": Show that the division algorithrn still terminates if at
each stage we simply choose some monormial of f'y divisible by some in(g;),
instead of the greatest such. This gives a still more indeterminate
version of the division algorithm, which works just as well for the

purposes of this chapter as the one given in the text.

Exercise 15 17 : (Characterization of determinate division}: Suppose
that f = £ m Bs, * f' is the standard expression for f with respect to £1,
-, 8t produced by the determinate division algorithm. If we take h, to
be the sum of all the monomials m,, such that s, = v, we may rewrite
this expression as

f=2Zh,g,+f{

Show that this is the unique such expression for which the monomials of
hy lie in the set of monomials n of S such that

ninlg,) ¢ (inlgy), . inlgy,_ 4} )
and the monomials of ' do not lie in ( in{gy), .. .in{gy) ).
Exercise 15 18 ™: Pro e that with notation as in Theorem 15 10, ker ¢

1s generated by any set of Tjj such that the corresponding O;j generate
the syzygies on the elements in(g;).

The following two results of Buchberger sometimes help to speed up
the process of cornputing a Grobner basis:

Exercise 15 19 : [mitate the proof of Theorem 15 & to show that in

applying Buchberger's Criterion it is enough to <heck any subset of pairs
i,j such that the corresponding Tij generate all the syzygies on the
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elements in{g;;.

Exercise 15 20 ": With notation as in Algorithm 15 9, suppose F = S.
Show that if in(g;) and in(g;) are relatively prime, then the division
algorithm can be carried out so that the remainder on division of mjigi -

myjg; by gi and g; is 0, and thus the remainder on division of m jig;
mijg; by (g1, .. .gt) may be taken to be 0. Thus such syzygies of the in(g;)
may be ignored in computing a Grobner basis. (This is a case where it is

good to have an indeterminate division algorithm!)

Exercise 15 21 ™: Some plausible-sounding variations on Proposition

45 15 are FALSE. For simplicity we take the case F = S. Let I ¢ S be an

ideal, and choose a monornial order on S. Find an example of a sequence
of elements hy, ... .|hy € S such that hy, .. by is a regular sequence on
5/in(l}, and in(h1)}, . ,inlh,} is a regular sequence on 5/!, but hy, ... ,hy, is
not a regular sequence on S/L.

Exercise 15 22 : If I is an ideal of a Noetherian ring S, and x, y € S,
then the following are equivalent: 1) (I: y*°) = (I : (x,y)*)}

2) Every associated prime of [ that contains y alsc contains x.

Exercise 15 23 : Prove that the closures of an orhit of B on kY is, for
some i, the subspace spanned by the last i basis elements. Use this to
give another proof of Corollary 15 25.

Exercise 15 24 ({(Bruhat)) ™: If g is an r»r matrix, then the principal
minor of order s < r is the determinant of the "upper left” sxs submatrix
of g; that is, if g = (g;j)1<j j<r then the principal minor of order s is
det{(g;j)1<i,jss). If U is the set of upper triangular rxr rnatrices with ones
on the diagonal and B' is the set of invertible lower triangular matrices,
show that B"U is the set of invertible matrices whose principal minors
are all nonzero. In particular, B'U is a Zariski open and dense subset of
3. (In fact B'"U is the "big cell” in the Bruhat decompaosition of §; see
Humphreys [1975)] or Fulton-Harris (1991] for the some more of the
story.)
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Exercise 15 25 With notation as in Theorem 15 17 show that if

g1, .. .8t € 1 are chosen so that in,(g1), .. ,in.(gy) generate in,(1), or even so.

that iny(gy), .. ,in,(g;) generate in,(I), then g3, .. ,&t generate 1

Exercise 15 26 : Let > be a monomial order on S, and T be the subring
of the quotient field of S generated by all the fractions m/n, with m and
n monomial of S such that m 2 n (we consider m > 1 for any nontrivial

monoermial, so T contains the polynomial ring S).

a)* Show that {m/n | m, n € S are monernials and m > n} generates
a proper ideal J of T, and that the quotient T/J is k. Show that

ScTc S[Yl_l,.u, Xr_1]= T[xl_l,n., Xrnll
Show that T need not be Noetherian.

We will consider §:= T ® S as a flat family of algebras over T (it is
flat because S is flat -- indeed, free -- as a k-module). For convenience
of notation, we think of T as coming frem a polynomial ring in a different
set of variables, yq, .. , yy. With this notation, the fractions

xyP/y¥  with yP o> vV

form a k-basis for 5.

For any polynomial g{xy, .. , Xy} € S, with inital monomial x%, let g €
§ be defined as

€ = v* alxi/vy, -, X /YF)

which is in § precisely because all the monomials of g are < x*, For any
ideal I of S, let T C § be the ideal generated by all § with g € L.

b) Show that Tlys~!, .., y, 11 ®1 5/ = Tiyy ™%, .., vy~ 11 @18/1
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while T/J ®1 §/1 = S/in,(I}.

¢) Show that 5/7 is flat over T by showing ti.at it is free on the
monomials in Xy, .. , X; hot in in(I).

Exercise 15 27 * (The simplest nontrivial syzygy computation):
Take g1 = x2, @2 = y%, g3 = xy+yz € kix,y,z). Find a Grobner basis and
syzygies using the reverse lexicographic order, ani1 x>y > z.

Exercise 15 28 " (Five points in P 3): Find a minimal iree resolution
of the ideal

I = {xg2-x2x3, XoX1-X32, X0X2-X1°, X1X3-%2%, X0X3-X1X2)

in the polynomial ring S = k[xg, - , ®3] (this is the ideal of 5 points in P3).

Exercise 15 29 *: Let M = (x2, txy+y°>) C klt,x,y]. Compute a Grobner
basis with respect to reverse lexicographic order using t > x > y.

Exercise 15 30 : Using the result of Exercise 15 29, find a presentation

for the associated graded ring of kix,y1/(x?, xy+y>) with respect to the
ideal (x,y).

Exercise 15 31 Let I = {x1x3-%22, X1Xq-X2X3, X ,X4-¥3°) be the ideal of
2x2 minors of the matrix

[ X1 X2 X3 ]
X2 X3 X4 »
and let I' be the ideal of minors of the matrix
[ X2 X1 X3 ]
X9 xz Xq

obtained by interchanging x; and xy. Find Grobner bases for I and I' with
respect to the reverse le 'icographic order on the mmr-onemials.
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Exercise 15 32 : Let I be the ideal of Exercise 15 31. [s x% e 17

Exercise 15 33 : Let R be the ring klx11,%12,%21,%25] and let

X =
[Xu Xlz]
X21 X232

be the generic 2x2 matrix over R. Let | be the ideal generated by the 4
entries of the rnatrix X2, so that I = (x112+x12x21, . ). If the polynomials
of I vanish when we substitute the entries ajj of some 2x2 matrix A over
k, then evidently AZ = 0 -- that is, A is nilpotent. It follows from the
Nullstellensatz that if glx13, - x22) is any polynemial vanishing on 2x2
nilpotent matrices, then some power of g lies in I. The trace and
determinant, xy1+xs> and X11%22-X12X21 are such polynomials. Compute
a Grobrer basis of [ and use it and the division algorithm to decide which
powers of the trace and deterrminant lie in L

It is known that if X is a generic nxn matrix then the coefficients of
the characteristic polynamial of X {in the 2x2 case the trace and
determinant) generate the prime ideal corresponding to the variety of
nilpotent nxn matrices, and one can ask in general what is the smallest
integer d such that T9 bilongs to the ideal of entries of X", where T is the
trace xyi+.4+x,,. Consudering diagonal matrices it is easy to show that d
> n?-n+l. In fact, B. Mourrain has shown me a proof that d = n2-n+1
using a "Sagbi base" for the ring of invariants under the conjugation
action of GL(n.k}, the ring generated by the coefficients of the
characteristic pelynon ial. See Robbiance-Sweedler [1990] for the

definitions.

Exercise 15 34 (The general submodule membership problem)
Let P be any S-module, given by “generators and relations”, that is, as

P = F/M,
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where F is a free module with basis and M = (fg, .. .f4} is a submodule of
F. Let Q C P be a submodule, given as the image of a submodule N of F.
Generalize the idea given for solving problem 1) to decide, for any
element p € P, whether or not p € Q.

Exercise 15 35 : Compute the Hilbert function and polynomial of the
determinantal ideal I from Exercise 15 31.

Exercise 15 36 “: Let P be any finitely gene-ated S-module, and write
P = F/M with F a free S-module. Let tn = {x1, .. .x,}. Use a technique

‘analegous to that of Proposition 15 28 to construct a homogeneous

submodule M' C F (with F regarded as a graded module having all its
generators in degree 0) such that gry, M = F/M"

Exercise 15 37 : Let T = Sly3, -, ysl and let F be a free T-module with
basis e;. Let > be a monomial order on F satisfying E with respect to the
variables y;. If gq, .. &t is a Grobner basis in F, and E1, - ,&s are those of
the g; that do not involve the variables Yi» show that gy, .. g.is a
Grobner basis in F' = ®5e; for J = 5 N (gq, .. ,g) with respect to the
monomial order on S gotten by restricting the given one from T.

Exercise 15 38 : Show how to use elimination, via Proposition 15 30, to
find presentations of the blowup algebra and associated graded ring of a
ring 5/ with respect to a given ideal m.

Exercise 15 39 (Inhomogeneous Grobner bases from

homogeneous ones):  Some computer algebra systems handle Grobner
bases only in the homeogeneous case. The following shows that this is
enrough to compute Grobner bases of arbitrary ideals.

Given a menomial erder > on S, extend it to Slxgl as follows: If m and
n are monomials of S, define m:vco"l >nxp®ifm>norm=nandd<e.
Suppose that [ is a (not necessarily homogeneous) ideal of S, and [' is any
ideal of S[xp] that goes to I under the "specialization” map Slxgl = §
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sending xg—1 and x; = x; for i > 0. Show that in{l'} goes to in(l} under
the specialization, and that any Grobner basis of I’ goes to a Grobner basis
of [ under the specialization.

Exercise 15 40 (Projective closure by saturation): LetI C S be
an ideal, and let I' be the ideal of s~-homogeneous elements (in the sense of
the section on projective closures) in the preimage of I under the map

Slxgl — S; =xp = 1.

If I" is the ideal obtained by s-homogenizing the elements of some set of
generators for I, then

I'= (1" : xp™ ).

Exercise 15 41 ((M:J )and { M :J*) in general): Suppose that
F is a finitely generated free S-module and M C F is a submodule. Let J
€ S be any ideal. We wish to compute (M :J) and {M : J¥).

a) (Solution of the problem in case J is generated by a variable).
Suppose that J = {x,). Proposition 15 12 b) allows cne to compute (M: J)
in this case. Show that Proposition 15 12 remains true if x, is replaced
by x,9 for any d < =; the case d = = gives a computation of (M : J®).
This idea comes from Bayer [1982]

b) (Reduction to the case where J is a principal ideal) Let S’ = Sly],
where y is a new indeterminate, and regard S as a subring of S'. Let M'
= 5'®gM C S'®@gF. Suppose J = (fy, ... ,fy), and let { = fy+yfa+. syt 1f;.
Show that (M': {) = S'(M : J}, and thus (M : J) = (M': f)nS, and deduce
similar formulas for (M : J*). (One could also do this by intreducing t new
variabies y;, and using f = Zy;f;. This is often less efficient
computationally.)

¢} (Reduction to the case where J is generated by a variable)

Suppose that J = (f) is a principal ideal. Let M' = S'®@gM+(y-f)F C S'®gF. .
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(Note that if M is a graded module and { is homogeneous of degree d, we
should take y to have degree d to get a graded module M'} Show that
(M':y}=S8"(y-f) + 3 (M : 1), and that (M :f} = (M':y) N S. Deduce
corresponding formulas for (M : {*).

d) (Reduction to the homogeneous case} Ind- pendent of the
reductions above, the cornputation of (M :J) an'!' (M : J®) can be reduced
to the hormogeneou case as follows: Suppose M C F is an arbitrary
submodule, let xg be a new indeterminate, and let M ¢ S[xgl®<F be an
Slxgl-module obtained by homogenizing with respect to xg any set of

-generators for M -- that is, by regarding the generators of M as vectors

of polynomials, and homogenizing each componeut of that vector to some
comrmon degree. Let J be the ideal of S[xg] obtained by homogenizing any
set of generators of J. (M and J depend on lots of choices.) Show that
generators for (M : J) may be obtained from any set of generators for

(M : J) by setting xg to 1, and similary for (M : J™).

Exercise 15 42 (Another way toc compute intersections): 1= (fg,
- f5) and J = (g4, .. gt} are ideals of S, show that the kernel of the map
s3*t*1 o 52 ith matrix

[ 1 fq fs 0 0 ]

consists of vectors whose first coordinates generate the ideal InJ.
Generalize this to a construction for the intersection of two submodules of
an arbitrary free module.

Exercise 15 43 (Yet Another way to compute intersections): IfI
and J are ideals of S, define an ideal K of S{t] as K = (] + (1-t)J). Show

that INnJ = KNS, reducing the problem of intersection to a problem of
elimination.

The following sequence of exercises provide aj slications for the
pullback construction described in the text.
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Exercise 15 44 (Kernels): Prove Proposition 15 32,
constructing kernels.

Exercise 15 45 (Images): Let ¢:G — Fbe a map of free modules, P =
coker ¢. Given a map of free modules H —~ F, use the pullback to find a
presentation of the rnodule that is the image of H in P.

Exercise 15 46 : Let

y
G- F—>P -0

be a free presentation of a module P, and M be the image of ¢, so that P
= F/M.

a) The annihilator of an elernent of P . Given an elemnent e of P,
choose e € F mapping to e. Define a map 8 — F by sending 1 to e. Show
that the annihilator of e is the tmage of the map ngin the pullback
diagram

s

0 &— 113
4

l

et

b) Annihilators i \ general. To compute the annihilator of P itself
one can compute the annihilator of each of a set of generators, and take
the intersection; however, there is a convenient way of doing this all at
once: Choosing a basis (e;} of F let ¢: § — Hom(F,F) be the map sending 1
to the identity map. Write Hom(F, ¢) for the map Hom(F,G) - Hom(F,F)
induced by . Show that the annihilator of P is the image of the map ng
in the pullback diagram

Thursday, March 3, 1994 -- 1587 -~

ng
PB — s
{ ly
Horm(F,G) — Hom(F,F)
Hom(F,y)

c) Quotient by an element, If g € 5, show that the submodule
(M : g) C F is the image of mf in the pullback diagram

TF
PB -
l

T} 4
“=

G —
¢

where §: F — F is multiplication by g.

d) Quotients in general. If J ¢ Sis an ideal with t generators g1,
-+ §t» we could compute (M : J) from the formula (M :J) =n (M : gi),

but we can do it all at once as follows: Define a map o«: 5 — &t sending
1 € S to the column vector with ith entry g;. Let F ® «: F=F®S — F®Ss!

be the tensor product of the identity map and o, and let y®St be the
tensor product of ¢ with the identity map of St. Show that the
submodule (M : J) is image of ng in the pullback diagram

mF
PB - F
! lF® «
Ge®st - rest
p@st
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Appendix: Some computer algebra projects

Several current computer algebra systemns allow the computation of
Grobner bases. Unfortunately, as of this writing the general purpose
systems such as Macsyma, Maple, Mathematica, and Axiom do not have
the flexibility in their algorithms or simply do not run fast enough to
make experimentation of the sort suggested below very attractive. At
least two systemns that were designed primarily for Grobner basis
computation are generally available {and for free!): CoCoA
(Computations in Commutative Algebra) by Alessandro Giovini and
Gianfranco Niesi, of the Department of Mathematics, University of
Genova, ltaly, and Macaulay , by Dave Bayer and Michael Stiliman
{(Department of Mathematics, Columbia University and Cornell
University, respectively. Macaulay is available free from the authors for
many machines including the Macintosh, IBM-PC, Sun, Vax, and others.
It can be obtained from a public account on a rachine at Harvard
University. For experts the following instructions should suffice: ftp to
128.103.28.10, or math.harvard.edu, login ftp, password any, cd
Macaulay. The C language source code files are in tar format in M3.tar,
along with “make” files for various rmachines; the manual is in the
document Macman.ps.) CoCoA is relatively easy to use and is well suited
for experimentation with Grobner bases; but it lacks many of the
facilities that the more mature system Macaulay has developed for
handling problems from commutative algebra and algebraic geometry.
On the other hand, certain design decisions taken to make Macaulay
efficient may look odd to the beginnar: Macaulay only computes
Grobner bases of homogeneous ideals, and works exclusively over finite
fields Z/p, for various p. In any case, | have mainly had experience with
Macaulay and the discussion below is slanted toward its use.

Macaulay is partially "responsible” for quite a number of published
theorems, in the sense that people have been able to look at examples

that have lead them to guess at results, or to reassure themselves of the '

truth of results, which they otherwise would not have proved. I have
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tried to reproduce the spirit -- and in some cases the topics -- of sorme of
these investigations at a suitable level below. 1 ani certain that there are
still new phenomena to be discovered in each of these realms; perhaps
the student will hit on something genuinely original. With each project [
have listed the names of some Macaulay commands and scripts that [
would find useful if I were doing the project. {The reader can tell the
difference because scripts are written beginning with the character <,
while commands do not have this prefix. If the user types

<scriptrname

or

cormmandname

then Macaulay should provide a help message on the script or command
referred to, from which the action and the correct syntax can be
inferred. Of course given the rate of developmen of computer algebra,
these suggestions are not likely to be valid for terribly long. For all the
projects 1 would use the scripts <ring and <ideal, which make defining
objects somewhat rmore convenient.

Here are the projects:

Project 1) Zere-dimensional Gorenstein ideals. Compute some
ideals of the form 1 = ({x{%, ... ,x,-*) ! p), where p is a homogeneous
polynomial. It's easy to do the case r = 1 and the case p a monomial, r
= anything, by hand. Try the case r = 2 with more complicated p on
the machine. {In Macaulay , use the "quotient” command.} How many
generators does | require? Nexi try r = 3, various p. Here thereis a
greater range in the possible numbers of generators. Is there any
restriction? Make a conjecture! How about with r = 47 One way to get
polynomials p to try is to take random ones (made with <random_mat,
for example). The answers you get in this case should depend only on r,s
and deg p. What's the pattern here? Of course th~re will be more

possibilities visible if you choose very special polynomials p.
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It i1s also interesting to use res to resolve these ideals I. Their
resolutions have a cer 1in unusual property, visible (in Macaulay )
through the command “betti*. Can you spot it?7 What are the possible
sequences of betti numbers in the cases r = 2, 3, 47 Any conjectures?

There is also something funny about the Hilbert function. (In
Macaulay , use hilb and <hilb-fen.)

For your information, the ideals I that can be obtained as above are
exactly what are usually called "0-dimensional, homeogeneous Gorenstein
ideals”. See Chapter 21.

Reference: This is actually the first project that involved me
personally with computer algebra. David Buchsbaum and [ were
interested in Gorenstein ideals in about 1971-2. Ray Zibman, then an
undergraduate at Brandeis, programmed the PDP 10 computer in Lisp to
find the ideals I (this can be done without Grobner bases, since in this
problem all the rings involved are finite dimensional over k). We also
made a number of hand computations of the syzygies of these ideals and
found a regularity in the case r = 3 that may not be so apparent without
a good deal of study o the matrices in the resolution. You can find the
results inspired by our computations in the paper Buchsbaum-Eisenbud

(19771 .7/
Project 2) Factoring out a general element from an S-SYZygy

One way for an S-module P = coker mwp: Gp — Fp to be an sth SYZYEY
-~ that is, for it to be tie kernel at the s'P step of a free resolution -- is
the following: Let

H: 0= H —- .. — Hy - Fp* > Gp”

be the free resolution of the cokernel Q of the dual of the map mwp, and
dualize # to get a complex
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H*: Gp = Fp > Hi"— .- H"—=0-—> ..

The homology of H* (kernel of one map modulo the image of the one
before) at the module H;" is called Ext'"1{N,S). If these modules are 0 for
i=1,..,5, then Mis a sth syzygy -- let us say that M is a "standard sth
syzygy'  in this case. Is every sth syzygy a standard sth syzygy? If so,
this gives a test fcr whether a module is an sth syzygy, otherwise, we
have defined a new notion. Try some examples to get a feel for what
might be true.

Next take a (standard) stV syzygy and kill a random elernent. For
what t is the result a (standard) tth syzygy? What if you start with a
free module? Perhaps the simplest case is when P = St/Sf, where S is the
column vector with entries fy, .., f;. Can ycu tell whether P is an sth
syzygy from some property of the ideal generated by the {;?

The situation is relatively simple if, as above, we work over S.
Completely new phenomena -- which no cne understands as of this
writing -- arise if we replace the polynomial ring S by a facter ring, say
S/{g1,-,8u)- Even the case u = 1 is challenging -- see project 3 below -~

but the general case seems still more baffling.

Reference : The phenomena that the reader is most likely to discover
here were first noticed and exploited by W. Bruns [1976). See for
example Evans-Griffith [1985] for a general treatment of related matter..

Project 3) Resolutions over hypersurfaces : Find some modu'les over
k[x,y]/(yz) . {For example, take any k[x,y}-module M and factor ot y2
times it. {Take note of whether or not y2 was a nonzerodivisor on M; you
could test for this with the script <nzd.) Resolve over klx,yl, and over
k[x,y]/(yz). {Use fetch; explicit length of res, as in res I, Ires, n; betti.
Keep n < 15 or so.) Can you make a cenjecture about the resolutions?

Can you prove it?7 How about replacing y2 by an arbitrary polynomial
p(x,y)? How about in n variables?
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Reference : Eisenbud [1980]

One source of examples that will probably always be interesting is
the family of “rational curves" of degree d in P¥. From an algebraic
point of view rational curves are subrings

R = klfgls,1), f1(s,t), .., {.(s,1}] C kis,t]

of a polynemial ring in 2 variables generated by r+1 independent
polynomials of degree d. (Use <subring and, for the special case where all
the f; are monomials, <monomial_curve to construct these conveniently).
The defining ideal of the curve is by definition the kernel I of the map

kixg, . .xp] = kistl; x; = f.
The next three projects explore various aspects of these examples.

Project 4) Rational curves of degree r+1 in P ¥, Consider the case
of the subring R generated by 4 palynomials fg(s,t), .. , f3(s,t) of degree 4
in kls,t]. For various choices, compute the defining ideal I in klxg, .. ,x3]
and its free resolution. How do the betti numbers depend on the
polynomials chosen? How many types are there? (Try the monomial
examples first, then something just a little more general. Note that the
result depends only on the vector space spanned by the f;, not on the f;
themselves.) What about the situation of T forms of degree r? Note that
we are excluding just one form; that is, the space of r forms of degree r
is the kernel of a linear form on the space of all forms of degree r. (In
Macaulay , use the command diff.) One way to write down such a linear
form is as a differential operator of order r with constant coefficients --
that is, essentially, as a single polynomial of degree r. This point of view
may make the results more intelligible by giving natural _invgrjiants of
such codimension 1 subspaces -- for example, you might distinguish a
single polynomial g of degree d by the smallest numbez_' t such g is
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expressible as the sum of t 4th powers of linear forms, or is in the closure
of the set of polynorrials that are expressible this way. {If you like this
point of view, you might want to look up "Catalecticants” in the old book
on invariant theory by Grace and Young [1903].)

Project 5) Regularity of rational curves If M is a graded S-module
then we define the regularity of M (in the sense ! Zastelnuove) from the
minirnal free resolution of M

= Fg—= =2 Fg—- M0

to be the least integer p such that for each s, all the free generators of
Fg lie in degree < s + p. (See Chapter 20). In Macaulay , the command
res always cornputes minimal free resolutions after the first step; use
nres to make the first step minimal too. Thus, in Macaulay , the
regularity is the number of rows in the diagram produced by the
cornmand betti.) The regularity of M is an important measure of how
hard it will be to compute a free resolution of M.

What is the pessible regularity of S/[ if I is the defining ideal of a
rational curve? Try monomial curves (where all the f; are monornials)
first. What range of values can you get? Another interesting invariant
to study in these cases is the last betti number of the curve. One way {(of
many} to produce interesting families of monomial curves is to fix a
pattern of exponents -~ that is, an increasing sequence of numbers by, ..
by -- and try something like

1, ta+b1, ta+b2, 3 ta+b

oy

r
for varying a.
Reference: Gruson-Lazarsfeld-Peskine [1983],

(Helpful Macaulay scripts: <regularity, <res, <rat I. m_mat,
<monomial_curve)
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Project 6) Some monomial curve singularities: Let

f; = s4it% with di+ej=d, Oseg<..se. =d

and consider the corresponding rational curve. Show that factoring out
sdryeo from each of the f; will not change the defining ideal of the curve,
30 we may assume eg = 0, e, = d.

Dehomogenize the defining ideat [ ¢ klxg, .. ,x,] of the curve by
setting xg = 1 (this will be the defining ideal of the subring k[t%1 , ., ¢°r]

€ klt]). Cempute the associated graded ring of the curve with respect to
the maximal ideal. (In Macaulay use the script <l_tangentcone.)

What are the posrible lengths of the minimal free resolution of this
graded ring? Can you find any families of examples where the length is
r-17 Can you find any where the betti numbers {ranks of the free
modules in the resolution) are symmetric around the middle? Try
patterns of exponents, as described in Project 5.

Project 7} Some interesting prime ideals. For each 0 s u < r,
consider the prime ideal Iy, r that is the kernel of the ring
homomorphism

klxg, .., %] = Ts, ¢, 20, o, 2yl xj = Fj
where the elements Fi are obtained as hormogenizations with respect to s

Fi = s"gilt/s, 2075, .., 2,,/5)

of the entries ¢; of the product shown in Figure 1538,
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1t t2 ¢ tr

pu—

0 1 2t 3t2 rtr-!
(29,21, - ,2)[ 0 0 2 6x . = (0.1, « Py}
lo .. 0 u! L ori/Ar-u)iry |
Figure 15.8

where the rows of the large matrix are obtained by successively
differentiating the entries of the first row with respect to t. Thus for
example for u = 0 the F; are zgs”, zgs" 1, L, zgt", while for u = 1 we get

ngr,

zos" 1t + 245t | z2gs"2t2 + 27457 1t

What degree elements do you think it takes *o generate Iurifris
rather larger than u? For u = 1 the resolution of I,,r has a particularly
interesting property; can you find it? Can you see any interesting
properties of the resolution for other values of s In general, how long do
you think the resolution will be? (You will probably have to guess at
these answers from rather small values of r,u--sayr =<9or 10,u =0,
1, 2 and perhaps a little more.) Suppose you take the ideal generated by
Just the quadratic forms in Iy,r {respectively, forms of degree =< d for

some d.) Do you get anything interesting?
(Use the commands power, diff, concat, to form the big matrix; mult to
form the row of ¢;; homog (applied to the transposed vector to

hoemogenize it. Use <subring to compuie [y - Note that one must then
use std or nres to get a minimal set of generators for the ideal.)

These ideals arise in geometry as follows: The vector
1,1, t3, . tr
that is the first row of the matrix above may be thought of as

parametrizing a curve C in P" whose closure is called the rational
normal curve. Thus Ip . is the ideal of the rational normal curve in PF,
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The second row of the matrix is obtained by differentiating the first row
with respect to x; thus a linear combination

zg(first row} + zj(second row}

represents a point on a tangent line to this curve, and Iy , is the ideal of
the tangent developable surface to the rational nermal curve

(that is, the surface consisting of the union of the tangent lines to the
curve). Similarly, for arbitrary u, the linear combination of the u+l
rows represents a peint on an osculating u-plane to the curve. Thus is
the ideal of the union of the osculating u planes. These ideals have been
much studied for u = 0 (easy) and for u=1 (the “generic Green's
conjacture” is a guess at the form of the free resclution of Iy » (see
Eisenbud [1992] for an exposition). I think there are not even conjectures
for u > 1; perhaps the reader will make some interesting ones!
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Hints for selected exercises
Exercise 15 1 : It is generated by monomials.

Exercise 15 2 : If the submodule is generated by monomials {g;}, let M;
= l;e; be the submodule generated by all the g; that are of the form me;.

Exercise 15 3 : The given elernents are certainly in (I : n). On the
other hand if f € (I : n) then fn € ], so the terms of fn are multiples of

‘some m;. [t follows from unique factorization that the ierms of f are

multiples of sorme m;/GCD(rm;,n).

Exercise 15 7 : Iy N Iz = I415 iff a minimal generating set {m;) for I and
a minimal generating set (n;} for l2 dec not have any variables in
common. The "if" part is easy. To prove “only if”, suppose on the
contrary 13 N Iz = I1Iz but m;= pm'; and nj = pn'j have GCD p#1, and
that m'j is chosen with minimal degree. Since Iy N Iz D pm'in';, we see
that pm'in'j is a multiple of some m,n,. Deduce . contradiction from the
assumed minimality of degrees.

Exercise 15 12 : Frorn Exercise 15 11 it follow, that 0 is not in the
convex hull of the finitely many elements m;-n; € P.. Equivalently,
there is a rational hyperplane H through the origin in Q" such that a
translate of H separates 0 from the mj-n;. Writing H as the set of zeros
of a linear functior.al A, we see that A is either strictly positive or strictly
negative on all the m; -~ nj. In the second case we replace A by -A. Since
we may multiply A by a positive integer without changing H, we may
assume that A is integral.

Exercise 15 13 Find a rational linear functional w whose hyperplane
of zeros does not meet the interior of the positive cone P.. If w is non-

negative on P, use w for the first weight vector; otherwise use -w. Do
inductien on the dimension of the span of P., considering the intersection
of P. with the hyperplane of zeros of w.
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Exercise 15 16 : The sequence in{f'y) is non-increasing, and thus must
eventually stabilize; let my be its eventual value. Similarly, the sequence
in{f'y - my1) must eventually stabilize; let mgz be its eventual value, and so
on. Show that if the process did not terminate, then my, my, .. would be
an infinite strictly descending sequence.

Exercise 15 18 : If not all the syzygies were linear combinations of the
given syzygies we could choose one, say T Putu, with the property that
the largest monomial m arnong the in(p,gy} is minimal. Let Z' p, g, be
the sum of ali those terms pyg, for which in(p,g,) is m up to a scalar.
Writing

in{pygy) = ny in{g,),

for some term ny of p, we have I' n, in(gy) = 0, so there is a linear
combination of the given syzygies that has the form I n, g, - Zfue,
for some f, with in(f,g,} < m. Subtract this from the SYZYEY & puEy to
get a contradiction.

Exercise 15 20 : In this case we have m;; = in(g;)/e; and mj; = inlg;)/e;.
We have

“myigit myjg; = (giei~gigj) - (infg)lg; - in(g;lg;)
= (g - in{s Dg; - (g, - inlg)g;
= Dj B~ P
with in(pj) < in(g;) and in(p;) < in(g;). We claim that the initial term of
such an expression is necessarily in(p;) in(g;) or in{p;) in(g;). Indeed, the
only other possibility is that these terms cancel. But since in{g;} and
in{g;) are relatively prime, cancellation is only possible if in(g;) divides

in{p;). this is irmpossible because of the inequality. Now subtract the
appropriate multiple of g; or g5, and repeat the argument....
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Exercise 15 21 : You need go no further than u = 1 and the case of 2
variables.

Exercise 15 25 : Modify the last paragraph of the given proof to use
only the elements g; from 1.

Exercise 15 24 : First, if b' € B' and u € U, observe that the upper left
sxs submatrix of b'u is the product of the upper left sxs submatrix of b'
and the upper left sxs submatrix of U, In particular, it is the product of

. invertible matrices, so the principal minors of }v'u are all nonzero.

Conversely, suppose that the principal minors of a matrix g are all
nonzero. It suffices to show that there is a lower triangular matrix b
such that u = bg is in Y; then g = b1y shows that g € B"l. But
multiplying g on the left by a lower triangular matrix may be expressed
as a sequence of elementary transformations, in each of which one either
multiplies a row of g by a nonzero scalar or adds a row of g to a later
row. Since the 1x1 principal minor of g, which is the upper left entry
€11, is nonzero we may multiply the first row by Bll_l and then
subtract a multiple of the first row from each succeeding row to make g
into a matrix whose first column has entries 1,0, ... ;0. The effect of this
is to multiply the principal rminors by g11"1 # 0. In particular, the

principal minor of order 2, which is now equal to g2o, is nonzero.

Multiplying the second row by gzz‘l

and then adding a multiple of it to
each succeeding row, we may assume that the second column of g has
entries g12, 1, 0, ... ,0. Continuing in this way, we eventually reduce to

an element g € U as claimed.

Since each of the principal minors is a polynomial function of the
entries of g, the locus where they are all nonzero is open; as G is itself an
open subset of an affine space, any open subset is dense.

Exercise 15 26 a): Taker = 2 and > the lexicographic order. Let K be

the ideal generated by all x3/x2® for s 2 0. Show that x2K = K. Since T is

a domain, Corollary 4.7 shows that K cannot be finitely generated.
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Exercise 15 27 : To get a Grobner basis adjoin g4 = yzz. The syzygies
on the original 3 generators are generated by the columns of

y22 0] {(x+z2)y
-x* x+z O

0 -y -x?

Exercise 15 28 : The resolution will be symmetric, with ranks of free
modules 1,5,5,1, and the first and last matrices should be transposes of
one another up to change of basis; if you make the change of basis
necessary to make the first and last matrices actually be transposes of
one another, the middle matrix will be skew symmetric. This phenomena
will be "explained” in Chapter 21.

Exercise 15 29 : xZ, txy+y3, xys, y5

Exercise 15 36 : Begin by homogenizing the elements of a presentation
matrix for M with respect to a new variable xg and multiplying each
element by whatever power of xq is necessary to bring them all to the
same degree, to get a hornogeneous submodule M" € F whose cokernel is
a graded S[xpl-rmodule. Then argue as in the Proposition.
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