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BLACK HOLES AND GENERAL
RELATIVITY:
ICTP, 1994

G F R Ellis
July 14, 1994

1 BLACK HOLES

‘A stationary black hole is pure vacuum endowed only with mass, charge, and
angular momentum. It i3 the simplest object in General Relativity’

see S Detweiler: ‘Resource Letter BH-1: Black Holes’ Am Journ Phys 49, May
1981, pp394-400

The major issues from an astrophysical viewpoint:
1] what is the final state of massive stars?
2] what is the energy sources of qso’s and agn’s?
3] do Primordial black holes exist ?

The major discoveries from a general relativity viewpoint:

1] existence and implications of closed trapped surfaces (implying existence
of singularities in space-time structure, Pentrose 1965;)

2] existence and nature of event horizons and Killing horizons, and their
bifurcations;

3| the non-trivial topologies and associated structures (e.g. wormholes) that
necessarily occur in maximally extended solutions.

Major issues for other physics arise from:

1] Black body radiation emitted by black holes, arising from the synthesis
of quantum field theory and curved space time geometries;

2] the associated connection of black holes to entropy and the laws of ther-
modynamics;

3] the question of the final state of evaporating black holes, and its implica-
tions for quantum mechanics,
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2 BACKGROUND

Endpoint of Siellar evolution: when a star's nuclear fuel is used up, it cools
down to a final state of ‘Jupiters’, white dwarfs, neutron stats [sometimes after
supernova explosion], or black holes.

‘Jupiters’ are actually cold planets made of iron {lowest energy state of nu-
cleus), with a maximum size about that of Jupiier.

White Dwarfs: small stars with pressure is due to relativistic electron de-
generacy.

Neutron stars; highly condensed stars with pressure due to neutron degen-
eracy. They are produced in supernovae explosions that leave behind pulsars
(spinning, magnetised neutron stars).

Mass limits:

Only if the star’s mass is less than that of 1.4 suns can the attractive force
of gravity be counteracted by electron degeneracy [Chandrasekhar, Maximum
mass of white dwarf stars, ApJ T4, 81-82 (1931); also MNRAS 91, 456 (1931)
and Observatory 57, 373-377 (1934).

Similarly there is a maximum mass to neutron stars and it lies between
about half a solar mass and several solar masses [Oppenheimer and Volkov, On
Massive Neutron Cores, Phys Rev 55, 374-381 (1939)] (today: between 1.5 and
3 solar masses),

Wheeler: one can determine the equation of state of matter at the endpoint
of thermonuclear evolution; then can understand all objects that can be made



from cold dead matter. There is no third family of stable, massive cold dead
objects between the white dwarfs and the neutron stars, and causality limits
imply no other stable state exists even though we do not know the equation of
state of nuclear matier in detail.

Massive stars do eject large amounts of matter but data suggest that most
stars above 20 times the mass of the sun remain so heavy when they die that
their pressure provides no protection against gravity; they are expected to col-
lapse to black holes.

This problem arises firstly because of the negative specific heat of gravity
(there is no maximum entropy state for a collapsing gravitating object; the
highest entropy state is not a smooth distribution of matter);

secondly because of extra terms in the General relativity stellar equations
(see below) compared with those in Newtonian theory, which make the problem
of gravitational collapse much worse in GR than in Newtonian theory.

We first examine the case of spherical geometries, where we can identify most
of the important ideas; and then the case of non-spherical geometries (axially
symmetric situations, and generic asymptotically flat ones).

Gravity is & manifestation of space-time curvature; we see this explicitly in
the static, spherical case. We look at the Schwarzschild solution, and its use for
star models, solving the field equations in the interior and exterior cases, and
matching them at their boundary.

We refer to MTW [Gravitation, C W Misner, K S Thorne and J A Wheeler
(Freeman, 1972)] and ST (Black Holes, White Dwarfs and Neutron Stars, S
Shapiro and S Teukolsky (Wiley Interscience, 1983)] as well as to Stephani [H
Stephani, General relativity (Cambridge University Press)).

3 SCHWARZSCHILD EXTERIOR SOLUTION

To model the field of the sun in the solar system, or of any static star, we look
for a solution that is

(1) static (ignore the time changes due to the motion of the planets)

(2) spherically symmetric (ignore the rotation of the sun)

(3) vacuum - the exterior solution (later we look for the corresponding inte-
rior solution}
We choose coordinates for which the metric form is

ds? = — A(r)dt* + B(r)dr® + r?(d8® + sin? 6 d¢?) (1)
where 2° = ¢, 2' =7, 2? = 9, 2° = ¢. Thus

gap = diag (—A(r), B(r), r?, r?sin? 9),



g°? = diag (—1/A(r), 1/B(r), 1/r%, 1/(r*sin®6)),

This is clearly

(1) static (£ is a Killing vector because the time coordinate t does not
appear in the metric) and

(2) spherically symmetric, as A(r), B(r) are independent of # and ¢, and
r2(d6? +sin? 6 dp®) is the metric of a {spherically symmetric] 2-sphere (with area
4xr?).

As regards (3): the functions A{(r) and B(r) are to be determined by the
vacuum Einstein Field Equations (EFE):

Ryy =0 (2)
where from section 6.1, on using a coordinate basis,
Ryg = Ry"a =T pa — Iapp + o Mae — Tay e (3)

To work this out in a coordinate basis, we need the Christoffel symbols,
either from the Christoffel relations,

I as

ok
g 5(9»0.6 + 98,0 — 906.:/),

or from the Lagrangian L = gos(2?)dz®dz® for geodesics. The non-zero I'%,
for metric (1) are

14'(r ,
Mo =3 A((r)) = o (4)
1A 14 r rsin’ @
I\l ===, 1 - 1 - _ [\lrr:__ 5
00 2 B 11 2 A [ 22 ] 33 B ( )
. 1

F212=F121:;, F?y3 = —sin 6 cos 8 (6)

1 : cos &
TP =T% = =, D= = —p (M

T sin #

Hence for example, from {3) Rqg is

Roo = Ro%0a = 00,0 — T%a0,0 + Tf00T%ae — a0l 0e (8)

and get the explicit form by substituting for the Christoffels (4-7): with these
values, carrying out the summations,

Roo=T'o01— 0 + Tl — 00 00 — TP ool %01

which 1s

14\ 14
R"O‘(EE) +5§(



hence AH AI BI At Al
ROO:E“ZE(—B;ﬁ-I)'Fr':U (9)

Similarly we can obtain all the non-zero Ricci tensor components, giving the
full set of EFE. The further non-trivial equations (as well as (9)) are

A” AI Bl AI Br
Ry = —— o= - — =40 10
i 2A+4A(B+A)+r}3 (10)
1 r fA" B
Rzg_—§+1—ﬁ(1¢»—§)_o (11)
R3z = +Rgzsin?@ =0 (12)

Now {(B/A) X Roo + Ru} giVCS

i /B A
“l=+=]=0 'B+B'A=0 AB) =0
r(B+A) & A'B+B < (AB)
S0

A(r) B(r) = const

Use the boundary conditions of asymptotic flatness: r — oo, A(r) — ¢? (we
introduce the speed of light ¢ - which we usunally take as 1 — explicitly here),
B(r) — 1, so A(r)B(r) = ¢ (determine the constant by its limiting value at
infinity) Hence

B(r) = (13)

Substitute into Kz9: we get

A+1 rd A’+A' _0
2 22\ A" a)”

that is d
! — A2 - — o2
rA'+ A =c" & o (r4) = ¢

which integrates to give
2 2 k k._,
rA=c*(r+k), k=const > A(r)=c*(1+ =), B(r)=(1+ =)', (14)
r T
Hence we have,
2 2 k> ky 1,0, 202 2 2
ds* = —¢ (1+;)dt +(1+;) dr® +r*(d6° + sin” 8 d¢*) (15)

NB: we must ensure that all the EFE are satisfied. We have solved two of the
three non-trivial equations; now check that the last one is true (substitute into



Rgo ot Ry; to check that both (9) and (10} are valid}.

To determine the value of the constant k: compare with weak field:

2% MG
= — s = - 1

Qoo (1 + C2 )v r ( 6)

*° k IMG 2MG

1 - =1- —
+ r cir k e? (17)
Define

m=MG/c* >0 (18)

(mass in geometrical units, giving the one essential constant of the solution);
then, setting ¢ = 1,

2 . 2 . ; .
ds? = —(1- “Z)dt? + (1 — Z2) 1dr? + o2(d6? +sin? 0dgp?)  (19)
r T
This is the Schwarzschild (Exterior) solution [K Schwarzschild ‘On the gravi-
tational field of a point mass according to the Einsteinian theory'. Sitz Preuss
Akad Wiss Phys Mat KI 189, 1898-196 (1916)].

Note 1: This is an ezact solution of the EFE

Note 2. This solution is valid for r > rg where rg is the coordinate radius
of the massive object; we require that

rs > rg = 2m = 2MG/c? (20)

where rg is the gravitational radius or Schwarzschild radius of the object (if
rs < rg, we would have a black hole; see later). This is the mass in geometrical
units. Thus the Schwarzschild geometry predicts that for each star there is a
critical circumference that depends on the stars mass.

For the earth: 2M G ,qp 4 /c? ~ 8.8mm, for the sun: 2MG,ua/c? ~ 2.96km,
so in both cases rg >> r5. We see here a fundamental feature of the solution:
that there is a characteristic length associated with the Schwarzschild soluticn.
By contrast, there is no such length associated with the Newtonian equivalent
solution (®(r) = —MG/r, where ®(r) is arbitrary by an additive constant, so
e.g. @ = 1 has no special significance).

Note 3. Considering time-dependent spherical vacuum solutions, wher: now
we havemetric (1) but with A = A(r,t), B = B(r,t), one can prove a Uniqueness
theorem, namely : Birkhoff’s theorem: The Finstein vacuum field equations
then demand that in fact 4 and B are functions of only one variable. Conse-
quently, A spherical vacuum solution is either static or spatially homogeneous



(there is necessarily another independent Killing vector field, apart from those
generating the spherical symmetry). Choosing the solution 4 = A(r), B = B(r)
which corresponds to r > 2m, this shows that

The Schwarzschild sclution is the valid exterior solution for ev-
ery spherical object, no matter how it is evolving: it can be static,
collapsing, expanding, pulsating: always - provided it is spherically
symmetric - the exterior solution is the Schwarzschild solution,

This shows the importance of the Schwarzschild geometry: it describes the
exterior of any star that is spherical including not only static stars but also
imploding, exploding, and pulsating ones. Thus for example the spacetime ge-
ometiry outside an imploding spherical star is the same as that ocutside a static
star [nb: there is no analogous theorem in the case of rotating stars]. This
essentially follows from the fact the General Relativity does not allow monopole
gravitational radiation: so spherical pulsations cannot radiate mass away.

Note 4: Relation to flat space time:

{a) If m = 0 we have just flat space-time, thus as m — 0 we get Minkowski
space as the (local) limit [globally there will be problems see later];

(b) For r >> r; we have the weak field case; the metric goes to perturbed
flat space-time ai large distances in the form

2
ds? = (1 4 4 (14 2)ar? 1 22(d6 + sin? 0.dg?) (21)
T T
(locally - but not globally — the spacetime is arbitrarily close to flat space time

as we approach infinity).

We have a Strong field when we can’t use this approximation, say r < 107,
So we have a weak field when rs >> r;. NB: the exterior fields of the Earth
and of the Sun are weak fields!

3.1 Geometry of the solution

There are unique timelines - integral curves of the static timelike Killing vector
@/8t (which is timelike everywhere). These are orthogonal to preferred spacelike
sections (surfaces of constant coordinate time t).

The Coordinates:
(1) t: - Time coordinate, but not proper time along the (preferred) static

observer’s world lines {r,8,¢ const < { only varies } In fact, from the metric
we see that along those lines, where dr = df = d¢ = 0, proper time 7 (given by



ds? = —dr?) is related to coordinate time ¢ by
2 2m 2 t2 2m 1/2
t r
The ratio beiween proper time and coordinate time is thus position- dependent.

(2) r: - Distance, but not proper distance along the (unique) radial geodesics
orthogonal to the spheres {r = const} in the unique time-surfaces { = const On
these curves, dt = d# = d¢ — 0, so from the metric, proper distance R is related
to coordinate distance r by

ra
dR? = (1~ 2~?’Ln)_1t:l1'2 & R:f (lm—g;fﬁ)‘l“dr>r2—r; (23)
Fi

Areas: r is in fact an area coordinate, because the surface area of the
(uniquely defined) 2-spheres ¢t = const, r = const is just 47r? Equivalently,
the circumference of these spheres is ¢ = 2xr. We can thus characterise the
geometry of the constant- time surfaces by the relation ¢(R) of circumference to
proper distance, given by the equation above. We can represent this by a curved
surface in Euclidean space that is bent so as to correctly reproduce this relation
[Stephani: Figure 10.1] This is an imbedding diagram (see Thorne): imagine
imbedding the equatorial sheet (© = 7/2) of the 3-space in a fictitious flat 3-d
hyperspace; then the sheet can maintain its curved geometry (the correct re-
lation of circumference to radial distance) by bending downward like a bowl.
Thus we can correctly express the circumference to radial distance relation in
such an imbedding diagram (where the remaining coordinates are r and ¢).

Together (1) and (2) show that ‘gravity causes a warping of both time and
space’ - Thorne.

(3) @ and ¢ are usual angular coordinates on the 2-sphere (which has area
4mwr?).

(4) Singularities: The metric form has singularities at r = 0 and at r = 2m.
The first is & physical singularity, the second is a coordinate singularity associ-
ated with the event horizon, and can be removed by changing to other coordi-

nates. We explore this later.

(5) Acceleration: the preferred timelike orbits of ‘static observers’ — those at
rest in our chosen coordinate system — are Killing vector orbifs (i.e. symmeciry
paths) without rotation, expansion, or distortion, but are accelerating (i.e. are
non-geodesic). Their normalised (unit) tangent vector is

1

a a

= =0
V1-2m/fr !



and has acceleration

1
1-2m/r

,&a;bub

= u%u’ + T ubu’ = ré, = 5 rﬂz (24)
pointing radially out and with magnitude diminishing with distance (this is the
acceleration we feel that keeps us firmly on the earth, instead of falling freely

through to its centre).

4 INTERIOR SOLUTIONS

4.1 Junction conditions

A complete solution comprises interior (fluid) and exterior (vacuum) solutions,
correctly joined at the surface of the star. By Birkhoff’s theorem, the exterior
solution will be the Schwarszschild exterior solution (independent of the struc-
ture of the star).

At the surface of the star: we require that the ist and second fundamental
forms are continuous - i.e. continuity of the metrie and its first radial derivative,
as measured in geodesic normal coordinates.

Now p = 0 is equivalent to the latter, because of the momentum conservation
equations. This is the more usual form of the second condition; then we require

The surface of the star occurs where p = 0; we demand that the
metric tensor be continuous there.

There will be a jump in density there; consequently, the metric and its first
radial derivative will be continuous there, but its second derivative will be dis-
continuous.

4.2 General equations

The Oppenheimer-Volkov form of the EFE for a static, spherically symmetric
star [see MTW: pp. 608-609; ST, pp.124-126] are as follows.
The metric can be written as

dr?

2 _ _ 2<l>(r)dt2
ds ¢ + 1 —2m(r)/r

+ 7(d8* + sin® 6 d¢?) (25)
for r < rg, the value of r at the surface of the star, where

m(r) = ];r 4rrip(r)dr, m(rs) = ms (28)



is a mass parameter but is not the integral of density through the star with
respect to proper volume (it differs from this by the gravitational binding energy
of the star); and mg is the exterior Schwarzschild mass. Equations of state relate
the energy density p and pressure p to the number density n of the fluid:

p=p(n), p=p(n) = p=p(p) (27)
where n is the number density of the fluid. The Oppenheimer-Volkov equation
of hydrostatic equilibrium - basically the momentum equation - is

dp _ (p+p)(m+4xr’p)

dr r{r — 2m)

(28)

(Nb: the GR terms that make gravitational collapse so much worse than in the
Newionian case are the terms in p and 2m on the right hand side. The Newto-
nian equation is identical except that these terms do not occur in that case).

The source equation for ®(r) (the acceleration equation) is

dd dP 1 (m+4nrip)

= = 29
dr dr p+p r(r — 2m) (29)
The boundary conditions are
1
plr=0)=p;, plr=r15)=0, ®(r =r5)= Eln(l - 2mg [r5), (30)

where p. is the central pressure.

Procedure: choose equation of state, ®¢, central pressure p.. Integrate the
coupled equations outwards until p = 0. This defines the star’s surface; the
value of the radius there is r5; the value of the mass m there is the star’s mass
(ms = m(rs) ). One can continue to integrate the equations into the vacuum
region, regaining the exterior Schwarzschild solution there (up to a constant
multiple of e¥(r)). The result is a relativistic stellar model whose structure
equations ®, m, p, p, and n satisfy the equations of structure. One can renor-
malise ¢(r) by adding to it a constant so that it gives the standard Schwarzschild
solution in the exterior region {and thus obeys the boundary condition given
above).

In more detail: (26) is valid through the surface of the star and into the
vacuum around it, showing that m(r) increases in the intericr of the star and
then is constant for r > r5. The Oppenheimer-Volkov equation (28) will be
trivially satisfied in the vacuum (as p andp are zero there); and in the vacuum
region, the equation (29) for ${r) becomes

d_‘I’___E__J( ! _1) (31)

dr  r(r-2m) 2\r—-2m r

10



(where m is const), so

P(r) = ‘in (’”_ 2”‘) +C o e =(1- 2—"")e“°‘ (32)
2 r r

where appropriate choice of $; can be used to set € = 0. Thus we regain the

Schwarzschild exterior solution (21) from these equations; so we can integrate

the OV equations in the star and through the surface to outside it, obtaining

the complete interior plus exterior solution.

4.3 Schwarzschild interior solution

This is the simplest interior solution: See Stephani for details. In summary:
we assume g = const in the interior [rather than assuming a given equation of
state]. The resulting Interior Schwarzschild solution can be solved analytically,
and matched to the exterior solution to give a complete explicit solution. How-
ever it is not physically realistic because the pressure varies while the density
stays constant. One can give an imbedding diagram for the complete solution
[Stephani Figure 10.1].

Note I: for a given total mass m the interior solution is regular only if the
stellar radius rg is large enough: a finite pressure everywhere demands that

9
rs > §2m (33)
{which agrees with what we expect: rs > rg).

Note 2: the spatial sections of the interior solution are spaces of constant
curvature (as in the Robertson-Walker case).

5 PARTICLE ORBITS

Every freely moving particle (that is, every particle on which no forces except
gravity acts) travels along a geodesic of space-time. Thus it is important to
examine geodesics in space-time (both massive and massless, i.e. corresponding
to particles moving at less than and equal to the speed of light) to understand the
gravitational fields they represent. We shall work them out for a Schwarzschild
exterior solution for values of # > 2m (thus including the black hole case where
r continues down to » = 2m). If the surface of a star or planet intervenes for
some value r. of r, the free particle orbit will stop (or start) there.

5.1 General equations
The Lagrangian for geodesics is

L = gap(z°)a"a"

11



where 2" = d2°/dv, v an affine parameter along the geodesics. Choosing z° =,

g! = r, 22 == 8, 2? — ¢, in the Schwarzschild exterior case we have {from (19))
2m., . 2 . .
L=—(1- 2 4 (1- )= 152 4 7262 4 12 sin? 6¢2 (34)
r

where f = df /dv. The geodesics are given by
Set a = 0 to get

(22)-4() -
d

a((1_2_;".”_)1'):0 & (lfg?)i:k:const (36)

This is the particie energy equation. For a timelike or null geodesic, k # 0. Set
a=11to get

-1 i -2 ]
i 2 . -
(1_2_m) ;,-+I”_2__(1__m) T 6% —rsin2042 =0 (37)
T T

r P2

This is the radial equation. Set a = 2 to get

di(ﬂ”"!é) +72sin@cosfp? = 0 (38)
v

Set a = 3 to get
d 2297
—(—r“sin*8¢) =0 39
= é (39)
The last two are the angular equations. There is also the fact that L is constant:
L=« (40)
where ¢ = 1 for timelike geodesics, ¢ = 0 for null geodesics, that is
2m\ .. 2m\ ' 242 3 el
= (1 - _m) - (1 — m) 72 - r%0% — r*sin? 0g? (41)
r r
This is a first integral of the other equations.
We can solve the angular equations by setting # = «/2 which implies 9 =0,

and find '
6=x/2, r?p=nh, h=const. (42)

These equaiions are the equations of conservation of angular momentum (the
first says that the motion takes place in a plane; the second shows conservation
of angular momentum in that plane). The first integral (40) becomes

-1
€= (1_?,1_'2)t'zﬁ(1#i’2) 7% — r2g? {43)

T

12



5.1.1 Effective radial equation

Substituting the energy and angular momentum equations (36,42) into the in-

tegral (43) gives
-1 -1 2
e:(l_?ﬁ) k2—(1—2—m) P—f— (44)

which implies

h? am\ ! 2 .2
be. 2 h?
m 2 2
finally giving the effective radial equation of motion
i+ Vih,r) =k (47)
where B2
. 2m
Vih,#)= 1~ ~ — 48
()= (1-22) e+ 2 (48)

This gives the qualitative discussion of MTW Chapter 25 [also ST Chapter 12},
determining the allowed range of r for each sei of values (k, k): First choose ¢
(what type of particle are we considering?), then choose the angular momentum
h. Now plot the curves V2(h, r); the allowed range of r, for any given energy k
(and the chosen value of k) is the set of r-values where

72 = k? - Vi(h,1) > 0

Now V? -+ 0ast — 2mand V2 — € as r — oo. To see what happens we
need to locate the minima/maxima of V?(h, r); there may be two, one, or no
extrema. Now

d . 2m h? 2m h?
Bl — L > L O il 9
drV(h,r) 3 (€+r2)+(1 1.)( 21-3) (49)
that is d N
2 _ 2 2 2
E;V (h,r)_r—4(n1,6r —h r+3mh) (50)

We need now to find the zeros of the rhs, giving the extreme values r. of r;
the results are different if the orbits are timelike or null. We will examine these
separately below. Also

d? 4d

——V?(h,7) =

2
i Vi(h,7) + -l (211161‘ - h2) (51)

T aT

13



S0 at an extremum r = r, we have

;2V (h,r.) = 21 (2mer., — B?) (52)

determining the nature of the extremum.

5.1.2 Radial motion

In this special case: A = 0 (angular momentum vanishes) so § = 0 = ¢. Now
the integral (43) becomes

:(1-?)#»(1%@)_1# (53)

that is
132+e(1—-2—m) = k? (54)
T
giving dr/dv = 7 on radial geodesics in the form
dr 2m \ '/?
k% —e(1 - == 55
== (k- (55)
In terms of coordinate time: by (36), t = dt/dv = k/(1 — im) so
dr  drdv 2m 2m \ /?
dr _drdv - fpom 56
dt  dvdl (=) ( kz( r )) (56)

relates the radial and time coordinates on radial geodesics.

In these cases the orbital shape is simply a radial line, movingaway from or
toward the centre.

5.1.3 Orbital Shape Equations

When & # 0 (angular momentum is non-zero), on dividing by ¢? = h?/r?, the
first integral equation (43) becomes
;2 .2
<= —gﬂ)iﬁ(l—2—m)“:——r2 (57)
¢* #? r ¢?

Now #/¢ = dr/d¢, so on using equation (42) we get
1

%,( __2_'2) 1’“24 (1Ak)‘ (:;) +r¥=0 (58)

14



giving

dr\? k2t 2 2m 2m  erd
_ _ = -2y = 59
(%) -Gr+ru-Tea-"hE=0 @

which 1s

dr\? , ! 2mer?
(E) +7r _h"‘( —€) + —— % + 2mr

Now put r = 1/u which gives dr/d¢ = (—1/u®){du/d¢) , so (dr/d¢)* =
(1/u*)(du/do)?, to get

du\? 1 2me
(E) +u2:ﬁ( —e)+ u+2mu (60)

Recalling m = MG/c? and defining B = ;(k? — ¢), we find

du\\? 2MG 2MG
(ﬁ) +ul =B+ “u+t 5’ (61)

This is the first form of the GR orbital equation, like an energy equation, deter-
mining its shape u{¢) < r(¢) (and valid for both timelike and null geodesics).
The last term on the right contains the General relativity effects (the other
terms are identical to the Newtonian case).

Differentiating (61) with respect to ¢ and dividing by :—; (non-zero as h # 0),
we find

du MGe MG _,
- -ty 62
dg? +u 5 + > 3u (62)

This is the second form of the orbital equation, now like a force equation; again
the last term on the right contains the GR effects.

These equations apply to both massive and massless particles. We lock at
them in turn.

5.2 Massive particles

For massive particles, set ¢ = 1; then the affine parameter is proper time 7.

5.2.1 Readial motion

h = 0. Determine the constant k in (54): Starting at rest at rg, then {r =
T, 7 =0} = k% = ¢(1 — i—':) Thus

1,_ MG
3= ) (63)
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which leads to

e ()

Thus the proper time taken to get from rg to r is

B 1 /l‘l_l TT'(} 1/2‘1 (65)
= vam J, To—F T

This is finite even if r — 2m [see ST, p.343-344].

5.2.2 Effective radial equations

When A # 0, so the particles are moving around the centre, the effective poten-
tial (48) is

2
Vi(h,r) = (1 - 2—"‘) (1+ %) (66)
T
so V — 1 as r - 00. To see the shape of the potential: from (50},
2
ng(h,r) _ 2m (1-2 - fL*r + 3h2) (67)
dr rl m

Given A, this is zero for

h? [hr
—p, = I 68
r=r 2m:i:h o 3 ( )

At such points, from (51)

d2 2 2 Z

d—ﬁ'v (h,?‘t) — E(Zmr. —-h ) (69)
Thus existence of an extremum demands A? > 12m?; in the limiting case h? =
12m?, and 7. = — & - 6m, which is a minimum. We can solve avi(h,r)/dr =

0 for A2 (the angular momentum required to get a circular orbit at that radius),
to get (from (66))

dVZ(h, : mr?

_M =0 & h?= _ (70)
dr r—3m

showing circular orbits can exist down to r = 3m. Putting this together, for
h? > 12m? there is a minimum at r_ where r_ > 6m, and & maximum at r,
where 3m < r, < 6m. Thus stable circular orbits are possible for all » > 6m,
while unstable circular orbits are possible for 3m < r < 6m.

Hence the minimum radius for a stable circular orbit is r — 6m.
The limiting minimum radius for an unstable circular orbit is r =
3m.
MTW, pp. 655-672; ST, pp. 344-348] Furthermore when h? < 12m? there is no
PP H PP

minimum or maximum: the orbit goes from R = 2m to infinity (or vice versa).
The shape of the effective potential curves is shown in MTW, pp. 639 and 662.
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Figure 25.2.

Effective potential for motion of a test particle in the Schwarzschild
geometry of a concentrated mass M. Energy, in units of the rest mass
u of the particle, is denoted E = E/p; angular momentum, T. = L/u.
The quantity » denotes the Schwarzschild » coordinate. The effective
potential (also in units of ) is defined by equation (25.16) or, equiva-
lently, by the equation

CA
(see also §25.5) and has the value

Vo= (L= 2Minit + Frarpie,

It represents that value of E at which the radial kinetic energy of
the particle, at r, reduces to zero (E-value that makes r into a “turning
point”: F(r) = E. Note that one could equally weil regard F2(r) as
the effective potential, and define a turning point by the condition
72 = E2. Which definition one chooses depends on convenience, on
the intended application, on the tie to the archetypal differential
equation $x* + Mx) = E, and on the stress one wishes to put on
correspondence with the effective potential of Newtonian theory).
Stable circular orbits are possible (representative point sitting at mini-
mum of effective potential) only for T wvalues in excess of 2\/5 A,
For any such fixed L value, the motion departs stightly from circu-
larity as the energy is raised above the potential minimum (see the
two heavy horizontal lines for Z = 3.75 M. In classical physics, the
motion is limited to the region of positive kinetic energy. In quantum
physics, the particle can 1unnel through the region where the kinetic
entergy, as calculated classically, is negative (dashed prolongations of
heavy horizontal lines) and head for the “pitin the potential” (capture
by black hole). Such tunneling is absolutely negligible when the center
of attraction has any macroscopic dimension, but in principle becomes
important for a black hole of mass 1017 g (or 107" em) if such an
object can in principle exist.

The diagram at the right gives values of the minimum and maxi-
mum of the potential as they depend on the angular momentum of
the test particle. The roots of @ //dr are given in terms of the “reduced
argular momentum parameter” L' = L/M = L/Mu by

6M
1 (1 — 12/042002°
(L2 4+ 36) + (L72 — 121 — 12/L1)Y2
- 54
[= 8/ for LT = (12)V% L for L' = 4; (L1227) + (1/3) + (}/L19)
+ .. for LY — w0

r=

E‘2

(plus root for maximum of the effective potential; minus root for
minimum: see exercise 25.18).
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Box 25.6 (continued)
1. Orbits with periastrons at r > M are Kep-

lerian in form, except for the periastron
shift (exercise 25.16; §40.5) familiar for
Mercury.

. Orbits with periastrons at » < 10M differ

markedly from Keplerian orbits.

. For L/M < 2+/3 there is no periastron;

any incoming particle is necessarily pulled
into r = 2M.

. For 2\/3 < I/M < 4 there are bound

orbits in which the particle moves in and
out between periastron and apastron; but
any particle coming in from r = oo (un-
bound; £2 > 1) necessarily gets pulled into
F=2M.

. For Lt=171/M >4, there are bound

orbits; particles coming in from r = oo
with
E2< P 2=(1 — 2u, Xt + L"),

1+ V1 —12/L%
6

U

Il

m

reach periastrons and then return to r =
oc; but particles from r = oo with E? >
V as’ get pulled into r = 2M.

. There are stable circular orbits at the mini-

mum of the effective potential; the mini-
mum moves inward from r = o for L =
oo tor=6Mfor Lt = L/M =2/3. The
most tlightly bound, stable circular orbit
(L/M= 2V3, r= 6M) has a fractional
binding energy of

u-—E

il

=1-E=1- V8/9 =00572.

. There are unstable circular orbits at the

maximum of the effective potential; the
maximum moves outward from r = 3M for
L=00 to r=6M for Z/M=2\/§. A
particle in such a circular orbit, if per-
turbed inward, will spiral into r = 2M. If
perturbed outward, and if it has E? > I,
it will escape to r = . If perturbed out-

= —-
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ward, and if it has E? < 1, it will either
reach an apastron and then enter a spiral-
ing orbit that eventually falls into the star
(e.g., if 8E > 0. with unchanged angular
momentum); or it will move out and in
between apastron and periastron, in a sta-
ble bound orbit (e.g., if 8 < 0, again with
unchanged angular momentum).
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5.2.3 Orbital equations

The equation (62) for timelike orbits is

d2u MG MG, ,
m"‘u:h—z'f'?—&ﬂ- (71)

This successfully gives the Newtonian limit (predicting the elliptical orbits of
galaxies) and is indeed more accurate than Newtonian theory in that it also pre-
dicts the previously unexplained part of the perihelion precession of Mercury
and other planets.

NB: this confirms the remarkable picture of highly curved spatial orbits
arising from geodesics in space-time — because the space-time is curved. Thus
for example the almost circular orbit of the earth around the sun represents an
undeviating path in space-time,

5.2.4 Circular motion

This occur for values of r where dV2/dr = 0 provided the energy k satisfies
=0 & V2=k? (72)

(from (47)). From the radial equation (37) with 8 = x/2,

mif? .
3 = r¢2 (73)

S0
mZtZ = 1'3(}52

where r is constant. Thus

d¢., m
-y = 74
( dt ) rd (74)
so for a whole circular orbit, where A¢ = 2rx, and
1‘3 1/2
At =27 (—) (75)
m

which is Kepler's law for the relativistic orbit. The spatial distance travelled in
one orbit is 27+ (as this is the circumference of the circle).

These equations tell us how freely falling particles will move in a weak field,
for example the solar sysiem, and also in a strong gravitational field: for ex-
ample, when being accreted by a black hole. One can envisage here a cloud
of particles falling in with all values of h and k; then some particles will hang
around at radii near r = 6m for a while, surrounding the centre by a cloud of
particles, before falling in or escaping.
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5.3 Massless particles

In this case ¢ = 0 and the affine parameter is undetermined up to a constant
multiple. We can therefore conveniently renormalize this parameter to set k or
h to a chosen value.

5.3.1 Radial motion
df = d¢ = 0 and from (53)

0=—(1— 31-""—){2 +(1- E1_’-“—)“1'-2 (76)

ie. &t )

= iw (77)
This shows how the gravitational potential controls the radial speed of photons
in terms of these coordinates (they are of course all moving locally at the speed
of light; but these coordinates do not directly measure proper distance or time).
In terms of these coordinates, the particle slows down indefinitely as » — 2m.

5.8.2 Effective Radial equations
When A # 0 the effective radial potential (48) is

Vih,r) = (1 - 2—'"') ’:—z (78)

r

so V — 0 as r — oo. We can normalise h as desired, e.g. to 2Tm?, so the
effective potential is essentially the same for all photons (unlike the massive
case, whereit depends essentially on k). To see its shape, note that from (49),
(50)

d_, 2h? da?_, 2h%
EV (h,"'): T—4(—‘r+3m), FV (h,?‘.):— 1";'( (79)
Thus the only extremum is a maximum that occurs when
1 R?
r=ry =3m, V2=V,,2=5W (80)

and unstable circular orbits are possible for light rays travelling at » = 3m (and
only at that radius) — they are held at this distance by gravitational attraction
as they orbit at the speed of light [See ST, pp. 350-353]. For k? < V2 we can
get light rays that are highly bent by the central mass, reaching a minimum
radius and the returning to infinity. For k% > V2, they plunge in to r = 2m,
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5.3.3 Orbital equations
The equation (62) for the null geodesic orbit when & # 0 is

d?u MG,
Ea’f +u= 6—231:. (81)
This implies the bending of light when M # 0, which in turn predicts the
gravitational lensing effect that has become such an interesting part of mod-
ern cosmology (see Gravitations! Lenses by P Schneider, J Ehlers,and E Falco

(Springer, 1992).

These equations tell us how light will move in a weak field, for example the
solar system, and also in a strong gravitational field: for example, when being
accreted by a black hole.

5.4 Tests

General relativity passes all the tests based or these equations successfully: the
bending of light, perihelion precession, radar ranging in the solar system. [To
carry out these tests in detail one must calculate all the perturbations caused
by the other planets, the interplanetary medium, the rotation of the sun, and
so on; this has been done in great detail.] Thus the space-time geometry of the
solar system is accurately described by the Schwarzschild solution.

Additionally GR explains (a) the binary pulsar orbital data, taken as evi-
dence for the emission of gravitational radiation that causes orbital decay, and
(b) is to some extent tested by its successful use in cosmological models (in
particular, through the successful nucleosynthesis calculations).

There is no experimental evidence at the classical level that disagrees with
the predictions of general relativity [see the book on experimental tests of GR
by Clifford Will].

5.5 Spectral shift

Consider a radial null ray (light ray) from a source that is stationary at r = rg
to a receiver that is stationary at r = rp.
Integrating the radial equation {77):

tr TR dr
te re (1 - '2}'_)
also ’

tr+Atg rR d"'
(tn+Atn)—(tE+AiE) :f dt:f —ms — iR —IE (83)
te+Ale Te (1 - _)
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therefore
Atg = Atg (84)

But these are coordinate times! what about proper times?

2
drg = (1 =) 244,
TE
and also y
drp = (1— =) 2dgg
TR
50
m\ 172
dTE _ 1-— f._F (85)
dTR - — 2?-’;1

which holds for arbitrary fixed emitters and receivers in a Schwargschild solution

If emitter is a pulsating atom and emits n pulses in time A7g then the proper
frequency is vg = n/Arg. The receiver sees them in time A7y, and measures
an apparent frequency vy = n/AT1k. Then we have

(86)

VR i ATH _ 1-— 2111/1"1;; 172
Ve - ATR -

1—-2m/rg

This immediately gives the (gravitational) redshift z, defined in terms of emitted
and received wavelengths by

l4+4z= — = — (87)

Soif rp > rg then vy < vg © A > Ap: redshift
and if g < rp then vy < vp < A < Ap: blueshift.

This has been tested on Earth, by using an accurate radiation source at the
bottom of the Harvard tower and an accurate receiver at the top. It is in prin-
ciple also measurable for massive stars.

Thus: time warpage leads to gravitational redshift (Thorne). Furthermore
we see that light emitted from the critical cirtcumference is shifted in wavelength
an infinite amount. A star as small as the critical radius must therefore appear
completely dark, when viewed from far away (since intensity decreases as the
redshift to the fourth power); it must be a black hole.
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5.6 The size of the sky

A photon escapes to infinity if either (i) 7 > O or (i) (i) r < O and k2 < V % 2
(cf. equation (78)}. Translating this into angles in the sky relative to a local
orthonormal frame [ST, pp.353-354] we see that inward moving photons in a
black hole situation {the vacuum extends to critical radius r = 2m) will escape
to infinity iff

siny >

1/2
3y3M (1 - ﬁ) ; (88)
T T

otherwise it falls into the black hole at r = 2m. Thus at r = 6m, escape requires
¥ < 135% at r = 3m, ¥ < 90° so that all inward going photons are captured
by the black holes. Thus considering the time-reversed photons, at that radius,
half the sky appears dark. Similarly an outward going photon emitted between
r = 3m and r = 2m escapes iff

sin ¢ <

() e

r

Thus as one approaches r = 2m, the sky closes up; only outward directed radial
photons escape as the source approaches » = 2m, and in that limit, an observer
will see the entire sky covered by the black hole.
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