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3 BLACK HOLES

The Schwarzschild vacuum (exterior) solution is given in suitable coordinates
by
2 .
dst = (1= Dyar? 4 (1 ) ld® 5 el (80)
T

where '

dn? = do? + sin’ §dg?. (91)
We have up to now assumed r > rg > 2m. Now we drop that condition and
consider the nature of the singularity at 7 = 2m.

We consider what happens if we assume there is a spherically symmetric
vacuum solution everywhere, and extend it as far as we can, to obtain the
Schwargschild exterior solution maximal extension. That is, we try to extend
the vacuum solution across r = 2m to r = 0.

3.1 The nature of r = 2m
What characterises the ‘singularity’ at r = 2m?

(1) Singular metric: It is clear that the metric components are singular at
r=2m.

(2) Infinite redshift: From the redshift formula (86,87),
A B 1/2
14z=2R= (—-——1 2m/R°) (92)

AE - 1-— zm/f'E

shows that z — oo as rg — 2m. Furthermore from (82), on radial null geodesics
the coordinate time is

t::t[r+2mln(2Lm—l)]+ const

where the constant labels the geodesic. Conseguently ¢ — co on a radially in-
going null geodesic, as r — 2m.

(3) Radial infall: Considering radial infall of a test object (with non-zero
restmass). The proper time taken is given by (65)

1 o rro ll2
= d
T v2m.[ ("0—1') T (93)

giving



which is finite as r — 2m. Thus the proper time taken to fall from r = ry > 2m
to r = 2m is finite.

However the coordinate time is given by
dt/dr = k/(1 — 2m/7) = (1 — 2m/ro)/? /(L — 2m/+)

(by (36), evaluating & by v = 0, see (63)}, and so

dt _ dt dr _ (1- Zm/ro)l/2 1 rro )1/2 (95)
dr  drdr  (r-2m/r) 2m \ro—7
that is ”
- *a 3/2
it = __“TO 2m r dr (96)
2m r  (r—2m}ro —7)/2

which is infinite as r — 2m. To see this note that for r > 2m we have r3/2 5
(2m)3/2, 1/(ro — 1')1/2 > 1/1‘3/2, 50

oo (ro—2m\"? 2mp2 /‘ dr (o)
2m ,.5/2 r (r—2m)1/2

(1‘0 — 2m)

In{ —

r—2m

which diverges as r — 2m. Thus the particle traverses an infinite coordinate
time in a finite proper time &s it approaches r = 2m. This suggests that an ob-
server at r >> 2m observing an object falling radially inward towards r = 2m will
find that the object takes an infinite coordinate time to reach r = 2m — indeed
that it never actually reaches that radial value — whereas the object measures
a finite proper time for the trip. By the previous, the object becomes more and
more redshifted as well.

The integral is

(4) Change of nature of coordinates: If we ignore these problems and con-
sider the solution for 0 < » < 2m, we find there that (1 — 2m < r) < 0, so the
role of the coordinates has changed — ¢ has become a spatial coordinate (mea-
suring spatial distance along the curves {f only varies }, orthogonal to timelike
surfaces {t = const}), while r has become a time coordinate (measuring proper
time along the curves {r only varies }, which are orthogonal to spacelike surfaces

{r = const}).
Associated with this, the solution has changed from being static to being

spatially homogeneous but evolving with time, for the essential metric depen-
dence is with the coordinate », which has changed from being a coordinate
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measuring spatial distances to one measuring time changes. Thus the nature of
the space-time symmetry changes completely for r < 2m.

(5) Asymptotic null cones: If we look at the radial null rays in this solution,

from (1)
2—m)‘1dr2 (98)

)dt? + (1 -

2m
0=—-(1—-—
( T

on radial null geodesics, where ds? = 0 = dé? = d¢?. Thus on these geodesics,

di 2m

=41 - )t 99
oo (99)
which is the equation of the local null cones. This shows that di/dr — +1
as * — 00, as in flat space-iime in standard coordinates, but dt/dr — too as
r — 2m. Accordingly light rays from the outside region (r > 2m) cannot reach
the surface r = 2m: rather they become asymptotic to it as they approach it.

The same will hold true for timelike geodesics.

(6) Geodesic incompleteness: however these timelike and null geodesics are
incomplete, that is, they cannot be extended to arbitrarily large values of their
affine parameter, in the region 2m < r < 0. This follows already for timelike
geodesics from the discussion (3) above: for the proper time along the geodesics
from #o to 2m is finite. This shows the geodesic, moving inward as i increases,
cannot be extended to infinite values of its affine parameter (namely, proper
time). The same is true for timelike geodesics moving inwards as ¢ decreases;
and the analogous result holds for null geodesics.

 (7) Surface gravity: we established (equation (24)) that the acceleration of
the static observers is of magnitude & = m/r?. At the limit surface » = 2m,
with limiting surface area 4, = 4x(2m)? = 16xm?, this acceleration takes the
limiting value

K= {il_am} = o= = (j*)m (100)

m

which is finite. This is the surface gravity at » = 2m.

(8) Physical singularity? To try to see if the singularity at r = 2m is a phys-
ical or coordinate singularity, we look at scalars (because they are coordinate-
independent quantities) constructed from a mathematical objects that describe
the curvature. Because the solution is a vacuum solution (R. = 0}, both
R = R°, and R**R,; vanish. The simplest non-zero scalar is the Kretschmann

scalar
48m?
6

Rapea R**® = (101)
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This is finite at * = 2m, but diverges as » — 0. This suggests —~ but does not
prove — that r = 2m is a coordinate singularity: that is, there is no problem
with the space-time, rather the coordinates break down there, and so we can

get rid of the singularity by choosing different coordinates,

We prove this supposition is correct by making different extensions of the
solution across the surface r = 2m. One can do this by attaching coordinates
to either timelike or null geodesics that cross this surface; we choose the latter.
As a preliminary, we look at the nature of null coordinates in flat space-time.
3.1.1 Flat space-time in null coordinates
Flat space in standard spherical coordinates is given by

ds® = —dt? +dr? + r2d0? (102)
The radial null geodesics are given by ds? = 0 = d6® = d¢?, so on them

dt
(—i—-::tl & t = +r+ const (103)
-

(the light rays are at £45°). If we define the constants to be v, w, then:
v=t+r, w=t—r (104)

and the outgoing null geodesics are {w = const} while the ingoing null geodesics
are {v = const}. The inverse of these relations are

1 1
t= §(v+w), r= -2-(11——w), (105)

Since
dv=dt + dr, dw=dt—dr (106)

we can see the form taken by the flat space metric on using these coordinates.
We consider three forms that arise.

1] Using the null coordinate v instead of ¢, we have coordinates (v,r,6,¢),
and the metric (102) is

ds® = —(dv — dr)? +dr? + #2402,
giving the single-null form
ds* = —dv? + 2dvdr + r?dQ? (107)

which is time asymmetric. The radial null geodesics are givenbydv =0 & v =
const (ingoing), dv = 2dr < v = 27 + const (outgoing).
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2] Similarly, using the null coordinate w instead of ¢, we have coordinates
(w,,8,¢), and the metric takes the single-null form

ds* = —dw? — 2dwdr + r?dQ? (108)

which is also time asymmetric. It is identical to (107) except for the sign of
the cross-term (which has the opposite sign, because we have used the outgoing
instead of incoming null coordinate). The radial null geodesics are given by
dw=0 < w = const (outgoing), dw = —2dr & w = —2r + const (ingoing).

3] If we use both null coordinates (v, w) instcad of (t,7), because the metric
(102) is
da? = —(dt + dr){dt —dr) + r2dQ?

we get the double null form
ds® = —dvdw + r2d? (109)
which is time symmetric (v and w appear on an equal footing). The radial null

geodesics are given by dv =0 & v = consi (ingoing), dw = 0 <> w = const
(outgoing).

We see the characteristic feature of use of null coordinates is zeros down the
diagonal of the metric. This is perfectly allowable, as the determinant remains
non-zero.

8.1.2 Schwarzschild null coordinates

We now set up similar null coordinates in the Schwarzschild solution. From
{99), the radial null geodesics are given by

dit 1 .
E;Zil—?rﬂ & t= 1+ + const (110)
where 4
. T - T

T

Defining the constants in (110) to be v, w:
v=4%+7", w=t—1" (112)

then the (outgoing) null geodesics are {w = const} and the (ingoing) null
geodesics are {v = const}. Using

dw:dt—dr":dt-u-ld—r

1— 2m? 2m
T r

dv=dt+dr" =dit+ (113)

we can obtain the three null forms for the Schwarzschild metric corresponding
to those above for flat space-time.
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3.2 The Eddington-Finkelstein extension
We change to coordinates (v, 7,6, ¢). By (90}, (113) the metric is

d : 2m\ " Y

dse__(l_z_m)(dﬂ_gﬁ) 4 (l$) dr? § rhd?

; e
r

which 1s 5
ds? = —(1— T’")dtﬂ + 2dvdr + r2d62? (114)

corresponding to (107). This is the Eddington-Finkelstein form of the metric
(A S Eddington: Nature 113, 192 (1924)). The transformation has succeeded in
getting rid of the singularity at r = 2m,; indeed at that radius, the metric takes
the (double null) flat space-time form (109). The coordinate transformation
(which is singular at r = 2m} extends the original space-time region I, defined
by 2m < r < oo, to a new region II, defined by 0 < r < 2m. In more detail:
equation (114) for r > 2m is just the same as (90}, but given in different
coordinates; also equation (114) for 0 < 7 < 2m is the same as (90), but given
in different coordinates; and the solution (114) is analytic for # > 0, so it is an
analytic extension across the surface »r = 2m of the outside region I of (1) to
the inside region II of (1). Indeed if we were to seek vacuum solutions of the

field equations of the form
ds? = — A(r)dv? + 2dvdr + r?dQ?

we would obtain the solution (114) @b initio, without ever experiencing any
problems at r = 2m.

From this metric form, we can determine the radial null geodesics as usual:
wetting ds? = 0 = df = d¢ in (114), we find

0=dv (—(1 - 2Tm)dv + Zdr)

so the radial geodesics obey

dv 2

dr 1-2m/r (115)

dv = 0,

that is, v = const, v = 2r* = const (on using (111)), and one can plot the nulil

cones from this.

However we are unused to plotting metrics using null coordinates, so it is
convenient to change to the time and radial coordinates (t*, r) corresponding to
{v,7) in the same way as they do in flat spacetime:

v=1"+r (116)
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(cf (104)), with r~ given by (111). Note that here 7 is the same as in the original
metric, but t* is a new time coordinate. It is given by
tr=v-—r=t+r —-r & t= t"+2mln(:~——1) (117)
2m

From (116), dv = dt* + dr so (114) becomes
ds? = —(1- z—m)(dt' +dr)? 4+ 2(dt* + dr)dr + r2dQ?
r

giving
2 2m, .2 2m . 2m. 5 . 2 2 132
ds? = —(1-- —)dt —(I—T)2dt dr—(l——r~)dr + 2dt*dr +2dr® 4+ rdQ
T

that is: in terms of the coordinate (£*,+,8,¢), the Schwarzschild metric takes
(118)

the form

ds’ = —(1— ?—E)dt” + 3™ edr 4 1+ 2ﬂ)dr2 + r2dn?
L T T

This is just the metric (114), but now transformed to ‘standard’ time and radial

coordinates. It is again regular at r = 2m.
Now the radial null geodesics of (118) are given by
2 4
0=—(1-— Tm)dt"2 + det"dr + (14 ZF)dr?
T

which is the same as
2
0 = (dt" +dr) (—(1 - e + (14 2Tm)dr)

The solutions are
2
0= (d" +dr), 0= —(1- ) +(1+ sz)dr

so the local light cones are given by
(119)

dt- ar (1+2)
dr = 7 dr (1-3)
when r # 2m; when r = 2m, they are given by dt» /dr = —1,dr = 0.

Thus the ingoing light rays are always at —45° (as in flat space time) relative
to the coordinates (£*, r);; but the ‘outgoing’ light rays have a slope that varies

with distance r from the centre. As r — oo, the slope — +45%; however at
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r = 2m they are vertical, and as r — 0 they have the limit of —45". The
integral light rays are given by: ingoing,

" = —7 4+ const (120)
(the constant just being v}, and, outgoing: when r # 2m,

14 2m 4
t':./ +2' dr—f(1+ m-)dr
1 - 2m r—2m

r

that is
" = r+4min(r — 2m) + consi. (121)

When {r = 2m} we have a particular (*outgoing’) null geodesic. Thus while the
ingoing rays cross the surface » = 2m without any problem, the ‘outgoing’ rays
become tangent to it and cannot cross this surface. The reason for this is that
it is itself a null geodesic.

Plotting these local null cones and light rays in the space with coordinates
(t*, ), we get the Eddington-Finkelstein diagram. We see from this, the follow-
ing features.

(1) The surfaces of constant r are vertical lines in this diagram. The sur-
faces of constant ¢ are (from (117)) nearly flat at large distances but bend down
and never cross the surface r = 2m. In fact ¢ diverges at this surface; and it
is this bad behaviour of the t-coordinate that is responsible for the coordinate
singularity at » = 2m in (90), and is why the coordinate time diverges for a
freely falling particle that crosses this surface (see (97)).

(2) The outer region is asymptotically flat, as r — co (the cross-term in didr
becomes indefinitely small as r — oo).

(3) The null cones tilt over, the inner ray always being at 45" inwards, but
the outer one (pointing outward for r > 2m) becomes vertical at r = 2m and
points inwards for 7 < 2m. Thus the surface # = 2m is a null surface (e light
1ay emitted outwards at r = 2m stays forever at that distance from the centre).
Because of this, it is a trapping surface: particles that have fallen in and crossed
this surface from the outside region I to the inside II, can never get out again.
Indeed because they must always move locally at less than the speed of light,
and so are confined between the ingoing and outgoing light rays, once in region
II their future is to inevitably fall into the singularity at » = 0, where they are
crushed by infinite tidal forces (cf. the divergence of the scalar (101)).

(4) Conversely, r = 2m is an event horizon, hiding its interior from the view
of outside observers. If we consider an observer static at r = r; > 2m, her world
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line is a vertical line in this diagram. Her past light cone never reaches inside
r = 2m, so no signal from that region can reach her. Thus this space-time may
reasonably be called a black hole: for no light or other radiation emitted by the
inside region II, can reach the outside region I

(5) If the outside observer drops a probe into the cenire, then it crosses the
event horizon r = 2m in a finite proper time (cf. (94)) but takes an infinite
coordinate time ¢ to get there (cf. (97)) - because ¢ diverges there {cf. (117)).
If it emits pulses at regular intervals (say every second), these will be received
by the cutside observer at longer and loner time intervals. Indeed if the probe
crosses the event horizon at 12 : 00 according to its internal clock, and sends
out a special radio signal then, this signal will never reach the outside observer -
it forever stays at r = 2m. Every signal sent before then will (eventually) reach
the outside observer, and every signal sent afterwards will fall into the central
singularity. The infinite slowing down of the received signals as the probe ap-
proaches the event horizon will result in the redshift in received signals diverging
as 7, — 2m (see (92)).

After crossing the event horizon, the infalling probe reaches the central sin-
gularity in a finite time, where it is torn apart by unbounded tidal forces. None
of this is visible to the outside world.

This analysis shows convincingly that r = 2m is a null surface (the event
horizon) where the original coordinates go wrong; the space-time can be ex-
tended across this null surface by a change to new coordinates. However there
is a problem with what we have so far: namely the original solution (90) is time
symmetric. The extension (114), or equivalently (118), is not; as is obvious from
the Eddington-Finkelstein diagram.

3.2.1 The time-reversed extension

Reflection on the relation between flat space forms (107) and (108) will show
that we can similarly make another Eddington-Finkelstein extension, in which
in effect we choose the other direction of time for the extension, by using the
other null coordinate.

In more detail: changing from (¢, 7, 8, ¢) to coordinates (w, 7,8, ¢), the metric
(90) now takes the form

2
ds? = (1 — “2)dw’ — 2dwdr + r*d0? (122)
T

which is the time-reverse of (114} (cf. the relation of (107) and (108)). This
is also an Eddington-Finkelstein form of the metric, now extending the original
space-time region I, defined by 2m < r < 00, t0a further new region IT', defined
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by 0 < r < 2m.

Following the same steps as before, we obtain a a metric equivalent to (118)
but with a minus sign for the cross-term, leading to the associated timne-reversed
Eddington-Finkelstein picture of the local light cones and possible particle paths.
This time it is the ingoing null geodesics that are badly behaved at r = 2m (the
outgoing ones cross this surface with no trouble). The surface » = 2m is again
a null cone, but this time it represents the surrounding horizon of a white hole:
signals can come out from it, but not go into it. The exterior observer can re-
ceive messages from region IT', but never send signals there. Investigation will
show that the surface r = 2m is now the same as £ = —oo (rather than +oo, as
in the previous case). Again, this divergence is the reason the original metric
went wrong at this surface.

How do we know region IT is different from region II'? (implying the associ-
ated horigon r = 2m is a different surface in each of the two cases). The essential
point is that in the original metric, both the past and the future inward-pointing
radial null geodesics through each event g in region I were incomplete. The first
extension completed the future-ingoing null geodesics, but not the past-ingoing
ones; the second extension completed the past- ingoing null geodesics, but not
the future-ingoing ones. The question now is whether we can make both exten-
stons simultaneously.

3.3 Kruskal-Szekeres

The time asymmetry of each extension is because we used only one null ¢coordi-
nate in each case. To obtain a time-symmetric extension, we must use both null
coordinates (as in (109)). Indeed if we start with (90) and change to coordinates

(v,w,6,4), with v, w defined by (112), we obtain the double null form of the
metric

2
ds? = —(1 - Tm)dvdw + r2da? (123)
where from (111,112}
1 r

defines r(», w) (both quantities being equal to r*), and
1
t=— .
2o +w)
This is a time-symmetric double null form (analogous to (109)) - but is singular

at r = 2m. So it is no good for our purposes. However if, following Kruskal, we
rescale the null coordinates, we can attain what we want. Defining

V=et/im W _emw/im, (125)
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we obtain a new set of double null coordinates for the Schwarzschild solution.
The metric becomes

3
de? = 32 ramgyaw + ot dQ? (126)

r
with r(V, W) determined by (124,125). This metric form is regular at r = 2m,
and gives us the extension we want. The light cones are given by V = const,

W = const.

As before, it is convenient to define the associated time and radial coordi-
nates, by equations analogous to (105): let (T, X) be defined by

X = %(V—W), T %(V-HW), (127)

then the metric becomes

3
de? = g—1'4".'—3""2""(—c:lT2 +dX?) + rid? (128}
™
where now ) r
2 _ g2 _ rfim _
X! _Tl=e (——2m 1) (129)

implicitly defines (X, T), and the original Schwarzschild time coordinate ¢ 1s

given by
t (X +T\ _ (T

These are the Kruskal-Szekeres coordinates. The radial light rays are now given
by dX =dT & X =T+ const (ingoing), dX = —dT & X = —T + conat

(outgoing). We can obtain from this the Kruskal Diagram, giving the complete
time-symmetric extension of the Schwarzschild solution with light rays at +45°.

It is important to remember this is a cross-section of the full space—-time;
in fact each point represents a 2-sphere of area 4xr? of the full space-time (we
have suppressed the coordinates (8, ¢) in order to draw this diagram). The null
cones in this cross—section are at +45° everywhere,in these coordinates. The
whole solution is time symmetric, as desired. The most important new feature
is that there is a new region I’ in addition to the three regions I, II, and II'
already identified. Let us see why this is so.

The region I in this diagram corresponds to the same region I in both the
Eddington-Finkelstein diagrams. The region T > X (bounded on the left by
the line at —45° through the origin) corresponds to the first extension to region
II completing the future-ingoing null geodesics. This part of the Kruskal dia-
gram corresponds point by point with the first Eddington-Finkelstein diagram;
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in particular the vertical null geodesics at » = 2m in Eddington-Finkelstein cor-
respond to the null geodesic at +45° through the origin in Kruskal. The region
T < X (bounded on the left by the line at +45" through the origin) corresponds
to the second extension to region II', completing the past-ingoing null geodesics
(moving in the opposite direction to the future-ingoing ones). This part of the
Kruskal diagram corresponds point by point with the second (time-reversed)
Eddington-Finkelstein diagram.

Consider now a point in region II. The past-outgoing (i.e. moving to the
right) null geodesics cross r = 2m to the asymptotically-flat region I. The past-
ingoing (i.e. moving to the left) null geodesics are completely symmetric with
them: they must cross r = 2m to an asymptotically-flat region I which is
identical to region I. Similarly for points in II': the outgoing future-directed
null geodesics crosses r = 2m to region I, and the ingoing future-directed null
geodesics must cross * = 2m to an identical region 1”. What is perhaps not
immediately obvious is that this is the same region as I'. This follows if we
assume the cross-over where the two null surfaces r = 2m meet, is regular (we
discuss this intersection further below).

The following features then arise, corresponding to the Eddington—Finkelstein
features discussed above,

(1) The surfaces of constant r are given by X2 — T2 = const (by (129)),
and so correspond to the hyperbola at constant distance from the origin in flat
space-time. They are spacelike for 0 < r < 2m and timelike for r > 2m (with
two surfaces occurring for each value of r}. There are two singularities at r = 0-
one in the past (¢* < 0} and one in the future (t* > 0). The surfaces » = 2m are
the two intersecting null surfaces through the origin. The surfaces of constant ¢
are (from (130)) the straight lines through the origin. This coordinate diverges
at both suifaces r = 2m.

(2) The null surface segments {r = 2m, t* > 0} - obviously representing
motion at the speed of light - are trapping surfaces: particles that have fallen
in and crossed this surface from either outside region to the inside II, can never
get out again; they inevitably fall into the future singularity at {r == 0, t* > 0},
where they are crushed by infinite tidal forces. Each of these segments is also
an event horizom, hiding its interior from the view of outside observers. They
bound the black hole region II of the space-time, from which no light or other
radiation emitted can reach the outside. The details of dropping in a probe
from the outside can be followed in this diagram, revealing again the same af-
fects as discussed above. Thus we have (vacuum) black holes, bounded by event
horizons: from which light cannot escape

(3) There are two curvature singularities, each of which has a spacelike lim-
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iting nature- one in the past and one in the future. The complete solution has
both a white hole and a black hole singularity (the former emitting particles
and radiation into the space-time, the latter receiving them).

It is particularly important to note here that we do not find a singular time-
like world-line at the centre of the Schwarzschild solution, representing a particle
generating the solution (as in the electromagnetic case). Here the strong grav-
itational field for 7 < 2m profoundly alters the nature of the singularity from

what we first expected.

(4) There is also an unexpected global topology, with two asymptotically flat
spaces back to back, joined by a wormhole (to see this consider any particular
surface {t = const}; the area of the 4-spheres which diverges at infinity de-
creases to a value A,, which is 4x(2m?) if it passes though the central 2-sphere
where the two event horizons meet, and then increases agein to infinity). hence
an imbedding diagram which gives the correct picture of circumferences to ra-
dial distances will show two asymptotically flat 3-spaces joined by a wormhole.
However one cannot communicate between the two asymptotically flat regions
through the wormhole, because only spacelike curves can pass through.

Wheeler has emphasized one can take a dynamic view of the wormhole, by
considering successive slices {T' = const} of the full solution. This will show
initially two disjoint regions; the wormhole then opens up, its throat grows to
the maximum area A,, and then decreases again to zero when the wormhole
pinches off and the two spaces are again separate. This dynamic evolution is a
consequence of examining the universe by means of this particular time coordi-
nate T (it does not happen if we use the coordinate ).

(5) There is change of nature of the space-time symmetry at the surfaces
# = 2m: here there is a transition from a static to an evolving {Kantowski-
Sachs) universe. Thus the Event horizon is also a Killing horizon, generated by
null Killing vectors which are spacelike on one side and timelike on the other.

It inevitably follows when there is such a symmetry transition, that there is
a bifurcation of the Killing horizon, with the bifurcation set being fixed points
of the Killing vector field [see R H Boyer: Proc Roy Soc A 311, 245-252 (1969);
this happens also for example in the boosts around a point in flat space-time].
This is the reason there are two null Killing surfaces r = 2m, intersecting in the
bifurcation 2-sphere with area A.. This bifurcation plays a central role in the
Hawking radiation mechanism in the Schwarzschild solution.

(6) This solution is indeed the maximal extension of the initial Schwarzschild

space-time: all geodesics in it either are complete (that is, they go to infinity)
or run into one of the singularities where r = 0. Hence no further extensions
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are possible (all curves end up &t a singularity or infinity).

(7) Closed trapped surfaces exist. Consider any point p in region II; this
represents a complete 2-sphere. Now the outgoing and ingoing null geodesics are
at 45°, and both lead to 2-spheres of smaller surface area (as the are coordinate
r necessarily decreases along both geodesics as one moves to the future). Thus
the surface are of light expanding out from p to the future decreases on both
the ‘outgoing’ and the ‘ingoing’ null directions. This can only happen in very
strong gravitational fields, and indeed guarantees that there will be a singularity
in the future {Penrose, 1965).

(8) Cauchy surfaces in the space: finally, despite the singularities and hori-
zons, there exist spacelike surfaces in this maximally extended space which in-
tersect every timelike and null curve (e.g. the surface T = 0). These are Cauchy
Surfaces: that is, surfaces on which one can put initial data for the fields in the
space-time (and for the space-time itself), leading to a unique evolution of the
fields {and the space-time) to the past and future of that surface, through the
whole maximal space-time, provided their equations of motion are well-defined
{e.g. the source-free Maxwell equations and the vacuum Einstein equations).

3.4 Penrose/Carter diagrams

The final step that is helpful is, following Roger Penrose, to make infinity visible
in the space-time diagrams. This is achieved by defining

v" = arctan(V(2m)~"/?), w" = arctan(W(2m)~"/?) (131)

which ‘makes infinity finite’ while preserving the light cones at +45° (for null
___-coordinates are being mapped to null coordinates, e.g. ¥V = const is a null
surface, and therefore so is v"' = const, and the same holds for w). The whole
space time, including its boundaries at infinity, is now contained in the region
< +uw <x —11r<v”<1‘.r 711r<w"<—1r
' 2 2" 2 2

Thus we can see in the resulting diagram the whole space time and boundary
at infinity (as well as singularities) This makes the causal structure of the sin-
gularities clear. One can again see all the properties mentioned above in this
diagram (which shows accurately all causal relationships, at the cost of wildly
distorting spatial and timelike distances).

3.5 Orbits

Particle orbits - stable circular orbits down to r = 6m (last stable circular orbit)
Unstable circular orbits in range 3m < r < 6m
Light rays — Highly bent if close. Indeed circular orbits at r = 3m.
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4 SPHERICAL GRAVITATIONAL COLLAPSE

The black holes discussed in the previous section have lived for ever - they
have not been formed from collapse of a star or other massive object, for they
are the maximal vacuum solutions consistent with the Schwarzschild geometry.
The issue now is how does this picture get modified if we consider collapse of a
massive object to form a black hole.

4.1 Astrophysical non-rotating Black holes

Spherically symmetric analysis: based on the Eddington-Finkelstein diagram.
Schwarzschild solution represents non-rotating black holes: final state of collapse
of non-rotating star after falls within event horizon

depends on idea that anisotropies will be radiated away, through decay of
perturbations, so the spherical situation is a good description of realistic collapse
This has to be investigated (see later)

4.1.1 Mass and radius limits

Black hole: can’t have static solution with r < 2m

Schwargschild interior solution mass limits: apply also to general stars (and
limit the redshift possible from & static star's surface)

Broad physical basis for these limits: see ‘Black holes as the final state of
evolution of massive bodies’, B Carter Journal de Physique C7-39 to CT7-46

(1973)

4.1.2 Major features

If an object gets very near the critical circumference, then gravity necessarily
overwhelms all other forces inside it, and squeesges it into a catastrophic implo-
sion which forms a black hole

Oppenheimer and Schneider Phys Rev 56, 455-459 (1939)

K S Thorne Gravitational Collapse Sci Am 217, 88 (1965)

Tolman-Bondi solutions of this type can be explicitly constructed with Co-
ordinates fixed to infalling matter [Stephani pp224-225]

* an imploding star really does shrink through the critical circumference
without hesitation. That it appears to freeze as seen from far away is an illusion.

Eddington-Finkelstein Picture of gravitational collapse

* diagram of collapse, observer, matter falling in, event horizon

* contrast of internal and external views; Exterior view of gravitational
collapse: can’t see the collapse. Appears to slow down, take ar infinite time
with infinite redshift
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* Throat blocked off by collapsing star

* closed trapped surfaces, singularity theorems: inevitability of singularity
{stable property]

* Cauchy surfaces exist

4.1.3 Appearance

Appearance of collapsing star:
WL Ames and K S Thorne ApJ 151 659-670 (1968)
K S Thorne, Sci Am 7 98-88
K Lake and R C Roeder Ap J 232:277-281 (1979)
The endpoint will be hidden by the horizon; it will be invisible

however:
1: bending of light wiil cause lensing

2: will leave a gravitational field that can be detected in a binary system (a
star and a bh in orbit around each other) giving a telltale shift of spectra from
red to blue

3: travelling through gas will cause a shock front that will heat gas which
will then emit x-rays so

ideal bh candidate is a binary with an optically bright but x-ray dark star,
plus an optically dark but x-ray bright object (the bh) - cygnus x-1

4: x-ray emitting gas should form a accretion disk around the hole
falling in matter: forms disk, heats up by friction, accretion disk [Lynden
Bell] emits x-rays eg 3c273

Bardeen: rotating bh acts as gyroscope, spin direction fixed and unchanging,
swirl of space created by the spin remains firmly oriented in the same direction
This swirl grabs the accretion disk and holds it in the equatorial plane The
infalling gas spins up the bh to nearly maximal speed

this could lead to hot-spots orbiting the hole and so producing puisar-like
pulses of radiation through a swinging beam BUT the gas moves turbulently, so
lumps do not remain coherent for long; there is chaotic x-rays from the rest of
the gas; most of the x-rays should come from about 10 times the horizon radius,
where gravity is relatively weak and lacking specific black hole signatures

see ‘Astrophysical processes near black holes’. Eardley and Press Ann Rew
Ast Ast 13: 381-422 (975)
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5 THE REISSNER-NORDSTROM SOLUTION

The charged version: radial electric field, solution of maxwell's equations
Reissner-Nordstrom:

2m €% . 2m e’ , )

2 _ 2 _dmo et g2 2 3032

ds’ = —(1- —+ r_z)dt + (1 " + ri) dr® + r%dQQ (132)
Two values of 7 givehorizons: at ry = m*(m? —e2)!/? when e? < m? Again

define advanced and retarded null coordinates and find maximal extension

* Many asymptotically flat regions, many horizons, infinities

* Singularity is a timelike, so timelike and null curves can avoid hitting the
singularities

* No Cauchy surfaces in the space

* Wormhole but unstable

6 NON-SPHERICAL GEOMETRIES

see ‘Black Holes', W Israel: Sc Prog Ozf 68:333-363 (1983)

Settling down: rotating bh will go axisymmetric
there is No Birkhoff theorem for general or axisymmetric solutions But there
are theorems showing uniqueness of the final state

Rotating black holes will settle down to the Kerr solution
Non-rotating will settle down to the Schwarsschild solution

6.1 Kerr solution

Rotating black holes and the ergosphere

Kerr solution, represents a spinning black hole - rather every spinning black
hole: final state of collapse of rotating star that falls within event horizon

* Maximal extensions, horizon structure, Complex topologies

* causal violations, ring singularity,

* separation of event horizon and killing honzon - spinning bh stores energy
in the swirl of space around itself; this energy can be extracted and used to
power things: Penrose Black Holes Sci Am 226, 38-46 (1972)

* Teukolsky: equations of pulsation of spinning black holes — these give
natural frequencies of bh pulsations, and show its stability to perturbations [no
matter how fast it is spinning]

Chandrasekhar: completed into a complete system of perturbation equations
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6.2 Binary systems

A Black hole (‘bh’) binary will emit gravitational waves with characteristic
signature as they spiral towards each other and coalesce to produce a Kerr
solution Can in principle be detected by gravitational wave detectors [bars,
laser interferometers - LIGO] - the best characteristic signature of black holes

(as opposed to other compact objects].

6.3 general Non-spherical
See ‘Black Holes in GR’ S W Hawking Comm Math Phys 25:152-166 (1972)

Definition? by event horizon

6.3.1 Event and apparent horizons, and singularities

general definitions: event horizon defines black hole

* closed trapped surface: apparent horizon, implies singularities must exist
[Penrose]

* absolute horizon, the boundary in spacetime between those events outside
the horizon that can send signals to the distant universe, and those inside the
horizon that cannot

* its area must always increase, implying limits on energy radiation in black
hole mergers {Hawking]

.B.3.2 The uniqueness, censorship, and no-hair theorems

Teukolsky et al: perturbations die away (radiation), hence stable

* Black hole has no hair: radiated away
A black hole should provide no evidence of what it was that collapsed to

create it

Israel theorem, Robinson (non-lineaR): 3 parameters for collapsed object all
the properties of a black hole are predictable from just 3 numbers: its mass,
rate of spin, and electric charge

A highly non-spherical (uncharged, non-spinning) implosion can have only
two outcomes: either it produces no black hole at all, or else it produces a black
hole that is precisely spherical

What makes the hole become spherical? gravitational radiation radiates
away whatever can be radiated away (Price) influence of the holes mass, charge
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and spin are all that can remain behind when the radiation has cleared away If
it is non-spinning it becomes asymptotically Schwarzschild; if it is spinning, it
becomes asymptotically a Kerr solution

The underlying assumption is the cosmic censorship conjecture: that as a
massive object collapses to form a singularity, this singularity will never be
seen from the future: it will always be clothed by an event horizon. That is,
naked singularities (visible at future infinity) will not occur. The status of this
conjecture is not clear, as there are counter examples of high symmetry, and
thus presumably unrealistic; we do not have a good statement of the theorem
that captures what we want to show physically and is also provable.

Thus its status is uncertain.

see Black holes, Naked Singularities and cosmic censorship Shapiro and
Teukolsky: Am Scientist 79, 330-343 (1991)

Assuming this is true, then the battery of physical arguments and uniqueness
theorems show that the space-time around a collapsing object will eventually set-
tle down to a steady state, after radiation off inhomogeneities and anisotropies,
and be well-described by the Kerr or Schwarzschild solutions. Then the prop-
erties of those solutions outlined above determine the astrophysical processes
that will occur (for example formation of accretion disks).

7 EXISTENCE: EVIDENCE

see M J Rees Observational status of black holes. Proc Roy Soc Lond A368:27-
32 (1979)

7.1 Stellar collapse

Various candidates: best is Cygnus x-1 (6000 ly from earth): x-rays inary with
one component the x-ray bright bh of mass definitely greater than 3 sun masses,
probably greater than 7 sun masses, and most likely about 16; the optically
bright but x-ray dark companion has a mass probably greater than 20 sun
masses and is about 20 times larger than the sun

7.2 Galactic Centres

Believed to occur in Radio galaxies, gso's, agn’s, e.g. 3c273 which has high red-
shift 16% speed of light (and so great distance and radiates immense amounts of
power - 100 times more luminous than most luminous galaxy ever seen), looks
like a star, has fluctuating brightness within period of a month implying light
comes from region smaller than a light-month in size - 10'® times smaller than
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volume in which galaxies produce their light

Light comes from massive, compact gaseous object heated by an enormously
powerful small engine. Outgoing electrons are beamed around magnetic field
lines spiralling around and producing synchrotron radiation in radio lobes

Energy source? chemical power is inadequate, so is nuclear power and con-
version of matter to anti-matter. Gravity seems best possibility Radio galaxies
emit radio waves not only from giant double lobes but also from the core of the
central galaxy itself Thus a single engine can be responsible for all the galaxies
radio waves through gas jet emerging from the central engine and creating the
radio lobes [Rees and Blandford] Because the jest are straight the central engine
has to fire the jets in the same direction for a very long time so the nozzles that
collimate the jets must be attached to a superbly steady object - a long-lived
gyroscope of some sort - a gigantic spinning black hole

Thus bhs are the best bet for powering quasars and radio sources and agns.
Four mechanisms are known for meking jets p348 Thorne In the Blandford-
Znajek process the energy comes from the holes rotational energy The light
emitting region is typically about a light-year in size but can be much smaller but
gives of radiation hundreds of times brighter than all the stars in the surrounding
galaxy together Brightness in various parts of spectra depends on feeding rate
and magnetic fields

Alternative: massive spirning magnetic siar

How common are bhs? probably at core of most radio galaxies and gsos but
also quite likely at the cores of ordinary galaxies such as our own

— evidence from orbital motion of gas clouds near thy centre of the galaxy
apparently orbiting around an object weighing about 3 million times mass of
sun which is a radio object

velocities implying very concentrated mass, e.g. M82

In such cases, the bh results from cumulative interactions of stars in galaxy
core with friction driving interstellar gas down into the core

see e.g. Galactic Nuclei and Quasars: Supermassive Black Holes M J Rees
New Sci 80, 188-191 (1978)

7.3 Primordial

There is a possibility of massive perturbations formed in big bang in early uni-
verse rapidly forming very small blackholes; these would be emitting gamma-
rays as they decay by the Hawking process.
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Could exist - but no evidence that they in fact do [rather, an upper limit on
how many there could be].

7.4 Options

Collapse: to final state.
Massive object burns all its nuclear fuel: collapses, throws off some matter.

‘If there is no other possible stellar graveyard but white dwarfs, neutron
stars, and black holes, then when a star dies it must either eject enough mass
to bring it below the maximum for neutron stars, or continue shrinking towards

a black hole’

__=___a._...__=_____.._==__.=___===_...=_.._===__=_..___==___.__..._==____.

NON-SINGULAR SINGULAR
Hidden Visible
Jupiter
White Dwarf

Neutron Star
Quark star (7)
Black Hole
Naked Singularity

Predictable Predictable Not Predictable

8 FURTHER ISSUES

8.1 Horizons and Radiation emission

The geometry of the horizon

8.1.1 Boyers bifurcation

Killing horizon properties: infinite rescaling of affine parameter relative io
Killing vector (symmetry) parameter as fixed points are approached
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8.2 The Rindler universe

The flat space analogue: a uniformly accelerating particle in Minkowski space
has event horizons associated with Killing horizon, just as in the Schwarzschild

case.

NB here r = 0 is not singular; every point is equivalent (there is a 3-d set
of isometries in the plane) should only have rhs of the diagram or there are two
points for each sphere

8.2.1 Black hole thermodynamies

Area of final horizon must always be greater than that of original horizons, even
if holes merge

This resembles the 2nd law of thermodynamics
Bekenstein: black hole area IS its entropy multiplied by a constant
This leads to the 4 laws of black hole thermodynamics, see J M Bardeen B

Carter S W Hawking: Comm Math Phys 31:161-170 (1973)

replace horizon area by entropy and horizon surface gravity by temperature
[strength of gravity's pull felt by someone just above the horizon| thus a bh
must have a finite temperature and must emit radiation

1 D Bekenstein: Phys Today 33, 24-31 (1980)

Issue of entropy: loss of information of what has been put into hole, thus
entropy is a measure of all the ways the hole could have been made

8.3 Hawking radiation

The ‘classical’ view: virtual pairs exist near the horizon; if close encugh, can
become real and one falls in, one emitted to infinity

Quantum field calculations in a curved space-time show thermal radiation
emission by a black hole (based on definition of incoming/outgoing particle
states, which are related by the parameters associated with the Killing horizon
bifurcation which in turn depend on the surface gravity. for Calculations: see
‘Wald and Kay).

The radiation emitted slows the spin of a rotating black hole and then emits
energy losing mass Spectrum is black body Herizon has temperature propor-
tional to the surface gravity Stellar mass: T = 3 x 10~% K so evaporation is
slow: requires 1057 years

However this speeds up as it shrinks. Very small holes evaporate very rapidly
by this process emitting gamma-rays.
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8.4 Lower dimensional versions: issues and problems

Minimum dimension for full gravity is 4 for this is the first dimension in which
there is a part of the curvature tensor the Weyl tensor that is not algebraically
determined by the field equations. Thus the ‘action at a distance’ of gravity is
not possible in lower dimensions - if the field equations are like the EFE.

8.5 Black Holes in the Expanding Universe: local defini-
tion

Problem of asymptotic definition: depends on idea of asymptotic flatness, which

does not relate to the real universe but is very global in its nature.

How to obtain a usable definition for the real universe, allowing us to define
a bh in a finite time at a finite distance from the collapsing object, without mak-
ing irrelevant and probably wrong assumptions about what happens at infinity??

e.g. for the case when k = +1 so there is no infinity
see: Black holes in closed universes. F J Tipler Nature 270 :500-501 (1977)

8.6 The issue of the final state

Loss of coherence and guantum mechanics 77

Laws of Gr must fail at hole’s centre and be replaced by new laws of quantum
gravity

see: The lesson of the black hole, J A Wheeler Proc Am Phil Soc 125: 25-37
(1981)

Conjecture; could this lead to re-expansion into new universe?? Gives basis

of Phoenix universe idea, and possibility of Darwinian evolution of universe
[Smolin]
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