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1. Introduction

Hawking’s 1974 discovery(1] that black holes evaporate ushered in a new era in black
hole plysics. In particular, this was the beginning of concrete applications of guantum
mechanics in the context of black holes. But more importantly, the discovery of Hawking
evaporation has raised a sharp problem whose resolution probably requires a better under-
standing of Planck scale physics, and which may therefore may serve as a guide (or at least
a constraint) in our attempts to understand such physics. This problem is the information
problem.

In brief, the informatien problem arises when one considers the Gedanken experiment
of black hole formation through collapse of a carefully arranged pure quantum state |4},
or in terms of quantum-mechanical density matrices, p = |¥){s?|. This black hole then
evapurates, and according to Hawking’s calculation the resulting outgoing state is approx-
imately thermal, and is described as a mized quantum state. The latter statement means
that the density matrix is of the form Y, pal¥a}{¥e|, for some normalized basis states
[¢’a) and some real numbers p, of which two or more are non-zero. Comparing pure and
mixed states, we find that there is missing phase informaticn in the latter. A measurc
of the missing information is the entropy, § = ~Trplng = =% palnp,. If Hawking's
calculation can be trusted, this means that in the quantum theory of black holes pure
states can evolve to mixed. This conflicts with the ordinary laws of quantum mechanics,
which always preserve purity.

Hawking subsequently proposed [2] that quantum mechanics be modified to allow
purity loss. However, as we’ll sec, inventing an alternative dynamics is problematical. This
has lead people to consider other alternatives, namely that informaticn either escapes a
black hole or that it is left behind in a black hole remnaut. Both of these possibilities also
encounter difficulties, and as a result we have the black hale information problem.

In these lectures we'll develop these statements more fully, starting with a study
of Hawking radiation. In the past few years an improved understanding of black hole
evaporation has been obtained through study of two-dimensional models, and because of
this and due to their greater simplicity we’ll start by considering the Hawking effect in

such a two-dimensional context.
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2. Two-dimensional dilaton gravity

in 2d, formulating gravity with just a metric gives trivial dynamics; for example, the
Einstein action is a topological invariant. Instead we consider theorics with the addition

of a scalar dilaton ¢. A particular simple theory[3-3] has action
5= %: jdz:r\/_—g [T (R+4(Ve) +427) - L(v?] . (2.1

where A? is an analogue to the cosmelogical constant and f is a minimally coupled mass-
less matter field-that provides a source for gravity. Note that ¢® plays the role of the

gravitational coupling, as its inverse square appears in front of the gravitational part of

the actjon.

In two dimensions the general metric ds? = g,pdir®dr® can always locally be put into

conformal gauge,

ds? = —ePdrtdr . (2.2)

with the convention #% = 1%+ 2! The equations resulting from the action (2.1} arc most

easily analyzed iu this gauge. The matter equations are
Do f=0. (2.3}
with general solution f, = fu (o) + f_(z 7). Next, the relation
V—gR = -20p (2.1
allows rewriting of the gravitational part of the action,

1 ; . .
S= — dl.r{QV(p_¢)\_’t’2°+4/\262(p_°]} . (2.

2

[SV)
B

The cquation of motion for p — ¢ is therefore that of a free field, with solution

1 -
p=o = (walar®) +ufz) . (2.6)
The cquation for ¢ then casily gives
rt x™
e = uy 4 u_ — A f e+ ] %= (2.7)
2

where u4{zr¥), are also free elds. Finally, varying the action with respect to gty
gives the constraint equations,
55’++ (Gag
Sg Gl = e (48_pd_ o - 288 0)

_6*2‘-‘0 (4a+'ga+(})— 2610) = %a.;faAf
19 70, f .

il

These determine vy in terms of fi and wg:

Uy = ;{\ - %f Ewtj O fOS (2.9)

where A is an integration constant. In the following we will choose units so that A = 1.
The theory is therefore completely soluble at the classical level. The unspecified

functions wy tesult from the unfixed remaining gauge freedom: conformal gange {2.2)

is unchanged by a reparametrization rt = r%(s%). This freedom may be used to set
w. 4+ w_ =at — ¢, for example. In this gauge the general vacnum solution is
ds? dotda™
§f = ——————¢
14 Meo -7 (2.10)

Il

o =—1in (;\I + f°'+_”7)

The case M = (b corresponds to the ground state.

ds? = —dotda”
(2.11)
o= 0.
This is the present analogue of flat Minkowski space. and is called the lincar dilaton
. - . -+
vacuum. The solutions for A > 0 are asymptotically flat as 07 —a” — x. At o™ —
o~ — —oc they are apparently singular, but regularity is restored by the coordinate

transformation

=et T = e {2.12)

A true singularity appears at =727 = M, and #% = 0 is the horizon, The corresponding
Penrose diagram is shown in Fig. 1; the solution is a black hole and M is its mnass. Notice

the important relation ¢2®|harizon = ?C_f For M < 0 the solution is & naked singularity.
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Fig. 1: Showu is the Penrose diagram for a vacuum two-dimensional dilatonic

black hole.
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Fig. 2: The Penrose diagram for a collapsing black hole formed from a left-

moving watter distribution.

Next consider sending infalling matter, f = Fiz™%), into the lincar dilaton vacuum.
This will form a black hole, as shown in Fig. 2. Refore the matter infall the solution is

given by (2.11). Afterwards it is found by using (2.6)-(2.9),

e = Mg (e_a_ - A)
2 dotdo™
1+ Me ot —Ae?

4

where one can casily show

M= f dot Ty

(2.14)
+
A =/d0'+f'_a T++
and
T++ = %((’L.F)g (2.15)
15 the stress tensor. The coordinate transformation
£~ = —(n (c_"_ - A) Lt =ot (2.16)
returns the metric to the asymptotically flat form
+ -
ds? = - 9 (2.17)

T1 M 6

3. Hawking radiation in two dimensions

Now that we have a collapsing black hole, we can study its Hawking radiation.! The
quickest derivation arises by computing the expectation value of the matter stress tensor.

Consider the stress tensor for right-movers; before the hole forms they are in their vacuum.

aned 1
{(T__}y=lim (0|=3_f(67)0~ fle™)|0)
o= —a- 2
) (3.1)
T e
where the second line uses the 2d Green function,
1 . - -
{O1f(8)f(a)|0) = -5 [In(6™ ~ o)+ (6™ ~07}] . {3.2)
As usual, one removes the infinite vacuum energy by nmmal-oracrilxg:
1 1
e tg= T+ — 3.3
T 1,=T. +4(&__o_)2 (3.3)

The formula (3.1) also holds at T+, but the flat coordinates are now £%. Therefore to
comnpare the stress tensor to that of the outgoing vacuum on I+, we should subtract the
vacuum energy computed in the £ coordinates,

T y=T 4 — . 3.4
¢ Tl ey (54

! For other references see [1,6,7].
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The corresponding expectation value is

. e b L Y REDE IS (P . 1
CTomih= B (0108 (07 (0) 7 (™€ D0+ oo .
1 ; - 1 o
=—2 lim & (e (-0 (¢)) 4+ —
1656 ¢ AT
Next one expands ¢~ (£7) about £7, and in a few lines finds
1 -3 -y
a o

where prime denotes derivative with respect to £7.
Using the relation (2.16) between the two coordinate svstems gives the cutgoing stress
tensor from the black hole,
1 1

SR - - (3.7)

(I Teacy

This exhibits transitory behavior on the scale £~ ~ —In A, but as £~ — o it asyrprotes
to a constant value 1/48. As will be secn shortly, this corresponds to the thermal Hawking
flux at a tenperature T = 1/2x.
A more detailed understanding of the Hawking radiation ariscs from quantizing the
scalar field. Recall the basic steps of canonical quantization:
1. Find a complete orthonormal basis of solutions to the ficld equations.
2. Separate these solutious according to positive or uegative frequency.
3. Expand the general field in terns of the basis functions wirh aunihilation operarors
as coctficients of posirive frequency and creation operators for negative froquuey.
1. Use the canonical commuration relations to determine the comumutators of the Beld
operators.
3. Define the vacuum as the state annihilated by the anmihilation operators, and build
the other states on it by acting with creation vperators.

In curved spaccetime general coordinate invariance implics that step two ls ambiguous:
what is positive frequeney in one frame is not in another. Consequently the vacuwn state js
not uniyuely defined. These two observations are at the heart of the description of particle
¢rcation in curved spacetime. This ambiguity was implicit in the different normal-ordering

perscriptions in the above derivation.

Following these steps. begin by introducing a basis in the ~in” region near 75 a
convenient basis of right-moving modes with positive and negative frequency with respeer

to the time variable 0% are

1 * 1 Twe™
4

=TTl = —— (3.8)
WETS TV
The field f has expansion in terms of annihilation and creation operators
= .
f- :/ dw Ia-w.uw. + U_L_u:.} {in) . (3.9}
0

The cquations of motiou imply existence of the conserved Klein-Gordon inner product,
ifg)= —?fﬂ'ﬁ“fgw' (3.10)
b
for arbitrary Cauchy surface ¥. The modes (3.8) have been normalized so that
(bt} = 208w — 'Yy = —(ul.ul) . (ve.ul)=0. {3.11)
These, together with the canenical commutation relations

[f(l)a[)f(l“’ )]1.\-:1.40 = T(!ts(.{‘l - .?‘,1 ) (312}

[N

[f*(f)-af)ff(‘rf}:-:r“zr'“ =
imply that the operators g, satisfy the usual commutators,
[(.IWNUL,? =8o—w) . Jagae] =0, [(1_'_..(11_,} =0, (3.13)
Lastly. the in vacuum is defined by

0]y =0 (3.14)

- ] N
To describe states in the future modes are needed both the “out” region near 77 and

ncar the singnlarity. The former are the obvious analogues to (3.8).

n = Le—“‘f' Lt = _‘lvr“‘f’ . (3.15)

The latter are somewhat arbitrary as the region near the singularity is highly curved. A

convenient coordinate near the singularity proves to be

E7 = 1In(A%" — AL (3.16)
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and corresponding modes ¥, and T, are given by a formula analogous to (3.15}. In terms

of these modes, f is written
(==
fo= j du [b“,vw + bl + Bt + bhv‘_] (out + internal) . (3.17)
1]

These modes are normalized as in (3.11), and the corresponding field operators obey com-
mutators as in (3.13). The vacua |0)oue and |(jinternal are also defined analogously to
(3.14).

The non-trivial relation (2.16) between the natural timelike coordinates in the in and
out regions imply that a positive frequency solution in one region s a mixture of positive
and negative frequency in another region. This mixing implies particle creation. For

example, positive frequency out modes can be expressed in terms of the in modes,

o0
:] d'le, ru + 8 0ul] (3.18)
o

The Fourier coefficients a ., J.. are called Bogoliubov cocflicients, and they can be

calculated by inverting the fourier transform,

oo (utir) = () (3.19)

gy =

In the present model they can be given in closed form in terms of incomplete beta
functions|7]

!
Qs = A""B (~tw+ w1+ iw)

Bopr = —\f A""B(—l.u —w 1 +iw)

Although we will not use these formulas directly they are exhibited for completeness.

(3.20)

To investigate the thermal behavior at late times, £~ » —InA. o7 =~ — InA, we
could examine the asymptotic behavior of (3.20), but a shortcut is to use the asymptotic

form of (2.16) valid in this limit,
— e =A—e" ~A(eT +lnA)=FT . (3.21)

Note that this is the same as the relation between Rindler and Minkowski coordinates in

the context of accelerated motion. Likewise one finds
et ~aT . {3.22)

8

Next, notice that functions that are positive frequncy in &~ are analytic in the lower half
complex &~ plane. Therefore the functions
U 0 X (—&_}i“’ =v,+ €& ",
7 (3.23)
U & (67)TW =T, + el
are positive frequency. This means that the corresponding field operators a;,.. and a; .
must annibilate the in vacuum. The inverse of the transformation (3.23) gives the relation

between field operators,
a3, o b, — e ™bY

i (3.24)
Qe o D — €7
In particular, the in vacuum obeys
0= (a] Jarw — o} Laz.)I0)
x (bhby, ~ 13* 5.0 (3.25)

x (No )}0)
where N, f\:’u are the number operators for the respective modes. This implies that

0) = 3" e({nu}) Hrahlina ) (3.26)

{n.}

for some numbers ¢{{n_}). These can be determined up to an overall constant from the

eyuation ai1.|0) = O:

e(in.}) =c({0})exp{-w / dwwnw} . (3.27)

Thus the state takes the form

0) = <({0}) - e i mi Bl (3:28)

{r.}
It is clear from this relation that the state inside the black hole is strongly correlated
with the state outside the black hole. Observers outside the hole cannot measure the state
inside, and so summarizes their experiments by the density matrix obtained by tracing

over all possible internal states,

= Trlnsndelo) HC{{O} |.2 Z E_‘zr—rdww""l{ﬂw}ﬂ{nw}l . (329}
{r.}
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This is an exactly thermal density matrix with temperature T = 1/2#. The corresponding
energy density is
Cdo  w * 1
£ = S =T R
/0 o7 /T 127 = g5 (3.30)

which agrees with (3.7) if we account for the unconventional normalization of the stress

tensor,
1
€= 5T - (3.31)
Both the total entropy and energy of this density matrix are infinite, but that is simply

because we have not yet included backreaction which causes the black hole to shrink as it

cvaporates.
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