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LECTURE 1

AN AUGMENTED SPACE RECURSIVE
TECHNIQUE FOR THE CALCULATION
OF ELECTRONIC STRUCTURE OF
RANDOM BINARY ALLOYS

ABHLJIT MOOKERJEE"
5. N. Bose National Centre for Basic Sciences.
BB 17, Sector 1, Salt Lake City, Calcutta 700064, INDIA

9 August, 1994

Abstract

I,: this lecture we shall present a compntationally feasible and fast techunigue for
vbtaining the elactronic structure of random alloys which allows ns 1o incorporaie
effects like clustering, short-ranged order and off-diagonal disorder arising out of size
rfnlsmatch and consequent latlice distortions. The method combines the Angmented
Space Techpigue with the recorsion method and the tight-binding EMTO. AgPd
CuZe, CuPd and FeTi alloys sre studied to illustrate car procedure. . ‘

*The work reported here was done in collsboration with In. 18 and Saka  Our
. B wit dra D&Bg pta Tannsni
programroe pa.::kage included the LMTOQ ]J&Ckﬂ.ge from QK. Andersen and his groap at Stuttga.rt the
¥

Cambridge Recursion P i T
Varen g ion Package developed by Chrix Nex and parts of the TB-LMTO programme of Patricio

1 INTRODUCTION.

The first principles description of the electronic structure and properties of disordered
transition metal alloys is a challenging problem . The absence of translational symmetry
is the main obstacle in the construction of 2 quantitative theory comparable in accuracy
and efficiency with those for crystalline solids, based on the Bloch theorem and standard
band structure methods . The electronic structure and properties of transiticn metal alloys
are believed to be governed mainly by the relatively localized d-electrons. Hence it was
customary to use semi-empirical tight-binding Hamiltonians to describe their electronic
properties. [n spite of encouraging successes the electronic structure calculation based
on the semi-empirical tight-binding Hamiltonians have some underlying approximations
which are often unjustified [1].

The main step towards constructing first principles tight-binding Hamiltemans began
with the tight-binding linearized muffin tin orbital method (TB-LMTO} proposed by
Andersen and Jepsen [2]. In the TB-LMTO the Hamiltonian is parametrized by a set of
potential parameters (1o be discussed later in the text) which are derived selfconsistently
from a first principles theory and are not empirical.

The other central jssue for a first principles calculation is the construction of realistic
structural models. In principle , the structure can be varied in parallel to the calcula-
tion of electronic structure. This has been reformulated in terms of classical Lagrangian
dynamics by Car and Parinello [3]. This methad has been extensively used in ab initio
melecular dynamics simulations of liquid and amorphous Si and other s-p bonded sys-
tems, but the underlying pseudopotential method makes its application Lo systerns with
transition metals impractical. Recently there have been attempts at ab initio molecular
dynamics based on the full potential LMTQ method. Metlfessel and Schilfgaarde [4]
have derived an accurate force thearem, quite distinct from Heliman -Feynman theorem .
They have implernented a Car Parinello type of dynamics in a new full potential LMTO
. which is suitable for arbitrary geometries , and calculated the properties of small Ag

clusters. Though first principles electronic structure calculations for topologically dis-



ordered systems demand realistic structural models, but for substitutionally disordered
transition metal alloys , calculations in the framework of TB-LMTO is regarded to be
first principles.

Kudrnovsky and Drchal (3] have demonstrated that the coherent potential approxima-
tion {CPA) based on the linearized version of the screened KKR (TB-LMTO) accurately
describes the electronic structure of random alloys (both metallic and semiconducting)
and disordered surfaces in a large class of alloy systems . Within the TB-LMTO method
full charge self-consistency can be achieved and is usually carried out for elements, com-
pounds and ordered alloys. Kudrnovsky et.ai. [6] has demonstrated that the flexibility
in the choice of Wigner-Seitz radii in random binary alioys makes possible approximate
. yet accurate and consistent, treatment of charge self-consistency without going through
the full charge self-consistency cycles, The self consistency involved in the solution of the
CPA equation is not trivial and one has to invoke subtle mathematical procedures to en-
sure proper convergence. Recently Singh and Gonis {7} have critized the TBLMTO-CPA
ptoposed by Kudrnovsky and Drchal on the grounds that ensemble or configuration av-
eraging involved in their method did not properly take into account the multi-site nature
of the TB-LMTO basis functions resulting in an inconsistency in the configuration aver-
aged Green function . Although these authors try to circumvent this difficulty by making
a pure L approximation for the site diagonal linearized mufhn tin orbitals (LMTO'S] ,
the fact remain that by their very nature , the TB-LMTO formalism invelves multisite
summations.

Formally the APW [8] and the KKR [9], the parent methods of the LPAW {10} and the
LMTO [11} respectively, involve very few uncontrolled approximations and are therefore
expected to be superior in accuracy and reliability than their linearized versions. How-
ever, the non-linear secular equations involved are computationally costly. Extensions of
these methods to disordered systems further emphasizes computational difficulties. Of
the mean field approaches, the single site CPA has been successfully implemented within

these frameworks {12]. Certainly, where the single site approximation is valid, the APW

or KKR-CPA are the most accurate and reliable methods, However, there are many sit-
uations where such single site approximations begin to fail ; as in cases where clustering
effects become important [13] (e.g. in the impurity bands of split band alloys, like the
Zo-band in Cu-rich CuZn alloys), where short ranged order dominates leading to ordering
or segregation [14], where local lattice distortions because of size mismatch of the con-
stituents leads to essential off-diagonal disorder in the structure matrix Sap e [13] {as
in CuPd or Culle alloys) or where topological disorder of the underlying lattice makes the
strncture matrix depend en the specific pair of sites {R,R'} [16] {as in glassy materials like
FeBY. [n such situations, the generalization of the CPA is not a trivial problem [13]. The
embedded cluster method (ECM) [17] where a cluster, in all its various disordered con-
figurations, is embedded in a CPA medium is not self-consistent in the spirit of coherent
potential approximations. The molecular CPA [18] breaks the translational symmetry
of the averaged medium and the artificial zone boundary effects introduced cannot be
controlled. Of the cluster generalizations, only two retain herglotz analytic properties
. the Travelling Cluster Approximation (TCA) [19] and the Cluster CPA (CCPA] [20],
both based on the Augmented Space formalism (ASF) [21] which is also the basis of the
work presented here. The computational intractability of both these methods whenever
the size of the cluster becomes even reasonably large is clearly perceived if we refer to
[19, 20]. To date, calculations on the KKR based CCPA have been successfully carried
out only on pair clusters [22].

This provides a motivation to look for alternative approaches for the generalization of
the single site approximation. The TB-LMTO method is a likely framework. The purpose
of this communication is to propose and implement a method which is based on the Aug-
mented Space Formalism {ASF) [21] introduced by one of us , coupled with the recursion
method of Haydock , Heine and Kelly [23]. This methed retains the herglotz properties
of the configuration averaged Green function . The coupling to the recursion method
allows effects of quite large clusters to be taken into account. Since the recursion method

is intrinsically multisite, off diagonal disorder and the multisite nature of the LMTO’s is



not a probiem. We shall demonstrate that the use of lucal point group symmetries of the
underlying lattice and the larger symmetzies in the full augmented space anising out of
homogeneity of disorder allows us to work on an irreducible subspace of the augmented
space with vastly reduced rank and makes the method tractable even on small desktop
workstations,

The paper is organized as follows : in section 2 we briefly review the TB-LMTO
method required for the purpose of augmented recursion. In section 3 we discuss the real
space recursion for calculating the CGreen function, with an emphasis on the symmetry
properties which can be exploited to redvce the work-load of computation. In section 4 we
briefly discuss the augmented space theorem for the calculation of configuration average
of any function of random variables. Section § is devoted to the detailed discussion of
the augmented space recursion method of calculating the configuration averaged Green
function. Section 6 deals with computational details. In section 7 we discuss our results
on icc based AgPd and CuPd alloys and bee based FeTi and CuZn alloys. Conclusion and

additional comments regarding the further refinement of our method is given in section 8.

2 THE ELECTRONIC STRUCTURE CALCULA-
TIONS WITH THE TIGHT-BINDING LMTO.

In the LMTO method, an energy independent basis set xrl{rr) is derived from the
energy dependent partial waves in the form of the muffin tin orbitals (MTO). The set is
constructed in such a way that it has the following characteristics: (a) it is appropriate
to the one electron effective potential V{r) of the solid, (b] it is a minimal basis set and
{¢) it is continuous and singly differentiable in ali space. In this section we will restrict
ourselves to the most tight-binding representation of the LMTO. resulting in a sparse
Hamiltonian, required for the purpese of augmented space recursion.

As a first step in the LMTO method, the space is pastitioned into two regions viz. the
muffin tin spheres centered at various atomic (if necrssary , also interstitial ) sites R and

the interstitial region. In the atomic sphere approximation {ASA) the touching muffin tin

spheres are substituted by overlapping Wigner-Seitz spheres, thereby dispensing with the
interstitial component, It has been argued that if the overlap between the Wigner-Seitz
spheres is less than 30% then ASA is a good approximnation and gives reliable results {24].

In the most tight-binding representation , a LMTO basis orbital of collective angular

momenta index L=({fm) centered at site R , is given in the ASA , by the expression:

Xar(rr) = dro(rr) + Y. R b e (1)
RIL!
rr = r-R . The function opy, is the solution of the wave-equation inside the sphere of

radius Sg at R for some reference energy E gz and is normalized within the sphere. The
potential inside the sphere is calculated using the local density functional approximation
{LDAY . The radial part of the c;?n is related to the energy derivative of % (rg) at the

reference CNeTgY ©

é3(rr) = bar(rr) + érolra)ofy (2)

The guantity 6%, = (@a.|¢%,} is the overlap. The expansion coefficients h, in equation

(1) are given by

har = (Cay — E.nu)8arbrr + (AEL)U?S?QL,R'L'{A??i,)ln (3)

where C%; and A%, are the potential parameters to be obtained from the potential
function P at the reference energy E,pr. Shp prps 15 the screened structure matrix whose
elements in the most tight-binding representation are essentialy zero beyond the second
shell of neighbours in all closed packed structures. The screened structure matrix S can

be obtained from the canonical structure matrix $? by the unitary transformation :

57 = 8%1 - Q28! (4)
The set of parameters (screening constants} Q% which defines the above transformation

are unique for all closely packed structures, and yields most localized structure constant

with exponential decay rather than the usual power law behaviour.
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There are several features of TB-LMTQ orbitals, which make them distinct from
atomic and atomic like orbitals used in the ordinary TB-caiculations. The summation
over the composite angular momentum index in equation (1) suggests that the TB-LMTO
orbitals do not preserve pure L character. Further in equation (1} 6%, (rr) and @y ave
truncated outside the Wigner-Seitz sphere and the expansion coefficients vanish beyond
the second shell of neighbours in all closed packed structures, so that all TB-LMTO
orbitals are short-ranged, resulting in a sparse Hamiltonian in this representation. This
is ideal for real space calculations based on the recursion method. The Hamiltonian and

the overlap matrices for this basis are given by {with neglect of small terms}

H = h+hoh + (I+ho)E,(I + oh) (3)

o= {x|x) = (I + hojid + ko) (6)

In equations { 3 and { 6} the summation indices RL, are supressed for convenience .
The matrix o is diagonal in RL representation and its value is determined by the logarith-
[mic derivative of the function ¢ at the sphere boundary . The Léwdin arthonormalized

Hamiltonian in the ASA is given by:

H® = E, +h— hok + hohoh — . .. i7)

and the first order hamiltonian is given by

HY = E +h (8)
In equation ( 7) the parameter o determines the degree of non-orthogonality of the
basis. Again 07! has the dimension of energy and provides a measure of the energy

window about the reference energy E, for which the density of states obtained with H

are reliable.
In order to perform a recursion calculation, we have to truncate the series given by

equation (7) for computational tractability. This in turn introduces non-orthogonality of

7

the basis , so one has 1o make a compromise between the two for reliable results. The
recursion involves repeated operation on the recursive basis by H'?. Since b is sparse,
there is ,in principle, no additional difficulty {other than enhanced computaional time)
in going bevond the first order hamiitonian. Recursion with H) gives a Green function
accurate to first order in (E-E,) [24] . The second term holi is necessary for systems
with wide bands specially for s-p states. We have used first order Hamiltonian in our

subsequent calculation.

3 THE REAL SPACE RECURSION METHOD.

The real space recursion method, provides an efficient algorithm for the calculation of the
resolvent {z-H)"! of a sparse Hamiltonian. In this section we will review the recursion
method and demonstrate how the symimetry of the Hamiltonian can be exploited to reduce
ihe work-load considerably. The method starts with a given vector. lug) . and recursively

generates a new sel of vectors ly;y , which are constructed so as to be mutually orthogonal :

}Iiun) :an!‘un) + bn+}‘un+1>+bn|un71) (9)
b3 = {uoluo)

ay = {ua|H|ua)

the recursion coefficients a, and b, are the diagonal and off-diagonal elements of the
tridiagonal Hamiltonian matrix in the new representation. The method also yields an
explicit continued {raction form for the diagonal elements of the resolvent (the Green

function):




In practice the continued fraction is evaluated to a finite number of steps . Haydock
[25) has mapped the contributions of the continued fraction coefficients to self-avoiding
walks on the underlying space. He has shown that the dominant contribution comes from
+he walks that wind round the initial starting state . This allows one to work only on the
finite part of the hilbert space: a particular sized cluster around the initial starting state
. The continued [raction is complemented after a finite number of steps N with a suitable
terminator. The terminator reflects the asymptotic properties of the continued fraction
expansion of the resolvent accurately. Several terminators are available in the literature
and we have chosen to use the terminator of Lucini and Nex {26). The advantage of such
a termination procedure is that the approximate resoivent retains the hergloiz properties,
It preserves the first 2(N-2) moments of the density of states exactly. This represents the
effect of a cluster at a distance (N-2) from the starting state. It also maintains the correct
band-widths , band weights and the correct singularity of the band edges. It is worth
mentioning that, fer a tight-binding Hamiltonian, the recursion method has a work-load
proportional to the size of the system rather than the cubic proportionality of the usual
band structure super-cell methods, where the self-consistency is achieved at one k-point.

The work-load of the recursion can be further teduced if one exploits the symmetry of
the Hamiltonian. The Hamiltonian described by (7} contains the information of both, the
structure of the underlying lattice and the symmetry of the orbitals. It has been shown
by Gallagher [27] that if the starting state of the recursicn belongs to an irreducible
representation of the Hamiltonian, then the states generated in the process of recursion
belong to the same row of the same irreducible representation of the Hamiltonian. Further
the recursion with the starting state corresponding to the different rows of the same
irreducible representation are similar. The states belonging to the different irreducible
representations or different rows of the same irreducible representation do not mix. So we
need to retain only those states for the purpose of recursion and get the same resclution
as with all of them.The recursion is done only with those states which are not related

to one another by the point group symmetry of the underlying lattice. Once these state

vectors are identified, the recursion can be performed in the reduced space , modified
with weight factors. Thus in the computation we need far less storage and time because
the dimensionality of the matrix H is reduced drastically. In practice a starting site is
chosen. The purnber of distinct equivalent sites , related to the starting site by the local
point group symmelry, constitutes the weight of the starting site. As discussed earlier , in
the process of recursion, these equivalent sites are not considered, and the calculation is
confined only to the nonequivalent sites. For example for s-state hamiltonian on a lattice
with cubic symmetry, all the non-equivalent sites are confined te (1/48)™" of the entire
lattice . Inclusion of p orbitals, introduces preferred x , y or 2 directions and breaks the
symumetry between x , y and z axis.Thus the point group symmetry operations which
interchange between x , y and z co-ordinates are prohibited . Hence the irreducible part
of the lattice instead of being (1/48)™ of the entire lattice now becomes (L/R)*. If with
each site Il we attach weight Wg |, which is given by the number of basis states equivalent
to | B} .then the whole process can be summarized as follows : In the new TB-LMTO

reduced basis we have

(RLIHIR L} = Cgy (1

(RLLTHIRLY = J(Wr/War) (A% 7S5 0 ae

(A% ) BalL L) (12)

where R and B bath belong to the irreducible part of the lattice. dg(lL L} s the factor
which can be either 0 or | , depending on whether the position occupied by the site Ris a
symmetry position with respect to orbitals L and L' or not . This fact can be made more
transparent in the following way : the structure matrix element connecting two orbitals
occupying the two different sites is given by the two-centre Slater-Koster integrals . Apart
[tom a factor made of 7 and o integrals the Slater-Koster integral contains a factor made
up of direction cosines of the vector joining the two basis states between which the matrix
elemient is taken . It reflects the symmetry property of the overlapping orbitals . Now for

the different equivalent sites connected to a given site , this direction cosine has different

signs . In the effective irreducible basis , which is a linear combination of the old basis,
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a particular linear combination may give rise to a zero Hamiltonian matrix element . We
shall call these positions, where such zero matrix element occur, the symmetry positions
with respect to orbitals L and L/ The representation of the Hamiltonian in terms of the
irreducible basis sets reduces the rank of the Hamiltonian matrix. The workload of the
recursion reduces drastically . Such a reduction is absolutely necessary for the purpose of

augmented space recursion to be discussed in the subsequent section.

4 AUGMENTED SPACE FORMALISM.

The augmented space formalism enables one to deal with the problem of averaging over
disorder configurations. The formalism puts configuration averaging on the same footing
as quantum mechanical averaging by augmenting the hilbert space spanned by the wave-
functions with a disorder or configuration space spanned by the different realizations of
the random Hamiltonian. The method of configuration averaging by the augmented space
theorem has been discussed earlier [21], and we shall restrict ourselves only to the salient
features of the method.

Let us suppose that the Hamiltonian describing a system is characterized by a set of
independent random variables { x;} The probability density of { x, } is assumed to have

a finite moments to all orders so that we may write :

plxi) = = LIm{ il + 0} = M) 5 n3)

where M is an operator on the space ¢} of rank N, spanned by the N possible
configurations of x; : | f} is the configuration ground state. A suitable choice of the basis
is one that makes M’ tridiagonal. This tridiagonal representation may be immediately

obtained by looking at the continued fraction expansion for p(x,) :

(z) =~ Im (14)

T, ~a, ~Hb..
Since p(x;) > 0 and has finite moments to all orders, it always has a convegent contin-

ued fraction expansion with real coefficients { a, ,b, } . The representation of M has

11

a; down the diagonal and b, down the off-diagonal positions. For a random binary alloy
Ag Bi_., p(n;) may be written as:
pilna) = 2é{n; - 1) + (1 — 7)é(n) (15)
where
{1, fori=A
T, =

0, fori=0B

It smmediately [ollows then pi(n,) satisfies the required conditions namely
fp.(n,-)n:"dn; = finite

for all m and
pi(ni} 20

For this p; (n;). M is a tridiagonal matrix in a space & of rank 2 spanned by [f5)

and |f]} with a representation

MO = ( T \/:;(1 - xj)
t(l—z) (1-2)

The formalism now states that the configuration average over any function H { =},

in this bams.

may be writien as:

[Pz {z () = (FEI) (16)

where H is the same functional operator of { M) } as H was a function { x; ) and
Ify = T1% /5 is the configuration ground state . Configuration averaging has been
reduced to the problem of the ground state matrix element in the augmented space — an

idea familiar in quantum mechanical averaging.
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5 AUGMENTED SPACE RECURSION .

Tt is clear from the discussion in the preceding two sections that , for a system described
by a disordered Hamiltonian , the recursion method defined on the augmented space en-
ables one to calculate the configuration averaged Green function directly. The advantage
of the method is that it does not involve a single site approximation or the solution of
any self-consistent equation as required in the CPA or its generalizations. Further one
can treat both diagonal and off-diagonal disorder on an equal footing. In spite of its
immense potential the method could not be used for practical caleulations because of the
large dimension of the augmented space : Nx2¥ for a system with N sites and disorder
characterized by a binary probability distribution. However, in analogy to real space
symunetry , if we exploit the symmetry of the augmented space which arises due to homo-
geneity of disorder, then the rank of the augmented space is reduced and the augmented
space recursion becomes tractable .

The starting point for the augmented space recursion | is the most localized sparse
tight-hinding Hamiltonian derived systematically from the LMTO-ASA theory and gen-

eralized to substitutionally disordered random binary alloys :

H3p gy = Cribrrbin + Ap Sy py drr (amn
CRL= CﬁL”R“'CEL(]. - ng) (18)
A — A4 B .
Apy = Qppra + gl —ne) (19)

Here R denotes the lattice sites and L=(f m) are the orbital indices {for transition
metal £ <2) C,, CE, and Af; AR, are the potential parameters of the constituents A
and B of the alloy. ny are the local site occupation variables which randemly take values 1
and 0 according to whether the site is occupied by an A atom or not. From the discussion

in section 4. , it is clear that the representation of the Hamiltonian in the augmented
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space H consists of replacing the local site occupation variables { ng } by { ME 1, andis

given by

=3 (CEJ + 5CRLMR) ®akan+ ...
RL
L2 (AEJ + ‘mRLMR) SkerL (&;Ba@f + 6AR,L,_;1,'{R') % ahar
RL R'L*

where,

8Ca = {Chy ~ CByp)
60y = (Afy — Af)
Qther parameters have their usual meaning and I is the identity operator defined in

the augmented space . MF in the second quantized notation is given by:

IR == 2blbpe + (1~ 2)bhobroe + /x(1 — 7) (bhoba + b bro) (20}

(bko‘bgg) and (bl .br) are the creation and annihilation operators in the augmented
space , where each site is characterized by two states { 0,1, which may be identified with
the up and down states of an Ising system . The configuration states are stored extremnely
efficiently in bits of words and the algebra of the Hamiltonian in the configuration space
mirrors the multi-spin coding techniques used in numerical works with the Ising model .

The Hamiltonian is now an operator in a much enlarged space ¢ = H g[8 (the
augmented space). where H is the real space spanned by the countable basis set {{R)} .
The enlarged Hamiltenian dees not involve any random variables but incorporates within
itsell the full information about the random occupation variables . If we substitute eq
(22 ) for MR | then with the aid of little algebra we can show that the augmented space
Hamiltonian contains operators of the following types as discussed in [28].

{a) al, ap with R=R’ and R# R’ terms . The operators acting on a vector in the

augmented space changes only the real space label , but keeps the configuration part

14



unchanged.

(b) ak ag bl, by, with R = R’ and R # R’ terms . k is R or R" ,while, A and p may
take value 0 and 1 . These operators acting on an augmented space vector may change
the real space label (if R # R’ ). In addition , they may also change the configuration at
the site R or R’ {if A # p). This resembles a single spin fiip Tsing operator in configuration
space .

(c) aly ap bk, ba, b;., b with A, g v £ taking values 0 and 1. The operators may
change the real space label (if R # R’ ), as well as the configuration either at R or R’ or
both. This resembles a double spin flip Ising operator in the configuration space .

A basis | m) in the hilbert space H is represented by a column vector (., with zeros

everywhere except at the m-th position . The inner products are defined as
{m| @ in) = CLC,

2h,a,Cp = bnyCr
A member of the basis in [[? ¢ has the form
e fe.)

where each A, may be either D or 1.

We may represent this basis by a collection of binary words [ sirings of 0's and 1's] .
In the usual terminology of ASF the number of 1's define the cardinality of the basis and
the sequence of positions at which we have I's { S5 |} called the cardinality sequence labels
the basis . Thus a binary sequence B { C, { S¢ } | is a representation of the member of

the basis in the configuration space . The dot product between the basis members is then
B[C,{5:}) © BIC" {Sc}] = Scoéisesc

A careful examination of the operations (a) - (¢} defined on the configuration space
reveals that these operations change the cardinality and the cardinality sequence . Since
the operations are defined on the bits of words , one can easily employ the logical functions

in a computer, to define these operations .
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As mentioned earlier , the symmetry considerations due to the homogeneity of disorder
may be employed to reduce the rank of the effective Hamiltonian in the augmented space.
The basic step in the symmetry procedure is to identify a set of nonequivalent vectors and
their weights . This can be achieved in the following way . Since the augmented spaceis a
direct product of the real space and the configuration space , which are disjoint , symmetry
operations on either of them apply independently of each other . For example, if a site is
occupied by an A atom , then all the Z configurations in which its {Z-1) reighbours are
occupied by A atoms and one by B are equivalent . In practice a site in the augmented
space is chosen as | R, { C, [ S ]} ) . All the equivalent sites are obtained by point

group operation | on the site in question .

|RIC" {Se:}]) = RIR,[C,{Sc}) = [RRRIC, {Sc}])

The number of distinct sites obtained in this way is the weight of the site in question

_ As in the real space recursion only the non equivalent sites (NE) obtained in this way

are retained for the purpose of recursion . Incorparating both the symmetry of the lattice
and the orbitals, the representation of the Hamiltonian matrix elerment is given by :

(RL.IC{SeHIHIRL{C.{Sc ) = [€rCr + (1 = £r)CL] (21)

where,

I= iR LIC.{Sc}}) € NE

Er=1 Bebe

(n=0 R¢S5c

CrL = 240+ (- IA)CB

i6



CRL =(1- xA)CA +1'ACB

The off-diagonal terms are

(R[OS IFIRLIC(SH) = Wil Waltaén A5 300+
+ia(l = Ep)AYISpp AV 4 (1 = £r)ér A Spa Al 5
+(1— )1 — Er ) AV Srr A Y31 L. LN b gse e 56
W WG A S (3) 7+ .
(1 = ER)AY2 S rp(82) 131 (L, L) euse oty T
W Wal(8A) 2 Sar (83) .

Bi(L. LYo soyior+nSen sl
App = 1A% 4 (1 - 2,047

App = (1 = 22" + 7,4°

68 = A% - AF

The angular momenta indices are supressed for convenience. We denote by 1 and J
the augmented space vectors [ R L, [C, {Sc}] ) and | RLL[C.{ S}y (LY
is 0 or 1 depending o whether the position 1 is a symmetric position with respect to
the orbitals L,L" in augmented space. Once we have defined the Hamiltonian . and its
aperation in augmented space , the recursion method on the augmented space gives the
configuration averaged Green function directly . The recursion method for the calculation
of the configuration averaged Green function { G as.ar (2 } is done as follows . We first

chose the following as the starting state in our recursion

17

i) = 1€ L) 2 [vo)

The recursion co-efficients a, and b, are generated by

Hiju,h = aniuﬂ)+bn+1|un+1)+bn\un-1}

(xal © Hlxn)
(Xn-l‘ & an)

n

bn

The continued fraction coefficients are generated to a finite numbers of steps and finally
appended with a suitable terminator as discussed earlier . The configuration averaged

Cireen funclion is related Lo the density of states by
i . oy
n(E) = f\_ffmzz(cmmuzmon (22)
IV L I

6 COMPUTATIONAL DETAILS.

The formalism developed in the previous section is applied to calculate the total and local
density of states of random binary alloys at vaTious concentrations . We now mention some
details concerning the numerical part of the problem . Total energy density-functional
calculations were performed for the elements . The Kohn-Sham equations were solved in
the local density approximation (LDA} [29] . The LDA was treated within the context
of the method of Tinear muffin tin orbitals (LMTO} in the atomic sphere approximation
. The computations were performed serni-relativistically using the exchange-correlation
potential of Barth and Hedin [30]. The basis set composed of £ = 0,1,2 orbitals , so that
the Hamiltonian element are matrices of order § . The elemental potential parameters
were used to parametrize the alloy Hamiltonian , incorporating the volume derivative
correction for changes with lattice parameter. The flexibility of the choice of the Wigner-
Seitz radius is 2n advantage in the LMTO method over other muffin-tin methods like KKR
Tt allows to take into account the charge self-consistency approximately as emphasized

by Kudrnovsky et. al. [5]. We have adopted this scheme in our present communication
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and deferred the full charge self-consistency for a later work . It is worth mentioning at
this point that full charge self-consistency can easily be achieved in our formalism in the
following way .

From the local density of states one can calculate the energy moments , hence the

local charge density through the relation :

n(r) = 1/dr S {m ehy(r) + 2mal ére(r)one(r) + mih (e (r)+ ore(r)o(riac)} (23)

where

Er
mi@) = [ dEnau(E)E - Eupcf (24)

rgr(E) is the orbital projected partial density of states . From the charge density
we calculale the Hartree potential by solving the Poisson equation and incorporate the
exchange-correlation part by the local density functional formalism . The Schrédinger
equation is then solved to obtain the potential parameters for each element in the alloy .
The augmented space recursion is then carried out again with these new potential param-
eters , to obtain the new charge density . The procedure is iterated till sell-consistency
is reached . For the purpose of augmented space recursion , a four shell augmented space
map was generated from a cluster of 400 sites , with interactions upto second nearest
neighbour for the bec structure and upto first nearest neighbour for the most closed
packed fcc based structures . We have calculated the component and total density of
states through the recursion method with 8 pairs of recursion co-efficients and terminated
with the Lucini-Nex terminator [26]. In some typical cases ( CuZn to be dicussed later )
, the recursion coefficients were calculated with 10 steps. For the pure elements since the
density of state has considerable structure we have employed 15 steps of recursion . We
have shown in our previous communication [31! that this optimum choice reproduces the
density of states comparable to those obtained by other methods .

In the present communication we have studied three fce based alloy systems : AgPd,

19

CuPd and Cu-rich CuZn , and two bee based alloy systems FeTi and Zn-rich CuZn . Our

results are summarised in the next section .

7 RESULTS AND DISCUSSION.
7.1 AgPd

AgPd is one of the typical alloy systems where the disorder is dominated by the diagonal
part of the Hamiltonian . Both constituents have roughly the same d-band widths . Since
they belong to the same row of the periodic table , they have very little mismatch 1n
atomic sizes . The alloy remains fcc throughout the concentration regime . Further
since the effect of off diagonal disorder is weak in this alloy system , the calculations
based on CPA provide good results . Figure 1 shows the total and the component density
of states for the Ag, Pd,., random systems . We find that our density of states have
the same features as that obtained by both the KKR-CPA [32) and the LMTO-CPA 51
method , with a pronounced impurity peak due to Pd for the Ag rich alloys . The general
shape of the density uf states of the constituents , the position of the Fermi energy and
the dominant peaks agree excellently well with both the CPA calculations , In accordance

to cutr expectation .

7.2 CuZn

CuZn is an important alloy system with both diagenal and off-diagonal disorder . Further
since the centre of the Cu d band and Zn d band are well apart they give tise to split
bands with a relatively wide band gap in between. For small concentrations of Cu or Zn
one expects an impurity band splitting into bonding and anti-bonding peaks . This is a
typical feature which does not show up in CPA calculations 133], and one needs to include
cluster effects . This system provides a testing ground of our methodology which takes
us beyond CPA .

If we carefully examine the phase diagram of Cuy Zn;.g alloy , we find that it is dom-

inated by several ordered structures along with both fec (a) and bee () solid solutions .
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In our calculation we will assume fec (o) solid solutions for x > 0. 5 and bee () solid
solutions for x < 0. 5. For x = 0. 5 one has the well-known 3- brass , for x = 0 hep
7n and for x = 1. 0 fce Cu structure . We have calculated the band energy for CusgZnso
in both the fee and bec lattice . Our band energy calculations show the bee phase to be
more stable compared to the fcc phase .

Figure 2 shows the total and the local density of states for the Cu, Zny alloy for x >
0. 5 where the lattice structure is taken as fcc and for x < 0. 5 with the alloy assumed to
be in bee phase . We find that the large difference in the d-band centre of the constituents
and the difference in their widths gets reflected in the density of states . e notice that
the density of states in the bec phase has similar features as campared to that in the fcc
structure .

Figure 3{a) shows the Cu.Zn;_; alloy with x = 0. 9. The dotted figure is obtained
by a 4-step recursion and invoking moment argument one can carmpare this result with
the characteristic featureless CPA density of states. The solid one is chtained by & 10
step augmented space recursion . We find that in the latter , the impurity peak due to Zn
gets split into bonding and antibonding peaks , because of Zn-Zn clusters in the random
background. In figure 3{b) we have plotted density of states for Cu,Zn;..; alloy with x

— 0.1 and we observe the same cluster effects at the Cu-site.

7.3 CuPd

CuPd is an alloy whose constituents belong to different columns of the periodic table .
As a result it has sizeable off-diagonal disord-er. The mismatch between its constituents’
Wigner-Seitz sphere radii leads to Jocal distortions of the lattice . Since thisis an alley with
predominant off-diagonal disorder conventional empirical TB-CPA [34] calculations give
results unsatisfactory as compared to that of AgPd . In the LMTO-CPA [3] caleulations
the off diagonal disorder in the multiplicative factor A is taken into account by mapping
the Hamiltonian into an effective Hamiltonian with only diagonal disorder . However

local distortions in the underlying lattice , arising out of the size mismatch between the
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constituents causes disorder in the structure matrix elements S3g. In general, the disorder
in S%p depends upon the occupation of R and R and all their neighbouring sites. Under
the terminal point approrimation, which assumes that the major contribution comes from
the occupation of the sites R and R' alone, S§p has 2 tri-modal probability distribution
with possible values Sﬁﬁ,, Sgg, anc S48, . This disorder is truely ofi-diagonal in nature,
in the sense that it is not in the multiplicative form . In principle, the reduction into an
efective Hamiltonian with on-site disorder is not possible . Kudrnovsky and Drchal in
their LMTO-CPA calculation have provided an approximate way of tackling this problem
in which the entire effect of the lattice distortion has been clumped into the modification
of A and ~ parameters, Since in the present methodology (ASR) . the form of the
Hamiltonian is kept intact with both diagonal and off-diagonal disorder | so ASR can
be employed to treat lattice relaxation effect accurately at least in the terminal point
approximalion. We present here our calculation ( figure 4{a) ) for total and local density
of states without lattice relaxation effect taken into account . The density of states for
different concentrations with their different peak positions are in fairly good agreement
with that obtained in previous works {3, 35] . It has been argued by Kudrunovsky and
Drchal that in case of RKR-CPA [33] use of a single muffin-tin radius for different atoms
overscreens the larger atom , leading to a shift of the d-states to lower energies, but in the
LMTO caleulation with flexibility of the choice of the atomic sphere radii . one expects
a shift of low energy peaks upwards in Cu-rich alloy compared to the KKR calculation .
Our density of states clearly posesses this feature.

In figure 4(b) we present priliminary calculations of the partial density of states of Pd
in CuzsPdys with and without lattice relaxation. We observe the characteristic narrowing
of the d-band. Such narrowing has also been seen in the approximate treatment of Ku-
drnovsk§ and Drchal [3). The details of the treatment of off-diagona! disorder due to size

nismatch will be reported in a subsequent communication.
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7.4 FeTi.

In figure 5 we present the total and local density of states for bee FeTi alloy at various
concentrations. In FeTi alloys one has disorder effect in all three elements of the Hamil-
tonian matrix, namely C* , A% and §° . The disorder in 5 leads to lattice relaxation
similar to the CuPd system. Theoretical band structure calculations for FeTi alloy are
available in both LMTO-CPA [5] and KKR CPA [36] Our preliminary calculation exciud-
ing lattice relaxation eftect and proper treatment of charge transfer effect shows that the
results compare satisfactorily with earlier calculations, proving the applicability of the

methodology to different alloy systems.

8 CONCLUSIONS

The calculation scheme developed in this work is based on three methadologies @ (i) the
TB-LMTO for the description of the hamiltonian, (ii) the Augmented Space Theorem for
the configuration averaging and (i) the recursion method on augmented space to obtan
the configuration averaged Green function.

The TB-LMTO hamiltonian is free from fitted parameters. The potential parameters
entering into the Hamiltonian are derived self-consistently . However, it carries with it
the approximations involved in the linearization which leads to the LMTO. The recursion
method requires the use of a sparse hamiltonian, We have to base our method on a less
accurate Hamiltonian {which a truncation of the infinite series [ 7)) than the Hamiltonian
in the so-cailed ~ representation used in the CPA calculations. However, Nowak ef.el.
[16] have shown that the calculations for the density of stales converge rapidly as we take
more terms in the series in equation { 7).

The configuration averaging scheme is based on the Augmented Space Theorem, which
is formally exact. The use of the recursion technique with suitable termnators on the
augmented space,so constructed, makes sure of the fact that the TBLMTO-ASR Green
functions retain the essential herglotz analytic properties. In addition, the method can

take into account cluster effects, off-diagonal effects arising due to disorder in the structure
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matrix and correlated disorder [37].

The recursion method carries errors which are dependent on the finite cluster size and
the nature of terminators used, both of which cause the electrons to experience a medium
that deviates from the intended structures away from the central sites [18]. The choice
of proper terminators partially solves the problem and one should choose larger clusters
with greater number of recursion steps for more accuracy. The recursion method is a well
established procedure that has proven to produce a very accurate density of states for
d-bands for 8 to 15 recursion steps {that is it yields 16 to 30 moments of the density of
states exactly),

In summary, we shoukl like to propose the TB-LMTO ASR as a simple, accurate
and computationally efficient method for the first-principles calculation of the electronic

structure of disordered solids.
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FIGURE CAPTIONS
Figure 1.  The total {solid) and partial densities of states an Ag (dotted) and Pd
(dashed) in Ag, Pd,_, alloys. The concentrations are from top to bottem : x=1. 0,0.

75.0. 5,0. 25 and 0. The vertical lines show the position of the Fermni Energy.

Figure 2. The total density of states for Cu;Zn,_; alloys (a) bee with x=0. 1 (b} bee

with x=0. 5 (¢} fec with x=0. 3 (d) fec with x=0. 75 (e) fcc with x=0. $.

Figure 3(a). The partial density of states at the Cu site in a bec Cugdng_; with x=0.
1 {dotted) CPA {full) ASF caleulation with 10 steps of recursion.

Figure 3(b). The partial density of states at the Zn site i a fcc CuzZny_; with x=0.
9 (dotted) CPA (full) ASF calculation with 10 steps of recursion.

Figure 4{a). The total (solid) and partial densities of states on Cu (dotted} and Pd
{(dashed) in Cu. Pd,_; alloys. The concentrations are from top to bottom : x=1. 0,0.

5,0. 25 and 0. The vertical lines show the position of the Fermi Energy.
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Figure 4(b). The partial density of states at a Pd site for a CussPdas alloy with {solid)

and without (dashed) lattice relaxation.

Figure 5. The total {solid) and rartial densities of states on Ti(dotted) and Fe {dashed)
in Fe, Ti;_, alloys. The concentrations are from top to bottom : x=1. 0.0. 3,0, 2 and 0.

The vertical lines show the position of the Fermi Energy.
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