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LECTURE 2

AN AUGMENTED SPACE RECURSIVE
TECHNIQUE FOR THE ANALYSIS OF
ALLOY PHASE STABILITY IN
RANDOM BINARY ALLOYS

ABHIJIT MOOKERJEE

S. N. Bose National Centre for Basic Sciences.
DB 17, Sector 1, Salt Lake City, Calcutia 700064, INDIA

9 August, 1994

Abstract

In this lecture we shall introduce the angmented-space recursion method conpled
with the orbital peeling technique, as a powerful tool for the calclulation of effective

cluster interactions, useful for the study of alloy phase stability. An application to
the well studied PdV system has been carried out.



1 INTRODUCTION.

In recent years, there has been considerable interest in the first principle calculation of
alloy ordering tendencies at T = 0°K. In order to understand the onset of ordering in ran-
dom alloys , one needs a derivation of the lowest configurational energy for a specified alloy
system. Models have been formulated to represent the configurational energies in terms
of effective multisite interactions , in particular effective pair interactions {1]. Within
this approach, the analysis of alloy ordering tendencies and phase stability reduces to
the accurate and reliable determination of effective pair interactions . Traditionally there
has been two different approaches of obtaining the effective pair interactions. The first
approach is to start with the electronic structure calculation and total energy determina-
tion of ordered super-structures of the alloy and to invert these total energies to get the
effective pair potentials by the Connolly-Williams method [2] . The other approach is to
start with the disordered phase , set up a perturbation in the form of concentration fluc-
tuations associated with an ordered phase and study whether the alloy can sustain such a
perturbation. This approach includes the generalized perturbation method (GPM)}{3], the
embedded cluster method (ECM)[4] and the concentration wave approach [5]. Most of
the work on the electronic structure of the disordered alloys has been based so far on the
coherent potential approximation (CPA). The CPA being a single-site approximation has
its own limitations. In addition , self-consistency involved in it invokes subtle convergence
procedures at each energy point.

Analytic generalizations beyond the single site CPA, like the Cluster CPA [6] based
on the augmented space formalism and the Travelling Cluster Approximation [7] are
beset with computational difficulties when cluster sizes are large. Los et. al. 8]
have proposed a cluster expansion of the multiple scattering t-matrix. However, the
analyticity preserving property of the truncated expansion has not been established as
yet. In a separate attempt to go beyond the single site approximation , de Fontaine
and his group followed a different approach of direct configurational averaging (DCA)

[9], without resorting to any kind of single-site approximation. The effective pair and



multisite interactions were calculated directly in real space for given configurations and
the averaging was done , brute force, as it were, by summing over different configurations.

The augmented space formalism (ASF) put forward by one of us {10] provides a con-
venient means of configuration averaging which is not restricted by the above limitations.
In a recent communication [11] we have shown that the ASF coupled with the recursion
technique of Haydock et. al. [12] successfully reproduces the electronic density of states
of random alloys without resorting to single site approximations and does not require the
self-consistency loops of CPA and its generalizations. The aim of the present work 1s to
employ this methodology to get effective pair interactions. Within the ASF, configura-
tion averaging is done exactly, while the approximation within the subsequent recursion
on augmented space can be carried out in a controlled manner and the estimates of errors
produced have been carefully studied [13]. One works directly in real space, augmented
with the space of configurations and does away with the limitations of the k-space super
cell methods. Since the pair interactions are differences in total energies of different pairs
in the alloy medium, they can be obtained directly by the orbital peeling method, without
going through large subtractive cancellation [14].

The main points of our methodology are (i) the application of the tight-binding lin-
ecarized muffin-tin-orbital method (TB-LMTO) [15] in conjunction with augmented space
recursion to describe the electronic structure of random alloys ; (ii) the application of the
orbital peeling technique for the determination of the pair-potential; (iii) the use of the
ground state analysis of the 3D Ising model of Kanamori and Kakehashi [16] to discuss
the stability properties of alloys. In the present communication we have explained the
usefulness of this method and have employed the method to study the phase stability of

Pd-V system at three different alloy compositions.



2 FORMALISM.
2.1 EFFECTIVE PAIR INTERACTIONS.

The starting point of our calculation is the expansion of the configuration energy in terms
of effective cluster interactions. The expansion for the configuration energy E for a binary

alloy A.Bj-. may be written as :

N N
E(P) = EO 4+ S Ese + 3 Elbcibe; + ... (1)

i=1 ij=1

If n, are the occupation probabilities for the A type of atom, éc; is the concentration
fluctuation given by n; — ¢ , where ¢ = { P;). The coefficients E@ , EMW .. are the
effective renormalized cluster interactions (renormalized in the sense that contributions
from self-retraced paths have been included). E©) is the energy of the averaged disordered
medium, ESI) is the interchange energy for the species A and B, and it defines the single
body interaction resulting from the interchange of a B atom with an A atom at site i in
the alloy, Eff) is the effective renormalized pair interaction which is the difference in the
single body interaction at i, when sites j (# i) is occupied either by A or B atom.

The renormalized pair interactions express the correlation between two sites and are
the most dominant quantities for the analysis of phase stability. We will retain terms up
to pair interactions in the configuration energy expansion. Higher order interactions may
be included for a more accurate and complete description.

At this point it is worth mentioning that our scheme of calculation of the renormalized
pair interactions is similar to other methods based on embedding clusters in an effective
medium. The calculation involves the determination of the electronic structure as well
as averaging over different configurations of the system. It is precisely in this averag-
ing scheme that the different methods based on the embedding method differ from one
another. In the CPA-ECM the averaging is done within the framework of the CPA. In
the DCA the averging is done directly by summing over different random configurations.

If the configurations are consistent with a particular concentration alone the method is



called the canonical DCA [17]. If averaging is done over all configurations as well as all
possible concentrations, the method is called the grand canonical DCA {18]. In our scheme
we employ the augmented space recursion for carrying out configuration averaging.

The other commonly used approach for obtaining the effective cluster interactions is
the GPM. The equivalence of the CPA-ECM and the properly renormalized GPM (which
is a CPA based technique) has been established previously and , in fact, the CPA-ECM
gives the exact summation of the partially renormalized GPM to all orders [1]. A detailed
comparison of the various methods will be made later in the section on Discussions.

The total energy of a solid may be separated into two terms : a one-electron band
contribution Egs and an electrostatic term Egg which includes several contributions :
the Coulomb repulsion of the ion cores, the correction for double counting terms due to
electron-electron interaction in Egs and a Madelung energy in case the solid has ionic
character. The renormalized cluster interactions defined in ( 1) should, in principle, in-
clude both Egg and Egs contributions. Since the renormalized cluster interactions involve
the difference of cluster energies, it is usually assumed that the electrostatic terms cancel
out and only the band structure contribution is important. Obviously, such an assump-
tion is not rigorously true, but it has been shown to be approximately valid in a number
of alloy systems (including PdV which we study here) [19]. Most of the works where
calculations start from the disordered side are based on the band structure contribution
alone. Our work also has that assumption.

The effective pair interactions can be related to the change in the configuration aver-

aged local density of states :

EY = [*4B(E - Er)an(E) 2

-0

where An(E) is given by :

An(E) = S Im(Tr(E1-H"Y) Ny (3)
17eall pairs

€17 is £ 1 according to whether I=J or I# J and {...) refer to configuration averaging.

-
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There are four possible pairs which 1J can be : AA, AB, BA and BB. H!/ is the Hamilto-
nian of a system where all sites except i and j are randomly occupied, whereas the sites i
and j are occupied by atoms of the type I and J. This change in the averaged local density
of states can be related to the generalized phase shift 7(E) through the equation :

An(E) = —= (4)
where 7(E) is

det < G44 > det < GBE >
=1
1(E) %8 Get < GAB > det < GPA > )
G! is the resolvent of the hamiltonian H?/. The generalized phase shift 7(E) can

easily be calculated following the orbital peeling method of Burke [14]. The details of
the orbital peeling method in the context of pair interaction has been mentioned in detail

elsewhere [9], and here we shall quote only the final result :

9 Er
B = Y Yéu[ (B-Er)eg<Gl>
1Ieall pairse=! °°
* NS Ll = pedd 1 17
= T Y&V -Y R+ (NN Er (6)
1Jeall pairse=1 [k=1 k=1

where GI7 denotes the Green function corresponding to the Hamiltonian , where two
atoms are embedded at sites [ and J in which the orbitals from 1 to (a - 1) are deleted
at the site I 2 and P{"" are the zeros and poles of G, N and N2 are the
number of such zeros and poles below Ep . This method of zeros and poles enables one
to carry out the integration easily avoiding the multivaluedness of the integrand involved
in the evaluation of the integral by parts. These zeros and poles are estimated from the

recursion coefficients for G/ >.



2.2 AUGMENTED SPACE RECURSION

As discussed in the previous section, the calculation of the effective pair interaction in
our formalism reduces to the determination of the configuration averaged green functions
(GA4), (GBB) (GAP) and (GB4). We shall employ the augmented space recursion cou-
pled with the linearized tight-binding muffin tin orbital method (TB-LMTO) introduced
by Anderson and Jepson [13] for a first principle determination of these configuration
averaged quantitles. We shall take the most localized, sparse tight binding Hamiltonian
derived systematically from the LMTO-ASA theory and generalized to random alloys,
given by :

HPL,jL' = C:LéiLéjL’+A:'1£25FLJL'A;£2’
i = Cfni+CP(l—n)
A B
AVt = (A ni+ (A7) (1-n) (7)

Here i,j denote the lattice sites and L=(¢m) are the orbital indices (for transition metal
¢ <2). C4,CE A and A are the potential parameters of the constituents A and B of
the alloy, n; are the local site-occupation variables which randomly take values 0 or 1
according to whether the site is occupied by an A atom or not. The screened or tight
binding structure function $8 contains all the information on lattice geometry, and it is
expressed in terms of conventional structure function S® and the screening parameter 3

as

§8 = §°1 + BS°) (8)

The Hamiltonian described by equation ( 7) is related to the nearly orthonormal -

representation by the relation

H' = E,+h" = E, +h* —h%"W° + ... (9)



This ASA form of the orthonormalised Hamiltonian was used in the present work.

Usually the expansion is truncated after the second term which is accurate to first order

n (E-E, ). The third term is necessary for systems with wide bands specially for s,p

states. We have used both first and second order approximations to ensure convergence.

The configuration averaged green functions (GH(2)) is

((z1 — H)™'). Assuming that

we embed T and J in sites 1 and 2 the Hamiltonian HZ7 has the following form:

HY

E Cy, za:ral + 2 C, zazaz + .
{=a
]
gljuz (€3, + 6Cin,) alay + ..
p#£1,2£=1
9
; > Al/2 ISe e (A;:’ffﬁ + 5A;,‘"2np) czi[a;D e
pEli=a f'=1
g @8
n tztz A /2 ISg ¥ ( ;/ﬁ’B + 5A:,/2np) GIGP e
pF2i=14=1
9 9
S5 (AP 467 ny) SERAYE Talay ...
p#li=1{l'=a
g 9
SY (a4 §AY n,) SpEAYR ala
p#2=14=1
g 9
S (a4 58y %ny) S8 (A VAB 4 6A )

(10)

We note that the Hamiltonian has both diagonal as well as off diagonal disorder. We

will retain this form of the Hamiltonian, and will not resort to any transformation as is

done in single site approximations [20]. In order to evaluate the configuration average

we will employ the ideas of the ASF which puts configuration averaging on the same

footing as quantum mechanical averaging by augmenting the hilbert space spanned by

8



the wave functions with a configuration space spanned by different realizations of the
random variables associated with the Hamiltonian.

Let us suppose that the Hamiltonian describing the system is characterized by a set
of random occupation variables {n;} , which are independent. The probability density of

the variables n; is assumed to have finite moments of all orders, so that we may write

1,5 : N
p(n) = —(] ((ni = i0)I- M) )
where M’ is an operator defined on the configuration space ¢' of rank N , spanned by

N possible realizations of n;. The Augmented Space Theorem [10] now states that the

configuration average of the resolvent G(E,{n;}) may be written as
(G(E, {n})) = (Fl(zI - H{M'})'|F)

H({M}) is the same operator function in the augmented space of M' as H({n;}) was
of n; and |F) = [1® |4}) is the configuration ground state in the augmented space. Thus
the configuration averaging has been reduced to the problem of the ground state matrix
element in the augmented space ¥ = H ®®. For a system with N sites and disorder
described by binary probability distribution the rank of the space is N x 2V,

The construction of M given the distribution of n; has been described in detail earlier

[10]. For a binary distribution M is given by:

M = zblbio + (1 — 2)bliba ++/2(1 — 2) (Blobiy + blybio) (10)
(bfo,bio) and (bfl,b,-l) are the creation and annihilation operators in the augmented
space where each site is characterized by two states (0,1) ,which may be identified with
the up and down states of an Ising system. The configuration states may then be stored
extremely efficiently in bits of words and the algebra of the Hamiltonian in the configura-
tion space may mirror the multispin coding techniques used in numerical work with the
Ising model.
Once we have identified the operators in the configuration space , it is worth while

mentioning how one represents the basis in real and configuration spaces . A basis |m)

9



in H is represented by a column vector C,, with zeros everywhere except at the m-th

position. The inner product
(m|©|n) = CLC

ala,C, = 6,,Cnm

A member of the basis in [1® ¢; has the form |y}, ® 7f,... ® 'yf,;J ® ...) where each
A may be either 0 or 1. In the usual terminology of ASF the number C of 1’s defines
the cardinality of the basis and the sequence of positions at which we have the 1’s {S¢}
called the cardinality sequence labels the basis. Thus a binary sequence B{C,{Sc}] is a
representation of the member of the basis in the configuration space. The dot product

between these basis members is then
B[C,{S¢}] @ B[C', {S¢+}] = bccr6{ScScr}

Without going into the computational details we mention that the operations of H on
the configuration space amount to changing cardinally and cardinality sequences . Since
the operations are restricted to the bits of words one can easily employ logical functions
to define the operation of the Hamiltonian in the configuration space.

It is well known, that for a system described by a sparse Hamiltonian the recursion
method is one of the widely used methods to generate a continued fraction expansion of the
resolvent of the Hamiltonian. Haydock[21] has mapped the contribution to the continued
fraction coeflicients to self-avoiding walks on the underlying space. He has shown that the
dominant contribution comes from walks that wind round the initial starting state. This
allows us to work only on a finite part of the augmented space. In practice the continued
fraction is evaluated to a finite number of steps and then terminated by incorporating
analyticity preserving terminators. Several terminators are available in the literature and
we have chosen to use the terminator of Lucini and Nex [22]. The advantage of such a
termination procedure is that the approximate resolvent retains the herglotz properties.

It is interesting to compare this with the fact that in the cluster generalizations of the

10



CPA one goes to great lengths to ensure herglotzicity and these approximations cannot
maintain the accuracy in the band widths. The terminator approximation preserves the
first 2(N-2) moments of the density of states ezactly. This represents the effect of a cluster
at a distance (N-2) from the starting state. It also maintains the correct band-widths,
band-weights and the correct singularities at the band edges. If we carry out recursion on
the augmented space, we can compute the configuration averaged green function directly.
The method does not involve single site approximations and solution of self-consistent
equations as required in the CPA and its generalizations. For non-isochoric alloys , the
difference in atomic radii of the constituents lead to change in the electronic density of
states, as confirmed by experiment (23] and approximate theoretical techniques [24]. One
thus expects that the mismatch of size produces, in addition to a relaxation energy Eg
contribution, a change in the band structure. Within our Augmented Space Recursion
(ASR), off-diagonal disorder in the structure matrix 57 because of local lattice distortions
due to size mismatch of the constituents, can be handled on the same footing as diagonal
disorder in the potential parameters [23].

The augmented space recursion with the TB-LMTO Hamiltonian coupled with orbital
peeling allows us to compute configuration averaged pair-potentials directly, without re-
sorting to any direct averaging over several configurations. In an earlier communication
[11] we have discussed how one uses the local symmetries of the augmented space to re-
duce the Hamiltonian and carry out the recursion on a reducible subspace of much lower
rank. If we fix the occupation of two sites, the local symmetry of the augmented space is
lowered (this is very similar to the lowering of spherical symmetry to cylindrical symmetry
when a preferred direction is introduced in an isotropic system). We may then carry out

the recursion in a suitably reduced subspace.

3 RESULTS AND DISCUSSIONS.

We have applied the formalism developed in the previous section in calculating the pair

potentials for the fec based Pd,V,_. alloys for various values of the concentration c. The

11



calculation of the pair potential has been restricted upto fourth neighbour interactions.
Our choice of the Pd-V alloy is motivated by the fact, that in transition metal alloys
(apart from few exceptions) the d band arguments show that the most strongly ordered
alloys will have an average band filling near the middle uf the d-band, or somewhere
near five d-electrons, whereas alloys with band filling close to completely empty or full d
level will tend towards phase separation. Pd-V alloys, with constituents on opposite ends
of the transition metal series, will order according to the above prescription. Further,
stability properties of Pd-V system 1s well studied both experimentally as well as by
theoretical methods like KKR-CPA coupled with generalized perturbation method[26]
and by LMTO coupled with direct configurational averaging[9], so reliable results are
available for comparison with our predictions.

We now mention briefly some details concerning the numerical part of the problem .
Total energy density-functional calculations were performed for Pd and V in the fce-
structure. The Kohn-Sham egations were solved in the local-density approximations
(LDA). The LDA was treated within the context of the method of the linear muffin-
tin orbitals (LMTO) in the atomic sphere approximation. The computations were per-
formed semi-relativistically ( including scalar relativistic corrections ) and the exchange-
correlation potential of Von Barth and Hedin was used. The basis set was composed of ¢
= 0,1,2 orbitals , so that the occurring matrices were of order 9 . The potential param-
eters Al and 4/ of the constituent I were scaled by the factors (s!/s¥)2*! to account
for the fact that the Wigner-Seitz radius of constituent I, s is different from that of the
alloy, s*/°v. These potential parameters were used to parameterize the alloy Hamiltonian.
This choice of different Wigner-Seitz radius for Pd and V allowed one to take into account
charge self-consistency approximately, yet accurately and consistently, as emphasized by
Kudrunovsky et. al. [20]. For the purpose of augmented space recursion , a four shell
augmented space map was generated from a cluster of 400 sites. We calculated the local
density of states and fermi-energy with second order LMTO-ASA Hamiltonian through

the recursion method exact upto eight levels of recursion. and with analytic terminator

12



of Lucini and Nex[22] .

Figure 1 shows the total density of states for Pd-V alloy, for various concentrations
with the positions of the fermi level shown. In order to maintain accuracy the Fermi energy
Er has been calculated from the second order Hamiltonian. For the calculation of the
pair potential we followed the same methodology coupled with orbital peeling discussed
in detail earlier with first order Hamiltonian. We found that since pair potentials are
differences of integrated quantities, there seemd to be little appreciable change in doing
the calculation with the second order Hamiltonian.

In Figure 2 we have plotted the nearest neighbour effective pair interactions, as func-
tions of (a) band filling and (b) energy, at three different concentrations for the Pd-V
alloy. The relation between the two figures can be understood by looking at the variation
of the number of states per spin with energy. This is shown in Fig 2(c). The shape of
the curves is in agreement with those obtained by other methodologies [9, 1], consisting
of a phase separating region at the band edges and an ordering region near the centre.
The magnitude of the effective pair interaction decreases with distance with increasing
number of nodes.

In Figure 3 we have plotted V},V,,V3 and V4 ! for ¢ = 0. 5 as a function of band
filling to demonstrate this point. This in turn indicates the rapidly convergent properties
of the configuration energy expanded in terms of effective cluster interactions. We find
that | V1| 3> Vs, Va or Vy|. so that the ordered structures appear only when V; > 0.

Once we have obtained the effective pair interactions , they can be used to calculate
the ordering energy , hence the relative stability of various ordered phases at a given
concentration. At this point one can calculate the ordering energy expressed in terms of
effective pair interactions for various stable phases at a given concentration to analyze
the stability properties . However to discuss the stability properties of Pd-V alloy we will
follow the method of Kanamori and Kakehashi [16] and calculate the antiphase boundary

energy. Using the method of geometric inequalities these authors determined the ground

ly, = E& , |ri — #j| = na where a is the lattice constant
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Tk [1 23 4 c |
L, |0 3 0 6 0.25
DOy [0 2 ¢ 2 0.25
IL |2 3 2 6 0.5
AB; {2 2 8 2 0.5

Table 1: Values of p; for various superstructures at concentrations 0. 25 and 0. 5

state of 3D Ising model including pair interaction up to fourth NN interactions . They
expressed the configurational energy as : Eq = ¥ Vi pi , where p; is the total number
of k-th neighbouring BB pairs in a given configuration C. The antiphase boundary energy
between two closely related ordered superstructure configurations C and C’ is given by ¢
= Es — E¢ . In Table 1 we list the values of p,/Nc for different configurations.

In Figure 4 we have plotted this anti-phase boundary energy e = — V4 4V;3 ~ 4V,
as a function of band filling for Pd-V with ¢ = 0. 25, 0.5 and 0.75. The number of
zeros is in agreement with the arguments based on moments (there has to be at least four
zeros) . In the fcc lattice for ¢ = 0. 75, the only possible ground states in the presence of
interactions up to fourth nearest neighbours are LI; and DO2;. The two structures has
identical numbers of AB nearest pairs, which means that the difference in energy is much
smaller than V; and it is given by the anti-phase boundary energy. It has been proved
rigorously by Kanamori and Kakehashi [16}from the ground state analysis of the 3d Ising
model Hamiltonian that DO, structure is stable if ¢ < 0 and L1, structure is stable if
e > 0. We find from Figure 4 that ¢ < 0 at E = Eg for ¢ = 0. 75 suggesting that at
this concentration DO, structure is stable. A similar analysis shows that ¢ > 0 for ¢=
0. 25 at E = Ep and here the LI, structure is stable. This is further supported by the
fact that an exchange of stability between LI; and DOy; occurs for large electron number.
For ¢=0. 5 , the possible ground state configurations are LI and A;B; and we find Ll
to be more stable by a similar analysis of anti-phase boundary energy in agreement with
. experiments and theoretical studies based on other methods.

Before we compare our results with other earlier works, in particular the TB-LMTO-



DCA and KKR-CPA-GPM, it is worthwhile to examine these in some detail.
The TB-LMTOQ-DCA shares most of the features of our TB-LMTO-ASR :

(i) Both methods employ the TB-LMTO for the description of electronic structure.

Both use the first order Hamiltonian.

(ii) In both methods, calculations are carried out in real space, without resorting to any

single site approximation.

(ili) Both methods use the orbital peeling method to obtain the effective renormalized

pair interactions.

The main point of difference is the method of carrying out the configuration aver-
aging involved in the definition of the pair potential. In the TB-LMTO-DCA the pair
interactions ,in the grand canonical version, are obtained for several configurations ran-
domly generated (consiste: t with all possible concentrations) and the averaging is done
directly as a weighted sum. Because the pair interactions are integrated quantities, they
are expected to converge fast with the number of configurations sampled. However, in
principle, such a method cannot sample all possible realizations or, in other words, there
is no surity that the thermodynamic limit has been achieved. On the contrary, in the
TB-LMTO-ASR the configuration averaging is done using the Augmented Space Theo-
remn . The subsequent termination of the recursive generation of the continued fraction of
the configuration averaged Green function can be carefully controlled. The effective pair
interactions obtained in our method are concentration dependent canonical interactions.
A direct comparison between the effective pair interactions in the two methods is possible
only for ¢=0.5 {18, 27].

The KKR-GPM method is distinct from these two methods. The main features of this

method are :

(i} KKR is used for the description of the electronic structure. Since there is no
linearization involved, the KKR method is certainly more accurate than the TB-
LMTO.



[PAIR INT. | TBLMTO-DCA | KKR-GPM | TBLMTO-ASR |

V. 43 2.0 4.3
V, 1.1 0.8 0.1
V; 0.3 0.5 0.1
' 0.2 0.1 0.2

Table 2: Effective Pair Potentials in mRyd/atom for various distances between the pairs
for a 50-50 PdV alloy. TBLMTO-DCA values are taken from (9) and KKR-GPM from
(26)

(1) The single site CPA is used for the configuration averaging. The effective interac-

tions are therefore concentration dependent.
(iii) Calculations are carried out in reciprocal space.

(iv) The effective pair interaction obtained in the GPM method are usually not reno:-
malized, so the contributions from self-retraced paths and higher order interactions
are ignored. Although in some other versions of the GPM (Tight-Binding GPM

[1, 28]) the renormalization has been carried out.

In Table II we present the results for the pair interactions upto the fourth nearest
neighbours obtained from different methods have been compared with our calculations
for a 50-30 PdV alloy.

It is clear from the table? that agreement in the dominant interaction V, is better
between the TBLMTO-DCA and our work. The reasons for this may be attributed
to the fact that both TBLMTO-DCA and TBLMTO-ASR are based on the embedded
cluster approach and is therefore non-perturbative. The pair-potentials obtained by these
methods are renormalized compared to those obtained by the KKR-GPM. The effective

interactions are very small energy differences (of the order of mRyd/atom-spin) and are

?While comparing different results one should be careful about the units used. In the KKR-GPM and
our work the effective interactions are quoted in mRyd/atom-spin, whereas in TBLMTO-DCA they are
quoted as meV /atom. In addition in the KKR-GPM and our work the energy expansion is in terms of
concentration fluctuations, whereas in the TBLMTO-DCA the expansion is in terms of site-spin variables.
This introduces a factor of 1/4 in the definition of the effective interactions.
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very sensitive to the specific description of electronic structure. The KKR scheme with
1ts non-linear secular equation is definitely more accurate than its linearized version, the
LMTO.

There is greater variation in the V3, V3 and V, between the various methods.In a sys-
tematic study of PdRh alloys using different Hamiltonians : parametrized tight-binding,
TBLMTO with equal Wigner-Seitz radii, TBLMTQ with different Wigner-Seitz radii
and one with experimental lattice constant, Wolverton et.al. [9] have shown that V;
varies between -1.3 mRyd/atom and -0.34 mRyd/atom, while V; varies from about -.18
mRyd/atom to an almost zero positive value. This indicates that the pair interactions
depend sensitively on the particular hamiltonian used and the approximation schemes
used in describing the electronic structure. We expect a similar sensitivity for PdV also.

There are several underlying differences between the TBLMTO-DCA and our work.

(i) For the input to alloy calculations, the TBLMTO-DCA assumes an alloy volume
which is the concentration weighted average of the volumes of pure Pd and V. The
potential parameters for Pd and V are then calculated at the common Wigner-Seitz
radius of the alloy. In our calculations we have taken unequal Wigner-Seitz radii

for Pd and V, which takes into account charge self-consistency, as emphasized by
Kudrnovsky and Drchal [20].

(ii) The TBLMTO-DCA uses the precription of Shiba to obtain the off-diagonal matrix
element between unlike atoms. In our work, on the augmented space, it is not
necessary to use this prescription and we have built up the off-diagonal matrix

element from the potential parameters A# and Af’ and the structure matrix Sfj

(iii) The configuration averaging procedure is also quite different in the two procedures,

It is not surprising therefore that there is some mismatch particularly between the
values of Vy, V3 and V,. The sign of V4 in our work is opposite to that of TBLMTO-
DCA. Recently it has been observed by Singh and Gonis {29] that changing the description

of the electronic structure from KKR to KKR-ASA within the same averaging scheme,
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COMPO ORDERED KKR | TBLMTO
- SITION { STRUCTURES | -GPM -ASR

PdV; D0,;-L1; 4.3 4.0
PdV A,;B,-Ll, 4.5 2.02
PdsV DOgy;-L1, -0.4 -0.31

Table 3: Antiphase boundary energies in mRy/atom-spin for PdV at different atomic
compositions. The antiphase boundary energies for the KKR-GPM has been taken from
figure 1 of (26)

there is a change in the value of V; by about 1 mRyd/atom and also a change in the sign
of V.

In the TBLMTO-DCA, the charge neutrality is achieved by shifting the on-site energy
of a constituent with respect to the other, such that each configurationally averaged atom
is locally charge neutral. In our scheme, as explained earlier, we have used the precription
of Kudrnovsky and Drchal and used unequal Wigner-Seitz radii for the constituents,
with charge neutrality in each of the spheres. The position of the Fermi energy depends
sensitively on charge neutrality. For PdV system this is particularly important, since
the number of valence electrons in the constituents are very different there could be
considerable charge realignment on alloying and a small consequent shift in the Fermi
level can lead to appreciable change in the pair potentials.

The quoted TBLMTO-DCA pair potentials are in the grand canonical scheme (con-
centration independent). In the thermodynamic limit (N — oo) the canonical and grand
canonical pair potentials converge on each other. But numerical calculations [27] have
demonstrated that for asymmetric systems, like PdV, the convergence is not good and
this may contribute to the difference between the TBLMTO-DCA and the canonical pair
potentials of our work.

In order to complete comparisons with other works, we quote the antiphase bound-
ary energies in Table III and the ordering energies in Table IV for three different alloy
compositions for PdV.

The antiphase boundary energies for the 75-25 and 25-75 alloys agree well with each

18



COMPO | ORDERED |[TBLMTO | KKR | TBLMTO
- SITION | STRUCTURE | -DCA |-GPM -ASR

PV, i, 8.58 | -6.67 | -7.98
PdV L1, 1102 | -7.40 | -10.53
PdsV DO, 9.8 231 | -8.54

Table 4: Ordering energies in mRy/atom for PdV at different atomic compositions.

other. The TBLMTO-DCA uses a grand-canonical version of the pair interactions, so
that we may compare with only the 50-50 alloy case. From table 3 of [9] we may obtain
a value 3.16 mRy/atom-spin which is midway between the KKR-GPM and our values.

Ordering energy ® gives a quantitative estimate of the energy difference involved in a
order-disorder transition and is the most critical test of the formalism, because it is much
smaller (typically of the order of 0.1eV or smaller) than other quantities relevant to alloy-
ing, such as the formation energy of the random state which is five or more times larger.
As anticipated from earlier comparisons, the agreement of our work with TBLMTO-DCA
is much closer than that of the KKR-GPM. In particular, the ordering energy of the DO,,
structure is rather small in the KKR-GPM as compared to the TBLMTO-DCA and our
work. We should mention here that the TBLMTO-DCA includes higher order interac-
tions (upto quadruplets). For asymmetric systems like PdV, inclusion of these higher
“order interactions may prove to be important [30]

It is interesting to note that the prediction of the stable ordered ground states for all
the three concentrations is the same in all the three methods discussed.

In conclusion our results demonstrate that augmented space recursion and orbital
peeling in conjunction with LMTO formalism , constitute a viable and computationally
feasible approach to the calculation of phase stability in binary substitutionally disor-
dered alloys . However , before accurate quantitative answers can be obtained , further
work is necessary in order to incorporate self-consistency in the total energy , exchange

and correlation effects , elastic interactions and lattice relaxation into theory of alloy

3figures for the TBLMTOQ-DCA have been read from Fig 2(d) of the reference [9], while those for the
KKR-GPM is taken from Table 1 of [26]
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phase stability. Our methodology is capable of tackling these sophistications and this will

constitute the substance of our later work.

i
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FIGURE CAPTIONS

Figure 1. Density of states vs Energy for Pd.V;_. alloys. (a) ¢=0.0 (b) ¢=0.25 (c) ¢=0.5

(d) ¢=0.75 (e) c=1.0. The vertical lines mark the positions of the Fermi energies.

99



Figure 2(a). The nearest neighbour pair potential V; vs band filling for Pd. Vi, alloys :

full curve, c=0.5 ; dashed curve, ¢ = 0.75; and dotted curve ¢=0.25. Vertical lines mark

the band filling in the three different concentrations.

Figure 2(b). The nearest neighbour pair potential V; vs energy for Pd.V,_. alloys : full

curve, c¢=0.5 ; dashed curve, ¢ = 0.75; and dotted curve ¢=0.25. Vertical lines mark the

Fermi energies.

Figure 2(c). The number of states per atom as functions of energy for the three alloys

mentioned in Fig 2(a)-(b). The vertical lines mark the Fermi energies.

Figure 3. The n* neighbour pair potentials vs band filling for ¢=0.5, full curve, n=2;
dashed curve n=3 and dotted curve n=4. Vertical lines mark the band filling in the three

different concentrations.

Figure 4. The antiphase boundary energies for c = (a) 0.25 (b} 0.5 and (c) 0.75 Vertical

lines mark the band filling in the three different concentrations.
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