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Order and Phase Stability in
Alloys

FRANCOIS DUCASTELLE

Office National d’Etudes et de Recherches
Aérospatiales (ONERA) BP 72
92322 Chitillon Cedex, France

5.1 INTRODUCTION

Due to the presence of interatomic interactions, any alloy should eventually
order or phase separate at low temperature. This is observed in many systems.
When the ordering interactions are strong, the alloy may remain ordered up to
the melting point (NiyAl for instance). When they are very weak, the solid
solution can be the only observable phase since at low temperature atomic
diffusion is no longer efficient (Cu—Ni). In the intermediate regime we have a
more interesting situation with one or several ordered phases at low tem-
perature which disorder at a critical temperature before melting (Cu-Au,
Pd-V, Ni—Fe, etc.). In the simplest case all phases are built on a fixed underly-
ing lattice such as the fce or bec lattice, but more frequently, several structures
are involved and many compounds display structures which are not observed
in elemental metals (Laves phases, o phases, A15 phases, etc.).

Ifis of great interest, both from a fundamental and a practical point of view,
to understand what stabilizes a particular structure at a given concentration
and temperature and then to predict the phase diagrams of alloys.

Until recently, most theories in this field were based on phenomenological
models. The stability of several crystalline structures has been interpreted using
geometrical arguments by looking for the most effective way of filling space
with hard spheres of different radii. Size effects are also known to account for
the limits of stability of solid solutions. Chemical or electronic parameters have
also been used. One of the celebrated Hume—Rothery rules for instance relates
the stability of several structures to definite values of the electronic ratio
(number of valence electrons per atom). Finally various clectronegativity scales
have been introduced. As far as phase diagrams are concerned, most approaches
have been based on phenomenological thermodynamic models using regular
solution models or various improvements on them.

Recent research indicates that it is now possibie to tackle these problems from
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microscopic theories based on first principles. This confidence is based on the
success of first principles electronic structure calculations concerning elemental
metals as well as intermetallic compounds, and on the development of efficient
thermodynamic tools. In fact ‘ideal’ methods starting from the Schrédinger
equation and from general thermodynamics are generally not so useful when
one is interested in a physical understanding of fairly complex systems, and it
is still quite valuable to define intermediate models containing a few relevant
paramerters.

Many modern studies use an approach similar to that presented in this short
review which can be summarised as follows. We start from electronic structure
models based on various well defined approximation: the one-electron approxi-
mation based on the so-called local density approximation, the tight-binding
approximation when necessary, etc. These approximations are now well con-
trolled in the case of elemental metals or simple ordered compounds and
provide total energies with a very good accuracy. The next step is to calculate
the energy of any atomic configuration which obviously cannot be done
exactly. At this stage it is shown that this energy can be obtained through a
generalised perturbation expansion startng from the disordered state. The
latter is described within the coherent potential approximation which is the
simplest method that allows us to treat the scattering of electrons in strongly
disordered systems, i.c. in systems where the atomic potentials strongly differ
from one atom to the other.

At the end of this process, the electronic degrees of freedom are eliminated
and we are left with the desired expression for the energy of any configuraton
as a function of pair and multiple interactions. In the case of a binary alloy we
recover the celebrated Ising model or direct generalisations of it, were it not for
the concentration dependence of the interactions which is completely unavoid-
able in the theory. The implications of this dependence can be considerable, in
parucular when studying phase diagrams (principally because of the common
tangent rule), but they are still far from being well characterised, both experi-
mentally and theoretically, and it is hoped that at least locally on the con-
centration axis the previous theory offers a good justification for the use of Ising
models. ‘

The next step is therefore a thermodynamic one and consists in exploring the
properties of the Ising model, i.e. studying the nature and the stability of
ordered structures as a function of concentration, temperature and of the
interactions. Exact results can be obtained at zero temperature but approxima-
tions are required at finite temperature. In the case of short-range interactions
the modern developments of generalised mean field methods such as the cluster
variation method now provides very accurate results, as tested by Monte Carlo
stmulations.

We are thus able in principle to go from electronic structure calculations to
phase diagrams through a set of well controlled approximations. At least this
is so when ordering effects can be assumed to take place on a fixed, rigid lattice.
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These restrictions are rather important, since they are necessary in order to
speak of Ising models with discrete numbers of degrees of freedom per site.
However even if this has still not been worked out in detail there is no difficulty
in principle in extending the whole chain of arguments to include elastic and
relaxation effects; it is also possible to compare ordered structures on different
types of lattices, i.c. to treat structural effects.

The fact that such an approach can now be implemented is certainly an
important result of recent years. It should be stressed however that the number
of approximations introduced to derive in the end models with a few physical
parameters, necessarily implies some loss of accuracy when studying concrete
situations, Phenomenological models remain necessary to account in detail for
expertmental data, but on the other hand they cannot be reliable globally if
they are not consistent with what is learned from more fundamental theories.

The present review is somewhat schematic. Details can be found in a recent
book.! Several other important topics not discussed here can be found in the
review by de Fontaine, in the books by Khachaturyan and Hafner and in those
of the series Cohesion and Structure***®

Sections 5.2 to 5.5 are concerned with the electronic structure of alloys and
with the derivation of effective multi-atom interactions. The thermodynamics
of ordering effects is discussed in sections 5.6 and 5.7. Finally a few applications
are presented in section 5.9.

5.2 TIGHT-BINDING MODEL FOR ALLOYS

The tight-binding formalism described in Chapter 4 is particularly well
adapted to a semi-quantitative discussion of strong alloying effects. It also
applies quite naturally to transition alloys. Furthermore there is no difficulty in
principle, if not in practice, to derive the appropriate extensions involving full
band structure calculations.

We consider here binary alloys A, B, on fixed underiying lattices. For
convenience we assume crystalline structure with a single atorn per unit cell
(e.g. fec or bec). Each atomic configuration is characterised by the value of the
so-called occupation numbers g equal to unity or zero depending on the
presence or not of an atom or type i at site n; obviously pE=1—p* The
simplest tight-binding hamiltonian H can then be written in the Dirac notation
(see Appendix) as

H=Yinea+ ) In)Baim (3.1}

] L L 1]

where [n > is an atomic state centred on site n and &,, §,, are the corresponding
atomic level and hopping integrals, namely

6 = ) pE (5.2a)

isAB

&2
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Fig. 5.1 Typical variations of the atomic levels and of the hopping integrals as a function
of the mean number of electrons A,.

B = 2 bibrBn (5.2b)

ijm AR

In the case of transition alloys the degeneracy of the d states has to be
included, but for simplicity we shall drop here the corresponding indices which
can easily be reintro-'uced when necessary. In this simple scheme, the electronic
structure of the alloy is then characterised by a few parameters. Taking as the
origin of energy the mean atomic level £ = (1 — c)e* + c£®, an important
parameter is the so-called diagonal disorder parameter & = g8 — & which
plays the part of an electronegativity difference. The off -diagonal disorder is
then related to the differences between the hopping integrals. A very con-
venient and reasonable approximation is to set (f**)? & B**. . Since the
widths W and W?® of the pure elements are proportional to f** and i
respectively, off-diagonal disorder can be characterised by the ratio
(WA — WPB)/IW where W is the mean band width. The bandwidth of tran-
sition metals decreases along a transition series and increases from the 3d to the
5d series with extreme values of the order of 4 and 8 ¢V. The energy levels on
the other hand decrease about one eV per element (see Fig. 5.1).

In many cases then, off-diagonal disorder can be neglected (a typical excep-
tion would be Zr-Ni alloys} and the principal parameter is the dimensioniess
ratio &/ W which is at most of the order of unity for alloy constituents with very
different number of d electrons N* and N®. When /W < 1 standard pertur-
bation theory applies, and to lowest order the density of states is that of an
effective metal of bandwidth W and centred on the mean level £. From very
general arguments it is then easy to determine the qualitative shape of the
density of states as a function of the degree of order and of the concentration
(Fig. 5.2).
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Fig. 5.2 Schematic densities of states: (a) for a two-phase alloy, (b) for a disordered alloy,
(c} for an ordered alloy. In all cases¢ = 1/2. The density of states for an alloy when ¢ > 1/2
is shown in (d).

5.3 ELECTRONIC STRUCTURE OF DISORDERED ALLOYS

We want to calculate the density of states of a completely disordered 2oy, i.c.
such that the occupations of different sites are completely uncorrelated. Using
ensemble averages (. . .) over all possible atomic configurations for a given
concentration, this means that

{pa>
{buta?) = Cifn#Em (5.3)

I
oy
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where we have set g, = 5. It is not possible to calculate exactly the average
density of states {n(E))>. Some formalism is necessary to scc where are the
difficulties. Following the Appendix on Green functions, we start from the

formula
Im 1 GE + i) (5.4)

n

n(E) = Trd(E — H) = lim —

where Trdenotes the trace over the states {n), /m the imaginary part and G the
so-called resolvent or Green function

Giz) = (z-H)"! (5.5)

where z is a complex number. Assuming diagonal disorder only, f can be split
into two parts

H=H4+V

with
H = 3 {n) B {m| (5.6)
Vo= ) in)e, <nl

where H° does not depend on the atomic configuration. Defining the bare
Green function G° through G® = (2 — H°)~!, we write the Dyson equation
for G

G = G° + G°VG
(5.7)

G® + G°VG® + G'VG*VG® + - - -
One should of course be careful in this kind of calculation not to forget the

non-commutativity of operators. Consider now the average of the second order
term

(G'VG°VG®) = G VG*IG® (5.8)
and take its matrix element; we have

((VGV)a) = L ppl> €4G, (5.9)
by
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so that, according to equation (5.3) {¥G° V") does not reduce to ¢ NGV, We
have instead

VGVy — (GVy = Y In) ¢(1 = )& Go{n| (5.10}

It is then useful to define an effective potential £(z) through
(G) = G+ GG = (2 - H" ~ Z(z))"" (5.11)
Z(z) is a complex operator which can be expanded in successive powers of &

Z(z) = i e(l = )FF () n) + - - - (5.12)

where F(z) = G2 is the diagonal matrix element of G°.

It is impossible to sum exactly this series, but we want at least to go beyond
second order in 4. Different methods can be used. The simplest approximation
is the so-called coherent potential approximation (CPA} which is a mean field
theory determining the best possible local effective potential, i.e. such that

Z(2) = X Inda(z)nl (5.13)

The subject is well documented and we skip here the details which can be found
in previous reviews."® Defining the local t-matrix ¢

f = (-0l - (¢ - a)F)" (5.14)
where F(z) = F°(z - ¢(2)), the self-consistent CPA equation for 6(z) is
W =+ (1 -a*=0 (5.15)

When the CPA equation is solved the average density of states per site is
simply given by

Im

((E)) = - = F(E + i) (5.16)

Furthermore we also obtained local conditional density of states n'(E), i.e. the
densities of states at a given site averaged over all configurations where the
occupation i = A,B of this site is held fixed

n(E) = -I?m{F[l - (€ - 0)F]7"} (5.17)
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Fig. 5.3 Total and partial densities of states.

As expected the total density of states varies as shown in Fig. 5.2; schematic
variations of the conditional densities of states are indicated in Fig. 5.3.

Local charges are obtained by integrating the conditional densities of states
up to the Fermi level. In general we therefore obtain charge transfers. At this
point some self-consistency rule is necessary since for example the diagonal
disorder parameter & has been considered up to now as an atomic quantity. The
simplest rule, similar to that used for the pure elements and binary components
{see section 4.4), is to postulate local neutrality. This implies that é has to be
self-consistently recalculated. In general, this yields values smaller than those
deduced from the free atom energy levels; this is a typical feed-back effect.’
Notice that global neutrality is always insured, by definition, since it is used to
locate the Fermi energy. '

5.4 ENERGY AND GENERALISED PERTURBATION EXPANSION

Exactly as in the case of pure metals the total energy of an alloy is directly
related to its band energy when local neutrality is preserved. We therefore want
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to calculate
U = J" dE En(E) (5.18)

where E; is the Fermi energy. Since this energy is the electronic chemical
potential at zero temperature, it is much more convenient to work with the
grand potential Q = U — E:N,, N, being the number of electrons, equal to
N(E;) where N(E) is given by

NE) = f dE n(E)
= ITm Trlog G(E + iE) (.19)
A straightforward integration by parts shows that
Q = - ["dEME) (5.20)

All these formulae apply to any configuration of the alloy. We now compare the
grand potential Q with that of the disordered state calculated within the CPA.
To this end we start from the Dyson equation (5.11) where (G} is replaced by
its CPA value denoted G. We then deduce that

TrlogG = Triog G — Trlog [} — (V — Z)G] (5.21)
and finally

TrlogG = TrlogG — Y log [l — (g, = 0)F]

- Trlog [1 - ) (5-22)
where G, is the off-diagonal part of & and { is given by
i= Yl =L al (5.23)
The term in the r.h.s. of equation (5.22) can be expanded as follows
~Triog [l — iGy] = %; .Gt G + - (5.24)

Because n # m the average of ,¢, in the completely disordered state reduces to

/ Lr\
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the product of averages {¢,»{{,» which vanishes within the CPA. In fact,
in the spirit of this approximation all other terms of the expansion can be
neglected, and we deduce that the CPA average of 77 log G should be given
by

(Trlog Cdepa = TrlogG — S log [l = (&, ~ 6)F]> (5.25)

This can be verified by differentiating this expression with respect to z and is
related to a very important property of the CPA.®

In the case of lattices with a single atom per unit cell, the second term in the
r.h.s. of equation (5.22) is in fact independent of the atomic configuration for
a fixed concentration and we finally obtain

Q = e + —j Trlog [1 — iG]
(5.26)
= D + 3 ): ppLVA +
niu
with
VS = - (" g (5.27)
n
For a binary alloy, this can be written
1
Q = Qe +52L (b= pw— Wt oo (528)
avm
Ve = VAN 4 P38 _ opAs - _ I?'“IE'JE(:* - PG

This is the basic result of the previous, somewhat lengthy, calculations.
Evidently such an cxpansion only makes sense if it is convergent. That this is
generally true is cxplamed in detail elsewhere.' It turns out that the small
parameter of the expansion is formally the product G, characterized by its
matrix elements £'G,,, n # m. Notice thatwhend — 0,# — * =~ §sothat ¥,

is of the order of 62/W in agreement with standard pcrturbauon theory. Now
' remains bounded when § increases so that £ G can remain small. In fact this
quantity depends on the energy and is not small by itself: it is only its contribu-
tion to integrals over the energy which is small. In other words, the generalised
perturbation scheme described here is valid for energies, not for densities of states.
Notice also that to lowest order, variations of grand potentials at constant

12



132 Electron Theory in Alloy Design

i
AM g

/R

Fig. 5.4 Ordering energy for the DOy, struderure for 8/W = 0-45. The full line corresponds
to a recursion calculation whereas the dashed line corresponds to a calculation using
effective pair interactions up to fourth nearest neighbours; after Bieber e al.

Fermi energy are equal to variations of energy at fixed electronic concentration
5o that £ — {Q)cp, is actually an ordering energy or enthalpy AH,,

To test the convergence of this generalised perturbation method (GPM} one
can compare the ordering energy AH,; of a given structure obtained from this
development with that provided by a full electronic structure calculation, using
recursion techniques for instance. Figure 5.4 shows the result of a calculation
performed for the DO,, structure of a transition alloy on fcc lattice.” In such a
case one should of course reintroduce everywhere degencracy indices. The
comparison is indeed fairly satisfactory and furthermore it can be verified that
it is even sufficient, on the scale of the figure, to keep only first neighbour
interactions ¥,. This has been observed in many other cases. In fact the shape
of the curve AH, ,(N,) is completely determined by that of ¥ (N,) which itself
should necessarily display two zeros at least. This can be proved using moment
arguments (see section 3.5).

It can be concluded that the generalised perturbation method (GPM) is
rapidly convergent, except of course when the band filling is close to a zero of
AH_,. In such a case the relative error between the exact calculation and an
approximate one can be important (see Fig. 5.4), and multi-atom interactions
are relevant. It can be shown also that the convergence of the expansion also
measures the validity of the CPA itself, so that conversely this convergence is
not very good when the CPA is known to be inaccurate, as for example in the
minority band; this is illustrated in Fig. 5.4, which shows that the convergence
of the GPM is much better in the majority band (low values of ¥,) than in the
minority band (high values of A,).
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Imagine now that we have performed a genuine perturbation expansion as
a function of §/W. Other pair /2, (and multi-atom) interactions would then be
defined, different from the previous ones, but the development would be much
less convergent, or not convergent at all. In other words, the choice of 2 ‘good’
medium of reference such as that provided by the CPA replaces a badly
convergent expansion by a rapidly convergent one, the price to pay being the
concentration dependence of the interactions through the concentration de-
pendence of the self-energy o. It is clear that this dependence is a simple way
to account for complicated interactions in an average fashion. Note here that
the interactions depend on the concentration for two reasons; the first has just
been mentioned and the second is that the number of electrons N, and
therefore the electronic chemical potential, obviously vary with concentration.
Contrary to the first, this other source of concentration dependence does not
disappear when & — 0. From a formal point of view, it is frequently useful to
consider N, and ¢ as independent variables. Then ¥, depends on ¢ and on A,
whereas V2, only depends on ¥,.

The previous discussion shows that pair and multi-atom ir teractions do not
have a real intrinsic nature. One can imagine that different media of reference
can provide expansions with similar convergence properties. For a given con-
figuration, differcnt sets of interactions can yield similar energies, but one of
course looks for a minimal set. What is argued here is that the generalised
perturbation method naturally provides such a minimal set. In particular the
hierarchy between the different relevant interactions is determined from the
electronic structure and not assumed a priori.

This is to be contrasted with another frequently used method which may be
called an inverse method. The idea is that if the ordering energy is considered
as a (linear) functon of a finite set of interactions, then these interactions can
be determined from the calculation of the ordering energies of 2 sufficiently
large number of ordered structures. Since this can be achieved with a very high
accuracy, using first principles band structure calculations, it is sometimes
argued that this is the way to proceed. There are however clear disadvantages
with this approach; first the relevant interactions are at best determined using
trial and error methods, but above all the physical interpretation of the
variations of the interactions with various electronic parameters can be com-
pletely lost. In particular the fact that a minimum set of interactions should be
concentration dependent is frequently overlooked in such methods.

Inverse and direct methods have been compared in detail by Sluiter and
Turchi;® see also Ferreira e al., Wei et al.'® A comparison with different but
similar perturbation expansions is also given in Gonis et al.!’ It is also possible
to replace the CPA by numerical averages over configurations.” The con-
centration dependence of the interactions has also been discussed in this frame-
work.” Many results of these theories are very similar, which is quite easy to
understand using the general arguments presented below.

To summarise: the generalised perturbation method (GPM) aliows us to

{4
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4

n m

Fig. 5.5 Path contributing to Ay,.

describe ordering energies as a rapidly convergent sum of pair and multiatom
interactions. The chain of arguments leading to this expansion is in fact quite
similar to that used in pseudopotential theory. In both cases an appropriate
choice of the medium of reference insures convergence of perturbation theory
and second order terms always yield pair interactions. Note that the theory only
describes ordering effects on a fixed lattice, and that it does not assume that the
total énergy of the crystal can be analysed in terms of pair interactions. As a
matter of fact such a decomposition does not hold for the total energy of pure
transition metals.

We have used the tight-binding scheme, but nothing prevents us writing
similar equations using first principles formalism such as the KKR-CPA oné"
(the correspondence between both formalisms is discussed elsewhere)."® In this
sense the theory can be quasi-exact. Some calculations have already been
performed in this direction."

3.5 EFFECTIVE CLUSTER INTERACTIONS: TRENDS AND
HIERARCHY

The generalised perturbation method generates effective pair and cluster in-
teractions whose characteristics can be deduced from a simple moment analysis
similar to that used for pure metals (see section 4.4.3). The normalised 2®
moment of the density of states y, is given by

B = N—I—TrH"' (5.29)

where A, is the number of atoms. Using the decomposition H = H® + F,itis
straightforward to realise that the first moment that depends on the atomiic
configuration at fixed concentration is the fourth one, the part depending
explicitly on this configuration Ay, being proportional to 77 H° VH' V. Asso-
ciating as usual with g, closed circuits of n elementary steps, we have here two
types of steps: those involving the diagonal matrix elements represented by
closed loops and those involving the hopping integrals associated with in-
teratomic jumps (Fig. 5.5). This yields

2

Alui = A

(bn = )(pn ~ )Bi 0 (3.30)

E)
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Fig. 5.6 Typical variations of V| (M)

It can be shown on the other hand that the moments Am, of the ordering
energy considered as a function of the Fermi energy are proportional to
—Ap, ;. Thus Amy, = Am = 0, Am, < 0. More precisely, one can define
moments of the pair and cluster interactions and equation (5.30) tells us that
the second moment of the pair interaction ¥, is proportional to — pL8%. In
general we only keep hopping integrals connecting an atom and those of its first
coordination shell (first neighbours in the fec lattice, first and second neigh-
bours in the bcc lattice) so that only first neighbour (in this sense) pair
interactions ¥; contribute to Am,. The values of the first moments of ¥, (£;)
provide us with very useful sum rules from which we deduce that V,(N,) hasin
general two zeros and varies as indicated in the upper curve of Fig. 5.6. This
shows that ordering (phase separation) is favoured for intermediate (extreme)
fillings of the d band. Considering higher order moments it can be realised that
the most important contribution to the third moment of V; is equal to
— (1 = 2¢)f%.6° which induces the asymmetry sketched in this figure.

Considering now further pair interactions, it is clear that they involve higher
order moments. For example, in the fcc lattice we have a second class of
neighbours, from the second to the fourth one; which can be reached in two
steps (Fig. 5.7). Their first non-vanishing moment, related to Ay is the fourth
one. We therefore expect ¥; 5, to be of the same order of magnitude. To be more
precise one has to calculate the number of circuits involving a given pair, and
also to take into account the fact that straight self-retracing paths contribute
more than open ones."® These effects have a tendency to cancel each other so
that we predict the hierarchy |V| » |V, i, ;| ® |V, . . .|. This hierarchy is
well observed in the numerical CPA calculations (Fig. 5.8). Similar arguments
allow us to guess the hierarchy involving higher order cluster interactions. Once
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a)

Fig. 5.7 {a) A path contributing to Ay, and therefore to M,. b) Nearest neighbour positions
on the fec latuce.

again the most important contributions are associated with straight paths. For
example the most important triplet in a fcc lattice is that involving the first and
fourth neighbours and may not always be negligible, compared to the pair
interactions ¥p4,.'"">"

Finally let us point out that several effects neglected up to now, but which
can be very important when studying specific systems (such as the dependence
on the crystalline structure, off-diagonal disorder, sclf-consistency, magnetism,
ete.) can be discussed within the same scheme.'®

5.6 THERMODYNAMICS OF ALLOYS; LONG RANGE AND SHORT
RANGE ORDER

We first recall the different notations used to describe the various configurations
C of an alloy. Although these notations can be generalised to s-component
alloys, we shall consider here binary alloys. As before we have in mind simple
incompressible lattices with a single atom per unit cell. Any configuration is
then specified by the set of values of the occupation numbers

A

Fig. 5.8 Pair interactions on the fec lattice; (¢ = 1/4, 6/ = 0-45); after Bieber."

he
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po=pi=1- pt. It is often more convenient to usc a symmetrical notation
and define spin-like variablesp, = (1 + 0,)/2so0 thato, takes on the value + 1
or — | depending on whether site n is occupied by an atom of type Bor A. We
have the obvious identities

pl = ppol=a, (5.31)

Since we assume that each lattice site is occupied either by an A or by a B atom,
the total number of B atoms is given by

N o= Y po= Ne (5.32)

where N, is the number of atoms and ¢ the concentration in B atoms.

At fixed volume, the relevant thermodynamic variables are the concentra-
tion ¢ and the temperature T. The corresponding free energy F(c, T) is given
by

F = —kTlogl {(5.33)
with

Z = Yexp[—E(CYkyT]

C

where E(C) is the energy of the configuration C, k, is the Boltzmann constant
and the sum defining the partition function £ is over all configurations of
concentration ¢ (canonical ensemble). It is useful at this point to compare this
formalism with the more general one introduced in standard textbooks.'” The
independent variables (at constant volume) are then the temperature and the
numbers of atoms N" of species i, and the corresponding free energy F (N, T)
satisfies

dF = —8§dT + ) wdN (5.34)
F =Yy uN

where S is the entropy and g (N, T) is the chemical potential of species i. In
our case N* + N® = N, is constant and

dF = —-85dT + (® - p*)N,de (5.35)

F o= Ng*+ (1 = u)Ne

In practice it is not easy to calculate sums over configurations at fixed con-

/i
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centration. The usual trick to lift this restriction is to take as independent
variables T and the chemical potential difference Ay = (u® — u*). We then
replace E(c) by £ = E — AuN,cand F(c, T) by FlAu, T) = F — ApN,cso
that

F = —kTlogl {5.36)
with
Z = Yexp [-EC)kT]

c
where now the sum is over all atomic configurations (grand-canonical
ensemble). Both formulations are equivalent in the thermodynamic limit
N, = 00. We have of course

dFf = —8dT ~ N dAu (5.37)

Within this formalism, the usual equilibrium conditions g, = ,u‘, when phases
« and B coexist is replaced by conditions £, = Fy, Ap, = Apy.

In order to handle more symmetrical expressions we can again change
slightly the notation by using as an independent variable in the canonical case
the mean ‘magnetisation’ m = 1/N, ), 6, = 2c — | rather thaa the con-
centration. Then equation (5.35) becomes

dF = —SdT + (Ap/2)N, dm (5.38)

F = N8 Nomau

In a magnetic analogy, it is clear that Au/2 plays the role of a magnetic field
k. As usual then, equilibrium between two phases occurs at a fixed field A when
F.(h, T) = Fy(h, T) where here £ = F — N,mh so that

df = —8§dT — N,mdh (5.39)

It will be clear in the following in which ensemble we are working and what
are the considered variables, so that free energies and other related quantities
will only be distinguished by their arguments (¢, T'), (Au, T) or (4, 7).

To handle non-homogeneous systems it is finally useful to introduce site-
dependent fields 4,. The corresponding free energy F({4,}, T) is then given by

F({h}, TY = —ksT Trlog exp[ - H({a,})11ka T (5.40a)
where

H{a}) = E({a.}) - ¥ Ao, (5.40b)

9
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is the ‘energy’ considered as function of the spin variables ¢, and the notation
Tr, for trace means that we sum over all configurations, i.c. over all values + 1
of these spin variables. H should not be confused with the electronic Hamil-
tonian used in the previous sections.

The thermodynamic average {Q) of any quantity ¢ can now bc written

Q) = %Zexp[-E(C)/k,,T] = Trp({o.})Q{c.}) (5.4la)
C
with

p = Fopl-H(o) ik T] (5.41b)

Of particular interest are the correlation functions which are the averages of
products of occupation numbers or spin variables at different sites. The
one-point correlation function {p,> = [ + {0,>]/2 is just the local con-
centration ¢, which may depend on 7 in the presence of a sitc-dependent field
h,. From equations (5.40b) and (5.41) we have the identity

@y = DL g i, T (5.42)

Similarly the second derivatives of log { provide us with the two-point
cumuiant average

2
@0, = (0.0 — ()Xo = gge (649

so that one-point and two-point averages are related through

0{e,>
FTR

Xm = = <O’.Ua >r/k8 T (5'44)

When 4, is independent of n, {p,) is in principle also independent of » and
equal to the mean concentration ¢. However long range order (LRO) is
precisely associated with a breaking of translational invariance and is therefore
characterised by site-dependent concentrations or ‘magnetisations’. Consider
for example the B2(CsCl} ordered structure (Fig. 5.9) which can be divided
into two simple cubic sublattices | and 2. A long range order parameter 1 can be
defined from

{e,> if n belongs to sublattice 1

=
]

(5.45)

- {0,> if n belongs to sublattice 2
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Fig. 5.9 B2 {CsCl structure).

More generally LRO parameters can be defined from any linear combinations
of the deviations {p,> — cor {s,> — m. In this sense phase separation is also
characterised by LRO parameters.

In the absence of long range order some local order is generally still present.
Short range order (SRO) is usually characterised by the Warren-Cowley SRO
parameters «,,

(e = Mt~ > = ¢l = oa, (5.46)
Comparing with equations (5.43) and (5.44), we have the relationship
X = 4(l - 0, = (1 = m)a, (5.47)

By definition states such that @ = 0 will be called completely disordered states,
disordered states (or solid solutions) being characterised by vanishing LRO
parameters. Strictly speaking completely disordered states only occur at infinite
temperature,

5.7 ISING MODEL FOR ALLOYS AND ITS GROUND STATES

The Ising model is the simplest model describing interacting spins g, on a lattice

Hiod) = 33 Juoou - 430, (5.48)

In the alloy context this is just 2 model for the ordering energy involving pair
interactions only (see, for example, the Appendix). If we drop any term
independent of the configuration, it is straightforward to realise that 7_ is
precisely equal to the pair interaction ¥, /4 derived from the generalised
perturbation expansion (see equation (5.28)). The second term on the r.h.s. of
equation (5.48) is only relevant in the grand-canonical formulation and we
recall that # plays the part of a chemical potential difference. The analogy
between magnetic systems and alloys is frequently fruitful. One should keep in

'y
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mind that ordering in the usual sense for alloys corresponds to antiferromagnetic
ordering whereas phase separation corresponds to ferromagnetic ordering.

The first problem we have to consider is to determine the ground state at zero
temperature of the Ising model for various values of the interactions and of the
field. The technique we are going to describe applies as well in fact to any
generahized Ising model involving cluster interactions provided they are short-
ranged. We then define cluster variables g, where « is a cluster, i.e. a set of
lattice points {n,, . . ., n,}

6, = 0, o, (5.49)
and a generalized Ising Hamiltonian
H(fo}) = X do, (5.50)

where here the interactions J, are assumed to be independent of the concentra-
tion.

Assume we have found an ordered structure minimising the energy H. In
general translational invariance is broken and different variants of the same
structure have the same energy. Averaging over these variants restores this
invariance. This is th~ limit at zero temperature of the thermodynamic average.
The ground state energy E can therefore be written

E = ¥ 340> (5.51)

where in fact the correlation function {o, ) only depends on the type i (point,
pair, triplet, . . .) of the cluster a. Let r; be the number of such clusters in the
lattice; £ can then be written

E = Z&xi (5.52)
with
X = r;x = (o)

E£'is a linear function of the x; and is therefore minimum at the boundary of
its domain of definition. The problem is then to derive appropriate constraints
on the correlation functions. Obviously |x;| £ 1 but more inequalities are
required. Consider an Ising model with first neighbour interactions. The
relevant correlation functions are the point x, and pair x, correlation
functions. Now, from the inequalities (p.£.> 20, (g, (1 — p.) > 0,
1 = p )1 = p)> = 0, we deduce that

1 + 21| + Xy 0 (553)
0 .

v v

AR
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Fig. 5.10 Configurational triangie defined by the inequalities (7.6).

In the (x|, x,) plane this determines the interior of a triangle. On the other
hand, for a fixed value of the energy, the equation £ = X x, + Xpx, gives us
the equation of a line normal to the vector (X, X,). Varying E, the line moves
parallel to itself, so that its minimum is attained when the line passes through
one of the vertices: the ground state corresponds to the vertices of the configura-
tional triangle (Fig. 5.10). This is a familiar result of linear programming. The
second step in the method is to look for the ordered structures associated with
the vertices. There is no difficulty with the vertices (1, 1) and (-1, 1} which
correspond to ferromagnetic ordering, i.c. to the pure elements in the alloy
language. Consider now the third vertex (0, — 1). One then locks for antiferro-
magnetic ordering where all first neighbour pairs are of type + — {or AB in the
alloy language). This is possible on some lattices: linear chain, simple cubic
lattice, bee lattice in which case the B2 structure is obtained, but not on other
ones such as the triangular or the fcc lattice. Because of the presence of triangies
in these structures, AA or BB pairs are unavoidable. This is a frustration effect
which introduces new constraints. To determine them, we write that the
numbers of BBB, BBA, BAA and AAA triangle configurations should be
positive. These numbers are nothing but the averages {ppup,”: <ufn(l — £,)2
(bl = p)(1 — p,)) and (1 — p)(1 — p)(1 = p,)) for a triangle nmp.
Using spin variables and eliminating the triplet correlation function {g,0,6,),
we obtain the three inequalities (equation (5.53)) plus the new inequality

143520 (5.54)

The corresponding line cuts the configurational triangle and yields two new
vertices which define ground states if it is possible to fill the lattice with triangles
of type BBA or BAA (Fig. 5.11). This is clearly possible on a triangular lattice,
but not on a fcc lattice. In the latter case inequalities corresponding to tetra-
hedron configurations should be introduced.
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Fig. 5.11 Cc;nﬁgurational polygon defined from the triangle inequalities. Each vertex is
associated with a definite triangle configuration.

From the preceding examples, we can guess an adequate strategy. We must
find various linear inequalities related to the geometry of the lattice under study
and determine the corresponding configurational polyhedron in the space of
correlation functions, using linear programming techniques when necessary.
After that, we must inquire whether ordered structures can be associated with
the vertices of this polyhedron. If this is the case the ground state is determined
exactly. If not, new inequalities associated with larger clusters should be
considered. These two last steps are difficult when many interactions are
present; frustration effects then become very complex and there is no general
rule to guess what are the clusters to consider in order to obtain the required
inequalities. There is even no guarantee that these relevant clusters are neces-
sarily of finite size. Counter-examples have been found. Anyway the algorithm
is of exponential type since the number of configurations to study grows as ou”
where |z is the number of sites of the cluster . Nevertheless its advantage is that
in several cases of interest, in the case of short range interactions in particular,
it can provide us with exact statements.

In practice the ground states in the presence of first and second neighbour
interactions can generally be found exactly. It is then easy to determine the
domains of stability (i.e. the phase diagrams) of the different ordered structures
in the space of interactions. Many results in this field are due to Kanamori and
co-workers. A complete discussion of this ground state analysis and many
examples can be found elsewhere.! We just show here in Fig. 5.12 the domains
of stability of the ordered structures on the fcc lattice with first and second
neighbour interactions.

5.8 ORDER-DISORDER TRANSITION, MEAN FIELD AND
LANDAU THEORIES

Although they are known to suffer from serious drawbacks when one is interest-
ed in a detailed analysis of critical phenomena, mean field theories still provide

24
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Fig. 5.12 Ground states of the fcc lattice with first and second neighbour interactions.
Descriptions of the structures can be found in Refl 1 or 18.

invaluable tools to investigate order—disorder phase transitions. Furthermore,
modern generalised mean ficld methods such as the cluster variation method
(CVM) are now known to be very accurate.

Mean field theories are always based on the following type of argument.
Assume first that the atoms (or spins) are independent and only feel a field &,
at site n. The probability of having the configuration characterised by a set of
a,, p({o.}) is given by (see equation (5.41b))

1
plod) = zop [)_: o] (5.55)

Taking the trace over all spin variables except ¢, we obtain the probability
g.(0,) of having the spin o, at site n. It should therefore be proportional to
exp(Bh,a,). Since Tr p, = | by definition, we obtain

exp(Bh,0,)
plo) = 2 cosh fh,

(5.56a)
so that
{6, = Trp,0, = tanh Bk, (5.56b)

In the presence of interactions, it is no longer possible to calculate p(q, ) exactly
but we shall assume that the behaviour of a definite spin only depends on the
average values of the other ones. This amounts to replacing 4, by an cffective
or mean field A7

BT = b, — 3 Fumlow) (5.57)

o
[ N
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Hence the self-consistent mean field {or Bragg-Williams—Gorski} equations for

(o,
(6,5 = tanh K" = tanh ﬁ(h, -y 3,,,(0_)) (5.582)

Using the concentrations instead of the magnetisations, this may also be written

7 _' - = exp ﬁfz:ﬁ {5.58b)

Another standard derivation uses the variational properties of the free
energy. If short range order is neglected, {s,0, ) is replaced by (g,>{0,) and
the internal energy is approximated by %L nJam (0. ){0, ). Adding the entropy
term of independent atoms, we obtain the free energy Fi{s,))

F(<a0)) = 33 Ju(o3<0.> = T hilou)

+k8T{1 +2<a'>10g1 +2<U'.> + 1 _2<an>logl - <6n>

2
(5.59)

and one can check that the mean field equations are recovered when we impose
0F({¢a,>})/e,> = 0 for any n. This formulation has the advantage of
providing us with an approximation for the free energy and not only for the
point correlation functions. ‘

Let us recall the familiar application of these equatdons to B2 ordering on a
bee lattice {Fig. 5.9) in the case of first neighbour interactions 7. At stoichi-
ometry, ¢ = 1/2 and therefore & = 0. Using equation (5.45) we obtain

n = tanh 887 (5.60)

When £; T < 87 there are three solutions (Fig. 5.13), but the disordered
solution 7 = 0 has a larger free energy that the two other symmetric ones: the
ordered solutions are stable, and translational symmetry is spontancously
broken. In this case the LRO parameter n vanishes continuously at the critical
temperature according to a square rootlawn = (7T, — T)P with &, T, = 87
(Fig. 5.14a). The order—disorder transition is said to be continuous or of second
order. In other cases, such as when considering L1, ordering (see below), the
transition is discontinuous or of first order (Fig. 5.14b).

The cluster variation method (CVM) put forward by Kikuchi in the fifties
Is a natural extension of the previous single site mean field theory, the idea
being to treat clusters (instead of single sites) embedded in an average medium.
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4 tanh 88Jn

Fig: 5.13 Graphical solution of the equation 1 = tanh 8877.

The major improvement brought by this method concerns the configurational
entropy which is very badly treated in the usual mean field approximation
(MFA), since correlations between the occupations of different sites are com-
pletely neglected. As a result the critical tempertures determined within the
MFA are generally much too high, particularly when frustration effects are
important. There are some difficulties in determining the most appropriate
clusters and also in handling them when they are large, but the method is now
well developed and reproduces the ‘exact’ critical temperature as determined
from Monte Carlo simulations or series expansions with a very good accuracy.
Several reviews on the CVM are now available."'*%

Many features of the order—disorder transitions can be understood using
Landau phenomenological theory. This theory is based on a general qualitative
study of the mean field free energy functional and of their symmetry properties.
We apply it here to a discussion of the functional F({{g,>}). Let us use alioy
variables and define the concentration fluctuations ¢, = ¢, — ¢. We now
compare the corresponding canonical free energy with that of the disordered

B i
T T T, T

c

Fig. 5.14 Variations of the order parameter as a function of temperature, (a) for second
order transitions; (b) for first order transitions.

2
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state
5E(c, {6c,}) = Fle, {6¢,}) = Ec, {c, = 0}) (5.61)
with
F(c, {6c,}) = %Z Vo il
+ kT Y {cloge, + (1 —¢,) log (1 — )}

We recall that ¥, = 47,.- Expanding 8F{(c, {6c,}) in powers of dc,, we obtain

1 ky T
3 6a)) = 3T (e + b dude,
_ (5.62)
+hrmﬁlzwmhr~
Using then Fourier transforms of d¢, and of ¥, = ¥(m — n)
S, = Y M Vik) = 3 MV(R) (5.63)
i 3
we obtain
1 ks T
8 5 = 33 (V) + ) il
- (5.64)
+kBT2C l Z’ 6(.‘*(56‘56* -+ v
6 a7

where the prime in the sum means that &, + &, + k, should be equal to a
reciprocal vector of the underlying lattice.

The coefficient of the quadratic part of 6F is positive at high temperature and
then the disordered phase characterised by dc, = 0 is stable. When the tem-
perature decreases, it becomes unstable at a critical temperature T, (k;) for the
concentration fluctuations of wave vector k, such that

ke T(k) = —c(l ~ O)Vlk) . (565)

Consider again the BCC lattice with positive first neighbour interactions
J = Vj4 and when ¢ = 1/2. The most unstable concentration wave is then
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Fig. 5.15 Free energy as a function of the order parameter n for a second order transiton.
o and — n, are the equilibrium values of 5 below T,

[100] in units of 2nfa, where a is the lattice parameter and we recover the
critical temperature £, 7, = 8. Notice here that the wave [010] and [001] are
strictly equivalent to [100] in the sense that they differ from a vector of the
reciprocal lattice of the bec lattice. Up to a normalisation factor we see that the
order parameter 77 is nothing but the amplitude of the concentration waves
which allows us to describe the B2 ordered structure."'*® In the present case
there is a single wave to consider and the order parameter is scalar. Keeping
only this wave in the free energy we obtain an expansion of the form

Fm) = im* + un* + - - (5.66)

where odd powers of n are absent since changing # into —# amounts to
replacing one variant of the B2 structure by the other. Hence the familiar
behaviour of the free energy as a function of the temperature (Fig. 5.15).

In the fcc lattice and at stoichiometry A;B, positive first neighbour interac-
tions favour ordering according to the L1,(CuyAu) structure (Fig. 5.18), (in
fact other interactions are necessary to lift the degeneracy of this structure with
other ones).! To describe this structure we need the three waves [100], [010]
and [001] with a common amplitude #; actually in the fce lattice they are not
equivalent modulo a vector of the reciprocal lattice. On the other hand the sum
of these wave vectors is equal to such a vector, which means that cubic terms
in the Landau expansion no longer vanish. Using standard arguments this
proves that the L1, order—disorder transition should be of first order and occurs

29
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Fig. 5.16 Free energy for a first order transiton.

above the temperature T, (k). Figure 5.16 shows the corresponding behaviour
of the free energy

OF(m) = i + wp’ + w* + - -- (5.67)

Notice that the presence of three waves indicates that the order parameter
in this case should be considered as a vector with three components. This is
impgrgsant when studying for example interfaces between different variants of
L1,

Landau theory therefore allows us to make predictions concerning the nature
of the ordered phases and of the order of the transitions. This is described in
detail elsewhere."!®%

We now consider short-range order. In principle the simplest mean field
theory neglects it but some information can be recovered by using equation
(5.44) which relates (0,0, ), to the derivative {0, /0k,. Using the MFA
equations in the presence of inhomogeneous external fields 4, we can obtain a
closed formula for the Fourier transform a(k) of the SRO parameters ., which
only depend on m—n in the disordered phase. This is the so-called Krivoglaz-
Clapp—-Moss (KCM) formula

alk) = (1 + (]l = V(K ke T]™ (5.68)
This is obviously not z consistent treatment of SRO since, for instance, a(ky )

diverges at the critical temperature 7, (k,) whereas the initial MFA approxima-
tion corresponds to set a(k) = 1. However the KCM formula is exact to order
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Fig. 5.17 Schemadc structure map for A,B compounds.

1/ T at high temperature and provides us with a reasonable first approximation.
The fact that a(k)™' is proportional to the cocfficient of the quadratic part
of the Landau free energy functional is not fortuitous at all since both quanuities
measure the response of the disordered state to concentration fluctuations in a
harmonic analysis. Similar although more complicated formulac can be
derived within the CVM.

5.9 APPLICATIONS

All the ingredients to understand the behaviour of specific systems are now
available. We discuss some applications which will hopefully give a flavour of
the present state of the art,

5.9.1 ORDERED STRUCTURES OF TRANSITION ALLOYS

Transition alloys are well described qualitatively within the tight-binding
scheme presented in the first part of this chapter. We recall that the important
alloy parameters are the alloy parameter &/ W and the filling of the band N,.
Since & is itself approximately proportional to AN, = N} — N}, it is quite
natural to classify the structures by using the coordinates AN, and N,.% Such
maps are very successful in that the different ordered structures generally
belong to different non-overlapping domains. We comment here on the map at
¢ = 1/4 (Fig. 5.17); other maps are discussed in Refs. 1, 26 and 27. Lists of
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Fig. 5.18 L1, and DO,, structures.

structures are available in Refs. 26 and 27. We shall consider here just the
simplest ones. At ¢ = 1/4 we keep the familiar L1, and DO,, structures built
on the fec lattice (Fig. 5.18) as well as the equivalent structures on the hcp
(DO,4 and DO, ) or double hcp lattice (DO, }, and the Al5 structure.

The ordering tendencies are quite clear. A15 appears when AN, > 0 and all
other non-magnetic structures when AN, < 0. Note that our sign convention
is such that for instance AN, is positive for PtV, but negative for Pt;V (we
always assume a compound A;B). It is also striking that all DO,, structures,
plus the ‘equivalent’ DO, structure occur at the same point, N, = 7-75,
AN, = —5 and therefore correspond to elements of the column of vanadium
and of that of nickel. The non-magnetic L1, structures are all in the range
65 < N, € 75 whereas most equivalent hexagonal structures occur for

N, = 7-25.

From the theoretical side, consider first the fee lattice. We know that in
general K| » |%;, W, V| » |V, ¥, ..., so that ordered structures only
appear when V| > 0. Calculating ¥, from the electronic structure defines a
domain in which non-magnetic systems may order. Now, on the fcc lattice and
for ¢ = 1/4, the only possible ground states in the presence of interactions up
to fourth neighbours are L1, and DO,,. The two structures have identical
numbers of AB first neighbour pairs, which means that the difference in energy
between them is much smaller than V. It is given by the combination
¢ = V; — 4V, + 4V,, and moment arguments show that £ should have at least
four zeros as a function of band filling. Tight-binding calculations then clearly
show a stability exchange between L1, and DO,, for N, about seven, in good
agreement with the observed structures (Fig. 5.19). Large values of N, are
irrelevant (since there is no order) as well as small ones (since the lattice is no
longer fcc). These results have been confirmed by more sophisticated electronic
structure calculations.

The stability of DOy, for large electron numbers is therefore explained. 1f we
now compare different crystalline structures, the GPM is of no direct use and
full calculations should be undertaken although there is some hope that struc-
tural energies can also be analysed in terms of pair and multi-atom interactions.

24
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Fig. 5.19 Calculated energy difference berween L1; and DO, as a function of the number
of d electrons.” Continuous line: full calculation; dotted line: caiculation with pair inter-
actions up to F;.

Simple arguments tell us on the other hand that BCC or more complex
structures should be favoured when N, & 5-6 and it is therefore not surprising
that Al5 is the most stable structure here.

Such simple arguments inherited from the study of elemental metals do not
apply in the case of the cubic-hexagonal competition when AN, < 0. Actually
both the fcc—hcp and the L1,-DO,, energy differences are very small and the
interplay between chemical and structural effects has still to be investigated in
detail.

There are numerous other examples showing that simple theoretical
arguments predict the correct structural trends. For example the hierarchy
between the interactions on a fcc lattice shows that it is generally necessary to
include third and fourth neighbour interactions as soon as second neighbour
interactions are introduced. This is frequently verified, in the case of transiton
alloys at least. Actually many observed ordered structures require at least
fourth neighbour interactions to be stabilised. Conversely a structure like that
of CuPt(L1,) requires second neighbour interactions comparable with the first
neighbour ones and is in fact never observed except precisely in the case of
CuPt!

Other hierarchies are expected in different types of compounds. The case of
substoichiometric NaCl transition carbides and nitrides is very instructive in
this respect. Here ordering of vacancies takes place in the fcc sublattice
occupied by interstitial (carbon or nitrogen) atoms but these atoms principally
interact with the merallic atoms of the other sublattice. A simple moment
analysis shows that we should then have the hierarchy |V, > |Wi» .. .,
which favours structures very different from those met in transition alloys. In
particular the CuPt-type structure is found to be very stable, which is actually
observed.”* Pseudobinary semiconductor alloys form another category of
compounds which has been studied in detail.*!

As another example illustrating how we have elucidated trends, consider the
nickel based transition alloys, in particular their phase diagrams as compiled

el
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by de Boer et al.> When AN, is small, ordering is absent except in Pt-Ni, Small
values of AN, imply small almost unobservable transition temperatures, and
anyway large values of N, induce a tendency to phase separation. For the case
of 4d and 5d alloying clements, except for Pt-Ni, there is indeed no ordering
tendency up to Tc and Re. Ordering effects in Ni-Fe and Ni-Mn are clearly
correlated with the appearance of magnetism (an extensive discussion of the
interplay between magnetic and chemical ordering has been given recently by
Bieber and Gautier’’). Weak ordering effects appear when AN, increases.
Ni-Mo and Ni-W present ordered phases whereas SRO effects have clearly
been detected in Ni-Cr. This is consistent with the fact that the order of
magnitude of ordering energies should increase with the bandwidth, i.c. when
going from the 3d to the 5d series. The same phenomenon exists for the
vanadium column: on the Ni-rich side of the diagrams there are ordered
structures on the fcc lattice which disorder at high temperature in the case of
Ni-V but not in the case of Ni-Nb and Ni-Ta. Finally many very stable
ordered compounds appear when AN, is equal to 6 and 7. Thus, except for the
ordering in Pt—Ni which is still a subject of controversy, almost all is understood
qualitatively for the case of Ni based alloys. This is certainly a somewhat
favourable situation, but many other successful analyses have been made. For
example, the fact that off-diagonal disorder induces phase separation is weil
verified in the case of Cr-Mo and Cr-W alloys.

If one is interested in a particular system rather than in trends, then first
principles calculations of total energies are obviously preferable if they are
accurate enough, which now begins to be the case. By performing several such
calculations it is also possible to determine through an inverse procedure the
interactions of an effective Ising model.®® An advantage of the first principles
methods is that they can handle non-transidon elements as well. Aluminium
based alloys, in particular, have been considered in some detail.

5.9.2 DIFFUSE SCATTERING AND SHORT RANGE ORDER

Diffuse X-ray or neutron scattering is a very efficient tool to measure short-
range order effects. In fact, provided that other contributions due to atomic
displacements or to magnetic effects are separated out, the diffuse intensity is
proportional to a(k), the Fourier transform of the SRO parameter. If the
Krivoglaz-Clapp-Moss formula (equation (5.6.8)) is valid, this yields the
Fourier transform of the pair interactions V(k). For a given set of interactions
it is then possible to relate a(£), measured in the high temperature disordered
phase, to the observed ground states at low temperature.

For example, assuming interactions up to the fourth neighbours in the fec
lattice, it is known that the stable ordered structures at the A,B stoichiometry
are L1, or DO,, depending on the sign (negative or positive, respectively) of the
quantity { = V, ~ 41, + 4V, provided that V| is positive and sufficiently
large. The KCM formula then predicts that a(£) is maximum for wave vectors

5



154  Electron Theory in Alloy Design

Ni V
020 022

Fig. 5.20 Diffuse intensity in the (110} reciprocal plane obtained from neutron scattering
(Laue units): (a) for Ni,V; (b) for P4, V.®

of type (100) for L1, and (140) for DOy,. This is observed in many systems, for
example in Ni, V which is DO,, at low temperature (Fig. 5.20a}. Surprisingly
enough measurements on PdyV which also orders according to DO, show
maxima at positions (100) (Fig. 5.20b). This breakdown of the usual mean field
theory has been successfully explained using more accurate CVM approxima-
tions. It turns out that if £/ ¥ is positive but small enough, the short range order
above DO,, should actually be of the L1, type.* Experiment thus tells us that
¢ ~ 0 in Pd,V. Qualitative electron microscopy studies indicate that the
situation is the same for Pt; V. Using the structure maps, one can then predict
that alloys with a slightly lower number of d electrons should order according
to L1,. This has been recently verified by considering pseudobinary alloys
(PtRh),V and (PtRh),V alloys.®

Diffuse scattering experiments are now fairly accurate. Combined with
appropriate CVM or Monte Carlo analyses they now provide us with reliable
estimates of the pair interactions. Recent results concerning Cu-Zn, Au-Ag
and Ni based alloys are given and discussed in Refs. 36 to 38.

5,9.3 PHASE DIAGRAMS

It is more difficult to calculate phase diagrams than to characterise the single
phases, one reason being that it is not sufficient to know the interatomic
chemical interactions, The free energy of the disordered state is also required.
Although it can be calculated in principle, using the CPA for example, ad-
ditional contributions related to elastic, vibrational and other effects have to be
included. Another serious difficulty is that real phase diagrams frequently

by
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Fig. 5.21 Experimental and calculated phase diagram of Ti-Ni.*

involve different crystalline structures, and at the moment there is no elaborate
theory to describe the interplay between structural and chemical (ordering)
effects. In practice, ordering effects are treated on fixed lattices and the free
energies for different structures are compared. This is a correct procedure but
the uncertainties concerning the structural energies or entropies are difficult to
estimate, and generally some parameters have to be fitted to experimental data
in order to produce reasonable phase diagrams. It is clear also that it is difficult
to treat the liquid state on the same footing as the solid phases.

Despite all these problems several phase diagrams have now been calculated.
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There is no room here to undertake a comprehensive review of these results. We
just mention some calculations concerning the Ti-Rh,* Ni-Cr,* Pd-Rh, and
Al-Li* phase diagrams and the recent detailed discussions concerning the
Ni-Ti and Ni-Al phase diagrams.”™* The experimental and calculated
diagrams of Ti-Ni are shown in Fig. 5.21.
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