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REVIEW ARTICLE

Using small perturbations to control chaos
Troy Shinbrot, Celso Grebogi, Edward Ott & James A. Yorke

The extreme sensitivity of chaotic systems to tiny perturbations (the ‘butterfty effect’} can be used
both to stabilize regular dynamic behaviours and to direct chaotic trajectories rapidly to a desired
state. Incorporating chaos deliberately into practical systems therefore offers the possibility of

achieving greater flexibility in their performance.

CHAOTIC systems are characterized by extreme sensitivity to
tiny perturbations. This characteristic, known as the ‘butterfly
effect’, is often regarded as a troublesome property, and for
many years it has been generally believed that chaotic motions
are neither predictable nor controllable. The first reference we
find to a differing view is due to John von Neumann, who is
reported' to have stated around 1950 that small, carefully
chosen, pre-planned atmospheric disturbances could lead after
some time to desired large-scale changes in the weather.
Although this specific application might be problematic, the
basic idea of using chaotic sensitivity seems to have been clearly
appreciated by von Neumann. Here we review recent work
which demonstrates that the butterfly effect permits the use of
tiny feedback perturbations to control trajectories in chaotic
systems-—a capability without a counterpart in nonchaotic sys-
tems. These considerations apply to cases in which the chaotic
dynamics can in principle be defined by only a few variables,
s0 systems where there are many active degrees of freedom (for
example, the weather, and high-Reynolds-number flows) may
not be tractable. However, we emphasize that cases of high (or
infinite) dimensional systems for which the ‘attractor’ (and hence
the dynamics) is low dimensional are common.

The research that we will review fits broadly into two
categories. First we will discuss how, as proposed in ref. 2, one
can select a desired behaviour from among the infinite variety
of behaviours naturally present in chaotic systems, and then
stabilize this behaviour by applying only tiny changes to an
accessible system parameter (related work appears in refs 3-32,
77, 78). Moreover, we will show how one can switch between
behaviours as circumstances change, again using only tiny per-
turbations. This means that chaotic systems can achieve great
flexibility in their ultimate performance. Second, we will show
how one can use the sensitivity of chaotic systems to direct
trajectories rapidly to a desired state’™*. For example, a few
years ago, NASA scientists used only small amounts of residual
hydrazine fuel to send the spacecraft I1SEE-3/ICE more than
50 million miles across the Solar System, thereby achieving the
first scientific cometary encounter’®~**. This feat was made poss-
ible by the sensitivity of the three-body problem of celestial
mechanics to smail perturbations, and would not have be
possible in a nonchaotic system, in which a large effect typicax‘
requires a large control**~*.

Stabilizing unstable orbits

One of the fundamental aspects of chaos is that many different
possible motions are simultaneously present in the system. A
particular manifestation of this is the fact that there are typically
an infinite number of unstable periodic orbits that co-exist with
the chaotic motion*’**, By a periodic orbit, we mean an orbit
that repeats itself after some time (the period). If the system
were precisely on an unstable periodic orbit, it would remain
on that orbit forever. These orbits are unstable in the sense that
the smallest deviation from the periodic orbit (for example due
10 noise) grows exponentially rapidly in time, and the system
orbit quickly moves away from the periodic orbit. Thus, although
these periodic orbits are present, they are not typically observed.
Rather, what one sees is a chaotic trajectory which bounces
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around in an erratic, seemingly random fashion. Very rarely,
the chaotic trajectory may, by chance, closely approach a par-
ticular unstable periodic orbit, in which case the chaotic trajec-
tory would approximately follow the periodic cycle for a few
periads, but it would then rapidly move away because of the
instability of the periodic orbit. In addition to periodic orbits,
it is common for continuous time dynamical systems to have
unstable steady states embedded in chaotic motion {see our
subsequent discussion of the Lorenz attractor). A ball placed
exactly at the top of a hill is an example of an unstable steady
state.

Although the existence of steady states and an infinity of
different unstable periodic orbits embedded in chaotic motion
is not usually obvious in free-running chaotic evolution, these
orbits offer a great potential advantage if one wants to control
a chaotic system. To demonstrate this, we adopt the following
strategy’. First we examine the unstable steady states and low-
period unstable periodic orbits embedded in the chaotic motion.
For each of those unstable orbits, we ask whether the system
performance would be improved if that orbit were actually
followed. We then select one of the unstable orbits that yields
improved performance. Assuming the motion of the free-running
chaotic orbit to be ergodic, eventually the chaotic wandering of
an orbit trajectory will bring it close to the chosen unstable
periodic orbit or steady state. When this occurs, we can apply
our smail controlling perturbations to direct the orbit to the
desired periodic motion or steady state. Morcover, if a small
amount of noise is present, we can repeatedly apply the perturba-

FIG. 1 Hénon attractor, with period-1 point, A; period-2 points, B, and B,
and period-4 points, C,, C,. C3 and C,.
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tions to keep the trajectory on the desired orbit. Thus small,
carefully chosen perturbations are able to effect a large bencficial
change in the long-term system behaviour. If, on the other hand,
the system dyramics were not chaotic but were, say, stable
periadic, then small controls could only change the orbit slightly.
We would then be closely restricted to whatever system perform-
ance the stable periodic orbit gave, and we would have no option
for improvement using small controls.

Furthermore, one may want a system to be used for different
purposes or under different conditions at different times. If the
system is chaotic, this requirement might be accommodated
without altering the gross configuration of the system. In par-
ticular, depending on the use desired, the system could be
optimized by switching the temporal programming of the smal}
controls to stabilize different orbits. By contrast, in the absence
of chaos, completely separate systems might be required for
each use. Thus, when designing a system, it may be advantageous

to build chaos in, 50 as to achieve flexibility. For an experimental
example, see Box 1. This experiment couples a magnetic field
with a gravitationally buckling ribbon. Other recent relevant
experiments have involved laser systems'?'®, electrical cir-
cuits'’, thermal convection'® and arhythmically oscillating car-
diac tissue {controlled using a small electrical stimulus)'®,

We will now consider examples of dynamical processes that
we wish to control. A simple example might be a metre stick
balanced on one’s palm. This system is not chaotic and, provided
that the stick does not stray too far from the vertical, it can be
stabilized in its normally unstable, vertical state by making small
motions of one’s palm. This is an example of stabilizing an
unstable steady state.

As a simple illustrative example of controlling a chaotic system
we consider the ‘Hénon map'. Here the word ‘map’ refers to
the fact that the time variable is discrete and integer-valued.
The Hénon map is also described as a “two-dimensional map’

BOX 1 Experimental confirmation

THe control of chacs by the application of tiny perturbations has been
experimentally applied in several laboratories*172% (a modification,
effective in stabilizing high-period orbits, appears in refs 10, 15). The
first such mplication' used a nonlinear, inverted, magneto-elastic ribbon.
This ribbon, sketched in Fig. B1, was clamped at its base but was
otherwise free to move. The stiffness of the material was nonlinearly
dependent on applied magnetic fieid, and in an osciltating field, applied
by external field coils {not shown), the ribbon alternately buckled and
stiffened in a complicated, chaotic pattern’®. The position of the ribbon,
X(t), was measured at a point near its base using an optical sensor. By
making small adjustments to the amplitude of the osciliating field
(variations were less than 93 of its nominal value), the ribben could be
trapped in a variety of periodic motions. Figure B2 shows the ribbon
displacement sampled once every oscillation of the applied magnetic
field as a function of the number of periods, n. The sampling of the orbit
at the drive period can be regarded as a "stroboscopic” surface of

X(t)

FIG. B1 Chaotic ribbon.

Ribbon displacement

Iterations, »

FIG. B2 Experimental stabilization of chaotic ribbon (reprinted with per-
mission from ref, 9),

section. Initially no control was applied, leading to chaotic variation in
the range of ribbon displacements between 2.7 and 4.4 on the vertical
axis. Then, at about time 1 = 2,200, the control algorithm was activated
to attempt to stabilize a period-1 orbit in the stroboscopic surface of
section (compare this with Fig, 2b), After this orbit had been stabilized
for over 2,000 oscillations, the controt algorithm was switched at time
n=4.900 10 try to stabilize a period-2 orbit (see Fig. 2¢), and was later
switched back to the period-1 orbit at n=7100.

The nonlinear ribbon was subsequently used to show that chaotic
sensitivity can be used to actually direct trajectories in a chaotic system,
By making smait adjustments to the applied magnetic field (less than
5% of its nominal value), any trajectory could be quiddy directed to a
small target state. Figure B3 shows several successive trajectories
which are rapidly brought from a variety of initial states, indicated by
grey circles, to the target neighbourhood, X =2.5 +0.01. This target was
chosen because it is ordinarily seldom visited: without control, the time
to reach the chosen target was onhce in 500 iterations on average. By
applying small perturbations, on the other hand, the: target could typically
be reached in less than once every 20 iterations.

We reiterate that the control was accomplished in real time and in
the presence of experimental noise and modelling errors (to accommo-
date this, the targeting algorithm must be periodically reapplied; see
refs 33, 35 for details). Additionally, the computational models used
both for stabilization and for targeting were constructed entirely from
available experimentat data and without an a priori analytic model,
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FiG.B3 Several successive realizations of targeting of a small neighbour-
hood of X =2.5. Ribbon is allowed to wander chaotically between target-
ing attempts; targeting is initiated at 7 =0, 100, 200, 300. With targeting,
the neighbourhood of X =25 is reached within 20 iterations; without
targeting, the same neighbourhood is visited less than once every 500
iterations. The origin of the ordinate scale here differs from that of Fig.
B2 because the optical sensor was moved between the times of the
two experiments.
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because the state of the system at time 2 (where n=0,1,2,...)
is given by two scalar variables, x, and y,. The map specifies
a rule for evolving the state of the system at time n to the state
at time (n+1). For the Hénon map, this rule is '

xn+|=P+0-3J"n"I%u (la)
Yat1 =X, (1b)

where the parameter p is set to a nominal value of py=14.
Thus, given an nitial state (x,, y,}, the map allows us to calculate
(x5, ¥2), which, when again inserted into the map, yields (x;, »3),
and so on. Iterations of this map eventually converge to a strange
attractor, as shown in Fig. 1. This structure is called an attractor
because distant points are drawn toward it under successive
iterations of the map, and it is called strange because it is
infinitely intricate on every distance scale we might choose to
examine. In the terminology of Mandelbrot, it is a fractal and
has a fractal dimension of ~1.3. In the figure, we show just a
few of the infinite number of embedded unstable periodic orbits;
a period-1 point, A,, which is revisited every map iteration,
period-2 points, B, and B,, each of which are revisited every
other map iteration (B, » B, B, » B, .. .), and period-4 points,
C,...C,, which are cycled through every four map iterations.

Although the above example is a map (the time, n, is discrete),
many problems in science and engineering involve continuous
time, such as a system of M first-order, autonomous ordinary
differential equations, d&/dt=G(), where £(f) = (£,
E3(r), £€21), ..., £M(1)) is an M-vector, and the continuous
variable r denotes time. In such a case, discrete time systems
are Mill of interest, as the M-dimensional continuous time system
can be reduced to an M — 1 dimensional map by the Poincaré
surface-of-section technique illustrated in Fig. 2a for M =3.
Here we associate the continuous time trajectory with a discrete
time trajectory, Z,, Z, - - . , where Z,, denotes an M — | coordin-
ate vector specifying the position on the surface of section of
the nth upward piercing of the surface. Given a Z,, we can
integrate the equation d§/d¢ = G(£) forward in time from that
point, until the next upward piercing of the surface of section,
at the surface coordinates Z,.,. Thus Z,,, is uniquely deter-
mined by Z,,, and there must exist a map, Z,., =F(Z,), from
one trajectory point on the surface of section to the next.
Although we may not be able to write down F explicitly, the
knowledge that it exists is still useful. Figure 2b shows a periodic
orbit of the continuous time systemn which results in a period-1
orbit of the associated Poincaré surface of section map: Z, =
F(Z,). Figure 2¢ shows a periodic orbit of the continuous time
system resulting in a period-2 orbit of the map: Z,=F(Z,},
Z,=FZ,).

Let us say that we have selected one of these unstable periodic
orbits as providing the best performance of some hypothetical
system. For simplicity, we consider the case where the desired
orbit is a period-1 orbit of some N-dimensional map

Zn+l=F(zn, P) (2)

where Z is an N-dimensional vector, and p denotes a system
parameter. We first approximate the dynamics near the period-1
point, denoted Z, {(where Z,=F(Z,, po}), for values of the
parameter, p, close to the nominal value, p, by the linear map

(z'n+|"z*)=A‘(Zn_z*)+B (p—py) (3)

Here A is an N x N dimensional jacobian matrix and B is an
N-dimensional column vector, where A =3F/4Z, B=0F/dp, and
these partial derivatives are evaluated at Z=Z, and p = p,. We
now assume that we can adjust the parameter p on cach iteration.
That is, we determine Z, and on that basis make an appropriate
small change in p from the nominal value p,. Thus we replace
p by p,. Taking the control law to be linear, we have

(Pn—po}=-K - (Z,-Z,) (4)

Here K is a constant N-dimensional column vector and K is
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its transpose. Choice of the vector K specifies the control law
specifying p, on each iteration. Substituting equation (4} into
eguation (3}, we obtain

8Z,+1=(A-B-K")SZ, (5)

where 8Z, = Z,, — Z,,. Thus the period-1 point, Z,,, will be stable
if one can choose K so that the matrix (A—B-K") only has
eigenvalues with modulus smaller than unity. In this case, 3Z, »
0 (that is, Z,—+Z,) as n-> 0. The choice of K represents a
standard problem in control theory {for example, see ref. 50).
(In fact, the matrix {A— B - K7} can be made to have any desired
set of N eigenvalues provided that B satisfies a certain condition
(called controllabifity®®).) This procedure gives the time-depen-
dent parameter values, p,, required to stabilize an unstable
period-1 point in a chaotic system. For the case of higher-period
orbits, see ref. 4. We imagine that, because of practical con-
straints, we cannot make the deviations of p, from p, too large.
Thus we imagine that |p, — pyl is bounded by some allowed
maximum value, 8p.... Hence by equation (4), 8py.x>
(KT -(Z,—Z,)|. If the system state is outside this region, we
apply no perturbation and wait until the state falls within the
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FIG. 2 a The Poincaré surface-of-section technique. The surface of section,
here shown for the case £;=constant, can, in principle, be chosen in any
convenient way. b, Period-1 ombit; ¢, period-2 orbit.
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giw?n region. Once this occurs, we trap the system near the
dFSIred periodic state by applying the appropriate small nudges
given by equation (4). Stabilization of the periodic points of the
Hen'on map by small perturbations is similar to stabilizing a
vertical metre stick insofar as neither can be accomplished if
tl'!e current state is far from the desired unstable state. We will
discuss later how to direct a chaotic orbit to a neighbourhood
of a desired state.

To illustrate stabilization of an unstable period-1 orbit in a
more intuitive and geometrical manner, we consider the special
case of a two-dimensional map where the desired period-1 orbit
has one unstable and one stable direction. That is, there are two
curves through Z,, cailed the stable manifold and the unstable
manifold, as shown.in Fig. 3a. We consider a small neighbour-
hood of Z,, so that the tines shown in Fig. 3 are roughly straight.
An orbit starting from a point on the stable manifold remains
on the stable manifold and moves exponentially toward Z,,
whereas orbits of points on the unstable manifold move
exponentially away from Z_. This corresponds to the case in
which the matrix A has two real eigenvalues, one with magnitude
less than one (stabie), and one with magnitude greater than one
{unstable). Also shown in Fig. 3a is a dashed line along which
Z, can be shifted by a change of the parameter p (this line is
paraliel to the vector B).

'lmagine that the point Z,, falls close to Z_,{po), as shown in
Fig. 3a._ We now perturb the value of p from p, to p,+ 8p, as
shown in Fig. 3b. On the next iteration, the orbit is attracted
towards Z_( p,+ 8p), in a direction parallel 1o its stable manifold,
and, at the same time, is repelled from Z_( p,+ 8p) in a direction
parallei to its unstable manifold. Thus if &p is chosen properly,
we can cause Z,,, to fall precisely on the stable manifold of
Z.(po). Thereafter, we can return the parameter to its nominal
value, py, and the orbit will remain on the stable manifold of
Z'*{p(,) and wilt approach Z,( p,). In terms of the more general
discussion leading to equations (5), the above corresponds to
a special choice of the control vector, K, such that one of the
eigenvalues of (A~B - K"} is zero and the other is the original
stable eigenvalue of A. As shown in ref. 4, this choice is optimal
in that it minimizes the average time during which the orbit
wanders chaotically before it can be stabilized,

As an example, in Fig. 4, we show the results of stabilizing
the periodic orbit, A,, on the Hénon attractor by adjusting p
by less than 1% of its nominal value. Starting at a random initial
point on the attractor, we see that for the first 86 iterations, the
trajectory moves chaotically on the attractor, never falling within
the desired small region about A, . Then, on the 87th iteration,
the state falls within the desired region, and thereafter is held
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FIG. 3 g The pe_riod-l point, Z_ (p,). its stable and unstable manifolds (solid
lines). and the line (dashed) atong which Z, can be shifted by perturbation
of the parameter p. b, Result of perturbing p to p, + &p; the stable and
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near A, . In the presence of noise, the stabilization procedure
would have to be regularly reapplied {see ref. 3 for details).

The control strategy need not rely on an a priori analytical
model. Just as one can balance a metre stick on the palm without
knowing anything at all about Newton’s equations of motion
for the stick, one can produce effective stabilization for more
complicated systems without an explicit set of differential
equations. By empirical study of the effects of small parameter
changes on orbits near a desired periodic state, an arbitrary
periodic state in a chaotic attractor can be stabilized using only
small controls (see Box 1). This is important because in experi-
mental situations one may often not have on hand an accurate
analytical model.

Figure 5 illustrates how knowledge of a periodic arbit, the
matrix A, and the vector B can all be extracted purely from
observations of the trajectory on the strange attractor. Imagine
that we coliect a long data string of observed surface-of-section
piercings, Z,, Z, and so on. If two successive Zs are close to
each other, say Z,g, and Z,,, then there will typically be a
period-1 orbit Z, nearby*”** (Fig. 5). Having observed a first
such close return, we then search the succeeding data for other
close-return pairs (Z,, Z,,,} restricted to the small region of
the original close return (shown shaded in Fig. 5). Because orbits
on a strange attractor are ergodic, we will have many such pairs
if the data string is long enough. Assuming the shaded region
to be smali, we then try to fit these close returning pairs with a
linear relation

Z,.=A-Z,+C (6)

Generally, if there is noise in the data, we would want to use
as many pairs as possible and fit the matrix A and the vector C
using a least-squares fit to the data. Thus A, the least-squares
fit matrix, is an approximation to the jacobian matrix A of
equation (3), and the period-1 point, Z,{p), is approximated
by (1-A)"" - C. To find B of equation (3), we change p slightty,
p— p+Ap, redetermine the period-1 point Z.{ p + Ap) as before,
and approximate Bas (Z,(p +Ap) —Z,(p)]/Ap. To find period-
2 orbits, we proceed in the same way, but for pairs (Z,, Z,.,)
that are close after two surface-of-section piercings (and
similarly for higher periods).

In experimental studies of chaotic dynamics, it is often helpful
to use ‘delay coordinate embedding’®'*>. These allow one to
obtain information on the topological phase space structure of
an attractor even when one cannot directly measure the instan-
taneous system state vector, £ which we take to be M-
dimensional. As a typical example, the time history of only a
single scalar variable, say ¢ (), might be the only thing that one

R

unstable manifelds of Z,(p, + 8p) are shown as grey lines through Z, (py+
5p).
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can measure experimentally. To proceed, one forms the Q-
dimensional ‘delay coordinate vector’

D) =(o(t), p{t—Tp), (¢ -2Tp), ..., d(1=(Q-1}Tp)) (T}

where Tp, is some conveniently chosen delay time. Embedding
theorems®**? guarantee that for = 2M +1, the vector ®(¢) is
generically a global one-to-one representation of the system
state. (Actually, for our purposes we do not require a global
embedding; we only require a one-to-one correspondence in the
small region near the periodic orbit, and this can typically be
achieved with Q = M.} To obtain a discrete time series from
®{t}, we can again use a Poincaré surface of section, but this
time in ®-space. Let Z, denote points in the d-space surface
of section, and let the corresponding surface-of-section map for
a constant value of the parameter p be denoted Z,,,, = F(Z,, p).
As pointed out in ref. 7, in the presence of parameter variation
(p -+ pa); delay coordinates lead to a map of a form other than
Z,.,=FZ,, p,), which is the form assumed for equations (3)
and (4). As an example, say that the time interval T, between
the surface-of-section piercing at Z, and at Z,., is such that

T2 (Q+1)Tp> (r—1)T, (8)
where r is an integer. Then the relevant map is of the form
ZD'|+1=F-.(2.-n prr! Pn—ls---:pn—r)- (9)

This follows because ®(¢,), where ¢, denotes the ath piercing
of the surface of section (corresponding to Z,,), has components
&(t,), ..., b1, —(Q—1)Ty) and hence Z, must depend, not
only on p,, but also on all the other parameter values in effect
during the time interval ¢, = t ={1, — (Q — 1) Tp]. For discussion
of how the analysis of equations (3) to (5) can be extended to
the case of delay coordinates, see refs 4 and 7.

Although the approach just described provides a systematic
means of choosing a feedback algorithm, it will often be the
case (particularly when the dynamics are low-dimensional) that
a trial and error procedure will succeed'™"”: simply choose some
feedback law {arbitrarily choose K in equation (4)) and vary it
until it is observed that the desired orbit stabilizes. (Knowledge
of the periodic orbit location in phase space is still required, so
a procedure such as that of Fig. 5 may still be necessary.)

Further discussion of stabilization

We now briefly discuss some other considerations relevant to
the stabilization of unstable periodic orbits and steady states
embedded in strange attractors. One issue is related to bifurca-
tions. The word bifurcation, when applied to a periodic orbit
or steady state, refers to a change in the character of the orbit
from stable to unstable while the system is continuously changed.
Often the nset of chaos comes about as a result of bifurcations
of periodic orbits or steady states. Two well known cases are
the commonly observed cascade of periad-doubling bifurcations
preceding chaos, and the onset of chaos when a steady state
bifurcates from stable to unstable. Thus one way of controlling
chaos is to prevent or change the character of these bifurcations.
This has been discussed in refs 18 and 19, where control methods
that are insensitive to errors in the knowledge of the system are
used. In this regard, we also mention the laser experiments of
refs 12 and 13.

Control can also be used as a means of tracking the location
of unstable orbits as the system is changed??? In a recent
experiment, this technigue was used to increase the stabie steady
power output of a laser by an order of magnitude'’. Another
issue is that of prescribing controls that are assured of bringing
the trajectory to the desired periodic orbit or steady state. This
has been addressed using the Lyapunov function method'®%.

Other interesting work in this general area includes the use
of the describing function technique of control theory for finding
and controlling unstable periodic orbits™; controt of unstable
chaotic sets (as opposed to chaotic attractors)®; the control of
homociinic orbits?®; and control of aperiodic orbits®.

—
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Directing chaotic trajectories

Stabilizing a system by small perturbations is extremely effective
once the system at hand comes close to the desired state. But
if it starts far from the desired state, it might take an unacceptably
long time before a typical orbit comes close enough to the
desired state to be captured. We now discuss how small perturba-
tions, applied when the orbit is far from the desired state, can
be used to steer the system to this state. For example, chaotic
rhythms in cardiac tissue can be stabilized as outlined above'”.
What if one wants to stabilize a regular rhythm in the heart
without having the luxury of simply waiting for the system to
fall near a desired state? it is, moreover, intrinsically desirabie
to be able to steer a system to a general target in phase space
(not necessarily a periodic orbit), NASA's mission specialists
demonstrated this when, as mentioned earlier, they achieved
the first scientific cometary encounter by steering the spacecraft
ISEE-3/ICE in a complex trajectory using only small nudges
from the spacecraft’s dwindling fuel supply™®*.

The application of chaotic sensitivity to steer trajectories to
targets in chaotic systems using small controls is discussed in
refs 33-37; refated work appears in refs 38 and 55. To understand
the idea in its simplest form, copsider the well known logistic
map (see for example ref. 56):

Xn+l=an(1_XnJ {10)

where we take a nominal value of 3.9 for p. This map is used
to describe the behaviour of a population of organisms after
successive years, where n denotes the year. In this case, X
represents the (normalized) popuiation, and p defines its growth
rate per year when the population is small. For any X between
0 and 1, it is casy, using only a pocket calculator, to adjust the
growth rate slightly so that any given target, again between 0
and 1, is quickly reached.

Suppose for example that the current state is X, = 0.4 and we
want to reach the vicinity of X, =0.8. If we can adjust p during
the first year by a small amount, say between 3.8 and 4.0, then
after one year, the population can range between X, =0.91 and
X;=0.96. We then return to the nominal parameter value,
p=13.9, and after a second year the range grows to cover from
X,=0.15to X,=0.31. After a third year, the range grows even
more to extend from X,=0.50 to X,=0.84. As our target,
X =0.8, is in this range, there must be some value of p, in the
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FIG. 4 Stabilization of the period-1 state for the Hénon map.
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range 3.8 = p, <4.0 such that when p is shifted to that value in
the first year, X falls on the target in oniy three years. Indeed,
a little work with our pocket calculator reveals that we can reach
our target by setting p, = 3.83189.... We emphasize that it is
possible to accomplish this only because the logistic system is
chaotic, and because chaotic systems are characterized by the
exponential growth of small disturbances. This exponential
growth implies that we can reach any accessible target extremely
quickly (that is, in a time of the order of the logarithm of the
maximum allowed size of the small parameter perturbation),
using only a smail perturbation.
As another example, consider the equations

dx
E=G(Y_X) (ita)
dyY
E:-—XY—Y+r+p(l) (11b)
dz
;=XY—bZ {11c¢}

which {for p(1) =0) were introduced®’ by Lorenz as a simplified
model of chaotic Auid thermal convection. The Lorenz equations
provide a leading-order description of the dynamics of a fluid
contained in a thin vertically oriented torus with a heat source
applied at the bottom®®. The equations with p(1)=0 have a
strange attractor for the parameter values o =10, r =28, b=8/3,
and an orbit on this chaotic attractor is shown in blue in Fig.
6. The steady state, X () = Y(t) = Z(t) =0, representing no fluid
convection, is a solution of the Lorenz equations. Furthermore,
this solution is contained in the chaotic attractor. Note from
Fig. 6 that the blue finite-duration orbit does not reach anywhere
near this steady state (the open circle in the figure). If the orbit
were followed long enough, it would eventually come arbitrarity
near the stationary state. We estimate that of the order of one
in 10'° orbits around either of the lobes of the attractor ever
passes through a sphere of radius 0.1 centred at X =Y =Z =0.
(For comparison, the blue trajectory in Fig. 6 shows only about
20 orbits around either lobe of the attractor.) For the purpose
of demonstrating control of the Lorenz system we have added
the term p(t) to the right-hand side of equation (115). For the
physical situation of a vertically oriented fluid-filled torus, the
term p(¢) represents a perturbation of the position of the heat
source slightly to the left or right in the plane of the torus (p =0
corresponds to heating exactly at the bottomn of the torus).
Restricting the perturbations, p(¢), to be small, [p(¢)| <0.01, it
typically takes of the order of 10 orbits around a lobe to reach
?uﬂgin_(_as compared, again, with 10 orbits to reach
X%+ Y2+ Z% < 0.1 when no control is applied). Figure 6 shows
such an orbit in red. The method for programming the perturba-
tions is described in ref. 36 and is similar in principle to that
which we have described for the logistic map, equation (10).

gm
Chaotic s
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FIG. 5 Determining unstable periodic point, Z from data, Z,00. Zygy - - -
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The preceding example illustrates the idea of targeting. More
detailed descriptions and methods can be found in refs 33-38.
One technique is to patch together different trajectories to reach
a desired target state. These trajectories can originate in a single
chaotic system with differing parameter values®’*%, or from a
systematic examination of small changes in the system state®®**,
NASA's manoeuvre of the spacecraft ISEE-3/ICE is such a
case. Five separate swings past the Moon were combined to
produce the final spacecraft trajectory. By inventive choices of
intermediate trajectories, researchers have shown this technique
to be effective in matching greatly differing initial and final state
vectors.

At this point, we must make two remarks. First, the sensitivity
of chaotic systems allows us to produce large changes in the
orbit of the system after some time using tiny perturbations, but
the same sensitivity makes the final state depend on ubiquitous
noise. The noise, if small enough, can be compensated for,
however, by periodically reapplying the targeting algorithm,
thereby obtaining mid-course corrections of the parameter per-
turbation (see Box 1 and refs 33 and 35). Second, one needs a
global model of the system in order to direct trajectories. This
differs from the stabilization of periodic orbits or steady states,
where one only needs local information, near the desired peri-
odic orbit. In general, this makes the use of experimental delay
coordinate techniques for application to targeting more difficult.
Nevertheless, in some cases it may be possible (Box 1).

The control of chaos by small perturbations has been
developed into a proposed application for communication™.
Consider the ‘double scroll* electrical oscillator®®, which yields
a chaotic signal consisting of a scemingly random sequence of
positive and negative peaks. If we associate a positive peak with
a one and a negative peak with a zero, the signal yields a binary
sequence. With small control perturbations, we can cause the
signal to follow an orbit whose binary sequence represents the
information we wish to communicate. (Here our ‘target’ is a
particular binary sequence rather than a point in phase space.)
Hence the chaotic power stage that generates the waveform for
transriission can remain simple and efficient (complex chaotic
behaviour occurs in simple systems), while all the complex
clectronics controlling the output can remain at the low-power
microelectronic level.

Other ways to alter chaotic dynamics

We have focused here on work using the sensitivity of chaotic
systems to stabilize existing chosen periodic orbits and steady
states and to steer trajectories with only small controls. Several
authors have developed other techniques to alter the dynamics
of chaotic systems without explicitly using this sensitivity, and
in this section, we summarize some of their key contributions.

One body of research®' ** seeks to control a nonlinear system
to follow a prescribed goal dynamics. If we denote the system by

dg

—=F(E)+

3: - F@&+U()
where U(t) is an additive controlling term, then the object is to
choose U(t) so that [£(¢) —g(£)|+0 as ¢ > o, where g(1) is the
goal dynamics. To accomplish this, the simple choice

(12)

(0= pgo) (13)
dt
is made. Thus £(t) = g(¢) is clearly a solution of the controlled
equations. What is not so clear is that convergence to this goal
will often occur ([€(¢)—g(¢)|+0 as £+ ), Whether it does so
depends on the particular F and the initial condition, £(0). The
regions of E-space such that controlled orbits originating in them
converge to the goal, g, are called entrainment regions™ %, This
method potentially works for nonlinear systems in general (not
necessarily chaotic) and has the advantage of not requiring
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FiG. 6 Targeting of steady state in Lorenz attractor. Blue, trajectory without
control; red: trajectory with control.

feedback. On the other hand, the applied controls are not
typically smalt and convergence to the goal is not assured.

Another body of research addresses the effects of periodic®™ "
and stochastic’*" perturbations on chaotic systems. As one
might expect, the effects of such perturbations can be quite
difficult to predict in general, and indeed these studies are not
‘goal oriented’, in that a desired behaviour is not specified in
advance and a generic technique for achieving such a goal has
not been developed. Nevertheless, dramatic changes in the
dynamics of chaotic systems have been recorded using these
methods; for example, periodic or nearly periodic behaviour
can sometimes be produced from originally chaotic dynamical
systems.

The advantages of chaos

The presence of chaos may be a great advantage for control in
a variety of situations. In a nonchaotic system, small controls
typically can only change the system dynamics slightly. Short
of applying large controls or greatly modifying the system, we
are stuck with whatever system performance already exists. In
a chaotic system, on the other hand, we are free to choose
between a rich variety of dynamical behaviours. Thus we antici-
pate that it may be advantageous to design chaos into systems,
aliowing such variety without requiring large controls or the
design of separate systems for each desired behaviour.

The general problem of controlling chaotic systems is very
rich, and may help solve technologically important problems in
widely diverse fields of study. In communications, it has been
proposed that chaotic fluctuations can be put to use to send
controlled, pre-planned signals®*. In physiology, applications
have been proposed for controlling chaos in the heart'” and in
neural information processing?’. In fluid mechanics, it has been
demonstrated in a simple configuration that chaotic convection'®
can be controlled. Chemical researchers have developed
mechanisms for controlling chaotic autocatalytic reactions.
Chaotic lasers'®!! have been controlled, as has the chaotic diode
circuit'®, The wealth of results such as these encourage us to
look forward to a fruitful future for the control of chaotic
systems. ()
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It is shown that one can convert a chaotic attractor to any one of a large number of possible attracting
time-periodic motions by making only small time-dependent perturbations of an available system pa-
rameter. The method utilizes delay coordinate cmbedding, and so is applicable to experimental situa-
tions in which a priori analytical knowledge of the system dynamics is not available. Important issucs
include the length of the chaotic transicnt preceding the periodic motion, and the effect of noise. These

are illustrated with a numerical example,

PACS numbers: 05.45.+b

The presence of chaos in physical systems has been ex-
tensively demonstrated and is very common. In practice,
however, it is often desired that chaos be avoided and/or
that the system performance be improved or changed in
some way. Given a chaotic attractor, one approach
might be to make some large and possibly costly altera-
tion in the system which completely changes its dynam-
ics in such a way as to achieve the desired behavior.
Here we assume that this avenue is not available. Thus,
we address the following question: Given a chaotic at-
tractor, how can one obtain improved performance and a
desired attracting time-periodic motion by making only
small time-dependent perturbations in an accessible sys-
tem parameter?

The key observation is that a chaotic attractor typical-
ly has embedded within it an infinite number of unstable
periodic orbits.! Since we wish to make only small per-
turbations to the system, we do not envision creating new
orbits with very different properties from the existing
ones. Thus, we seek to exploit the already existing un-
stable periodic orbits. Our approach is as follows: We
first determine some of the unstable low-period periodic
orbits that arc embedded in the chaotic attractor. We
then examine these orbits and choose one which yields
improved system performance. Finally, we tailor our
small time-dependent parameter perturbations so as to
stabilize this already existing orbit. In this Letter we de-
scribe how this can be done, and we illustrate the method
with a numerical example. The method is very general
and should be capable of yielding greatly improved per-
formance in a wide variety of situations.

It is interesting to note that if the situation is such that
the suggested method is practical, then the presence of
chaos can be a great advantage. The point is that any
one of a number of different orbits can be stabilized, and
the choice can be made to achieve the best system per-
formance among those orbits. If, on the other hand, the
attractor is not chaotic but is, say, periodic, then small
parameter perturbations can only change the orbit
siightly. Basically we are then stuck with whatever Sys-
tem performance the stable periodic orbit gives, and we
have no option for substantial improvement, short of

1196
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making large alterations in the system.

Furthermore, one may want a system to be used for
different purposes or under different conditions at
different times. Thus, depending on the use, different re-
quirements are made of the system. If the system is
chaotic, this type of multiple-use situation might be ac-
commodated without alteration of the gross system
configuration. In particular, depending on the use
desired, the system behavior could be changed by switch-
ing the temporal programming of the small parameter
perturbations to stabilize different orbits. In contrast, in
the absence of chaos, completely separate systems might
be required for cach use. Thus, when designing a system
intended for multiple uses, purposely building chaotic
dynamics into the system may allow for the desired flexi-
bility. Such multipurpose flexibility is essential to higher
life forms, and we, therefore, speculate that chaos may
be a necessary ingredient in their regulation by the brain.

To simplify the analysis we consider continuous-time
dynamical systems which are three dimensional and de-
pend on one system parameter which we denote p lfor
cxample, dx/dt =F(x,p), where x is three dimensionall.
We assume that the parameter p is available for external
adjustment, and we wish to temporally program our ad-
justments of p so as to achieve improved performance.
We emphasize that our restriction to a three-dimensional
system is mainly for ease of presentation, and that the
case of higher-dimensional (including infinite-dimen-
sional) systems can be treated by similar methods, 2

We imagine that the dynamical equations describing
the system are not known, but that experimental time
scries of some scalar-dependent variable z(z) can be
measured. Using delay coordinates™* with delay T one
can form a delay-coordinate vector,

X =1z(0),z26—T),z—-2T),. ...zt —MT)].

We are interested in periodic orbits and their stability
propertics, and we shall use X to obtain a surface of sec-
tion for this purpose. In the surface of section, a
continuous-time-periodic orbit appears as a discrete-time
orbit cycling through a finite set of points. We require
the dynamical behavior of the surface of section map in

© 1990 The American Physical Society
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neighborhoods of these points in order to study the sta-
bility of the periodic orbits. To embed a small ncighbor-
hood of a point from x into X, we typically only require
as many dimensions as there are coordinates of the point.
Thus, for our purposes, M =D — | is generally sufficient.
(This is in contrast with® M +1=2D+1, typically re-
quired for global embedding of the original phase space
in the delay-coordinate space.) Hence, for the case con-
sidered (D=3), our surface of section is two dimension-
al.

We suppose that the parameter p can be varied in a
small range about some nominal value po. Henceforth,
without loss of generality, we set po=0. Let the range in
which we are allowed to vary pbe pa > p > — pa.

Using an experimental surface of section for the
embedding vector X, we imagine that we obtain many
experimental points in the surface of section for p=0.
We denote these points &),&2,&s, ... .8k, where &,
denotes the coordinates in the surface of section at the
nth piercing of the surface of section by the orbit X (o).
For example, a common choice of the surface of section
would be z(t — MT) cquals a constant, and &, =[z(z,),
..., z2{ta = (M —=1)T)], where ¢=¢, denotes the time at
the nth piercing. From such experimentally detesmined
sequences it has been demonstrated that a large number
of distinct unstable periodic orbits on a chaotic attractor
can be determined.>® We then cxamine these unstable
periodic orbits and select the one which gives the best
performance. Again using an experimentally determined
sequence, we obtain the stability properties of the chosen
periodic orbit (cf. Refs. 5 and 6 for discussion of how
this can be done and for descriptions of its implementa-
tion in concrete cxperimental cases). For the purposes of
simplicity, let us assume in what follows that this orbit is
a fixed point of the surface of section map (i.c., period
one; the case of higher period is a straightforward exten-
sion). Let A, and A, be the experimentally determined
stable and unstable eigenvatues of the surface of section
map at the chosen fixed point of the map (|A,]>1
~ |a,]). Let e, and ¢, be the experimentally deter-
mined unit vectors in the stable and unstable directions.
Let £=¢-=0 be the desired fixed point. We then
change p slightly from p=0 to some other value p=p.
The fixed-point coordinates in the experimental surface
of section will shift from O to some nearby point £r(p)
and we determine this new position. For small p we ap-
proximate g=a&r(p)/3p | pmo=p ~1&£(p), which allows
an experimental determination of the vector g.

Thus, in the surface of section, near § =0, we can usc
a lincar approximation for the map, &a+1=§r(p)
=M [&, —Er(p)], where M is a 2x2 matrix. Using
Er(p)=pg we have

cn‘Hapns""hmeufu"'lse:r:]'lgn —Pn!] . (1)

(In the linearization (1), we have considered p, to be
small and of the same order as &,.] We emphasize that

g. Cu» €, Ay, and A are all experimentally accessible by
the embedding technique just discussed. In (1) f,, and
f, are contravariant basis vectors defined by f;-¢;
=-f, ¢, =1, f, e, =1, ¢ =0. Notc that we have writ-
ten the location of the fixed point as p,g because we im-
agine that we adjust p to a new value p, after each pierc-
ing of the surface of section. That is, we observe &, and
then adjust p to the value p,. Thus p, depends on &,
Further, we only envision making this adjustment when
the orbit falls near the desired fixed point for p=0.

Assume that &, falls ncar the desired fixed point at
£=0 so that (1) applies. We then attempt to pick pn s0
that &a+; falls on the stable manifold of £=0. That is,
we choose p, so that fu- Ea+1=0. If Snsy falls on the
stable manifold of &=0, we can then set the parameter
perturbations to zero, and the orbit for subsequent time
will approach the fixed point at the geometrical rate A
Thus, for sufficiently small &,, we can dot (1) with f, to
obtain

P =A, (A —1) T (& 1)/ (g 1), @

which we use when the magnitude of the right-hand side
of (2) is less than pe. When it is greater than ps, we set
pn=0. We assume in (2) that the generic condition
g f,>0 is satisfied. Thus, the parameter perturbations
are activated (i.c., p.=0) only if §, falls in a narrow
strip |£4] <&, where &¥=f, &, and from (2) &
=pe | (1 =2, g £, |. Thus, for small pe, a typical ini-
tial condition will execute a chaotic orbit, unchanged
from the uncontrolled case, until &, falls in the strip.
Even then, because of nonlincarity not included in (1),
the control may not be able to bring the orbit to the fixed
point. In this case the orbit will leave the strip and con-
tinue to wander chaotically as if there was no control.
Since the orbit on the uncontrolied chaotic attractor is
ergodic, at some time it will eventually satisfy |E¥] <&s
and also be sufficiently close to the desired fixed point
that attraction to & =0 is achieved. [In rare cases apply-
ing Eq. (2) when the trajectory enters the strip, but is
still far from O, may result in stabilizing the wrong
periodic orbit which visits the strip.]

Thus, we create a stable orbit, but, for a typical initial
condition, it is preceded in time by a chaotic transient in
which the orbit is similar to orbits on the uncontrolled
chaotic attractor. The length t of such a chaotic tran-
sient depends sensitively on the initial condition, and, for
randomly chosen initial conditions, has an exponential
probability distribution’ P(r)~expl—(1/(D))] for large
r. The average length of the chaotic transient (1) in-
creases with decreasing pe and follows a power-law rela-
tion” for small pe, (£)~ps 7.

We will now derive a formula for the exponent 7.
Dotting the lincarized map for §a+1, Eq. (1), with f,,, we
obtain £¥+=0. In obtaining this resuit from (1) we
have substituted p, appropriate for |&x| <& We note
that the result £74+,220 is a linearization, and typically
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has a lowest-order nonlinear correction that is quadratic.
In particular, &5 =f,- &, is not restricted by |£4} <&,
and thus may not be small when the condition |&¥| < &
is satisfied. Hence the correction quadratic in &) is
most significant. Including such a correction we have
¥y =x(E2)?, where x is a constant. Thus, if
| (£3)2> &, then |[E¥4| > &, and attraction to
& =0 is not achieved, even though [&¥| < &. Attraction
to §=0 is achieved when the orbit falls in the small
parallelogram P. given by [&¥]| <&, |&&] < (&/
{x])' For very small &, an initial condition will
bounce around on the set comprising the uncontrolled
chaotic attractor for a long time before it falls in the
paraliclogram P.. At any given iterate the probability of
falling in P, is u(P.), the measure of the uncontrolied
attractor contained in P.. Thus, {(r) " '=u(P.). The
scaling of u(P.) with & is

#P) ~ (&) 1(Ga/ | ] ) A%~ gl 4

where d, and 4, are the partial pointwise dimensions for
the uncontrolled chaotic attractor at £ =0 in the unstable
direction and the stable direction, respectively. Thus,
u(P.) =&l where y=d,+d,/2. Since we assume the
attractor to be cifectively smooth in the unstable direc-
tion, 4, =1. The partial pointwise dimension in the
stable direction is given in terms of the eigenvalues’ at
£=0,d,=In{r,{/An|A,| ~'. Thus,

y=1+3shn|a, |/nia,| . 3)

To study the effect of noise we add a term €8, to the
right-hand side of the linearized equations for §,+,, Eq.
(1), where 3, is a random variable and ¢ is a small pa-
rameter specifying the intensity of the noise. The quan-
tities 8, arc taken to have zero mean ({8,) =0), be in-
dependent ({8,5,) =0 for mn), and have a probability
density independent of n. Dotting (1) with noise includ-
ed with f, we obtain &4 =c87, where &y=f,-8,.
Thus, if the noise is bounded, | 5| < Smax, then the sta-
bility of £=0 will not be affected by the noise if the
bound is small cnough, €8x < &e. If this condition is
not satisfied, then the noise can kick an orbit which is in-
itially in the parallelogram P, into the region outside P,.
We are particularly interested in the case where such
kickouts are caused by low-probability tails on the prob-
ability density and are thus rare. (If they are frequent,
then our procedure is ineffective.) In such a case the
average time to be kicked out {(r) will be long. Thus, an
orbit will typically alternate between epochs of chaotic
motion of average duration {(z) in which it is far from
& =0, and epochs of average length (1) in which the or-
bit lies in the parallelogram P.. For small enough noise
the orbit spends most of its time in P, () >» (1), and one
might then regard the procedure as being effective.

We now consider a specific numerical example. Our
purpose is to illustrate and test our analyses of the aver-
age time to achieve control and the effect of noise. To do
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FIG. 1. (r) vs pe. Points were computed using 128 random-
ly selected initial conditions. Aq=1.4.

this we shall utilize the Henon map, x.+
=A = X7+ Bya, Yu+1™Xy, where we take B=0.3. We
assume that the quantity 4 can be varied by a small
amount about some value Ag. Accordingly, we write A4
as A=Ao+p, where p is the control parameter. For the
values of 4o which we investigate, the attractor for the
map is chaotic and contains an unstable period-one
(fixed-point) orbit. The coordinates (xr,yr) of the fixed
point which is in the attractor for p=0 along with the
associated parameters and vectors appearing in Eq. (1)
may be explicitly calculated. The quantity £, appearing
in (1) is &, =(xy — x¢)xg+ (e —yr)yo. To test our pre-
diction for the dependence of (), the average time to ap-
proach §=0, on the maximum allowed size of the pa-
rameter perturbation pe, we proceed as follows. We
iterate the map with p=0 using a large number of ran-
domly chosen initial conditions until all these initial con-
ditions are distributed over the attractor (500 iterates
were typically used). We then turn on the parameter
perturbations and determine for each orbit how many
further iterates r are necessary before the orbit falls
within a circle of radius { &, centered at the fixed point.
We then calculate the average of these times. We do
this for many different values of ps and plot the results
as a function of ps. This is shown on the log-log plot in
Fig. 1 along with the theoretical straight line of slope
given by the exponent (3). We see that the agreement is
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FIG. 2. x. vs n for two cases with the same realization of
the random vector 8. pe =02 and Ao0=1.29 for both cases.
(a) e=~3.5%x107% (b) e=38x10"2

good although there are significant variations about the
general power-law trend. These are to be expected due
to the fractal nature of the attractor and have also been
scen in numerical calculations of the pointwise dimension
for points on chaotic attractors (cf. Grebogi, Ott, and
Yorke').

Next, we consider the issue of noise. We add terms
€5,n and €8y, to the right-hand sides of the Henon map
cquations. The random quantities 8. and J,, are in-
dependent of cach other, have mean value 0 and mean-
squared value 1 ((82)=(&]}=1), and have a Gaussian
probability density. Figure 2 shows orbit plots, x, vs n
for 1500 iterates of the noisy map with parameter per-
turbations given by (2), for two different noise levels and
pe held fixed at pe =(.2. As predicted the orbit stays

14

near the fixed point with occasional bursts into the re-
gion far from & =0, and these bursts arc less frequent for
small noise levels.

In conclusion, we have shown that there is great in-
herent flexibility in situations in which the dynamical
motion is on a chaotic attractor. In particular, by using
only small (carefully chosen) parameter perturbations it
is possible to create a large variety of attracting periodic
motions and to choose amongst these periodic motions
the one most desirable.®
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The use of chaos to transmit information is described. Chaotic dynamical systems, such as electrical
oscillators with very simple structures, naturally produce complex wave forms, We show that the sym-
bolic dynamics of a chaotic oscitlator can be made to follow a desired symbol sequence by using small
perturbations, thus allowing us to encode a message in the wave form. We illustrate this using a simple

numerical electrical oscillator model.
PACS numbers: 05.45.+b

Much of the fundamental understanding of chaotic dy-
namics involves concepts from information theory, a field
developed primarily in the context of practical communi-
cation. Concepts from information theory used in chaos
tnclude metric entropy. topological entropy, Markov par-
titions, and symbolic dynamics [1]. On the other hand,
because of their exponential sensitivity, chaotic systems
are often said to evolve randomly. This terminology is
partialty justified if one regards the information obtained
by detailed observation of the chaotic orbit as being less
significant than the statistical properties of the orbits.
The object of this Letter is to show that we can use the
close connection between the theory of chaotic systems
and information theory in a way that is more than purely
formal. In particular, we show that the recent realization
that chaos can be controlled with small perturbations [2]
can be utilized to cause the symbolic dynamics of a
chaotic system to track a prescribed symbol sequence,
thus allowing us to encode any desired message in the sig-
nal from a chaotic oscillator. The natural complexity of
chuaos thus provides a vehicle for information transmission
in the usual sense. Furthermore, we argue that this
method of communication will often have technological
advantages.

Specifically, assume that there is an electrical oscillator
producing a large amplitude chaotic signal that one
wishes to use for communication. The so-called double
scroll electrical oscillator [3] yields a chaotic signal con-
sisting of a seemingly random sequence of positive and
negative peaks. If we associate a positive peak with a 1,
and a negative peak with a 0, the signal yields a binary
sequence. Furthermore, we can use small control pertur-
bations 1o cause the signal to follow an orbit whose binary
sequence represents the information we wish to communi-
cate. Hence the chaotic power stage that generates the
wave form for transmission can remain simple and
efficient (complex chaotic behavior occurs in simple Sys-
tems), while all the complex electronics controlling the
oulput remains at the low-power microelectronic level.

The basic strategy is as follows. First, examine the
lree-running {i.e., uncontrolled) oscillator and extract
from it a symbolic dynamics that allows one to assign

Work of the U. S. Government

symbol sequences to the orbits on the attractor. Typical-
ly, some symbol sequences are never produced by the
free-running oscillator, The rules specifying allowed and
disallowed sequences are called the grammar. Methods
for determining the grammar {or an approximation to it)
of specific systems have been considered in several
theoretical [4] and experimental [5] works. (In the en-
gineering literature, a similar concept exists in the con-
text of constrained communication channels.) The next
step is to choose a code whereby any message that can be
cmitted by the information source can be encoded using
symbol sequences that satisfy suitable constraints im-
posed by the dynamics in the presence of the control.
(The construction of codes with such constraints is a
standard problem in information theory [6], and will be
discussed in the context of communicating with chaos,
along with the required generalizations, in a longer paper
[7].) The code cannot deviate much from the grammar of
the free-running oscillator because we envision using only
tiny controls that cannot grossly alter the basic topologi-
cal structure of the orbits on the attractor. Once the code
is selected, the next problem is to specify a control
method whereby the orbit can be made to follow the sym-
bol sequence of the information to be transmitted. Final-
ly, the transmitted signal must be detected and decoded.

We now present a simple numerical example illustrat-
ing how the preceding strategy is carried out. Figure
1(a) is a schematic diagram of the electrical circuit pro-
ducing the so-called double scroll chaotic attractor [3].
The nonlinearity comes from a nonlinear negative resis-
tance represented by the voltage rg in Fig. 1. (Different
realizations of the negative resistance arc possible; we
have constructed one using an operational amplifier cir-
cuit, and are designing an experiment using this oscillator
to demonstrate information transmission using chaos.)
The differential equations describing the double scroll
system are

Ciee,=Glee,—ve,) —glee,) .
Cz(“cz'c([‘('l —l‘(‘,)'f'!}_ .
Lf:[_ =g,
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FIG. I. Double scroll oscillator: (a) electrical schematic and
{b) nonlinear negative-resistance i-v characteristic g.

The negative-resistance i -v characteristic g is shown in
Fig. 1(b). For our example, we us¢ the normalized pa-
rameter values used by Matsumoto [3l: Ci=4%, Cz=1,
L=1%,G=0.7, mg=—0.5, m;==08, and B,=1. For
a Poincaré surface of section {sec Fig. 2), we take the
surfaces iy = *+ GF, |vc,| < F, where F=B,(mg—m)/
(G +my), so that these half planes intersect the attractor
with edges at the unstable fixed points at the center of the
attractor lobes. Figure 2 shows a trajectory of the double
scroll system with the two branches of the surface of sec-
tion labeled 0 and 1. (The plane surfaces are edge-on in
the picture.) The intersection of the strange attractor
with the surface of section is approximately a single
straight line segment on each of the two branches. Let x
denote the distance along this straight line segment from
the fixed point at the center of the respective lobe,
x =(F —lrc,|) cos@+ |vc,| sin, where 8 is the angle that
the line segment makes with the iz-cc, plane. Because
absolute values are used in defining x, we can use the
same x coordinate for both lobes of the attractor.

To construct a description of the symbolic dynamics of
the system, we run the computer simulation without con-
trol. When the free-running system stale point passes
through the surface of section, we record the value of the
generalized coordinate x (restricted to 1000 discrete bins
for the computer simulation), and then record the symbol
sequence that is generated by the system after the state
point crosses through the surface. Suppose the system
generates the binary symbol sequence bibabs. ... We
represent this by the real number 0.51b2bs. .., so that
each symbol sequence corresponds to the real number
r=Y " by2 " and symbols that occur at earlicr times
are given greater weight. We refer to the number r,
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FIG. 2. Double scroll oscillator state-space trajectory pro-
jected on the iz-vc, plane showing the two branches of the sur-
face of section.

specifying the future symbol sequence, as the symbolic
state of the system. This defines a function mapping the
state-space coordinate x on the surface of section to the
symbolic coordinate . This function r(x) {which we call
the coding function) is shown in Fig. 3. (The function
gives actual symbol sequences when referring to the 0
lobe, and the bitwise complement when referring to the |
lobe.) Because the oscillator is only approximately de-
scribed by a binary sequence, multiple values of x lead to
the same future symbol sequence. (We only need to
track one of them. More sophisticated techniques both
for symbol assignment and symbol sequence ordering are
discussed in the longer paper [7).) Because the intersec-
tion of the attractor with the surface of section is only ap-
proximately one dimensional, there is a slight uncertainty
in the symbolic state for some values of x; this uncertain-
ty is indicated by the shading in the regions between the
upper and lower bounds on the value of r in Fig. 3. Ob-
servations of the time wave form produced by the oscilla-
tor suggest that the grammar is simple: Any sequence of

1.0

r 057

0.0

0.1 . 0.3 0.5 0.7
X

FIG. 3. Binary coding function r(x) for the double scroll
system.
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binary symbols is allowed, except there can never be less
than two oscillations of the same polarity. (We do not
discuss the full grammar here, but instead adopt this sim-
ple grammar for simplicity of description.) This no-
single-oscillation rule leads to a very simple coding: In-
sert an extra 1 after every block of I's in the binary
stream to be transmitted, and an extra O after every block
of 0's. This altered data stream now satisfies the con-
straints of the grammar, and is uniquely decodable: Sim-
ply remove a 1 from every block of 1’s upon reception,
and a 0 from every block of 0’s. Thus k oscillations of a
given polarity represent k — 1 information bits.

We now discuss how we control the system to follow a
desired binary symbol sequence. Say the system state
point passes through branch O of the surface of section
(shown in Fig. 2) at x =x,, and next crosses the surface
of section (on either branch 0 or 1) at x =x,. Because
we have previously determined the function r(x), we can
use the stored values to find the symbolic state r(x,).
We then convert the number r(x,) to its corresponding
binary sequence truncated at some chosen length N, and
store this finite-length symbol sequence in a code register.
As the system state point travels towards its next en-
counter with the surface of section at x =x;, we shift the
sequence in the code register left, discarding the most
significant bit (the leftmost bit), and insert the first
desired information code bit in the now empty least
significant siot (the rightmost stot) of the code register.
We then convert this new symbol sequence to its corre-
sponding symbolic state r;. Now, when the system state
point crosses the surface of section at x ™ x,, we use a
simple search algorithm to find the nearest value of the
coordinate x that corresponds to the desired symbolic
state rj; call this x§. By construction, |r(xs) —r(xs)|
=277 [If r(x) is continuous, as in the Lorenz system,
for example, this search can be replaced by a more
efficient local derivative projection to find the desired
value of x.] Now let 5x =x; —x;. Because we have
chosen the branches of the surface of section at constant
values of the inductor current iz, the deviation 3x in the
generalized coordinate corresponds to a deviation in the
voltages vc, and oc, across the two capacitors in Fig. 1.
We thus apply a vector correction parallel to the surface
of section {at constant i; ) along the attractor cross sec-
tion to put the orbit at x =x;. This small correcting volt-
age perturbation is given by Svc, = % 8xcos(8), Suc,
= + §xsin(0), where the + signs are used for lobe 1 of
the attractor, and the — signs for lobe 0. We plan to do
this experimentally with current pulse generators con-
nected in paraliel with each capacitor. (Many methods
of applying control perturbations are possibie, but this
one is particularly straightforward.) On cach successive
pass through the surface of section, a new code bit is
shifted into the code register, and we repeat the pro-
cedure to correct the state-space coordinates, and thus
the symbolic state, of the system. The coded information
sequence, because it is shifted through the code register,

ty

does not begin to appear in the output wave form until vV
iterations of the procedure, where N is the length of the
code register. If the symbol sequence is coming from a
properly coded discrete ergodic information source, the
process of shifting the information sequence through the
code register can be viewed as locking the symbolic dy-
namics of the osciflator to the information source. Thus,
there is a short transient phase during which the symbolic
dynamics of the oscillator is being locked to the informa-
tion source, and the symbolic dynamics of the oscillator is
always /¥ bits behind the information source.

Figure 4 shows an encoded wave form for the double
scroll system produced by the described technique. This
wave form corresponds to the voitage wave form vg(r)
across the passive conductance G. If the conductance G
is replaced by a transmission channel of the same im-
pedance, the signal produced can be transmitted through
the channel. We have represented each letter of the Ro-
man alphabet by the five-bit binary number for its loca-
tion in the alphabet, and added the extra bits to satisfy
the no-single-oscillation constraint to encode the word
“chaos.” We have applied the technique to first bring the
system to a periodic orbit about lobe | of the attractor,
then to execute the writing of the word, and then to bring
the system back to a periodic orbit about lobe 0. The tra-
jectory shown in Fig. 2 is actually the encoded trajectory,
but this is not apparent in the figure because the con-
trolled trajectory approximates a possible natural trajec-
tory. The root-mean-squared amplitude of the control
signal over the writing of the word was of order 10 in
the normalized units. The control probably cannot be
made much smaller using this simple technique, primarily
because the one-dimensional approximation in the surface
of section causes the coding function to be siightly inac-
curate. This control amplitude, though already very
small compared to the oscillator signal voltages, does not
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FIG. 4. Controlled v¢{s) signal for the double scroll system
encoded with “chaos.” Each letter is shown at the top of the
figure, along with its numerical position in the alphabet. Shown
at the bottom are the corresponding binary code words. Extra
bits (indicated by commas) are added to satisfy the constraints
imposed by the grammar.
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appear to be a fundamental limit, and we are developing
control techniques to reduce it.

We conclude with some comments concerning the
scope, application, and theoretical significance of our
technique.

(1) Since we envision the transmitted signal-to-be a -

single scalar, its instantaneous value does not specify the
full system state of the chaotic oscillator. If more state
information is needed to extract the symbol sequence,
time delay embedding [8] can be used. As our example
using the double scroil equations shows, however, time
delay embedding is not always necessary.

(2) Because our control technique uses only small per-
turbations [9], the dynamical motion of the system is ap-
proximately described by the equations for the uncon-
trolied system. Knowing the equations of motion greatly
simplifies the task of removing noise [10} from 2 received
signal. The basic bipolar nature of the signal in Fig. 4
implies that the message can still be extracted for noise
amplitudes that are significant, but not too large com-
pared to the signal. We consider the effects of additive
noise on the detection of chaos signals quantitatively in
the longer paper [7].

(3) Signals that are generated by chaotic dynamical
systems and carry information in their symbolic dynamics
have an interesting and possibly useful property: More
than one encoded symbol can be extracted from a single
sample of the trajectory if time delay embedding is used.
This is done by using the state-space partition for a
higher order iterate of the return map [7] of the system.

(4) Much of the theory needed to understand informa-
tion transmission using the symbolic dynamics of chaotic
systems already exists [11]. For examplie, because the to-
pological entropy [12] of a dynamical system is the
asymptotic growth exponent of the number of finite sym-
bol sequences that the system can generate (given the
best stale-space partition), the channel capacity of a
chaotic system used for information transmission is given
by the topological entropy. The types of channel con-
straints that arise with a chaotic system will be discussed
in a longer paper [7]. along with other theoretical con-
siderations.

(5) We emphasize that the particular methods for con-
trol and coding used in our double scroll example were
chosen for simplicity, and that other more optimal
methods are possible. Also, the double scroll oscillator it-
self was chosen because it is simple, and a large body of
research is available about its dynamics. It is not intend-
ed as an example of a practical oscillator for communica-
tion wave form synthesis. It may be possible to use a
higher-dimensional radio-frequency band-limited chaotic
system for improved performance (higher information
rate and better noise immunity), roughty analogous to the
use of complex signaling constellations in classical com-
munication systems. We are now developing more practi-
cal high-speed symbolic control techniques that could be
used at higher bit rates than an implementation of the
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straightforward example given here.

(6) There has been much discussion of the role of
chaos in biological systems, and we speculate that the
control of chaos with tiny perturbations may be impor-
tant for information transmission in nature.
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Chaotic experimental systems are often investigated using delay coordinates. Estimated vatues of the
correlation dimension in delay coordinate space typically increase with the number of delays and eventu-
aily reach a plateau (on which the dimension estimate is relatively constant) whose value is commonly
taken as an estimate of the correlation dimension D; of the underlying chaotic attractor. We report a
rigorous result which implies that, for long enough data sets, the plateau begins when the number of de-
lay coordinates first exceeds D Numerical experiments are presented. We also discuss how lack of
sufficient data can produce results that scem to be inconsistent with the theoreticat prediction.

PACS numbers; 05.45.+b

The estimation of the correlation dimension [1] of a
presumed chaotic time series has been widely used by
scientists to assess the nature of a variety of experimental
as well as model systems, ranging from simple circuits to
chemical reactions to the human brain. It is also known
that many factors, such as noise and a lack of data, can
hinder the successful application of the dimension extrac-
tion algorithm. In this paper, we address two issues relat-
ed to the understanding of these difficultics, namely, what
happens in an ideal situation (i.c., long data string with
low noise) and what could be expected when the data set
is small. In particular, we focus on the character of the
dependence of the estimated correlation dimension on the
dimension of the delay coordinate reconstructicn space.

Consider an n-dimensional dynamical system that ex-
hibits a chaotic attractor. A correlation integral C(¢) [1]
is defined to be the probability that a pair of points
chosen randomly on the attractor with respect to the nat-
ural measure p is separated by a distance less than € on
the attractor. The correlation dimension D; [i] of the at-
tractor is then defined as Dy =lim,_ glogCle)/loge. As-
sume that we measure and record a trajectory of finite
duration L on the attractor at N equally spaced discrete
times, {x}/%|, where x;, € R". The correlation integral
C(¢) is then approximated by

2 N N
I\'(N’-*I);gn-?ﬂe("= lx=x,D), )
where ©{(x) =1 for x >0 and O(x) =0 for x < 0. In the
limit LN — oo, C(N,¢)}— Cle).

The dynamical information of a chaotic experimental
system is often contained in a time series, {y; =y (1, )}/%,
obtained by measuring a single scalar function y =h(x)
where x € R” is the original phase space variable. From
{y:1 /X, one reconstructs an m-dimensional vector y; using
the delay coordinates [2,3)

C(N,e)=

yi=lw@)y;=T), ... yt;i—m—=1TH, (2)
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where T > 0 is the delay time and m is the dimension of
the reconstruction space. We call the mapping from {x;}
in R” to {y;} in R™ the “delay coordinate map.” Results
in Ref. [4) show that, for typical 7> 0 and m > 2Dy, this
delay coordinate map is one to one. Here g is the box-
counting dimension of the original chaotic attractor.

Our main focus is to estimate correlation dimension
from a time series using delay coordinates [Eq. (2)]. As
a point of departure for subsequent discussions, we first
report a theorem [5,6] which shows that, for estimating
the correlation dimension, m = D; suffices. We cm-
phasize that this result holds true irrespective of whether
the delay coordinate map is one 1o one or not. This is
contrary to the commonly accepted notion that an
embedding (one to one and differentiable) is needed for
dimension estimation, leading to the false surmise that m
needs to be at least 2D,+ 1 to guarantee a correct dimen-
sion estimation (see [7] for further discussion).

Consider an a-dimensional map G:R*— R" Lect A be
an attractor of G in R” with a natural probability mea-
sure p. For a function h:R"— R, define a delay coordi-
nate map Fp:R"—+ R™ as

Fr(x) =[h{x),h(G ' (x)),... (G " Y(x))].

The projected image of the attractor 4 under Fj has an
induced natural probability measure F,(p) in R™.
Furthermore, assume that G has only a finite number of
periodic points of period less than or equal to m in A.
The following result then applics.

Theorem.—1f D;(p) <m, then for almost every h,
D3 (Fy(p)) =D, (p).

The theorem says that the correlation dimension is
preserved under the delay coordinate map with m
= D,(p). Similar results hold for flows generated by or-
dinary differential equations. *“Almost every” in the
statement is understood in the sense of prevalence defined
in Ref. [4]; roughly speaking, we can regard this “almost
every” as meaning that the functions A that do not give
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the stated result are very scarce and are not expected to
occur in practice. The above dimension preservation re-
sult also holds for almost all general projection maps
meeting the condition in the theorem. To illustrate, con-
sider a closed curve with a uniform measure in R’. The
dimension of this curve is 1. The projected image of this
curve onto the plane still has a dimension of 1 but is gen-
erally self-intersecting. Thus the map is not one to onc
but preserves dimension information. One can further
project the image to R' and obtain an interval, which
again has a dimension of 1 but bears littie resemblance to
the original curve in R2.

[n applications D3 is commonly extracted from a time
series as follows (see Refs. [8-11] for reviews). First, an
m-dimensional trajectory is constructed using Eq. (2).
Then, the correlation integral C(V,¢) is computed ac-
cording to Eq. (1), where m indicates the dimensionality
of the reconstruction space. From the curve logCpu (N, ¢)
vs loge one then locates a linear scaling region for small €
and estimates the slope of the curve over the linear re-
gion. This slope, denoted Di™, is then taken as an esti-
mate of the correlation dimension D™ of the projection
of the attractor to the m-dimensional reconstruction
space. If these estimates 55"). plotted as a function of
m, appear to reach a plateau for a range of large enough
m values, then we denote the plateaued value D; and take
D3 an estimate of the true correlation dimension D for
the system. From the theorem it is clear that the on-

where Ceil(D3), standing for ceiling of D;, denotes the
smallest integer greater than or equal to D».

Our original interest in the current problem was
motivated by published reports (sec Refs. [12-17] for a
sample) where D™ plateaus at m values that arc consid-
erably greater than D>. A particular concern is that,
when this happens, what does it imply regarding the
correctness of the assertion that D; is an estimate of the
true correlation dimension D3 of the underlying chaotic
process? In an attempt to answer this question we have
obtained new results on the systematic behavior of the
correlation integrals. Based on these bchaviors we are
able to explain how factors such as a lack of sufficient
data can produce results, resembling those seen in the ex-
perimental reports cited above, which seem to be incon-
sistent with the theorem. Furthermore, we find that even
in cases where the plateau onset of D}™ occurs at m
values considerably greater than Ceil{D,), there are situ-
ations where the platcaued D is a good estimate of the
true correlation dimension D;. See Refs. [18-25] for
other relevant works addressing the issuc of short data
sets and noise.

To study the numerical aspects of dimension estimation
we use chaotic time serics generated by the Mackey-
Glass equation [26] dy()/dt =ay(t—2)/l1+ [y
— )19 — by (1), where we fix a=0.2, =0.1, c =100,
and r =100.0, and take as the initial condition y{¢) =0.5
for t € [—£,0). The numerical integration of this equa-

set of this plateau should ideally start at m=Ceil(D;), | tion is done by the following iterative scheme [l
j

2—bét ay(t —1)

ay(t —t+6t) ()

y(t+6¢)= y()+

8t
2+ bét
where 8t is the integration step size. We choose 8t =0.1.
Equation (3) is then a 1000-dimensional map, which,
aside from being an approximation to the original equa-
tion, is itself a dynamical system. The time series, gen-
erated with a sampling time {, =10.0, arc normalized to
the unit interval so that the reconstructed attractor lies in
the unit hypercube in the reconstruction space. The norm
we use 10 calculate distances in Eq. (1) is the max-norm
in which the distance between two points is the largest of
all the component differences. To reconstruct the atirac-
tor, we follow Eq. (2) and take the delay time to be
T=20.0 The dimension of the reconstruction space is
varied from m =2 to m =25.

The first time series, used to illustrate the theorem,
consists of 50000 points. For each reconstructed attrac-
tor at a given m we calculate the correlation integral
Cn(N,€) according to Eq. (1). In Fig. | we display
10g2Cm (N, €) vs logze for m=2-8, 11, 15, 19, 23. For
each m we identify a scaling region for small ¢ and fit a
straight line through the region. The open circles in Fig.
2 show the values of 5{"" so estimated as a function of
m. Form=17, D™ ~m. For m=8, D{™ platcaus at
D; which has a value of about 7.1. Identifying D, with
the true correlation dimension D, of the underlying at-

2+ bét 1+{y(e—1)1"°

1+l — 481"

|

tractor, this result is consistent with the prediction by the
theorem that the onset of the plateau occurs at
m =Ceil(D,).

The second time series, used to illustrate the effect

logy C(N,£)

logy €
FIG. 1. Log-log plots of the correlation intcgrals Cu(N,¢)
for the data set of 50000 points generated by Eq. (3).
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FIG. 2. D™ vs m plotted as open circles for the long data
set (N =50000 and Fig. 1), D{™ vs m plotted as triangles for
the short data set (/V =2000 and Fig. 3).

duc to a lack of data, consists of 2000 points. The
i0g2Cm(N,€) vs logye curves are shown in Fig. 3 for
m=2-6,8, 11,15, 19, 23. The values of D§™ in this case
arc plotted using triangles as a function of m in Fig. 2.
This function attains an approximate plateau which be-
gins at m=16 and extends beyond m=25. The slope
averaged over the plateau is about 7.05 which is con-
sistent with the value of 7.1 obtained using the long data
set (N =50000) plotted as open circles in Fig. 2. But the
D, estimates for the short data set fall systematically un-
der that for the long data set for S=<m =< 13. Thus the
plateau does not begin until m is substantially larger than
Ceil(D;). This behavior has also been seen in many ex-
perimental studies. In what follows we explain the origin
of this apparent inconsistency by exploring the systematic
behavior of correlation integrals.

Figure 4 is a schematic diagram of a set of correlation
integrals for m =2 to m =13. A dashed line is fit through
the scaling region for each m. For m=<35, D™ ~m.
For m= 6, D™ platcaus at Dy==S5.7. This value is an
estimate of the true D; for the system. This figure exhib-
its several features that are typical of correlation inte-
grals for chaotic systems. The first feature we note is
that the horizontal distance between logC,(N,¢) and
10gCo+1(N,€) for m = 6 in the scaling regions is roughly
a constant. This constant is predicted, for large m and
small ¢, to be Ah =Av/D3, where Ae =TK; with K5 the
correlation entropy [27] and T the delay time in Eq. (2).
Two other significant features exhibited by Fig. 4 are as
follows. For m < 9, 1ogsCm(IV,€) increases with a gradu-
ally diminishing slope; while for m = 11, after exiting the
linear region, the log-log plots in Fig. 4 first increase with
a slope that is steeper than that in the linear scaling re-
gion and then level off to meet the point (0,0). These two
different trends give risc to an uncven distribution in the
extent of the scaling regions for different » with the most
extended scaling region occurring at m =10,

In Refs. [8,28] arguments are presented to show that
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FIG. 3. logaCu(N,€) vs logae for the data set of 2000 points.

the trend observed for relatively small m is duc to an
“edge effect™ resulting from the finite extent to the recon-
structed attractor. Ding et al. [5] show that the steeper
slope observed for relatively large m is caused by foldings
occurring on the original attractor. This can be illustrat-
ed analytically [5] for the tent map [29). For m =1, the
correlation integral for the reconstructed tent map attrac-
tor is C\{e)=e(2—¢). For m=2, Cy(¢) is written as
Ci(e)=Ci(e/2)+ R(¢). The first term arises because a
pair of points y; and y; in the time series satisfying
|y, ~yil <€f2 give rise to a pair of two-dimensional
points, y;+1={+1.0y} and yro1=lyr41,p), satisfying
ly;+1 —¥i+1l <e. The folding of the tent map at y =}
leads to situations in which ly;—y/l > ¢/2, but |y;+
—y1+1l <e. Thus the folding in the attractor underlies
the correction term R(e) which is calculated [5) to be
R(e)=e*2for 0<e< } and R(e)=3e—7e*/4~1 for
$<ex<I. For 0<e<$, dlog,Cale)/dlogre=1+¢/
(2+¢). This derivative is | when e =0 (D3 =1 for the at-
tractor) and increases due to the term &/(2+¢) whose
presence reflects the influence of R{¢)} which, in turn, is
caused by the folding on the attractor.

From Eq. (1), the range of Cn(N,c) is logs2/N?

log, €
FiG. 4. Schematic diagram of correlation integrals.
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< log2Cm(N.€) = 0. Imagine a time series of N =2000
points generated by the system underlying Fig. 4. The
plots of log;Cm(N,€) vs logae for this data set roughly
correspond to the portion of Fig. 4 above the horizontal
line drawn at log:Ca(N.e) =log,[2/(2000) %] = —20.
Since the upper boundary points of the scaling regions for
m =6 and 7 are under this horizontal line, the correct di-
mension is not obtained for m =6 and 7. In fact, if we fit
a straight line 10 an apparent linear region above
1082Cm (N, €) = = 20 for m =6 we obtain a slope which is
markedly smaller than the actual dimension. However,
since the upper boundary points of the scaling regions for
m = 8 are above the horizontal line, we can still expect to
obtain the correct estimate of D2 =5.7 for m=8. Thus
the plateau onset is delayed due to a lack of data.

The same consideration applies to the short data set
generated by Eq. (3). In particular, imagine that we re-
strict our attention to the region log:Cm(N,€) > —20 in
Fig. | and fit a linc through an apparent lincar range for
the m =8 data in this region. The slope of this straight
line is about 5.9, which is roughly the same as that of 5.8
estimated using 2000 points. Thus, by knowing the corre-
lation integrals for a large data set, we can roughly pre-
dict the outcome of a dimension measurement based on a
smaller subset of this data.

We remark that if one extends the range of m values
beyond what is shown in Fig. 2, at large enough m, D{”’)
will start to deviate from the plateau behavior and in-
crease monotonically with m. This is caused by the finite
length of the data set and can be understood from the
systematic behavior of correlation integrals seen in Fig. 4.
A lack of sufficient data will not only delay the plateau
onset, but also make the deviation from the plateau be-
havior occur at smaller values of m, thus shortening the
plateau length from both sides. This can again be under-
stood with reference to Fig. 4.
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Chaos, Strange Attractors, and Fractal Basin
Boundaries in Nonlinear Dynamics

CeLsO GREBOGI, EDWARD OTtT, JAMES A. YORKE

Recently research has shown that many simple nonlinear
deterministic systems can behave in an apparently unpre-
dictable and chaotic manner. This realization has broad
implications for many fields of science. Basic develop-
ments in the field of chaotic dynamics of dissipative
systems are reviewed in this article. Topics covered in-
clude strange attractors, how chaos comes about with
variation of a system parameter, universality, fractal basin
boundaries and their effect on predictability, and applica-
tions to physical systems.

chaotic dynamics of dissipative systems including recent devel-

opments. The existence of chaotic dynamics has been discussed
in the mathematical hiterature for many decades with important
coneributions by Poincaré, Birkhoff, Cartwright and Littlewood,
Levinson, Smale, and Kolmegorov and his students, among others.
Nevertheless, it is only recently that the wide-ranging impact of
chaos has been recognized. Consequently, the field is now undergo-
ing explosive growth, and many applications have been made across
a broad spectrum of scientific disciplines——ecology, €CONOMmIcs,
physics, chemistry, engineering, fluid mechanics, to name several,
Specific examples of chaotic time dependence include convection of
a fluid hearted from below, simple madels for the yearly variation of
insect populations, stirred chemical reactor systems, and the deter-
mination of limits on the length of reliable weather forecasting. It is
our belief that the number of these applications will continue to

grow.
Woe start with some basic definitions of terms used in the rest of

the article.

Dissipative system. In Hamiltonian {conservative) systems such as
arise in Newtonian mechanics of particles (without friction), phase
space volumes are preserved by the time evolution. {The phase space
is the space of vanables that specify the state of the system.)
Consider, for example, a owo-dimensional phase space (g, p), where
g denotes a position variable and p 2 momentum variable. Hamil-
ton’s equations of motion take the set of initial conditions at time
t = 14 and evolve them in time to the set at ume ¢ = f,. Although the
shapes of the sets are different, their areas are the same. By a
dissipative system we mean one that does not have chis property
(and cannot be made to have this property by 4 change of variables).
Areas should tvpically decrease (dissipate) in time so that the area of

l N THIS ARTICLE WE PRESENT A REVIEW OF THE FIELD OF

€. Grebog 1s 4 rescarch scenost at the Laboratory for Plasma and Fusion Energy
Studics. E. Ot 15 a protessor i the departments of elecical engineering and physics,
and |. A. Yorke is 2 professor of mathematics and is the director of the Insorure for
Physical Science and Technology, University of Marvland, College Park, MD 20742.
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the final set would be less than the area of the initial ser. As a
consequence of this, dissipative systems typically are characterized
by the presence of artractors.

Attractor. If one considers a system and its phase space, then the
initial conditions mav be artracted to some subset of the phase space
{the attractor) as time £ — %, For example, for a damped harmonic
oscillator (Fig. 1a} the attractor is the point at rest (in this case the
origin}. For a periodically driven oscillator in its imit cycle the limir
set is a closed curve in the phase space {Fig. 1b}.

Strange attractor. In the above two examples, the attractors were a
point {Fig. 1a), which is 2 sec of dimension zero, and a closed curve
(Fig. 1b), which is a set of dimension one. For many other artractors
the atrracting set can be much more imregular (some would sav
pathological} and, in fact, can have a dimension that is not an
integer. Such scts have been called “fractal” and, when they are
attractors, they are called strange attractors. [For a more precise
definition see ({).] The existence of a strange attractor in a physically
interesting, model was first demonstrated by Lorenz (2).

Dimension. There are many definitions of the dimension 4 {3).
The simplest is called the box-counting or capacity dimenston and is
defined as follows:

— lim In Ne)
= In(tse

where we imagine the attracting set in the phase space to be covered
by small D-dimensional cubes of edge length &, with D the
dimension of the phase space. N(e) is the minimum number of such
cubes needed to cover the set. For example, for a point attractor
(Fig. 1a), N(e) = | independent of €, and Eq. 1 yields d = 0 {as it
should), For a limit cycle artractor, as in Fig, 1b, we have that
N(e) ~ £le, where ¢ is the length of the closed curve in the figure
(dotted line); hence, for this case, d = 1, by Eq. 1. A less trivial
example is illustrated in Fig. 2, 1n the form of a Cantor set. This set 1s

(b

a b

dx/dt |

dx/at 1

Fig. 1. (a) Phase-spacc diagram for a damped harmonic oscillator. (b) Phase-
space diagram for a system that is approaching a limit cyci=.
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formed by taking the line interval from 0 to 1, dividing it in thirds,
then discarding the middle third, then dividing the two remaining
thirds into thirds and discarding their middle thirds, and so on ad
infinitum. The Cantor set is the closed set of points that are left in
the limit of this repeated process. If we take € = 37" with » an
integer, then we sec that N{(e) = 2" and Eq. 1 (in which e =0
corresponds to n — ®) yields 4 = (In 2)/(In 3), a number between 0
and 1, hencc, a fractal. The topic of the dimension of strange
attractors is a large subject on which much research has been done.
Onc of the most intcresting aspects concerning dimension arises
from the fact that the distribution of points on a chaotic attractor
can be nonuniform in a very singular way. In particular, there can be
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an arbitrarily fine-scaled interwoven structure of regions where orbit
trajectories are dense and sparse. Such attractors have been called
multifractals and can be characterized by subsidiary quantities that
essentially give the dimensions of the dense and sparse regions of the
attracror. In this review we shall not attempt to survey this work.
Several papers provide an introduction to recent work on the
dimension of chaotic attractors {(3-3).

Chaotic atvractor. By this term we mean that if we take two typical
points on the anractor that are separated from cach other by a small
distance A(0) at ¢ =0, then for increasing ¢ they move apart
exponentially fast. That is, in some average sense A(¢) ~ A(0)exp(ht)
with # > 0 (where 4 is called the Lyapunov exponent). Thus a small
uncertainty in the initial state of the system rapidly leads to inabiliry
to forecast its future. [It is not surprising, thercfore, that the
pioneering work of Lorenz (2) was in the context of metcorology. |
It is typically the case that strange attractors are also chaotic
[although this is not always so; see (1, 6}].

Dynamical system. This is a system of equations that allows one, in
principle, to predicr the furure given the past. One example is a
system of first-order ordinary differential equations in ame, dx(r)/
4 = G(x,t), where x(¢) is a D-dimensional vector and G is a D-
dimensional vector function of x and £. Another example is a map.

Map. A map is an equation of the form x,,, = F(x,), where the
“time” ¢ is discrete and integer valued. Thus, given x,, the map gives
x;. Given xy, the map gives x;, and so on. Maps can arise in
continuous time physical systems in the form of a Poincaré surface
of section. Figure 3 illustrates this. The plane x; = constant is the
surface of section (S in the figure), and A denotes a traj=crory of the
system. Every time A pierces § going downward (as at points A and
B in the figure), we record the coordinates (x;,x;). Clearly the
coordinates of A uniquely determine those of B. Thus there exists a
map, B = F(A), and this map (if we knew it) could be iterated to
find all subsequent piercings of S.

Chaotic Attractors

As an example of a strange attractor consider the map first studied
by Hénon (7):

Fuel = O~ %5+ Byn 2)

yui-l =X, (3)
Figurc 4a shows the result of plotting 10* successive points obtained
by iterating Eqgs. 2 and 3 with parameters @ = 1.4 and B = 0.3 (and
the inirial transient is deleted). The result is essendally a picture of
the chaotic attractor. Figure 4, b and ¢, shows successive enlarge-
ments of the small square in the preceding figure. Scale invariane,
Cantor set-like structure transverse to the linear structure is evident.
This suggests that we may regard the anractor in Fig. 4c¢, for
cxample, as being essentially a Cantor set of approximately straight
parallel lincs. In fact, the dimension 4 in Eq. 1 can be cstimated
numerically (8) to be 4 = 1.26 so that the artractor is strange.
As another example consider a forced damped pendulum de-
scribed by the equarion

d20/de? + vdd/dt + wisin® = feos(wt) 4

where 8 is the angle between the pendulum arm and the rest
position, v is the cocflicicnt of friction, wy is the frequency of natural
oscillation, and f'is the strength of the forcing. In Eq. 4, the first
term represents the inertia of the pendulum, the sccond term
represents friction at the pivot, the third represents the gravitational
force, and the right side represents an external sinusoidally varying
torque of strength fand frequency w applied to the pendulum at the
pivot. In Fig. 5a, we plot the Poincaré surface of section of a strange
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Fig. 5. (a} DPoincar¢ sur-
face of section of a pendu-
lum strange attractor. (b)
Enlargement of region de-
fined by rectangle in (a).
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Fig. 6. Chaotic time serics
for pendulum shown as a
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attractor for the pendulum, where we choose v = 0.22, wg = 1.0,
w = 1.0, and f = 2.7 in Eq. 4. This surface of section is obtained by
plotting 50,000 dots, one dot for every cycle of the forcing term,
that is, one dot at cvery time ¢ = ¢, = 2un (where » is an integer).
The strange attractor shown in Fig. 5a exhibits a Cantor sct—like
structure transverse to the linear structure. This is evident in Fig. 5b,
which shows an enlargement of the square region in Fig. 5a. The
dimension of this strange attractor in the surface of section is
4 =1.38. Figure 6 shows the angular velocity 48/ds as a function of t
for the parameters of Fig. 5. Note the apparently erratic nature of
this plot.

In general, the form of chaotic attractors varies greatly from
system to system and even within the same system. This is indicated
by the sequence of chaotic attractors shown in Fig. 7. All of these
attractors were gencrated from the same map (9),

‘hn-fl = {‘l’n + wy + EP|(llJ,.,,0,,)l n.IOd l
0,1 =[0, + w2+ €Ps(rn,8,)] mod 1

(5)
(6)

where P, and P; are periodic with period onc in both their
arguments. The Py and P; arc the same in ali of the cases shown in
Fig. 7, only the parameters @, @z, and € have been vaned. The
results show the great variety of form and structure possible in
chaotic artractors as well as their acsthetic appeal. Since and § may
be regarded as angles, Egs. 5 and 6 arc a map on a two-dimensional
toroidal surface. [This map is used in (9) to study the transition
from quasiperiodicity to chaos. ]

Because of the exponential divergence of nearby orbits on chaotic
attractors, there is a question as to how much of the structure n
these pictures of chaotic attractors (Figs. 4, 5, and 7) is an artifact
due 1o chaos-amplified roundoff error. Although a numerical trajec-
tory will diverge rapidly from the true trajectory with the same
initial point, it has been demonstrated rigorously (10) in important
cases [including the Hénon map (!1)] thac there exists a truc

634

trajectory with a slightly different initial point that stays near the
noisy trajectory for a long time. {For example, for the Hénon map
for a typical numerical trajectory computed with }4-digic precision
there exists a true trajectory that stays within 1077 of the numerical
trajectory for 107 iterates (11).] Thus we belicve that the apparently
fractal seructure seen in pictures such as Figs. 4, 5, and 7 is real.

The Evolution of Chaotic Attractors

In dissipative dynamics it is common to find that for some value
of a system parameter only a nonchaotic attracting orbit (a Limit
cycle, for example) occurs, whereas at some other value of the
parameter a chaotic attractor occurs. It is therefore natural o ask
how the one comes abour from the other as the system parametet is
varied continuously. This is a fundamental question that has clicited
a great deal of attention (9, 12-19).

To understand the nature of this question and some of the
possible answers to it, we consider Fig. Ra, the so-called bifurcation
diagram for the map.

A 7

where C is a constant. Figure 8a can be constructed as follows: take
C = —0.4, set x5 = —0.5, iterate the map 100 times (to eliminate
transicnts), then plot the next 1000 values of x; increase C by a small
amount, say 0.001, and repeat what was done for C = —-0.4;
increase again, and repeat; and so on, untl C = 2.1 is reached. We
see from Fig. 8a that below a certain value, C = Gy = —0.25, there
is no attractor in —2 < x < 2. In fact, in this casc all orbits go 1o
% —» —oo_ hence the absence of points on the piot. This is also truc
for C above the “crisis value” C; = 2.0. Berween these two values
there is an attractor. As C is increased we have an attracting orbit of
“period one,” which, at C = 0.75, bifurcatcs to a period-two
artracting orbit (x, — xg — Xo —> xp — * * ), which then bifurcates
(s C=125) to a period-four orbit {x, —> xp—* Xc — X4 —
Xy Kp > X Xg > X0 0). In fact, there are an infinite num-
ber of such bifurcations of period 2" to period 2! orbits, and these
accumulate as # — = at a finite value of C, which we denote C,
(from Fig. 8a, C. = 1.4). [The practical importance of this phe-
nomenology was emphasized carly on by May (12).]

What is the situation for C.< C < C.? Numerically what one
sees is that for many C values in this range the orbits appear to be
chaotic, whereas for others there are periodic orbits. For example,
Fig. 8b shows an enlargement of Fig. 8a for C in the range
1.72 < C < 1.82. We scc what appear to be chaotic orbits below
C = G = 1.75. However, just above this value, a period-three
otbit appears, supplanting the chaos. The period-three orbit then
goes through a period-doubling cascade, becomes chaotic, widens
into a threc-piece chaotic auractor, and then finally ar
C = C® = 1.79 widens back into a single chaotic band. We call
the region Co'? < C < C a period-three window. (Such win-
dows, but of higher period, appear throughout the region Co

< C < C,, bur are not as discernible in Fig. 8a because they are
much narrower than the period-three window.)

An infinite period-doubling cascade is onc way that a chaotic
artractor can come about from a nonchaotic one (13). There are also
two other possible routes to chaos exemplified in Fig. 8, a and b.
These are the intermittency route (14) and the crisis route (15).

Intermittency. Consider Fig. 8b. For C just above G therc is a
period-three orbit. For C just below C*' there appears to be a
chaotic orbit. To understand the character of this transiton it is
uscful o examine the chaotic orbit for C just below Co'. The
character of this orbit is as follows: The orbit appears to be a period-
three orbit for long strerches of time after which there is a short

Xn+1 =C-
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Fig. 7. Sequence of chaot- 10w
ic amractors for system
represenited by Egs. 5 and
6. Piot shows iterared
mapping on a torus for
different vaiues of wy, w,,
ardd €. (Top) w, = 0.54657,
w; = 0.36736, and € =
0.75. (Center) w, =
0.45922, w, = 0.53968,
and ¢ = 0.50. (Bottom)
w = 041500, w, =
0.73500, and e = 0.60.
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burst (the “intermittent burst”) of chaotic-like behavior, followed by
another long stretch of almost period-three behavior, followed by a
chaotic burst, and 50 on. As C approaches Co* from below, the
average duration of the long stretches berween the intcrmittent
bursts becomes lon§cr and longer (I4), approaching infinity and
proportional to (Co™ — C)™'? as C — G¢*. Thus the purc period-
three orbit appears at C = Co'*'. Alternatively we may say that the
attracting periodic attractor of period three is converted to a chaotic
artractor as the parameter C decreases through the critical valuc
Co®™. It should be emphasized that, although our illustration of the
transition to chaos by way of intermittency is within the context of
the period-three window of the quadratic map given by Eq. 7, this
phenomenon (as well as period-doubling cascades and criscs) is very
general; in other systems it occurs for other periods (period one, for
example) in casily observable form.

Crises. From Fig. 8a we see that there is a chaotic attractor for
C < C. = 2, but no chaotic attractor for C > C.. Thus, as C is
lowered through C., a chaotic attractor is born. How does this
occur? Note that at C = C_ the chaotic orbit occupies the interval
-2 = x = 2. If C is just slightly larger than C., an orbit with initial
condition in the interval —2 < x < 2 will typically follow a chaotic-
like path for a finite time, after which it finds its way out of the
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interval —2 = x =< 2, and then rapidly begins to move to large
negative x valucs (that is, it begins to approach x = —). This is
called a chaotic transient (15). The length of a chaotic transient wiil
depend on the particular initial condition chosen. One can define 2
mean transient duration by averaging over, for example, a2 uniform
distribution of initial conditions in the interval -2 < x < 2. For the
quadratic map, this average duration is

T~ IH(C - Co)Y (8)

with the exponent vy given by v = 1/2. Thus as C approaches C,
from above, the lifetime of a chaotic transient goes to infinity and
the transient is converted to a chaotic attractor for C < C.. Again,
this type of phenomenon occurs widely in chaotic systems. For
example, the model of Lorenz (2) for the nonlinear evolution of the
Raylcigh-Bénard instability of a fluid subjected to gravity and
heated from below has a chaotic onsct of the crisis type and an
accompanying chaotic transient. In that case, y in Eq. 8 is y ~ 4
(20). In addition, a theory for determining the exponent vy for two-
dimensional maps and systems such as the forced damped pendulum
has recently been published (21). Thus we have seen that the period
doubling, interminency, and crisis routes to chaos are illustrated by
the simple quadratic map (Eq. 7).

We emphasize that, although a map was uscd for iliustrating these
routes, all of these phenomena are present in continuous-time
systems and have been observed in experiments. As an example of
chaotic transitions in a continuous tme system, we consider the set
of three autonomous ordinary differential equations studied by
Lorenz (2) as a model of the Rayleigh-Bénard instability,

dxldt = Py — Px )
dyldt = —xz + e — y (10)
dzidt = xy — bz (1)

where P and # are adjustable parameters. Fixing P = 10 and & = 8/3
and varying the remaining parameter, ¥, we obtain numerical
solutions that arc clear examiples of the intermittency and crisis types
of chaotic transitions discussed above. We illustrate these in Fig. 9,a
through d; the behavior of this system is as follows:

1) For r between 166.0 and 166.2 there is an intcrmittency
transition from a periodic attractor {r = 166.0, Pig. 9a) to a chaotic
attractor (r = 166.2, Fig. 9b) with intermittent turbulent bursts.
Between the bursts there are long stretches of time for which the
orbit oscillates in nearly the same way as for the periodic attractor
(14) (Fig. 9a).

2) For a range of r vatues below r = 24,06 there are two periodic
attractors, that represent clockwise and counterclockwise convec-
nions. For r slightly above 24.06, however, there are three attractors,
one that is chaotic (shown in the phase space tajectory in Fig. 9¢),
whereas the other two attractors are the previously mentioned
periodic artractors. The chaotic attractor comes into existence as r
increases through r = 24.06 by conversion of a chaotic transicnt.
Figure 9d shows an orbit in phase space executing a chaotic
transient before sertling down to its final resting place at one of the
periodic attractors. Note the similarity of the chaotic transient
trajectory in Fig. 9d with the chaotic trajectory in Fig. 9c¢.

The various routes to chaos have also received exhaustive experi-
mental support. For instance, period-doubling cascades have been
observed in the Rayleigh-Bénard convection (22, 23), in nonlincar
circuits {24), and in lasers (25); intermittency has been observed in
the Rayleigh-Bénard convection (26) and in the Belousov-Zhabo-
tinsky reaction (27); and crises have been observed in nonlinear
circuits (28-30), in the Josephson junction (31), and in lasers (32).

Finally, we note that period doubling, intermittency, and crises
do not exhaust the possible list of routes to chaos. (Indeed, the
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Fig. 8. (Top) Bifurcation
diagram for the quadratic
map. (Bottom; [Period-
three window for the qua-
dratic map.
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routes are not all known.y In particular, chaotic onsets involving
quasipenodicity have not been discussed here (9, 16, 18).

Universality

Universality refers to the fact that systems behave in certain
quantitative ways that depend not on the detailed physics or model
description but rather onlv on some general properties of the
svstem. Universality has been examined by renormalization group
(33) techniques developed for the study of critical phenomena in
condensed martrer physics. In the context of dvnamics, Feigenbaum
(13) was the first to apply these ideas, and he has extensively
developed them, particularly for period doubling for dissipative
systemns. |See (17) for a collection of papers on universality in
nonlinear dynamics.] For period doubling in dissipative systems,
results have been obtained on the scaling behavior of power spectra
for time series of the dynamical process (34), on the effect of noise
on period doubling (35). and on the dependence of the Lyapunov
exponent {36) on a system parameter. Applications of the renormali-
zation group have also been made to intermittency (19, 37), and the
breakdown of quasiperiodicity in dissipative (18) and conscrvative
(38) svstems.

As examples, twa “universal” results can be stated within the
context of the bifurcation diagrams (Fig. 8, aand b}. Let C, denote
the value of C ar which a period 2" cvcle period doubles to become a
period 277 cvele. Then, for the bifurcation diagram in Fig. 8a, one
obtains
i, S oot - 4 660201 .

C.oi -G,
The result given in Eq. 12 1s not restricted to the quadratic map. {n
fact, it applics to a broad class of svstems that undergo period
doubling cascades (13, 39). In practice such cascades arc very
common, and the associated universal numbers are observed to be
well approximated by means of fairly low order bifurcations (for
example, # = 2.3.4). This scaling behavior has been observed in

(12)
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many experiments, including ones on fluids, nonlinear circuits, laser
systems, and so forth. Although universality arguments do not
cxplain why cascades must exist, such explanations are available from
bifurcation theory (40).

Figure 8b shows the period-three window within the chaotic
range of the quadratic map. As already mentioned, there are an
infinite number of such periodic windows. [In fact, they are
generally believed to be dense in the chaotic range. For exampie, if &
is prime, there are (2% — 2)/(2k) petiod-k windows.| Let Co® and
C.'*! denote the upper and lower values of C bounding the period-k
window and ler Cg*¥! denote the value of C at which the period-k
artractor bifurcares to period 2k Then we have that, for typical &
windows (41).

AL LI (k)
lim Cs G

ko= —Cd[k] G, — 9/4

(13)
In fact, even for the & = 3 window (Fig. 8b) the 9/4 value is closely
approximated (it is 9/4 — 0.074 . ). This result is universal for
one-dimensional maps (and possibly more generally for any chaotic
dvnamical process) with windows.

Fractal Basin Boundaries

In addition to chaatic attractors, there can be sets in phasc space
on which orbits are chaotic but for which points near the set move
away from the set. That is, they are repelled. Nevertheless, such
chaotic repellers can still have important macroscopically observable
cffects, and we consider one such effect (42, 43) in this section.

Tvpical nonlinear dynamical systems may have more than one
time-asymptotic final state (attracror), and it 1s important to consid-
er the extent to which uncertainty in ininal conditions leads to
uncertainey in the final state. Consider the simple two-dimensional
phase space diagram schemarically depicted in Fig. 10. There are
two attractors denoted A and B. Initial condirions on one side of the
boundary, X, eventually asvmptotically approach B; those on the
other side of ¥ eventually go to A. The region ro the left or night of
% is the basin of attraction for attractor A or B, respectively, and X is
the basin boundarv. If the ininal conditions are uncertain by an
amount €, then for those inirial conditions within € of the boundary
we cannot sav a priori to which arrractor the orbit eventually tends.

o
o

z(y

0
o W

Fig. 9. Intermuttency, crisis, and period doubling in continuous time
svsterns.  Intermittency in the Lorenz equanons (&) r = 166.0; (b)
r = 166.2. Cnsis transition 10 a chaotic antractor in the Lorenz equations:
(e)r = 28; (4} r = 22.
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Fig. 10. A region of phasc space divided by
the basin boundary X into basins of attraction
for the two attractors A and B. Points | and 2
are initial conditions with error €.

For example, in Fig. 10, points 1 and 2 are inicial conditions with an
uncertainty €. The orbit generated by initial condition 1 is attracted
to attractor B. Initial condition 2, however, is uncertain in the sense¢
that the orbit generated by 2 may be attracted cither to A or B. In
particular, consider the fraction of the uncertain phase space volume
within the rectangle shown and denote this fraction f. For the case
shown in Fig. 10, we clearly have f ~ €. The main point we wish to
make in whar follows s that, from the point of view of prediction,
much worse scalings of f with € frequently occur in nonlinear
dynamics. Namely, the fraction can scale as

[~ (14)
with the “uncertainty exponent” a satisfying o < 1 (42, 43). In fact,
a << 1 is fairly common. In such a case, a substantial reduction in
the initial condition uncertainty, e, yields only a refatively small
decrease in the uncertainty of the final state as measured by f.

Although a is equal to unity for simple basin boundaries, such as
that depicted in Fig. 10, boundaries with noninteger {fractal)
dimension also occur. We usc here the capacity definition of
dimension, Eq. 1. In general, since che basin boundary divides the
phase space, its dimension 4 must satisfy 4 = D - 1, where D is the
dimension of the phase space. It can be proven that the following
relation between the index o and the basin boundary dimension
holds (42, 43)

a=D-4d

For a simple boundary, such as that depicted in Fig. 10, we have
d =D - 1, and Eq. 15 then gives @ = 1, as expected. For a fractal
basin boundary, 4 > D — 1, and Eq. 15 gives o < 1.

We now illustrate the above with a concrete example. Consider
the forced damped pendulum as given by Eq. 4. For parametcr
values v = 0.2, wy = 1.0, 0w = 1.0, and f = 2.0, we find numerically
that the only attractors in the surface of scction (0, 40/dt) are the
fixed points (—0.477, —0.609) and (—0.471, 2.037). They rcpre-
sent solutions with average counterclockwise and clockwise rotation
at the period of the forcing. The cover shows a computer-generated
picture of the basins of attraction for the two fixed point aractors.
Each initial condition in a 1024 by 1024 point grid is integrated
until it is close to one of the two attractors (typically 100 cycles). I
an orbit goes to the attractor at § = —0.477, a blue dot is plorred at
the corresponding initial condition. If the orbit goes to the other
attractor, a red dot is plotted. Thus the blue and red regions are
essentially pictures of the basins of attraction for the two attractors
to the accuracy of the grid of the computer plorter. Fine-scale
structure in the basins of attraction is evident. This is 2 consequence
of the Cantor-set nature of the basin boundary. In fact, magnifica-
tions of the basin boundary show that, as we examinc it on a smaller
and smaller scale, it continucs to have structure.

We now wish to explore the consequences for prediction of this
infinitcly fine-scaled structure. To do this, consider an initial
condition (0, 46/ds). What is the cffect of a small change « in the 8-
coordinate? Thus we integrate the forced pendulum equation with
the initial conditions (8, 40/ds), (8, 46/ds + €), and (6, Ad8/dr — €)
until they approach one of the attractors. If cither or both of the
perturbed initial conditions yield orbits that do not approach the
same attractor as the unperturbed initial condition, we say that (9,
d0/d) is uncertain. Now we randomly choose a large number of
initial conditions and let /' denote the fraction of these that we find

(15)
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to bc un.  1ain. As & restlt of these calculations, we find that f ~ €
where & = 0.275 = 0.005. If we assume that f, determined in the
way stated above, is approximately proportional to f [there is some
support for this conjecture from theoretical work (44)], then a = &
Thus, from Eq. 15, the dimension of the basin boundary is
4 = 1.725 + 0.005. We conclude, from Eq. 14, that in this case if
we are to gain a factor of 2 in the ability to predict the asymptotic
final state of the system, it is necessary to increase the accuracy in the
measurement of the initial conditions by a factor substantially
greater than 2 (namely by 2'*%"° =10). Hence, fractal basin
boundaries (a < 1) represent an obstruction to predictability in
nonlinear dvnamics.

Some representative works on fractal basin boundaries, including
applications, are listed in (42—47). Notable basic questions that have
recently been answered are the following:

1) How does a nonfractal basin boundary become a fractal basin
boundary as a parameter of the system is varied (45)? This question
is similar, in spirit, to the question of how chaotic artractors come
abour.

2) Can fractal basin boundaries have different dimension values in
different regions of the boundary, and what boundary structures
lead to this situation? This question is addressed in (46) where it is
shown that regions of different dimension can be intertwined on an
arbitrarily fine scale.

3) What are the cffects of a fractal basin boundary when the
system is subject to noise? This has been addressed in the Josephson
junction cxperiments of {31).

Conclusion

Chaotic nonlincar dynamics is a vigorous, rapidly expanding field.
Many important future applications are to be expected in a variety of
areas. In addition 1o its practical aspects, the field also has funda-
mental implications. According to Laplace, determination of the
future depends only on the present state. Chaos adds a basic new
aspect to this rule: small errors in our knowledge can grow
exponentially with time, thus making the long-term prediction of
the future impossible.

Although the field has advanced at a great rate in recent years,
there is still a wealth of challenging fundamental questions that have
yet to be adequatcly dealt with. For cxample, most concepts
devcloped so far have been discovered in what arc effectively low-
dimensional systems; what undiscovered important phenomena will
appear only in higher dimensions? Why are transiently chaotic
motions so prevalent in higher dimensions! In what ways is it
possible to use the dimension of 3 chaotic areractor to determine the
dimension of the phase space necessary to describe the dynamics?
Can renormalization group techniques be extended past the border-
line of chaos into the strongly chaotic regime? These arc only a few
questions. There are many morc, and probably the most important
questions are those that have not yet been asked.
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Even systems as simple as a periodically forced damped pendulum can

have complex behavior. This computer-generated plot shows initial pendulum
velocities (measured horizontally) and positions (measured vertically). Orbits
starting at points in the red region eventually settle into onc type of periodic motion,

while orbits starting in the blue region yicld a different type

of periodic motion. The

boundary berween thesc regions is fractal. The lighter the shade of red or blue, the

longer it

takes to settle into the corresponding motion. Sec page 632. [Photo

courtesy of C. Grebogi, E. Ott, and J. A. Yorke, University of Maryland, College
Park, MD 20742]
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