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b lasers really exhibit chaos? Irregular
intensity fluctuations were observed even it
the earliest days of lasers. For example, the
“spiking” fluctuations present in the output of
a ruby laser were difficult to miss. All fluctua-
tion phenomena observed were then commonly
labeled “noise.” Since that time, however, if
has become evident that apparently random
fluctuations can also occur in totally determin-
istic systems—those that are modeled by sys-
tems of equations containing no sources of
noise. Such behavior is commonly called chaos.




The purpose of this article is to describe the advances
made n the identification of chaotic behavior in lasers and
to focus on the specific theme of controlling chaotic lasers.
We wifl hirst brietly review the origins of the basic concepts
of chaos and nonlinear dvnamucs in a general context and
see how beautifullv the history of chaotic lasers is inter-
twined with that of meteorology and fluid dynamics, the
fields in which the crucia! role of chaos was first recognized.

One of the most important realizations of the last 30
vears has been that chaotic behavier 15 commoenplace in
phvsical, chemical, and biclogical svstems. Most scientists
and engineers have begun to recognize this inescapable fact.
The advent of computers has been responsible for this awak-
ening, not just in meteorclogy, but in everv branch of science,
from astronomy to zoology. A new branch of mathematics,
dynamical systems theory, has developed rapidly and now
forms the unmversal mathematical language tor the descrip-
tion of chaotic svstemns in science and engineering. Nonlinear
dynamics is the discipline that includes experimental and
theoretical investigations of chaos and instabilities.

CHAGS AND THE WEATHER

John Von Neumann, the father of modern computers,
dreamed that one day we would be able to predict accurate-
ly, and perhaps even control. weather patterns around the
globe.” In his book Infinite i All Directions, physicist Free-
man Dyvson discusses the views of Von Neumann, who had
the “reputation of being the cleverest man in the world.”
Von Neumann hoped that computers would allow us to
“divide the phenomena of meteorology cieanly into two cat-
egories, the stable and the unstable. The unstable phenome-
na are those that are upset by small disturbances, the stable
phenomena are those that are resilient to small disturbances
... . All processes that are stable we shall predict. All
processes that are unstable we shall control.”

Dvson remarks that few people took Von Neumann's
dream seriously; including meteorologists. In fact, studies on
the problem of convection ot a fluid heated from below {a
highlv simplhified model of the Earth’s atmosphere) by
Edward Lorenz, an MIT meteorologist, seemed to indicate
that Von Neumann's dream could never be realized. Lorenz’s
numerical computations* revealed a totally new aspect of
behavior in this dynamical system; large, irregular fluctua-
tions appeared to originate from an innocuous looking set of
three-coupled, nonlirear ordinary differential equations with-
out any sources of noise or fluctuations included in them.

Even more surprising was the incredible sensitivity of a
soiution of these equations to a smail difference in initial
conditions. Lorenz found that very slightly different initial
conditions resulted in an exponential divergence of solu-
tions. Lorenz engraved this aspect of chaotic dynamics in
our minds through the title of a talk he gave in 1972, "Pre-
dictability: Does the Flap of a Butterfly’s Wings in Brazil set
off a Tomnado in Texas?” ™ Indeed, Dyson comments that “a
chaotic motion is generally neither predictable nor control-
lable. It is unpredictable because a small disturbance will
produce exponentially growing perturbation of the motion.
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It is uncontrollable because small disturbances lead to other
chaotic motions and not to any stable and predictable alter-
native. Von Neumann's mistake was to imagine that every
unstable motion could be nudged into a stable motion by
small pushes and pulls applied at the right places.”

In the few vears since Dyson wrote about the failure of
Von Neumann's dream, there has, in fact, been signiticant
progress toward its realization; reasonably accurate predic-
tions can be made for chaotic motion over fairly long periods
of time,” and the control of chaotic motion has been demoen-
strated for some “simple” chaotic svstems, including lasers.

CHAOTIC LASERS

The cornection between chaotic dynamics and laser instabil-
ities was not made unti! Hermann Haken, in a short paper,
remarked on a beautiful similarity that he had discovered
between the equations for a fluid studied by Lorerz a dozen
years earlier, and the semi-classical equations that describe
the operation of a single-mode laser. He found that the three
equations of motion for the electric field of the laser, the
polarization of the active medium, and the population inver-
sion were identical in form to the Lorenz equations after
appropriate transformations of the variables. These cqua-
tions contained no roise soutces, vet their similarity to the
Lorenz equations implied that a laser should displav trregu-
lar deterministic fluctuations in certain parameter regumes.

A search for laser chaos ensued, and several groups
around the world searched for the right laser system to dis-
play Lorenz chaos.” This was not as simple as it may seem.
A single-mode laser system had to be found where the
decay rates of the polarization and population inversion of
the active medium, as well as that of the electric field were
of the same order of magnitude, for a valid comparison
with the Haken-Lorenz equations. In most laser svstems
{He-Ne, CO., semiconductor, Nd:YAG, etc.}, the polariza-
tion decay rate is much greater than the inversion and tield
decav rates, resuiting in the effective reduction of the three
variable system of equations to two dynamical variables.
Chaos cannot occur in a two variable system of equations; a
mathematical theorem tells us that we can only have stable
or periodic dynamics in a two-dimensional system. We thus
have to find a single-mode laser in which all three decay
rates are comparable to see this type of chaotic behavior.
Finaily, a rather exotic laser system, the far-infrared ammo-
nia laser, was settled upon, which had the right features to
display Lorenz-tike chaos.*

How can we tell if the observed intensity fluctuations in
such a laser are really a signature of chaotic behavior? One
of the most straightforward approaches to this question is to
examine the system behavior while varying one of the para-
meters. [f a sequence of behavior, or route to chaos, is found
that has been identified from the study of deterministic
model equations for the system, one may be reasonably sure
that chaotic behavior has been observed. Extensive experi-
ments and numerical modeling by several groups have now
established that chaotic behavior is indeed displayed by the
ammonia laser.

QPTICS & PHOTONICS NEWS/MAY 1994



The reader may ask if laser chaos is restricted to exotic
systems such as the ammonia laser. Manyv “garden variety”
laser systems can exhibit chaotic behavior if they operate in
multiple longitudinal or transverse modes; once again, these
additional modes provide the three or more degrees of free-
dom necessary for the svstem to be chaotic. If the modes are
nonlinearly coupled to each other, chaos can resuit. For
example, nonlirear mode-coupling through four-wave-mix-
ing in the active medium may generate chaotic intensity
fluctuations of individual medes in a multimoede dye laser.”
External feedback often leads to chaos in semiconductor
lasers," a matter of great practical concern. During the 1980s,
there were also several observations of chaotic behavior in
single-mode lasers with modulated losses and pumps. Arec-
chi and colleagues demonstrated chaos in a loss modulated
CO, laser,” while Winful and colleagues” showed that under
certain conditions a semiconductor laser could be driven
chaotic by periodic modulation of its injection current. The
pericedic modulation effectively provides the third degree of
freedom necessary to observe chaos in these laser systems.
One of the most interesting examples of laser chaos was dis-
covered by Tom Baer (then at Spectra-Physics), who studied
the generation of green light from a diode laser pumped
Nd:YAG iaser with an intracavity KTP crystal."

THE GREEN PROBLEM

Baer found that though the Nd:YAG laser operated in a sta-
ble steady state without the intracavity crystal, large irregu-
lar intensity fluctuations were sometimes observed when
the intracavity KTP crystal was used to generate green light
from the system (Fig. 1). Baer noted that this behavior
occurred when the laser operated in three or more longitu-
dinal modes. He hypothesized that sum-frequency genera-
tion in the KTP crvstal could provide mode-mode coupling
that would destabilize the laser. This was not a desirable sit-
uation for proposed practical applications of the system, in
optical disk readers, for example. The unstable behavior of
this system soon came to be known as the “green problem.”

The chaotic nature of the green laser was investigated
in some detail and connected to the destabilization of relax-
ation oscillations.” Relaxation osciliations are always pre-
sent in a laser; thev are the result of power exchange
between the atoms of the active medium and the electric
field in the cavity and are normaily very small in amplitude.
It was found that the nonlinear coupiing of the modes
through sum-frequency generation resulted i the destabi-
lization of relaxation oscillations in the green laser system.
A reasonably accurate model was developed for the system,
that could predict many aspects of system behavior, both
chaotic and non-chaotic.

As may be expected, several methods were proposed
and implemented to get rid of the fluctuations. These meth-
ods consisted of svstem modifications such as restricting the
laser to operate in two orthogonally polarized modes by
adding wave plates to the laser cavity’*"" or proper orienta-
tion of the YAG and KTP crvstals.” These are tvpical exam-
ples of what has been the traditional reaction of scientists
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and engineers when faced with irregular fluctuations in a
laser system—redesign the system so that it is inherently
stable or try to find a parameter regime of the system where
chaos does not exist. A departure from this traditional
mindset required a radically new perspective and approach
toward grappling with chaotic systemns.

CONTROLLING CHAOS
In the spring of 199C, Ott, Grebogi, and Yorke (OGY) of the
University of Maryland introduced such a new perspective
in a seminal paper” entitled “Centrolling Chaos.” “Control”
refers to achieving periodic or stable output from a chaotic
system without changing the parameters of the system, or
the system itself, in a permanent way; only small time-
dependent perturbations about the ambient parameter val-
ues are allowed. OGY observed that when irregular, chaotic
behavior is observed, we often do not have available a
detailed mathematical model for the dynamical system that
will accurately describe its behavior over a wide range of
operating parameters. If we want to develop techniques for
control of such chaotic systems, two crucial questions arise.

s Can we develop a dynamical control strategy based
primarily on experimental measurements made on the sys-
tern, without trying to build a mathematical model that is
globally accurate?

s Can we control the system without making large
changes in parameters or variables?

OGY showed that both these goals can be achieved, at
least for some chaotic systems. A chaotic system can be con-
trolled with small, judiciously chosen changes to parame-
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Figure 1

The laser system in which the “green problem”
was observed by Tom Baer. Large, irregulor
amplitude fluctuations of the green
light emitted by an Nd:YAG laser
with an intracavity KTP crystal
for frequency doubling.
The fluctuations are not
present without the
intracavity KTP
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ters made on the basis of observations of a system variable,
such as the fluctuating output intensity of a laser. It is the
verv sensitivity of a chaotic svstem to small perturbations
that allows us to control it with such corrective changes.

The OGY algorithm for chaos controi was based on the
observation that a chactic attractor—the geometrical object
toward which a system’s trajectory in phase space con-
verges—typicallv has a large number of unstable periodic
orbits embedded in it. The svstem visits the neighborhood
of these unstable periedic orbits from time to bine; what 15
needed for control is a technique to nudge the svstem back
to a periodic orbit when the system shows its inherent ten-
dency to depart from it. The basic elements of the QGY
algorithm are simple. Even a nonlinear svstem can be
described by a linear approximation, once it approaches

T Occasional Proportional Feedback Algorithm
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Figure 2
The occasional propartional feedback [OPF) aigorithm used for
control of *he chaotic laser The four parameters of the control
circuit, T, dt, p and | jore shown,
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close enough to a periodic state or fixed point (for exampie,
an unstable steady state). By observing the dynamics of the
svstem in the neighborhood of the fixed point or periodic
state, the direction and amount of instability can be deter-
mined. We can then use that information to keep the system
near the fixed point or periodic orbit.

To make this point clear, imagine trying to balance a
ball at the center of a saddle. The saddle surface is unstable
in the direction of convexity; the ball will fall off along the
sides of the saddle. The amount of instability, or how fast
the ball falls off, is determined by the curvature of the sad-
dle. In the other direction, the saddle is stable; the ball
returns toward the center if displaced along the ridge of the
saddie. The OGY algorithm tells us essentially how to move
a saddle under the ball so as to keep it balanced at the cen-
ter. Once we know the curvature of the saddle in the unsta-
hle direction, we can balance the ball at the center by mak-
ing observations of the position of the ball from time to
time. If control is initiated when the ball is sufficiently close
to the center, we can maintain control in a small neighbor-
hood of the center with only small corrective motions.

The OGY algorithm was implemented in a beautiful
experiment in late 1990. Ditto, Rauseo, and Spano showed
how the OGY algorithm could be applied to stabilize the
irregular motion of a mechanical system—a tinsel-like rib-
bon of magnetoelastic material that swayed chaoticallv in
an applied alternating magnetic field. ™" The OGY method
and related theoretical and experimental developments in
physics, chemistry, and biology have recently been
reviewed by Shinbrot ¢t al.2

The dynamical control of chaotic systems offers several
possibilites that are difficult to achieve with the traditional
approach in which we adjust system parameters to be in a
periodic or stable regime. First, it is possible to switch
between two or more periodic waveforms rapidly with
dynamuical control. Second, 1t is possible to stabilize complex
waveforms that mayv only occur over a very small parameter
range for the system without control. Finally, with active
feedback we can extend the range of system parameters over
which a periodic orbit or steady state can be matintained.

DYNAMICAL CONTROL OF A CHAOTIC LASER

It was clear to us at Georgia Tech, soon after publication of
the OGY paper, that it would be of great interest to try and
apply these new techniques to the chaotic green laser. There
was the purely scientific motivation: Could we demonstrate
control of a chaotic laser in an experiment and stabilize sev-
eral different periodic waveforms for the same laser para-
meters? There was also the practical motivation: Could such
control techniques be used to stabilize chaotic lasers with-
out having to redesign the system?

It was at this point that one of us {Roy) happened to
tearn that Earle Hunt (QOhio University) had developed an
analog circuit to stabilize periodic waveforms generated by
a chaotic diode resonator circuit. Hunt used a variant of the
OGY approach, which he calied occasional proportional
feedback (OPF).7* The name arose from the fact that the



feedback consisted of a series of perturbations of limit-
ed duration dt ("kicks”) delivered to the input drive
signal at periodic intervals {T) in proportion to the dif-
ference of the chaotic output signal from a reference
value. The OPF technique seemed perfectly suited for
an attempt to stabilize periodic orbits of the green
laser, since the circuit could be easily operated in the
microsecond time scale required for the laser.

The laser intensity was detected with a fast photo-
diode and this signal provided the input for the control
circuit. The output of the control circuit modified the
injection current of the diode laser used to pump the
Nd:YAG crystal. This seemed to be the most natural
and convenient choice of control parameter. To adapt
Hunt's circuit for control of the autonomously chaotic
laser, we had to supply an external timing signal from a
function generator. This determined the interval T
between “kicks” applied to the pump laser injection
current. Even though there was no external periodic
modulation responsible for the chaotic dynamics, the
relaxation oscillations of the laser intensity provided a
natural time scale for perturbative corrections. The
interval between kicks was thus adjusted to be roughly
at the relaxation oscillation period (approximately 100
kHz), or a fractional muitiple of it. The OPF algorithm
is shown schematically in Figure 2. The four parameters
of the control circuit are: The period T, duration of the
kicks dt, reference level Im, which measures the devia-
tion of the signal, and the proportionality factor p,
which determines the amplitude of the kicks.

The results of application of OPF to the laser were
quite remarkable.® We were able to demonstrate stabi-
lization of a large variety of periodic waveforms with
perturbations of a few percent applied to the pump
laser injection current. A typical chaotic waveform,
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together with several periodic waveforms stabilized in
this way, are shown in Figure 3. The control signal fluctua-
tions are shown above the intensity waveforms. The partic-
ular waveforms stabilized can be selected by changes of
control circuit parameters, mainly the time period T and the
reference level |

For the control circuit to work successfully, the laser
had to be operated so as to generate very little green light.
The laser is “weakly” chaotic in this regime; the rate of sep-
aration of initially close trajectories in phase space is small,
and only one direction of instability occurs. If a significant
amount of green light was generated, and the laser was
highly chaotic (particularly if the laser has more than one
direction of instability in phase space), the circuit may be
unable to stabilize the laser.

STABILIZATION OF THE STEADY STATE

Of course, these experiments beg the question: If the laser is
in a chaotic state, can we apply small corrective perturba-
tions to obtain a stable output? This is, of course, interesting
from an engineering standpoint and for practical applica-
tion. Much to our own surprise, we found that we could

indeed achieve a stable output by adjusting the reference
level to the mean of the chaotic fluctuations and matching
the period T to the relaxation oscillation period. The control
voltage fluctuations became extremely small once the
steady state was controlled. Figure 4 shows the transient
behavior of the laser intensity fluctuations as they are
reduced to small fluctuations about the steady state as well
as the control signal fluctuations during the stabilization
process.

If the control pararmeters are fixed and the pump power
of the laser is increased or decreased after the steady state is
stabilized, the control signal fluctuations increase rapidly,
and control is lost as the laser goes into periodic or chaotic
oscillations. Clearly, one needs to change the control circuit
parameters as the laser pump power is changed. A proce-
dure called “tracking” accomplishes this change of control
parameters in a systematic fashion. We applied such a track-
ing procedure to our laser; the control circuit parameters are
varied to minimize the control signal fluctuations at each
value of the pump power, which is increased in small incre-
ments. Our experiment illustrated the general algorithms
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- Figure 4
Stabilization of the steady state. The transients toward the
steady state are shown when the control signal is applied 10 a
chaotic laser. The chaos here 15 due to reflective feedback, not

the intracavity crystal.

for tracking periodic vrbits developed recently bv Ira
Schwartz and his colleagues at the Naval Research Labora-
tory.¥ By combining stabilization and tracking, we main-
tained a stable steadv state (Fig. 3} as the laser pump power
was increased from thresheid (21 mW) to more than three
times above threshold (about 80 mW). Without the control
circuit, the laser intensity went into periodic oscillations at a
pump power of about 25 mW, and then into chaotic fluctua-
tions, as indicated in the figure by open circles and crosses.

CURRENT RESEARCH AND FUTURE DIRECTIONS
Experiments on the controi of chaotic lasers have been per-
formed in several laboratories around the world. In a series
of elegant experiments, Pierre Glorieux and his co-workers
in Lille, France, have demonstrated both stabilization of
periodic orbits and of the unstable steady state in an
Nd:fiber laser.” " Stabilization of the steady state was
achieved bv continuous detivative feedback in their experi-
ments. Thev also demanstrated the tracking of unstable
periodic urbits as system parameters were varied. Another
experiment in Lille showed that the unstable branch of a
bistable aptical system could be stabilized by these feedback
techniques. * The experiments of Brun and colleagues in
Zurich on an NMR laser succeeded in svstematically stabi-
lizing several periodic orbits by an extension of the OGY
technique.” Apart from these experiments, several groups
have investigated the application of such controt techniques
to models of semiconductor laser diodes destabilized by
optical feedback from an external reflector.™*

The implementation of the control algorithm has been
done electronically so far either by digital techniques or by
analog hardware. An alternative approach, particularly if
speed 15 crucial, mav be the development of all-optical pro-
cessing and feedback. To our knowledge, no experiments
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have demonstrated dynamical control and stabilization of
chaos through purely optical techniques. Could neural net-
works (optically implemented, for speed) be used to predict
future behavior of the chaotic system and help determine
optimal corrections?”

In the OGY technique, the system must come sufficient-
ly close to an unstable periodic orbit to stabilize it success-
fullv with small perturbations. What if we don't want to
wait for long periods of time, as is typically the case tor
complex waveforms? The Maryland group has developed a
technique called “targeting,” in which a chaotic svstem
moves from its current state to a desired state in as short a
time as possible through small perturbations. Thus 15 still a
very active area of theoretical research, and the technique
has vet to be implemented or an optical system ot device.
The targeting algorithm has been demonstrated experimen-
tally on the magnetoelastic ribbon system by Shintrat ot al.
with impressive results.®

The robustness of control techniques to external noise
and drift of parameters is a crucial technical issue that will
have to be investigated in detail for the practical implementa-
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tion of these techniques. On the more fundamental side, a
difficult issue that is sure to emerge in the near future is the
influence of intrinsic (quantum) neise on nondinear dvnamics
and the resulting limitations on controt of chaotic systems.

Finally, an important area of research in the future will
be the control of chaotic svstems with higher dimensional
chaotic attractors {for example, those with more than one
direction of instabilitv in phase space} and sytems that pos-
sess both spatiat and temporal degrees of freedom.”™ Laser
arrays may be the test-bed for application for techniques
that are being developed to control spatio-temporal chaos.
Here the emphasis mav be on the dynamical control of spa-
tial profiles, including the periodic (or aperiedic) scanning
of beams in space.
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Chaos in a multimode solid-state laser system
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When a nonlinear crystat is placed within 2 multimode solid-state laser cavity, deterministic
fluctuations are induced in the output intensity. In this paper, the results of our studies

of the intensity noise in a diode pumped. intracavity frequency doubled Nd:YAG (neodymium
doped yttrium aluminum garnet) laser will be presented. First, a novel technique to
eliminate these fluctuations is described. Second, the observation of antiphase states in the
laser output 1s discussed. These states are characterized by a cyclic periodic pulsing

of the individual longitudinal mode intensities. Finally. the statistical properties of chaotic
intensity fluctuations are characterized. It is be demonstrated that it is possible to

accurately modei the laser dyvnamics by a system of globally coupled. nonlinear oscillators.

I. INTRODUCTION

In this paper we will study the pertodic and chaotic
fluctuations present in the output intensity of a multimode
solid-state laser system. Many optical systems exhibit cha-
otic dynamics.'™ Our studies have been performed on an
Nd:YAG laser which normally lases at the fundamental
wavelength of 1064 nm in the infrared. When a nonlinear
optical crystal such as KTP (potassium titanyl phosphate)
is inserted into the cavity, some of the infrared fundamen-
tal is converted into green light ( ~532 nm) by the pro-
cesses of second harmonic and sum frequency generation.
Sum frequency generation provides a nonlinear loss mech-
anism that globally couples the longitudinal modes, i.e.,
each lasing mode is coupled to all other lasing modes. This
nonlinear mode coupling produces deterministic intensity
fluctuations in the laser output. The laser output is stable
without the intracavity doubling crystal; with the crystal
inserted into the laser cavity the output intensity can show
periodic and chaotic fluctuations.

An early prediction of instability in a laser system with
nonlinearly coupled modes was made by Arecchi and
Ricca.* Chaotic intensity fluctuations in this laser system
were observed and analyzed by Baer,” who developed a
‘deterministic rate equation model to explain the fluctua-
tions. A detailed linear stability analysis of Baer's rate
equations was performed by Wu and Mandel.®” A signifi-
cant step was taken by Oka and Kubota® who recognized
that the polarizations of the cavity modes play a critical
role in the laser dynamics. Their analysis, however, was
limited to the case of only two orthogonally polarized cav-
ity modes. We have generalized previous models to include
multiple longitudinal modes. We have shown that these
modes can lase in only two orthogonal polarizations, Our
analysis includes the possible birefringence of the YAG
crystal that was neglected in previous analyses.

In Sec. Il we present the generalized laser model. We
briefly outline the derivation of the modei and discuss the
physical origin and magnitudes of the various parameters.
Section 111 contains the results of a linear stability analysis
of the laser rate equations. This analysis predicts that the
laser can be stabilized by proper rotational orientation of
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the YAG and KTP crystals. Experimental results that ver-
tfy this prediction are shown. Numerical integration of the
laser equations predicts the existence of antiphase states in
the laser output. These states are characterized by a cyclic
periodic pulsing of the individual longitudinal mode inten-
sities. This theoretical prediction as well as the experimen-
tal observation of antiphase states in the laser intensity are
discussed in Sec. I'V. The rich variety of complex nonlinear
dynamical behavior of this laser is explored in Sec. V. We
use fast Fourier transforms {(FEFT), time delay plots, phase
plots. probability distributions, correlation functions, and a
calculation of the Liapunov exponent to provide a detailed
picture of the dynamics. In particular, the probability dis-
tributions associated with the total intensity and its two
orthogonally polarized components in the chaotic state are
measured and compared with the results of the numerical
model. Section VI presents our conclusions and a discus-
sion of the interesting new questions that are raised by this
work.

{l. LASER SYSTEM AND MODEL

Figure | s a schematwe of the intracavity doubled
Nd:YAG laser we have studied. The laser cavity contained
a nonlinear KTP (potassium titanyl phosphate) crystal
which served as the frequency doubling element.”'” The
intensity at the fundamental wavelength is highest within
the laser cavity. Since the intensity of green light produced
by the KTP crystal 1s proportional to the square of the
intensity at the fundamental wavelength, the KTP crystal
15 placed inside the laser cavity. The Nd:YAG crystal was
pumped by a commercial ten element phased array laser
diode'"'? with a maximum output power of 200 mW. The
highly divergent and elliptical pump beam is first colli-
mated and then circularized before being focussed into the
cylindrical YAG rod by a 5 c¢m focal length lens. The flat
front face of the Nd:YAG crystal acted as the cavity high-
reflector, and was highly reflecting at both the fundamental
{ ~ 1064 nm, infrared) and doubled (~532 nm, green)
wavelengths and highly transmitting at the pump wave-
length ( ~810 nm). The laser output coupler had a 3.75
cm radius of curvature and was highly transmitting at the
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FIG. t. Schematic of the diode pumped Nd:VAG (neodyrmuum doped
yttnum alumenum garnet) laser with an intracavity KTP {potassium
titanyl phosphate) cryvstal showing the angle ¢ between the YAG and
KTP fast axes. The KTP crystal produces green light at half the wave-
length of the fundamental emission t 1.064 um) from the laser.

doubled frequency and highlv reflecting ( > 99.9% ) at the
fundamental, such that only the fundamental circulated in
the laser cavity; the doubled frequency is simply transmit-
ted by the output coupler. The KTP crystal was antireflec-
tion coated at both the fundamental and doubled wave-
lengths. The Nd:YAG and KTP crystals were both 5§ mm
long and the entire laser cavity was about 3.5 cm long. The
threshold pump power for this laser was ~ [0 mW.

The analysis and results that follow are for a laser
cavity with a birefringent YAG rod and a birefringent
KTP crystal {Fig. 1). A birefringent matenrial contains two
orthogonal directions along which the material has a dif-
ferent index of refraction such that light polarized along
one axis travels faster than light polarized along the or-
thogonal axis. Because of this property, one of the axes is
usuaily called the *fast" axis and the other is called the
“slow™ axis. Undoped YAG (yttrium aluminum garnet) is
normally isotropic and homogeneous and exhibits no bire-
fringence. However, when the YAG crystal is doped with
the neodymium ion Nd* (typically 1% of the Y~ ions
are replaced with Nd* * ), which serves as the active ion to
produce the infrared laser light, the crystal growth process
itself, and the fact that the neodymium ion is slightly larger
than the yttrium ion that it replaces can cause some resid-
ual stress induced birefringence in the Nd:YAG rod."’ Bi-
refringence may also be produced thermally in the
Nd:YAG rod due to inefficient conversion of pump beam
energy to laser light,

We have measured the residual birefringence in our
unpumped YAG rod to be {n, —n]~3x10 "~ 7. where n,
and n, are the indices of refraction along the slow and fast
axes, respectively. If the YAG rod is mechanically stressed,
by a mounting screw for example, its birefringence can
increase by orders of magnitude. The KTP crystal is nat-
urally birefringent with 1n, — n; ~0.08. A phase difference
will build up between the two orthogonally polarized com-
ponents as they propagate through the birefringent crys-
tals. The amount of phase difference that is accurulated
will depend on the difference between the two indices of
refraction along the two orthogonal directions, the wave-
length of light used, and the length of the birefringent
crystal itself. The relative phase delays & and & due to the
birefringence of the YAG and KTP crystals, respectively,
are calculated from 2uwLlin, — n}/A, where L is the crystal
length and A is the YAG fundamental wavelength. Even
though the birefringence of the YAG crystal is much

smaller than that of the KTP, it is sufficient to induce a
significant phase delay. As shown in Fig. 1, @ is the angle
between the fast axes of the YAG rod and the KTP crystal.

As first pointed out by Oka and Kubota,® a complete
analysis of this laser system must include the polarizations
of the cavity modes. These polarizations are given by the
eigenvectors of the round trip Jones matrix M for this laser
cavity. This matrix describes how a given polarization of
fight is affected after one round trip in the laser cavity
which contains birefringent elements. The round trip ma-
trix M is the product of the individual Jones matrices that
describe how each element in the cavity affects the polar-
ization of light.'"* M is umitary since all the matrices that
describe the individual cavity elements are unitary. The
eigenvalues of M thus have unit magnitude and its eigen-
vectors are real and orthogonal. These two orthogonal
eigenvectors are the only two polarization states that are
unchanged after one round trip in the cavity. The laser
output is poiarized in either one or both of these orthogo-
nal polarization directions. Qur experimental observations
confirm that the laser modes are linearly polarized along
two orthogonal directions. The analysis described above
does not allow us to predict the number of modes that will
lase in the two polarization directions. We have observed
different numbers of linearly polarized modes ranging from
one to ten. Note that the gain of the laser medium and the
nonlinearity of the KTP crystal have not been incorporated
into the geometrical analysis: the final lasing mode config-
uration is crucially dependent on these considerations.

Green light 1s produced in the KTP crystal by second
harmonic generation from a single cavity mode and by sum
frequency generation between pairs of modes. In second
harmonic generation two photons from the same cavity
mode of fundamental frequency « combine to create one
photon of green at frequency 2w. In sum frequency gener-
ation one photon from a cavity mode at frequency w, and
one photon from a different mode at frequency w, combine
to create one photon of green at frequency (w; + w,). The
amount of green light produced by sum frequency genera-
uon depends on whether the contributing fundamental
modes are polarized parallel or orthogonal to each other.
These two processes for the generation of green light must
be included into the laser rate equarions as loss terms for
the fundamental intensity.

Each cavity mode can exist in one of the two orthog-
onal eigenpolarization directions, which we label as x and
». Let m and n be the number of modes polarized in the x
and y directions, respectively. where ¥ =m + n is the total
number of lasing modes. The rate equations for the funda-
mental intensities 7, and gains G, are!™"7

daf,
r(‘“d—r-:(G;(—a,\—gd;\—-Ze Z ,LLJIJ,)I,-‘.,
ok
dG, (1)
T;-—‘d;=}’—(1+h B 2 [;)ka
TS

where 7. (0.2 ns) and 7, (240 us) are the cavity round trip
time and fluorescence lifetime of the Nd** jon, respec-
tively; [, and G, are, respectively, the intensity and gain
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assoctated with the kth longitudinal mode: a; is the cavity
IOS§ parameter for the kth mode, y is the small signal gain
which is related to the pump rate. 3 is the cross-saturation
parameter, and ¢ is a geometrical factor whose value de-
pends on the angle ¢ between the YAG and KTP fast axes,
as well as on the phase delays & and & due to their bire-
fringence. For modes having the same polarization as the
kth mode ¢, = g. while ¢t = (1 — g) for modes having the
orthogonal polarizanon. This difference is due 1o the dif-
ferent amounts of sum frequency generated green light pro-
duced by pairs of parallel polarized modes or by pairs of
orthogonally polarized modes. Here. € is a nonlinear coef-
ficient whose value depends on the crvstal properties of the
KTP and describes the conversion efficiency of the funda-
mental intensity into doubled intensity. In these rate equa-
tions we have made the simplifying approximation that the
gain ¢ and cross-saturation parameter /3 are the same for
all modes. The individual mode losses are assumed to differ
only shightly, with e, ~0.01. The parameter values given
above represent typical experimental operating conditions.

The cross-saturation parameter /3 is a measure of the
competition among the various longitudinal modes for a
given population inversion. tt reflects the amount of spatial
overlap of two standing wave cavity modes inside the gain
medium and the extent of homogeneous broadening of the
laser transition.”""” The greater the spatial overlap of the
longitudinal modes in the gain medium, the greater the
value of B (0« 3« 2). Since the gain medium 15 located at
one of the cavity mirrors, the amount of spatigl overlap
among the various lasing modes s great. This occurs be-
cause all the mode fields must go 1o zero at the mirror in
order to satisfy the cavity boundary conditions. If the gain
medium was located farther away from the mirror, in the
middle of the cavity for example, the amount of spatial
overlap of the modes and the mode competition would
both be reduced.'” In general, the cross-saturation param-
eter 3 will be different for each pair of cavity modes. How-
ever, for simplicity, we assua.. che same value o 3 for all
mode pairs.

The parameter g is a geometrical factor whose value
depends on the angie ¢ between the YAG and KTP fast
axes, as well as the phase delays & and 8 due to their
birefringence. lts value varies between O and 1. For the
laser in Fig. 1. g can be calculated from'* "

g=d4ulu/ (uh + u3) = dejea/ (0] + 03 (2a)
. ::l _ 2[m(a}—-25-:‘{Re(a)jﬂJ‘ s (2b)
v:lu'l: 2 Ima) + Z\Tmf_a)_ﬂ p=0,  (2¢)
v R T
a=e"(cos® e + sin” ge "), (2d)
¥y = sin 2¢ sin 3, (e}

where u and v are the orthogonal eigenvectors of the uni-
tary matrix M. Also, g =0 if y=0.

Cross szturation of the active medium [represented by
the 81,G, terms in Eq. (1) ] and sum frequency generation

in the nonlinear crystal {represented by the 2eu J,f; terms
in Eq. (1)] introduce comparable amounts of global cou-
pling among the laser modes. This means that each mode
intensity /, is coupled to every other cavity mode intensity
[.. k#j. We have thus modeled the laser as a set of glo-
bally coupled nonlinear oscillators that represent the cavity
modes.

The model presented here describes deterministic low-
frequency fluctuations in the mode intensities, but does not
include longitudinal mode beating phenomena. The lowest
intermode heat frequency for our laser 1s about 4 GHz; the
phenomena observed and discussed in this paper lie in the
submegaHertz runge. Low-frequency { ~ 100 kHz) oscilla-
tions due o differences i intermode beart frequencies that
arise from unequal phase <hifts of the modes are not ac-
counted for in the model presented here. Such phenomena
can be inciuded appropriately in a model that uses field
equations rather than the intensity equations employed
here. A motivation in using the model of Egs. (1) 1s to
determine to what extent the intensity rate equations are
able to predict phenomena observed 1n this laser system.

A characteristic frequency for exchange of energy be-
tween the light and the active medium is specified by the
relaxation oscillations which may be observed in the laser
output with or without the doubling crystal. These oscil-
lations occur when the laser 15 perturbed away from stable
steady state due to noise, und may be observed directly in
the photocurrent with an rf spectrum analyzer. The mag-
nitude of the oscillations is fess than a fraction of a percent
of the average steady-state intensity. Detailed calculations
of the relaxation oscillation frequency for our laser sys-
tem'” show that the doubling crystal has a very small effect
(less than a percent) on the relaxation oscitlation fre-
guency for typical parameter values. We have observed
relaxation oscillation frequencies in the range of 20-150
kHz for pumping up to five times above threshold. The
frequency increases as the square root of the pump power,
which is well known. In the rest of the paper we will de-
seribe large periodic and chaote intensity fluctuations that
oceur with similar characteristic frequencies.

M. STABILITY ANALYSIS

A linear stability analvsis of the rate equations (1) was
carried out to find the conditions on the parameter g for
which the laser output is predicted to be stable.'™'" Recall
[from Eqs. (23] that g depends on the parameters &, 6. and
¢. To simplify the analysis, all modes were assumed to
have the same loss, ¢ross saturation, and small signal gain
parameters. Numerical integration of the rate equations
(1} shows that the results of this stability analysis are
qualitatively unchanged even if the mode parameters are

unequal, For the three  specific  cases  of
(m.n) = (N0).(1,1).(N/2.¥/2) the output will be stable
PR
(L (N=1Bl -
g-:“"'**—“—l(—l) , m=Nn=0, (3a)
T € D
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2 1r.(1+B(1+p .
-——— =m=1, 3b
g>331'f6(p)’nm (30)
N 1 i+ (N~ 1B/ +p
g>(2_~ﬂ1)‘(2;\f—n,-, € ( p )
,—L.[1+(,\'1)B](1+p)
g<—
T € 14
N
n=m==; N¥=2456, (3c)

where p = (y — a)/a. The general case of m modes in one
polarization direction and » modes in the orthogonal po-
larization, i.e., mn: m.n> 0, must be examined numeri-
cally.

The importance of these theoretical predictions is that
we have discovered a technique for stabilizing the laser
through proper choice of the parameter g, exploiting the
birefringence of the YAG crystal. For each of the mode
configurations, stability is predicted for a range of values of
the parameter g. Since g is a function of the relative orien-
tation angle ¢ between the YAG and KTP fast axes, these
stability conditions predict that the laser output should be
stable for a range of orientation angles @ between the YAG
and KTP crystals. That is, the fluctuations in the output
intensity can be eliminated merely by proper rotational
orientation of these two birefringent crystals,. We should
note here that in all previous studies, the YAG crystal was
assumed to be isotropic, and the importance of its rota-
tional orientation with respect to the KTP crystal was not
recognized.

Figure 2 shows the experimental verification of this
prediction. In this experiment, the orientation of the YAG
crystal was unchanged, only the KTP crystal was rotated
and the output intensity was detected by a photodiode and
observed on a digital oscilloscope. A filter was positioned
in front of the photodiode to transmit only the green in-
tensity. The KTP crystal was rotated until the output in-
tensity became stable. This particular orientation angle was
labeled 0°. The KTP was then rotated beyond this point
and the laser intensity was observed to remain stable for
80" of rotation between the YAG and KTP fast axes. Fig-
ure 2(a) shows one sample stable intensity time trace at an
orientation angle of 70°. As the KTP crystal was rotated
past 80° the laser output showed simple periodic oscilla-
tions [Fig. 2(b)], becoming more complex (but still peni-
odic) [Fig. 2(c¢) and (d)], and eventually becoming cha-
otic [Fig. 2(e)). As the KTP crystal was rotated even
further, the laser output returned to a simple periodic be-
havior [Fig. 2(f)], finally becoming stable again, and the
whole sequence then repeated itself. This technique is cur-
rently being used by a commercial manufacturer of mode
locked, intracavity doubled Nd:YAG lasers to eliminate
the output intensity fluctuations.?’

Figure 3 shows the dependence of the parameter g on
the angle @ between the YAG and KTP fast axes and on
the KTP birefringence & for a given amount of YAG bire-
fringence £ = 0.I'w with three modes all polarized in one
direction, i.e., m = N=3, n = 0. The shaded region in the
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FIG. 2. Representative experimental time traces of the doubled output
intensity for various KTP-YAG orientation angles. Stable operation was
observed from 0° to 80°, where 0° was defined to be the relative orientation
angle corresponding (o the onset of stabie laser output.
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FIG. 3. Dependence of the parameter g on the angle @ between the YAG
and KTP fast axes and the KTP phase delay & for the case of three
similarly polarized modes, ie, m=23 n=0,for a given value of YAG
birefringence £ = 0.17. The shaded region in the 8- plane corresponds to
values of g where the stability constraint {inequality (3a)] holds, i.e.,
8<0.04, for the parameter values given in the text.
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5 — @ plane indicates the region in parameter space where
the stability condition (3a) holds, i.e., g <0.04. This con-
dition is obtained for the following operating parameter:
A/Tr=80x10"7,  B=06 a=001, y=008
p={y—a)/a=70 and e=50x10"".

We repeated this experiment rotating only the YAG
crystal while keeping the KTP crystal orientation un-
changed, which also eliminated the fluctuations. As dis-
cussed above, the value of g also depends on the phase
delays £ and & due to the birefringence in the YAG and
KTP crystals, respectively. We varied the temperature of
the KTP crystal, which changed its length, which in turn
changed its phase delay. This procedure also enabled us to
obtain stable, periodic, and chaotic fluctuations n the out-
put intensity. Control of fluctuattons by temperature con-
trol alone is less effective than rotational orientation, since
the length change that can be achieved by this method 18
limited.

Iv. ANTIPHASE STATES

The numerical model (1) also predicts that the laser
output can exhibit a curious periodic fluctuation called the
“antiphase” state. Antiphase states have been theoretically
predicted to exist for Josephson junction arrays,’*” but
have never been experimentally observed. To explain what
antiphase states actually are, let us consider V parallel
polarized modes in the laser. In an antiphase state each
mode intensity has the same periodic waveform as all the
other modes, however, this common waveform is shifted in
time by T/N from one mode to another, where 7" is the
period of this common waveform (Fig. 4). That is

) =folt + TK/N) k=1,..N, (4)

where f; is the waveform of the kth mode and f; is a
waveform of period T. For the specific example of ¥ = 3 as
depicted in Fig. 4, there are (¥ — 1)! = 2 unique antiphase
states as shown.

Now consider the more complicated situation of m
modes in one polarization direction and » modes in the
orthogonal polarization such that the total number of las-
ing modes is N ==m -+ 1. In this case there are m'n! unique
antiphase states. The distinct m!n! antiphase states for the
specific case of n = 2 and m = 3 are also shown in Fig. 4.
Notice that for (N,0) there are (¥ — 1)! unique antiphase
states, and for (m,n) there are m'n! unique antiphase
states.

Equations (1) define a flow in a 2¥V-dimensional phase
space. Integration of these equations results in a trajectory

X(n :{1,(1),6,(z),Iz(r),Gz(r)....,I_.V(z),GN.(:)}_

The equations have an important symmetry, namely, in-
variance under interchange ([,,G;)«—({,G;) of any two
modes having the same polarization. It follows that, if X (1)
is a solution, then so are ali of the min! trajectories that
come from permutation of the indices within a given po-
larization group. Of course, these need not all define dis-
tinct trajectories in phase space. For example, if one has
identical (/,,Gy) for all modes of a given polanzation, then

Counting of antiphase states
Examples:

nN=}m=3n=U Permutations
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(N - 1)! = 2" = 2 unique antiphase states as shown

H) N=5 m=3a=2

modes 1, 2. 3 are x-polarized
modes 4, 5 are y-potanzed

Anuphase States

«-polarized:
1 1 ¢y 2 3 3 3 3y 2
>3 0y o2 1 1 v L2 2 3 3
32 o 3 3y 3 0 o1 1 | !
y-polarized:
4 4 5 35 4 5 4 5 4 5 1 5
5 5 4 45 4 5 4 5 4 5 4
m!n! = 3!27 = {2 unique antiphase states

FIG. 4. The number of distinct antiphase states for two different mode
configurations of the laser. (1} ¥ =3, withm =3, n =0 There are two
unique antiphase states possible. (1) ¥ =5, with m =3, n=12. There
are 12 unigue antiphase states possible.

any exchange of indices labeling these modes gives the ex-
act same orbit: This solution retains a high symmetry. At
the other extreme, if one has a solution with no residual
symmetry [so that (/,,G,)==([,G)) for all j5=k], there are
min! distinct solutions coexisting in the phase space. This
illustrates a general rule: the lower the symmetry of a given
solution, the greater its multiplicity. These considerations
hold for all phase space orbits of the system, although in
what follows we focus on periodic, attracting orbits.

Note that this analysis does not say whether or not any
symmetry-broken states exist; rather, it says that such so-
lutions must come in groups of a certain size. As a practi-
cal matter, the existence of solutions must be deduced ei-
ther by integration of the differential equations, or by
direct observation of the physical system.

Each antiphase state is a stable periodic solution to
Egs. (1), such that each antiphase state is an attractor in
the phase space of all intensities and gains. Each stable
solution will coexist with all the other stable solutions, and
any nearby trajectory in the phase space will eventually
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settle down onto one of these attractors.

As discussed above, the number of unique antiphase
states grows “explosively,” i.e., factorially, with the num-
ber of modes. This means that the stable attractors crowd
ever more tightly in phase space with an increasing number
of modes. If the number of modes is large enough, the
attractors may become so tightly packed in phase space
that even a small amount of noise can cause the system to
hop from one stable solution to another. Such sensitive
dependence on systemn noise has been demonstrated numer-
ically for Josephson junction arrays.”"

In all of the theoretical and experimental results given
here, the number of cavity modes is fairly small. We can
vary the total number of modes in the laser cavity V from
I to ~ 10, with a number of accompanying polarization
combinations, by varying the pump power above threshold
and by varying the orientation angle ¢ between the YAG
and KTP crystals. In contrast, some Josephson junction
arrays contatn thousands of junctions making attractor
crowding more severe than in the laser.

Since each cavity mode is a different wavelength, the
antiphase state represents a synchronized periodic switch-
ing among the various lasing wavelengths. If the dynamics
of the laser could be appropriately controiled to switch at
will among the various distinct antiphase states, this laser
could be a convenient and versatile source of wavelength
and time multiplexed signals. If all of the mode parameters
are identical, then the particular antiphase state the system
selects is determined purely by the initial conditions and
there is nothing one could do short of “restarting” the
system to make it change from one antiphase state to an-
other. If the attractors are sufficiently crowded in the phase
space or if the noise strength is sufficiently large, then the
system will hop randomly among these attractors. If the
mode parameters were significantly different such that the
symmetry of the system was broken, i.e., the exchange of
indices completely changed the system, then this difference
in parameters could be exploited to force the system into a
selected antiphase state.

We have actually observed antiphase states for a small
number of lasing modes. In the experiment, the laser cavity
was adjusted to suppaort two modes in the x-polarization
direction (m = 2) and one mode in the y-polarization di-
rection {n=1). The longitudinal mode structure was
monitored during the experiment with a confocal Fabry-
Perot interferometer. The numerical prediction for the in-
tensity output from the laser is shown in Fig. 5. In Fig.
5(a) it can be seen that each mode intensity has the same
periodic waveform as the other two modes. This common
waveform is shifted in time from one mode to the next.
Figure 5(b) shows the total intensity in the x- and y-po-
larized directions. The total intensity in the x-polarized
direction is the sum of the intensities of the two x-polarized
modes, and the total y-polarized intensity is just the inten-
sity of the one y-polarized mode. Figure 5(b) provides a
direct comparison to the experimental data in Fig. 6. Fig-
ure 6 shows the experimental laser intensity time traces for
the intensity in the x-polarized (m = 2) and the y-polar-
ized (n =1} directions, respectively, as well as the total
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FIG. 5. Results of numencal wtegration of Eqgs. (1) for (m.n) = (2,1).
{a) The individual antiphase mode intensities. (b) The x- and y-polarized
intensities and the total intensity. This plot can be directly compared with
the experimental observation 1n Fig. 6.

intensity. The similarity between the theoretical and exper-
imental results is clear.

The cavity mode frequency spacing in this laser was so
small ( ~4 GHz} that the individual lasing modes could
not be separated by a prism or grating. The modes could be
separated only by their polarization. To facilitate compar-
ison between experiment and theory, the laser was oper-

Ix+ly

i rl
T t T t t

TIME{20us/div)

—y—
-4

FIG. 6. Experimental observation of an antiphase state. Time traces of the
x- and y-polarized intensities and the total intensity are shown. The mea-
surements were not made simultaneously.
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FIG. 7. Theoretical prediction of a higher-order antiphase srate. Results
of the numerical integration of Egs. (1) for tm.a) = (5.0) show the
existence of an antiphase state.

ated with only three modes. Figure 7 shows a higher-order
antiphase state in the laser output for .V = 5, obtained from
numerical integration of Egs. (1) where in this case al] five
modes are polarized in the same direction. It would be very
interesting to develop experimental techniques for the di-
rect observation of higher-order antiphase states.

V. CHARACTERIZATION OF COMPLEX PERIODIC
AND CHAOTIC INTENSITY FLUCTUATIONS

When the laser is operated in a parameter range where
complex periodic and chaotic intensity fluctuations are ob-
served, we may use a variety of techniques to characterize
the statistical nature of these fluctuations. In order to per-
form quantitative studies, the laser intensity time trace was
detected with a photodiode (1 ns rise time) and displayed
on a (400 MHz) digital oscilloscope. The oscilloscope it-
self possesses the capability for extensive data analysis. The
digitized intensity data could also be transferred to an IBM
PC for further analysis. In the rest of this paper we will
describe the behavior of the complex periodic and chaotic
fluctuations in some detail.

Fast Fourier transforms (FFT) of the intensity time
traces provide a direct means for analysis of the frequency
components of the intensity fluctuations. The time traces
and corresponding power spectra of periodic and chaotic
intensity fluctuations are shown in Fig. 8. Figure 8(a)-(d)
shows a variety of complex periodic waveforms, whose
FFTs contain many discrete frequency components. Figure
8(d) shows a rather interesting case, The time trace ap-
pears to be somewhat periodic, and the FFT does contain
some distinct low-frequency components with a broadband
part at higher frequencies. The time traces in Fig. 8(e) and
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(f) have broadband power spectra with only a few remain-
ing discrete frequencies, which is characteristic of chaos.

Two-dimensional time delay plots, produced by dis-
playing the digitized intensity data at time ¢ against the
intensity at time ¢ + Az, are often used to illustrate the
periodic or chaotic behavior of a nonlinear dynamical sys-
tem. If carried to higher dimensions, i.e., F(#) vs f(¢ + Af)
vs J(r+ 2Ar) ... time delay plots using only time series
measurements of the total iatensity can be used to recon-
struct the original phase space attractor. This is a general
result and is applicable 10 any dynamical system in which
the time series of only one system variable is available.****
Takens has shown that in order to capture the topological
fearures of the original attractor in an .¥-dimensional phase
space from a time series of only one dynamical system
variable, the pseudophase space or embedding space must
have at least 2.V + 1 dimensions.”® Originally, time deriv-
atives, i.e. [(t) vs dl(r)/dt vs d*I{¢)/df..., were used
instead of time delays to reconstruct the system attractor.
However, time delay coordinates work just as well and are
simpler to obtain experimentally.?’

Figures 9-11 show time traces, time delay plots, and
phase plots [df{¢)/dt vs [(1}] for periodic and chaotic in-
tensity output from the laser. The time delay and phase
plots in both periodic cases ¢ Figs. 9 and 10) show a ringed
structure that vanishes when the laser output is chaotic
{Fig. 11). The Ar used in the figures was arbitrarily cho-
sen. Figures 12 and 13 show time delay plots for periodic
laser output with two different values of Ar. In all cases
shown, the two-dimensional time delay curve crosses itself.
This means that the system dimensiona' *v must be greater
than two since the uniqueness theorem -1lates that valid
solutions may not cross themselves in - space.

The most convincing support for the claim that the
seemingly random intensity output from the laser is actu-
ally chaotic comes from a calculation of the Liapunov ex-
ponents. Chaos is characterized by exponential divergence
of initially close trajectories in phase space, indicating that
one or more of the Liapunov exponents are positive. The
rate of this exponential divergence of trajectories in time
(&™) is given, for low-dimensional systems, by the largest
Liapunov exponent A A positive value of A indicates the
exponential separation of initially close trajectories in
phase space. This implies the familiar statement that chaos
is characterized by sensitive dependence on initial condi-
tions, since time series originating from these nearby initial
conditions will diverge exponentially. The rate of the ex-
ponential divergence of chaotic trajectories, or the rate of
convergence for stable trajectories, is given by the magni-
tude of the Liapunov exponent. To determine whether or
not a given system is chaotic, 1t is important to calculate
the largest Liapunov exponent and determine if it is posi-
tive.

The method used here to calculate the largest Li-
apunov exponent in the integration of the numerical model
reguires rate equations for the time evolution of small de-
viations from a given trajectory in each dynamical variable
{the 7, and the G,). These rate equations are obtained from
a linear stability analysis of Egs. (1). The Liapunov expo-
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nent at time ¢ is a function of the length of the vector of
deviations at time ¢ as well as the original length of this
vector. The technique calculates the largest Liapunov ex-
ponent for the dynamics. If the system is in a periodic or
stable state the calculated value of the Liapunov exponent
is A = 0. If the system is in a chaotic state, then 4 >0, as
found in the sample calculation discussed below. We as-
sume here that the dynamics of the phase space trajectories
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FI1G. 8 Penodic laser output (cxperimental) and the corresponding
power spectra. (a)-(d} show peniodic time traces and FFTs containing
discrete frequency components. (¢) and (f) show chaotic time trajectories
with broadband power spectra,

is dominated by the largest Liapunov exponent.
The outline of this calculation of the Liapunov expo-
nent is as follows: Let

x(0)={0{),G (1),1,(0),G,(6),.. . In(1),Gu() }

be the vector of dynramical system variables at time ¢, let

Ax() ={8L(),AG (1),...ATy(1),AG (1)}
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be the vector of small deviations from x at time ¢ and let
d(¢) be the length of the deviation vector Ax(r} at time ¢
given by d(z) =||Ax(¢)||. Then the long time or asymptotic

value of the largest Liapunov exponent A is given byt
= 1 l dit)
= m {755 ) )
&(0) -0

When doing this calculation on a computer, the initial
length of the deviation vector d(0) is chosen to be unity for
convenience. Since the length of the deviation vector (1)
grows exponentially with time, the deviation vector must
be renormalized periodically to prevent overflow problems
in the calculation. The Liapunov exponent is then found by
the average of these periodically calculated values.

The Liapunov exponent for one particular random
time series produced from integration of the numerical
model (1) is A~1.6x10* s —'. This value for the largest
Liapunov exponent is the steady state or asymptotic value.
Figure 14{a) shows the time dependence of the estimate of
the Liapunov exponent. The positive Liapunov exponent
indicates the time series is in fact chaotic, and its magni-
tude indicates that the separation time (the inverse of the
Liapunov exponent) is about 60 us. In Fig. 14(b) we plot
the magnitude of the separation of two total intensity time
traces whose initial values differ by 10~ 19 a5 a function of
time. The rate of exponential growth of the separation was
found to be ~ 2% 10*s ~ !, which compares reasonably well
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to the Liapunov exponent given above. The time scale
specified by these measures is also in reasonable agreement
with the time for sequential energy sharing between modes,
as seen in Figs. 5-7. ‘

The positive Liapunov exponent calculated from the
numerical model provides convincing evidence that this
laser system can operate in a truly chaotic state. However,
the Liapunov exponent gives us no information about the
magnitude of the fluctuations in the laser output. Proba-
bility distributions can be used to obtain a measure of the
magnitude of the fluctuations in a chaotic system.’!

When a driven, dissipative, globally coupled oscillator
system is in a chaotic state, a complex energy sharing pro-
cess may occur among the oscillators.’*3? Probability dis-
tributions can be used to characterize the fluctuations of
the total energy of the system as well as the energy of an
individual oscillator. Kaneko has recently used probability
distributions to study /¥ globally coupled logistic maps as a
mean-field-type extension of coupled map lattices.**** He
has shown the interesting result that mean field fluctua-
tions for these logistic maps are approximately Gaussian
distributed despite the fact that they are coupled. That is,
an approximately Gaussian distribution for the mean field
was obtained in the limit of large N(N~20000), even
though the maps are globally coupled. Kaneko also
showed that for large N the two-point mutual information
is extremely small but remains finite and is responsible for
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the breakdown of the law of large numbers. This implies
that any two individual maps are not statistically indepen-
dent in their fluctuations.

Here, we use probability distributions to analyze the
energy sharing among the globally coupled axial modes of
a chaotic Nd:YAG laser system. However, unlike the mean
field approximation, global coupling by sum frequency
generation is a natural description for a multimode laser,
and not a computationally expedient approximation. A
characterization of the energy sharing is provided by the
probability distributions of the total and x- and y-polarized
mode intensities as well as by an examination of their time
evolution. Integration of the numerical model (1) describ-
ing the laser dynamics yields predictions for the probability
distributions and time traces that are remarkably similar to
the experimental results. We find that even though the
probability distribution of an individual mode intensity is
highly non-Gaussian, the distribution of the total intensity
is approximately Gaussian. This result is reminiscent of
Kaneko’s study of globally coupled maps. It is, however,
observed for the case of a few (N ~35) globally coupled
laser modes which are strongly statistically dependent, as
will be shown.

The laser was aligned to produce either a periodic or
chaotic intensity time trace. The second harmonic was fil-
tered from the laser output, and only the fundamental in-
tensity was incident upon a photodiode. The axial mode
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FIG. 12. (a} Periodic laser output {experimental). (b) Time delay plot
10y vs I{t + Ar) for the data in (2) with Ar = 2 us. (¢} Time delay plot
£{1) vs I{¢ + Ar) for the data in (a) with A7 — 10 #s. The plots are in
scaled units.

structure was monitored during the experiment with a con-
focal Fabry-Perot interferometer. The photodiode signal
was observed and stored on a digital oscilloscope interfaced
to an IBM PC. The digitized signal was transferred to the
IBM PC and the total intensity probability distribution
was calculated. Repeating this procedure allowed us to
obtain a probability distribution accumulated from many
time traces. A polarizing beamsplitter cube was then in-
serted in front of the photodiode, allowing us to obtain
time traces and probability distributions of the x- and y-po-
larized intensities simultaneously.

Figure 15(b) shows a probability distribution obtained
from the simple periodic experimental laser data in Fig.
15(a). The probability distribution is obtained by normal-
izing a histogram of the digitized laser intensity values.
The distribution in Fig. 15(b) for the simple periodic time
trace in Fig. 15(a) contains two peaks. Each of these two
peaks corresponds to one of the two turning points in the
periodic time trace. The laser intensity stays in the vicinity
of a turning point for a relatively long period of time,
which creates a peak in the probability distribution at the
intensity value of that turning point. Figures 16 and 17
show the probability distributions for other more complex
examples of periodic laser output. Notice that as the peri-
odic time trace becomes more complicated, the corre-
sponding probability distributions contain more peaks be-
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cause the trajectory contains more turning points.

Figures 18 and 19 show a comparison between exper-
imental data and numerical results from the integration of
Egs. (1) for the case of one x-polarized mode (m = 1) and
four y-polarized modes (n = 4). Figure 18(a)-(c)} shows
the time traces for the one x-polarized mode intensity, the
intensity in the y-polarized direction (the sum of the four
y-polarized mode intensities), and the total intensity, re-
spectively, obtained from the experiment. Figure 18(d}-
(f) contains the time traces obtained from the numerical
model for the following parameter values: 7.=0.2 ns,
7y =240 s, ¥ =0.05, f=0.7. g = 0.1, and € = 5X 10-°.
The individual mode losses are assumed to differ only
stightly, with a,~0.01.

The probability distributions shown in Fig. 19{a)-(c)
(experimental data) were accumulated from 15 time traces
of length 1 ms each, with 4000 digitized data values per
trace. The numerical probability distributions in Fig.
19(d}-(f) were accumulated from three time traces of
length 1.5 ms each. The length of the time traces was cho-
sen to be long relative to the divergence time of 60 us
calculated from the Liapunov exponent given above, in
order to obtain a comprehensive sampling of the laser dy-
namics.

In both the cases of the time traces and the probability
distributions, the corresponding experimental and theoret-
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ical plots look very similar. Also, in both theory and ex-
periment the total intensity has a probability distribution
that is approximately Gaussian. The comparison to a
Gaussian is facilitated by plotting a Gaussian curve calcu-
lated from the mean and variance of the total intensity
fluctuations. This nearly Gaussian probability distribution
for the total intensity is significant for three reasons. First,
the intensity fluctuation distributions for the x- and y-po-
larized directions are very non-Gaussian. Second, the indi-
vidual modes are strongly coupled through sum frequency
generation. Third, only a small number of modes
{(N=m+ n=235) are involved. In contrast, Kancko re-
quired several thousand globally coupled logistic maps to
achieve an approximately Gaussian probability distribu-
tion. It is also significant to notice that in our experiments
and in the case of Kaneko's study of globally coupled lo-
gistic maps, probability distributions that are only approx-
imately Gaussian are obtained for some system parame-
ters.’> The central limit theorem does not usually apply to
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strongly dependent random variables.’® The central timit
theorem states that the sum of N random, independent
variables is Gaussian distributed in the limit of large V.
The laser modes, however, are coupled through sum fre-
quency generation and few in number and their sum, the
total intensity, is only approximately Gaussian distributed.
This implies that the central limit theorem may not be
responsible for the observed distribution of the total inten-
sity fluctuations. However, the approximately Gaussian
nature of chaotic probability distributions could be a gen-
eral property of many chaotic systems, and not necessarily
only a feature of the particular system discussed here.

The probability distributions associated with the x-
and y-polarized intensities are very asymmetric and non-
Gaussian. The x- and y-polarized intensities are anticorre-
lated as shown in Fig. 20. That is, only one polarization
direction is “‘on” at any given time, and the two polarized
intensities switch on and off in an approximately periodic
anticorrelated fashion. The time between successive on or
off states for one given polarization fluctuates with time.
The polarized intensities calculated from the numerical
model also show this nearly periodic energy sharing. A
similar energy sharing between orthogonal linear polarized
intensities, as well as between right- and left-handed circu-
larly polarized light, has been observed in the dynamics of
some gas lasers.’’

In order to quantify the statistical dependence or inde-
pendence of the intensity fluctuations, we will calculate the
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plex waveform than n Fig. 15(a) and its corresponding probability dis-
toibution. Each of the peaks in the probability distribution corresponds 1o
one of the turning ponts in the time sertes. The intensity is given in scaled
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autocorrelation function of the total intensity and the
cross-correlation function between the x- and y-polarized
intensities. The cross-correlation function C(An) between
two data sets f(n) and g(n) relative to their respective
means (/) and {g) is given by

Yo An

1
C(An)=(m EI [f(n) = {D1{gln + An)
- <g>])((f)(g>) -

| N —an
=((m) Z Sfim)gln + An))

X(Ng) -1, (6)

where & is the number of data values in each set. The
cross-correlation function is formed by displacing the data
set g(n) by An relative to the data set f(n). Notice that the
result of the cross-correlation calculation would be dif-
ferent if f(n) were displaced relative to g(n). The auto-
correlation function A(An) of the data set f(n) is defined
as the limiting case of the cross-correlation C(An) with
g(n)=f(n). That is,
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N - An
A(An) = > f(n)f(N+An))

|
(N—anm) 5

((HH =1, (7)

where A(An=0) =o?/{f)*, where & = (/) — (/)’ is the
variance of f{n}.

Figure 21{a) and (b) shows the autocorrelation for a
chaotic time series obtained from the numerical model for
the case of one x-polarized modes {m = 1) and four y-po-
larized modes (n = 4). Figure 21{c) shows the cross-cor-
relation between the one x-polarized intensity and the
y-polarized intensity (the sum of the four p-polarized mode
intensities). The correlation functions of the numerical
data look very similar to typical experimental results for
chaotic intensity fluctuations shown in Fig. 22(a)-{c),
again for the case of (m,n) == (1,4). The autocorrelation
functions in Figs. 21(a) and 22(a) die out on a time scale
of tens of microseconds, which is similar to the separation
time given by the inverse of the Liapunov exponent. Notice
that the cross-correlation function between the x- and
y-polarized intensities is initially negative. This is because
the x- and y-polarized intensities are anticorrelated as was
shown in Fig. 20. The autocorrelation functions show os-
cillations at about five times the frequency of the slow
oscillations present in the cross-correlation functions. The
cross-correlation function shows an energy exchange be-
tween the single x-polarized mode intensity and the y-po-
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FIG. 18. {a)-(c) Experimental time traces for the x-polarized, y-polar-
ized, and total intensities. (d)-(f) Corresponding time traces from the
numerical integration of Eqs. (1), The expenimental and numencal re-
sults are both for the case (mn) = (1.4).

larized intensity, which contains four modes. The autocor-
relation function is computed for the total intensity, and
reveals the time scale for exchange of energy among the
five modes, which occurs in an approximately antiphase
fashion, even though the total intensity is chaotic.

The time scale for the fast oscillations in the autocor-
relation function is about ten microseconds, which com-
pares closely with the time period for relaxation oscilla-
tions. The laser operated without the intracavity doubling
crystal shows very small amplitude, damped relaxation 0s-
cillations generated by noise perturbations. The cross cou-
pling of the modes introduced by sum frequency genera-
tion may lead deterministically to large amplitude intensity
Auctuations that originate in the relaxation oscillations.

The reader may have noticed that the experimentally
measured probability distributions in Fig. 19(a)-(¢)
shows many sharp peaks. This is most noticeable in the
probability distribution for the intensity in the x-polarized
direction. One may conjecture that these sharp features
would disappear if the histograms were accumulated from
many more time traces. This conjecture is disproved by the
following experimental observations. Figure 23(a)-(d)
shows probability distributions for the total intensity fluc-
tuations accumulated from 1, 10, 50, and 100 time traces,
respectively. The sharp peaks occur at the same intensities
in all these distributions. This structure is reminiscent of
the peaks observed in the probability distributions for pe-
riodic time traces which were related to the turning points
for the intensity. That is, even though the time trace looks
chaotic, certain well-defined maxima and minima in the
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tal time traces (and probability distributions) were not measured simuyl-
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total intensity time trace occur frequently, leading to the
observed residual peaklike structures in the probabtlity dis-
tributions.

The fine structure in the probability distributions ob-
tained from integration of the numerical model in Fig.
19(d)—(f) is much less obvious than in the experimental
measurements in Fig 19/-3_(), The diff=r-rce could be
that the numerical errors in the computation represent a
noise source that is larger in magnitude than the sponta-
neous emission noise that is always present in the laser.
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FIG. 20. Experimental time traces from simultaneously measured X-po-
larized and p-polarized intensities. Notice the anticorrelation between the
orthogonally polarized intensities.
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FIG. 21. (a) Autocorrelation function for a chaotic time series of the
totai intensity produced from a numerical integration of Eqgs. {1). (b}
Autocorrelation function of the same data as in (2) on a shorter time
scale. (¢) Cross-correlation function of the x-polarized intensity and the
y-polarized intensity. The cross-correlation function is negative for
4r =0 indicating that the x-polanized intensity and the p-polarized in-
tensity are anticorrelated.

The fact that this structure is observed in the experimental
results at all implies that the strength of the spontaneous
emission noise in the laser is actually extremely small (the
noise magnitude may also be independently estimated).
This provides justification for our neglecting spontaneous
emission in the laser model given by the rate equations (1),
even though spontaneous emission is always present in the
actual laser system.

VI. CONCLUSIONS

The laser system studied here is extremely convenient
for detailed invetigations of complex periodic and chaotic
phenomena. Its nonlinear dynamical behavior can be con-
troiled by variation of a single system parameter (the rel-
ative orientation of the YAG and KTP crystals). It is
possibie to eliminate the chaotic fluctuations in this laser,
obtain complex periodic waveforms, such as antiphase
states, and to study the statistics of chaotic fluctuations.
Our statistical studies raise many questions about the dis-
tribution of fluctuations in a system of globally coupled
nonlinear oscillators. Why are the distributions approxi-
mately Gaussian in shape and what is responsible for the
fine structure and significant deviations that are observed?
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FIG. 22. Expenmentally measured correlation functions for typical cha-
ofic time traces of the faser. {a) Autocorrelation function for a chaotic
total output intensity. (b} Autocorrelation function of the same data as 1n
(a) on a shorter time scale. (¢) Cross-correlation function of the x-po-
jarized intensity and the p-polarized intensity. The cross-correlation func-
tion is negative for Af = 0 indicating that the x-polanzed intensity and the
y-polanzed intensity are anticorrelated. Notice the striking similarity to
the numerical results in Fig. 21.

What is the role of the central limit theorem in determining
the nature of fluctuations in chaotic coupled systems?
Much theoretical and experimental work remains to be
done to explore the answers to these questions, and the
laser system is an excellent one for such investigations.
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Dynamical Control of a Chaotic Laser: Experimental Stabilization of a Globally Coupled System
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A multimode, autonomously chaotic solid-state laser system has been controlled by the technique of
occasional proportional feedback, related to the control scheme of Ott, Grebogi, and Yorke. We show
that complex periodic wave forms can be stabilized in the laser output intensity. A detailed model of the
system is not necessary. Qur results indicate that this control technique may be widely appticable to au-
tonomous, higher-dimensional chaotic systems, including globally coupled arrays of nonlinear oscillators.

PACS numbers: 05.45.+b, 42.50.—p

The possibility of obtaining complex periodic wave
forms from a chaotic system has inspired much recent
theoretical and experimental work [1-7]. The basic con-
cept involved is that a chaotic attractor has a large num-
ber of unstable periodic orbits embedded in it. It should
therefore serve as a rich source of complex periodic wave
forms, if an appropriate dynamical controi technique can
be implemented to stabilize the system. The control algo-
rithm proposed by Ott, Grebogi, and Yorke (1] (OGY)
was a breakthrough in this direction and has been applied
experimentally to a periodically driven magnetoelastic
ribbon [2]. In the OGY scheme, an unstable periodic or-
bit is stabilized through the application of small, carefully
computed perturbations to a system parameter; the per-
turbations are proportional to the deviation of the system
from the unstable fixed point. Other systems studied ex-
perimentally with the aim of establishing control over
chaos have been a thermal convection loop {31, a yttrium
iron garnet (YIG) osciliator [4], and most recently, a
diode resonator [5}. Control of the periodically driven
diode resonator was achieved by the technique of oc-
casional proportional feedback (OPF)} and many higher-
order periodic orbits were successfully gencrated. While
Ref. [6] is concerned with the control of chaos through
sinusoidal modulations of a control parameter, Ref. [7]
clearly shows the relation of the OPF technique to the
OGY algorithm.

In this Letter, we describe the application of the OPF
technique to an autonomously chaotic multimode laser, a
higher-dimensional system for which the chaotic attractor
is not characterizable by a two-dimensional map. Fur-
ther, the application of the control signal is performed on
relatively fast time scales of the order of a few mi-
croseconds. This limits the application of schemes involv-
ing digital computations. In these circumstances, the
OPF scheme provides an attractive means to attempt con-
trol of an autonomously chaotic lascr. Though the OPF
scheme does not require any detailed model of laser
operation, a knowledge of the characteristic time scale of
energy exchange between the active medium and the light
in the laser cavity was important for its implementation
in this system.

2

The multimode laser with an intracavity crystal [8] is
an example of a system of globally coupled nonlinear os-
cillators; each longitudinal mode is a relaxation oscillator
coupled to all the others [9-12]. Such globally coupled
arrays have been found to be of relevance and interest in
the study of Josephson-junction networks [13], models of
chemical turbulence [14], and heartbeat rhythms [i5].
The technique described here could possibly be applied to
a wide range of physical, chemical, and biological sys-
tems, including arrays and networks of coupled nonlincar
clements.

The laser used in our experiments is a diode-laser-
pumped solid-state Nd-doped yttrium aluminum garnet
(Nd:YAIG) system that contains a KTP {potassium ti-
tanyl phosphate) doubling crystal within a cavity of
length ~3.5 cm. We have previously studied this system
extensively and the equations that describe the laser
operation in several longitudinal modes are well known
[9-12]. In the experiments reported herc, it was not
necessary for us to utilize a detailed model of the system.
The laser was pumped at 60 mW, about 3 times above
threshold (~20 mW), and the chaotic operation was ob-
served for a given rotational orientation bectween the
YAIG and KTP crystals [9]. At this level of excitation,
the laser operates in anywhere from five to ten longitudi-
nal modes, depending on the rotational orientation of the
crystals and the length of the laser cavity.

In a periodically driven system it is convenient to sam-
ple a system variable at the driving frequency or its sub-
multiples. In the autonomously chaotic laser, there is no
modulation applied, and hence one looks for a natural
periodicity characteristic of the system. Such a periodici-
ty is present in the form of relaxation oscillations in the
laser with intracavity nonlinear crystal [11,12}, represen-
tative of the fundamental periodicity in the exchange of
energy between active atoms and light in the laser cavity.
The frequency of the relaxation oscillations v, increases
as the square root of the excitation level above threshold,
and depends also on other parameters characterizing the
laser, such as the cavity loss, fluorescence decay time of
the active atoms, and the nonlinearity coefficient of the
KTP crystai [12]. v, is in the range 20-150 kHz, for lev-
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els of excitation of the laser up to 5 times above thresh-
old. The source of chaotic behavior in this laser is the
coupling of the fongitudinal modes through the nonlinear
process of sum-frequency generation. This process desta-
bilizes the relaxation oscillations which are normally
heavily damped in the system without the intracavity
crystal. Autocorrelation functions of the total intensity
reveal clear oscillations at the relaxation-oscillation fre-
quency even when the laser is chaotic [11]. Alternatively,
one may discern a peuk at the reluxation-osciliation fre-
quency in the fast Fourier transform (FFT) of the total
intensity fluctuations.

The basic technique for achieving dynamical control is
as follows. A system variable (the total laser output in-
tensity) is sampled within a window of selected offset and
width. The sampling frequency is related to the relax-
ation-oscillation frequency of the system. A signal pro-
portionai to the deviation of the sampled intensity from
the center of the window is generated and applied to per-
turb a system parameter from its ambient value. This
control signal repeatedly attempts to bring the system
closer to a periodic unstable orbit that is embedded in the
chaotic attractor, resulting in a realization of the periodic
orbit with accuracy limited by the frequency and extent
of feedback as well as by the positive Lyapunov exponent
characterizing the orbit.

A block diagram of the laser system and controller is
shown in Fig. |. The fundamental 1,06-ym radiation is
monitored by a photodiode, the output from which serves
as the input to the control circuit. A stable oscillator is
used to generate the synchronizing frequency with which
the outpul from the chaotic laser is sampled. A variable
offset is added to the laser signal to bring it within a win-
dow of adjustable width. The window comparator is ac-
tivated when the wave form makes a transit through the
window. When the synchronizing input is coincident with
this event, the sample and hold acquires the wave-form
voltage. The sampled signal is output through the gate
only for time periods short compared to the period of the
synchronizing oscillator. A typical time period for appli-
cation of the correction signal is less than 10 ysec. An in-

d:YAG Loaser with
ntrocavity KTP Crysla

lode Laser Iode
Driver Laser

wale
[

Lpu
tfset

fontrol  Signa
Width

FI1G. |. Schematic of the laser system and occasional propor-
tional feedback controller. The perturbation of the diode-laser
drive current is proportional to the deviation of a sampled wave
form value from the window center. The synchronizing oscilla-
tor {requency, wave-form offset, and controi-signal width are
varied to optimize stability of the periodic wave form.
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verting amplifier with variable offset and gain delivers the
control signal to the diode-laser driver.

The rotational orientation of the YAIG and KTP crys-
tals was adjusted such that the laser was clearly chaotic
in operation, but only a small amount (less than a few
uW, typically) of green light was generated in the dou-
bling crystal. This indicates that the effect of the non-
linearity is small, and that the laser is in a “weakly”
chaotic regime. With the laser in chaotic operation, con-
trol is attempted by adjustment of the synchronizing fre-
quency. The synchronizing oscillator frequency is varied
near the relaxation-oscillation frequency observed for the
laser, and the wave-form offset and window width are ad-
justed to initiate control. Further adjustments of the con-
trol signal width and gain, as well as the wave-form offset
and window width, are necessary to optimize the stability
of the wave forms obtained. The most effective adjust-
ments were found to be the synchronizing frequency, the
wave-form offset, and the control-signal width.

It is very easy to make these adjustments and to obtain
many higher-order periodic wave forms of the laser inten-
sity, a few of which are illustrated in Fig. 2. The wave
form of the chaotic laser without any control signal is
shown first. The FFT of this wave form shows a broad
relaxation-osciilation peak centered at about 118 kHz.
The time scale shown is 0-500 uysec. Period-1, -4, and -9
wave forms are also shown together with the control sig-
nals; a rich variety of wave forms can be obtained in
practice and maintained in stable operation for many
minutes. The time scale for these figures is 0-200 usec.
The sharp spikes on the control signal that are visible
particularly in Fig. 2(d) are an artifact of the sample and
hold circuit. The FFTs for the intensity fluctuations are
shown below the intensity time traces. The range of (re-
quencies shown is 0-500 kHz in all the figures. For the
low-peried orbits, control can be established with smaill
perturbations applied near the relaxation-oscillation fre-
quency or its submultiples [Figs. 2(b) and 2(c)]. In this
manner we have observed orbits up to period 8. In Fig. 2,
it is seen that the wave forms generated align themselves
with the correction signal such that the wave form peaks
are sampled. There is 2 range of frequencies of the syn-
chronizing signal over which this alignment is noticeable,
and robust, successful control is maintained. For the
period-1 orbit, contro! was retained over a 110-165 kHz
synchronizing frequency range. For higher-period orbits
such as the period-9 orbit shown in Fig. 2(d), we often
found that the synchronization frequency had to be ad-
justed to a simple rational fraction of the relaxation fre-
quency, The nature of the control signal grows progres-
sively more complex as higher-order periodic orbits are
captured [Fig. 2(d)]. We note that in the example wave
forms shown here, the contro! signal consists of only
positive-going or negative-going corrections. However,
many cases have been observed for complex wave forms
in which the corrections are both positive and negative
relative to the ambient bias. The perturbations applied to
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FIG. 2. Time traces of the laser intensity and the corresponding FFTs. The control signal is shown at the top, and then the inten-
sity time trace and FFT. (a) The chaotic intensity fluctuations of the laser output without any applied control signal. The FFT
below the wave form shows the broad relaxation-oscillation peak. (b) A period-1 orbit obtained by adjusting the synchronizing oscil-
lator frequency to approximately the relaxation-oscillation frequency. (c) A period-4 orbit obtained by adjusting the synchronizing
oscillator frequency to approximately L of the relaxation-oscillation frequency. (d) A period-9 orbit obtained with the synchronizing
oscillator frequency at ¢ of the dominant frequency shown in the FFT. The complex nature of the control signal is clearly visible.
The spikes seen in the control signal are an artifact of the sample and hold circuit.

the drive current of the diode laser are only a few percent of the ambient-bias current for the low-order periodic orbits.
Even for the higher-order orbits, the maximum perturbations observed were less than 10%. At these levels of control-
signal magnitude, however, the original attractor may be modified to some extent by the feedback.

We have found experimentally that wave forms very simifar to those obtained from the laser with dynamical control
can be produced without control if operating parameters (the relative orientation of the crystals and the pump excita-
tion) are changed. However, these uncontrolled wave forms are typically very unstable and cannot be maintained except
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for very short periods of time. With control, they can be
maintained for many minutes. We have also picked out
segments of unstable periodic orbits from chaotic intensi-
ty time traces that arc similar to the low-order periodic
orbits that we have generated with dynamical control un-
der the same operating conditions. Experimental results
demonstrating this correspondence and a comparison of
wave forms generated numerically from a detailed model
of the laser [11,12] will be published separately.

We have also examined the effect of a simple periodic
modulation of the pump. Though the laser is stabilized
on low-order orbits by the modulation. the modulation
amplitude necessary is often much larger than 10% for
such stabilization. Further, the wave forms are stable for
only short periods of time, and environmental changes
such as air currents and temperature drifis tended to have
a highly destabilizing influence on the system. In con-
trast, with OPF stabilization, the laser stays locked in a
given orbit for much longer lengths (many minutes) of
time,

In conclusion, we have demonstrated dynamical control
of an autonomously chaotic, higher-dimensional optical
system for the first time on microsecond time scales. The
multimode laser system studied by us is an example of a
globally coupled system of nonlinear oscillators. The pro-
portional control signal applied to the pump excitation re-
suits in an ordered, periodic state of the originally chaotic
ensemble of oscillators. The results reported here indi-
cate that the technique of occasional proportional feed-
back should be widely applicable to a variety of physical,
chemical, and biological systems, including arrays and
networks of coupled elements.
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AT&T graduate fellowship (Z.G.). We also thank Neal
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Tracking Unstable Steady States: Extending the Stability Regime of a Multimode Laser System

Zelda Gills, Christina Iwata, and Rajarshi Roy
School of Physics. Georgia Institute of Technology, Atlanta. Georgia 30332

Ira B. Schwartz and loana Triandaf

U.5. Naval Research Laboratory, Special Project for Nonlinear Science, Plasma Physics Division, Code 4700.3
Washington D.C. 20375-5000
(Received 23 July 1992)

It is shown that the unstable steady state of a multimode laser system may be stabilized by the oc-
casional proportional feedback technique for dynamical control of chaotic systems. The range of pump
excitalions over which stabilization can be maintained is extended by more than an order of magnitude
through application of a procedure for tracking the unstable steady state as the pump excitation is slowly

varied.

PACS numbers: 05.45.+b, 42.50.—p

It was recently demonstrated in several experiments
that dynamical control of chaos can be achieved in
mechanical, fluid, electronic, and laser systems {1-4]. n
these experiments, two related techniques were employed
to establish control: the Ott-Grebogi-Yorke (OGY) al-
gorithm [S] and the occasional proportional feedback
(OPF) method 13.4.6], both of which consist of applying
small, appropriately estimated perturbations to a system
parameter. These perturbations stabilize the system on a
chosen periodic orbit, or unstable steady state. A crucial
question immediately arises: Can we maintain control of
a particular orbit or unstable steady state over a wide
range of parameter values for the system, including both
chaotic and nonchaotic regions?

We study here the particular case of stabilization of an
unstable steady state. In the case of the chaotic mul-
timode laser system, it is of great relevance for practical
applications that a stabilized steady state be maintained.
It is found that when the laser is stabilized by a dynami-
cal control technique, it remains stable only for a very
limited range of pump powers, if the parameters of the
control circuit are kept fixed. However, it is next demon-
strated that through the application of a recently devel-
oped procedure for tracking the unstable steady state
(through judicious changes in a control parameter}, the
stabilized steady state can be maintained over a greatly
extended range of pump excitations. The tracking pro-
cedure was developed [7] particularly for experimental
systems where a detailed theoretical model may not be
available. For the laser system studied in these experi-
ments, a reasonably accurate model is available (8], but
we do not make use of the model for either the control or
the tracking procedure. Furthermore, the laser system
employed is a higher-dimensional one for which no simple
return map is available {4,8]. in contrast to the experi-
ments of Refs. [1,3]. Our experiments are thus a striking
demonstration that the procedures developed in Ref. {7]
may be applied successfully to complex systems with no
low-dimensional characterization of the chaotic attractor.

To obtain insight into the tracking technique. let us as-
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sume that the chaotic system under study may be con-
trotled through application of a technique that consists of
making small perturbations of a system parameter in
response to the system output, as measured through
detection of a system variable, or suitable combination of
variables. Two techniques that have been developed for
such control are the OGY method {1,5] and OPF method
[3.4.6]. In the OGY algorithm, three basic elements are
needed to implement control: a time series, a control
point &r about which control is achieved, and an accessi-
ble system parameter p. We suppose that there exists an
unstable periodic orbit £{p) which varies as a function of
parameter p. For some initial parameter value p for
which the orbit is chaotic, we assume we have determined
the eigenvalues and eigenvectors of the orbit, and that the
orbit is controlled. The OPF method is essentially a lim-
iting case of the OGY ualgorithm when the contracting
direction is infinite in strength, i.e., the stable eigenvalue
A, 15 zero. We review the OGY method here since it is
more general and is based on a first-principles attractor
reconstruction technique.

To track the orbit, a small change is made in p. Since
the orbit location is a function of p, a small error is made
if the control point is not changed. To see this, we exam-
ine the OGY control algorithm. At a fixed value of p, we
choose a small correction 8p =C{&, — £p) [y, so that the
next iterate falls on the local stable manifold. Here, &y is
the predicted fived point, &4 is the current iterate of the
map, f, is the contravariant eigenvector along the unsta-
ble direction, and C is a constant € =i,/(A, —Dg-f,,
where g =8&p{p)/8p and &, is the unstable eigenvalue.
To implement the tracking procedure, we determine the
error e between the predicted fixed point £ and the true
fixed point, by examining the mean of the control fluctua-
tions {dp? about p. If the predicted value of the fixed
point is equal to the exact value, it can be shown [7] that
the mean of the fluctuations will be close to zero (to
within the noise of the experiments). The mean of the
fluctuations is given approximately by (8p) == Ce-f,.
Therefore, the error 1s minimized by varying the estimate

3169



VOLUME 69, NUMBER 22

PHYSICAL REVIEW LETTERS

30 NOVEMBER 1992

of the fixed point at the new parameter value to that
which minimizes [{(8p?|. This minimization is a correc-
tion to the prediction of the fixed point and locates a new
point on the branch of orbits, which is now used for fur-
ther prediction. The connection between the OGY and
OPF methods huas been addressed by Schwartz, Triandaf,
and Roy [9], and it may be shown that the considerations
discussed for tracking an orbit are easily extended to the
OPF control technique as well.

We have applied the OPF control technique for
dynamical stabilization of the unstable steady state of a
chaotic multimode Nd:YAG (neodymium doped yttrium
aluminum garnet) laser with a nonlinear intracavity KTP
(potassium titunyl phosphate) crystal [4.8]. The diode
laser pumped solid state laser system displays periodic
and chaotic fluctuations of the output intensity for certain
operating parameter regimes. To apply the OPF methed,
an analog electronic feedback system was developed, de-
scribed in Ref. [4]. The laser output intensity is detected
by a photodiode, the signal ¥{s) from which [correspond-
ing to the intensity 7(r)] is amplified with a variable gain
{proportionality factor “A4"") and offset with respect to a
reference voltage V.. (corresponding to the reference in-
tensity /s). The signal is sampled periodically with the
period determined by an external synchronizing pulse
generator. The sampled signal is input to the laser diode
driver as a smull perturbation on the dc bias level, for a
time short compared to the sampling period. A series of
minute kicks of fluctuating magnitude and sign are thus
applied 1o the diode drive current. The control parame-
ters are (i) the reference level with respect to which the
oulput intensity is measured, {ii) the proportionality fac-
tor 4 that multiplies ¥ (1} =¥, (it} the period T at
which the output 1s sampled, and (iv) the gating period 6¢
over which the correction AV (1) —V ] is applied 1o the
ambient value of the diode drive current. For stabiliza-
tion of the unstable steady state, [ is our guess for the
average steady-state intensity. If this guess is incorrect,
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FIG. 1. The average laser output (relative units) at 1.06 pm,
without application of the control signal. The symbols desig-
nale steady-state (@), periodic (0), and chaotic {*) behavior of
the laser. Stable operation is obtained only very near threshold;
for higher pump powers. a complex sequence of periedic and
chaotic behavior is found.
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the control signal fluctuations acquire a net dc com-
ponent. Thus we can zero this dc component by adjust-
ment of /., and minimize the contiryl fluctuations by ad-
justment of the other control parameters.

In Fig. 1, the average value of the Nd:YAG laser out-
put (relative units) is shown as a function of the dc bias
applied to the diode laser driver. No control signal is ap-
plied. The symbols denote a complicated sequence of
stable steady-state, periodic, and chaotic behavior. Note
that stable steady-state outpul is obtained only for a very
small range of pump powers, for the given set of laser
operating parameters.

Figure 2{a) shows an example of unstable chaotic Ruc-
tuations of the output intensity, with no control signal ap-
plied. Application of dynamical control results in the sta-
bilization of the steady state, Fig. 2(b). The control sig-
nal fluctuations are so small as to be virtually indistin-
guishable from noise in the digital oscilloscope trace and
are significantly less than 1% of the ambient dc bias. The
stabilized steady-state intensity has the same average
value as that of the chaotic output. The fluctuations of
the laser intensily are a few percent of the steady-state dc

(@) | Control OFF
[ S

E.aser Intensity

0 Time 5ms

(b) Control ON 3

Laser Intensity

 AREpsacssnnnsal

0 Time

FIG. 2. (a) Digital oscilloscope trace showing the chaotic
fluctuations of the laser output intensity vs time. The pump
power is about 53 mW, and no centrol signal is applied (upper
trace). (b) The stabilized steady-state intensity vs time with
the control signal applied. The upper trace is the control signal;
its fluctuations are submerged in the noise level of the digital
oscilloscope.
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level, reduced from the nearly 100% fiuctuations in the
chaotic state. These results demonstrate that it is possi-
ble to successfully stabilize the unstable steady state for a
given pump power (about 50 mW) and control parameter
settings.

We display in Fig. 3(a) the consequence of changing
the pump power for fixed control parameters. The laser
retains stable steady state only for the limited range of
pump power indicated by the solid dots, giving rise to
complex periodic and chaotic oscillations for smail
changes of the diode laser power. Figure 3(b) shows that
the control signal fluctuations grow on either side of the
control points as the pump power is varied, becoming
several times larger (~3% to 10% of the dc value) than
those at the optimized control point {less than ~1%).

Next, we show the results of application of the tracking
procedure. The pump power was steadily increased in
small steps from a value close to threshold, where stable
steady state was obtained without control. When unsta-
ble oscillations of the cutput intensity were detected, con-
trol was switched on, and the reference intensity level [
was optimized to obtain an essentially zero dc component
of the control signal. The standard deviations of the fluc-
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FIG. 3. (a) Stabilization of the laser achieved for a fixed set-
ting of the control parameters is lost for small changes in the
pump pewer. The solid dots indicate the range of stable opera-
tion. Period 1 (), period 4 (O), period 10 (0}, and chaotic
(%) operation were observed as the pump power was changed
without any tracking procedure applied to the control parame-
ters. {b) The standard deviation of the control signai fluctua-
tions is shown for the range of pump powers investigated in (a).
The Auctuations grow sharply on either side of the optimized

control point,

tuations of the control signai were also minimized by ad-
justment of T, 8t, and A. It was found that the laser
could be stabilized over the entire range of pump power
shown in Fig. 4, by tracking the steady state through ad-
justment of /. as the pump power was increased, and
through minor adjustments in 7 and &:. The intensity
fluctuations about the stabilized steady state are typically
more than an order of magnitude smaller than the almost
full scale unstable periodic and chaotic fluctuations.

A comparison of Figs. 1 and 4 immediately shows that
the tracking technique allows us to obtain about 15 times
more output power in a stable steady state for a given set
of laser operating parameters. The stabilized steady-state
values are very close to the average values of the fluctuat-
ing unstable laser output for the same pump power. The
control signal fluctuations are a small perturbation and
almost no extra pump energy input is required to stabilize
the system. Steady-state operation achieved in this
manner is extremely stable for long periods of time
{many minutes).

In conclusion, we have introduced a new procedure to
track an unstable steady state in a multimode laser sys-
tem as the pump power is varied over a wide range. The
results demonstrate over an order of magnitude extension
of the stability regime, from a pump power about 20%
above threshold to more than 300% above threshold. The
control technigue requires only small perturbations of the
pump power and excellent stability is maintained in the
laser output.

A detailed model of the system is not required. How-
ever, it is known [8] that the system has a higher-
dimensional attractor, with no simple return map. Sev-
eral globally coupled longitudinal modes oscillate simul-
taneously in different polarizations. Qur resuits indicate
that complex systems of nonlinear oscillators may be sta-
bilized, and the regime of stability extended, through the
combination of tracking and control procedures demon-
strated here. The technique should be applicable to a
wide variety of electronic, fluid, and mechanical systems
as well as to chemical and biological processes.
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FIG. 4. Stable steady-state output of the laser {same scale as
in Fig. 1) vs pump power. Control and tracking were both ap-
plied. The regime of stable operation was extended from about
20¢¢ above threshold to more than 300% above threshold.
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We examine the mutual coherence and phase dynamics of two solid-state lasers, generated adjacent to
each other in a single Nd:YAG rod. The coupling of the lasers is varied by changing the separation of
the pump beams. A model is formulated to interpret the experimental results, and theoretical predic-
tions are obtained that are in excellent agreement with the measurements,

PACS number(s): 42.60.—v, 42.55.Rz, 42.55.Px

I. INTRODUCTION

Laser arrays have been fabricated and their properties
studied for many years. Most of these studies have been
concerned with semiconductor laser arrays. Recent stud-
ies have shown [1] that although the total light output
from the semiconductor arrays may be stable, the emis-
sion from individual elements of an array is often unsta-
ble and even chaotic, and a stable phase-locked operation
is possible only over small parameter ranges. These re-
sults indicate that it is very important to study the condi-
tions for the stable operation of coupled lasers [2,3] even
in the simplest case of two lasers, in order to develop a
thorough understanding of the factors that affect their
stability.

It has also become clear that miniaturized solid-state
lasers and their arrays are gaining importance through
potential applications and through the development of
new solid-state lasing media. There are indications that
while semiconductor laser arrays demonstrate a stable
phase-locked operation only over a small range of operat-
ing parameters, solid-state laser arrays may exhibit stable
phase locking over a much wider range of coupling and
operating parameters [4]. Therefore it is of great interest
to examine both experimentally and theoretically the
coherence and phase dynamics of two coupled solid-state
lasers. In the system studied here, we vary the coupling
between the lasers and study the mutual coherence of the
lasers as revealed in the formaticn of interference fringes
by the overlapped beams.

It is important to note the similarities and differences
between solid-state and semiconductor lasers. Both are
class B lasers [5], because the polarization dynamics may
be adiabatically eliminated when cw operation is con-
sidered. Thus, the lasers are well described by coupled
complex field and inversion equations. In both cases the
decay rate of the cavity is larger than that of the inver-
sion. For Nd:YAG (yttrium-aluminum-garnet) lasers
these are p, =10° s~ ! and y =4x10° s~ ', respectively,
while for a solitary semiconductor laser the correspond-
ing values are p_=~10"" s~ and y =10”s™'. This means
that while solid-state laser dynamics may be studied with
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conventional detectors, streak cameras are often neces-
sary for studies of semiconductor laser array dynamics
[1]. We have used simple p-i-n photodiodes and a video
camera system for the studies reported here. Another
important distinction between solid-state and semicon-
ductor lasing media is the large value of the “linewidth
enhancement factor” a for semiconductors {a=3-5)
compared with a=0 for solid-state systems. This
difference makes solid-state lasers much more suitable for
phase locking than semiconductor lasers.

We have fabricated solid-state laser arrays by several
different procedures. A single pump beam may be split
into several approximately equal components through the
use of beam splitters, microlens arrays, specially designed
binary optic gratings such as the Dammann grating, and
fiber beam splitters. While we have generated arrays of
multiple lasers by all of these methods, here we report the
results of our study of the mutual coherence of two lasers
created in a single Nd:YAG rod by two parallel pump
beams obtained using beam splitters. We will describe
the experimental system in Sec. II. Section IIl contains
the experimental results obtained with the video camera
system. Section IV describes a model for the two-laser
system. We show that if the intensity of the two lasers is
assumed to be more or less constant, and there is negligi-
ble coupling between intensity and phase fluctuations, we
may obtain a single stochastic equation to describe the
dynamics of the phase difference between the two lasers.
The solution of the stochastic equation is the subject of
Sec. V. The Langevin equation for the phase difference ¢
is converted to a Fokker-Planck equation and solved in
the stationary state under the appropriate boundary con-
ditions to yield a simple expression for the probability
density of ¢. The visibility of the two lasers may be cal-
culated as a function of their separation and compared
directly with experiment. Several numerical computa-
tions performed with the model of Sec. IV are given and
we present a discussion of our results in Sec. VL.

II. EXPERIMENTAL SYSTEM

The experimental system for studying the coherence of
two spatially coupled lasers is shown in Fig. 1. Two spa-
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FIG. 1. Experimental system for generating two adjacent

lasers in an Nd:YAG crystal and measuring their mutual ¢coher-
ence. The two beams overlap at the sensor of the CCD camera
which has its imaging lens removed. OC is the output coupler;
NF is the notch filter transmitting at 1064 nm; VND is the vari-
able neutral density filter.

tially separated paralle] lasing beams are created in a
plane parallel cavity by end pumping a single Nd:YAG
rod with two pump beams for an argon laser. Two pump
beams are produced from a single Ar laser source by first
splitting and then recombining the beams using two beam
splitters. The YAG crystal is 5 mm in length and 5 mm
in diameter, while the entire cavity is =1 cm in length.
One end of the crystal serves as a flat cavity mirror and is
coated to be highly reflecting at the lasing wavelength of
1064 nm and highly transmitting at 514.5 nm. The oppo-
site crystal face is antireflection coated at both wave-
lengths.

Thermal lensing [4,6] induced in the crystal by the two
pump beams is responsible for generating two separate
stable cavities. This is a consequence of the
temperature-dependent index of refraction {(dn/dT
=7.3X107°% K7') of the crystal, and is responsible for
the creation in each cavity of an effective positive lens
with a focal length of the order of ~1 m. A second
mechanism, self-focusing, also contributes to the forma-
tion of a positive lens in the crystal, but to a significantly
lesser degree. Self-focusing is the result of the depen-
dence of the index of refraction on the intensity of the
light propagating in the material. In these experiments,
the effective lens generated by self-focusing was estimated
to be of the order of ~10° m, so thermal lensing is the
dominant effect in generating a stable resonator. Howev-
er, self-focusing has the potential to be more important if
the Nd:YAG lasers were to be operated as pulsed rather
than cw lasers.

Unlike the fixed geometry inherent in coupled semicon-
ductor lasers, here we have the freedom to continuously
vary the overlap of the lasing fields by varying the pump
beam separation. Typically, both pump beams are fo-
cused in the crystal to a radius, measured at 1/e? of the
peak intensity, of r~=17 um while the lasing intensity
beamn radii are r =220 pm. In this study, the separation
d between the pump beam centers was always larger than
350 um, which implies that the coupling between the
lasers is entirely through spatial overlap of their fields,
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and not through direct coupling of the pump beams. For
pump beam separations d <350 ym, we find that the
thermal lensing distorts the two distinct lasing beams and
they tend to combine into a single higher-order lasing
mode rather than maintain their separate identity as
lasers.

We can determine whether some degree of coherence
exists between the two lasers by observing the far-field
output of the two lasers. As shown in Fig. 2(a), two
parallel uncoupled TEM,, lasers will add incoherently to
produce a far-field pattern similar to that of a single
TEM,, laser. In this figure the experimentally measured
incoherent sum is shown together with the profiles of the
two separate lasers. The two lasers are generated as de-
scribed above with a pump spot separation of d=1.5
mm. Next, in Figs. 2(b) and 2(c), we show the far-field
pattern of two strongly coupled lasers, for a pump sepa-
ration of d=0.60 mm. The two individual beams are
now phase locked with a phase difference of 7, and a
two-lobed far-field pattern is obtained. This pattern is
characteristic of spatially separated coherent TEMy,
beams with a constant 7 phase difference and should not
be confused with a TEM,, mode pattern. In fact, if one
pump beam is blocked, a single TEM, mode is still ob-
served. If the two beams could be made to lase with zero
phase difference, the output pattern would assume the
more desirable form of a strong central peak with small
side lobes. Although we are unable to force the two cou-
pled lasers to lase intrinsically with zero phase difference,
we can shift the phase of one beam relative to the other
by using a binary optic phase plate with a w-phase step.

A binary phase plate was fabricated with this aim, but
it turned out to create a 37 /4 phase step instead of w,
due to a difficulty in the etching process. However, it was
stili possible to produce a predominantly single-lobed
far-field pattern with this plate. The result of insertion of
this plate just beyond the output coupler is shown in Fig.
2(d}. A comparison is made of the expected and mea-
sured profiles, with excellent agreement.

To provide a quantitative measurement of the coher-
ence of the two lasers, we determined the visibility of the
fringes formed by the interference of the two laser beams.
A lens and a beam splitter produced two separate near-
field images of the output (see Fig. 1}, at which point
apertures were used to select opposite beams in the two
paths. The two beams were then overlapped at a small
relative angle on the sensor of the charge-coupled-device
(CCD) camera. The pattern was digitized by a frame-
grabber and analyzed on a microcomputer to calculate
the visibility. Although the two beams propagate =~4 m
in air before reaching the camera, the generated fringe
pattern is not affected noticeably by atmospheric phase
fluctuations. The relative propagation angle was shallow
enough such that both beams traveled nearly identical
paths.

The fringes acquired by the camera-framegrabber sys-
tem were averaged over a time of =10 ms. The video
camera acquires 30 frames per second, allowing us to ex-
amine only slow variations in the visibility. An example
of a high visibility fringe pattern is shown in Fig. 3. A
line profile through the middle of this pattern allowed us
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FIG. 2. Measured far-field output intensity. (a) Profile of the
far-field intensity for two uncoupled lasers, showing the total in-
tensity and the individual laser intensities. The separation of
the two lasers is d = 1.5 mm. Solid line, total intensity; dashed
line, intensity of laser 1, dotted line, intensity of laser 2. The x
axis gives the pixel number on the CCD sensor. (b) Two-lobed
far-field intensity for two coupled lasers phase-locked 7 out of
phase for d =0.60 mm. (¢} Profile of the intensity for two cou-
pled lasers, showing the total intensity and the individual laser
intensities for d =0.60 mm. Solid line, total intensity; dashed
line, intensity of laser 1; dotted line, intensity of laser 2. (d)
Two-lobed output intensity profile corrected to a predominantly
single-peaked profile by a binary phase plate. Dashed line,
theoretically predicted profile after correction by phase plate;
solid line, measured intensity profile.
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FIG. 3. A representative high visibility fringe pattern ac-
quired by the camera-framegrabber system of Fig. 1, showing a
high degree of coherence between the two lasers.

to calculate the visibility, as will be described in the next
section. Measurements were made approximately at
twice the threshold value for the pumping.

HI. EXPERIMENTAL RESULTS

We recall {7] that the intensity of the interference pat-
tern formed by the overlap of wave fronts from two light
sources I and 2 is (after time averaging)

(Fy=<{iu 1)+ {u, Y +2{0(n)cos(or+ @) (3.1)

where ©, and w, are the complex, slowly varying ampli-
tudes of the two sources and

Tir)=(u it 6, ulie,t)), 7=, -1, .

¢ arises from an initial phase difference between the two
waves. The visibility of the fringes is defined as

- (1) = D _ 2|7
a2+ Cuy 2

<I )max+<[>mm

If the two lasers are independent, we expect that the
time-averaged interference pattern will have zero visibili-
ty if the averaging is done over a time long compared to
the coherence time of each laser. In our case, the time
average is taken over a = 10-ms period, which is long
compared to the coherence time of each separate laser
(Toon = 10 ps).

The calculation of the visibility utilizes the central five
or six peaks of the interference pattern. Samples of in-
terference patterns are shown for separations of the pump
beams of 1.8, 1.1, and 0.40 mm in Figs. 4(a), 4(b) and 4(c),
respectively. In Fig. 4(a), the two lasers are well separat-
ed, and the interference pattern yields v =0. The visibili-
ty measured increases to v =0.91 in Fig. 4(c). The ac-
companying Figs. 4(d)-4(f) show the corresponding sepa-
rations of the laser beams, represented by their intensity
profiles and the circles of 1/¢? radii. It is clear that a
very small amount of field overlap creates a transition
from an incoherent to a coherent phase relationship.

Visibility measurements were performed for pump
beam separations d, in the range 0.35<d <2.0 mm. The

(3.2)
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maximum visibility calculated as described above is
shown plotted as a function of the pump beam separation
d in Fig. 5. A sharp transition in the visibility is seen for
a separation slightly greater than | mm, from v=1to 0.
We will discuss possible reasons for the scatter of points
in the high visibility end of this plot in Sec. V. To inter-
pret these experimental measurements we present a mod-
el for these two coupled lasers in the next section, and ex-
amine the predictions from it in the subsequent sections.

iv. LASER MODEL

We have chosen the simplest model that will provide
an interpretation of our experimental results; there are
many possible refinements and these will be discussed in
Sec. VI. The model for the two coupled lasers consists of
equations for the complex fields E and the gains G of the
lasers,

{g) Visibility = 0

.

Intensity
=

=
un
[—
[—]

(b} Visibility = 0.20

E M
iy
0 N
0 500
{c) Visibility = 0.91
1 -
z
W
E
0 |
0 Pixel number 500
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%:T—i[(c, —a))E, +kE, | +ioE, ¥V e & ,
@.1)
f:_thL[plfgl—GllElP], (4.2)
dj‘;z :T—lc[{Gz—az)E2+xE, |+iw,E, +V 6,6,(1)
(4.3)
%_#{Pz_cz_szzlz] . 4.4

In these equations, 7. is the cavity round trip time {0.2
ns}, 7, is the fluorescence time (240 us) of the upper las-
ing level of the Nd** ion (1064-nm transition), p, and

@ O O

1-
o
‘@
=
b
= d = 1.8 mm
0 T T L L) 1
-2 1 0 2
e O O
1-
o
2
x
= d¢ = 1.1 mm
0 T T L 1
-2 -1 0 1 2

Intensity

X (mm)

FIG. 4. {a)—(c) Experimentally measured low, medium, and high visibility interference fringes obtained for different pump beam
separations of d=1.8, 1.1, and 0.40 mm, respectively. (d)-(f) Intensity profiles of the laser beams and circles of 1/e? radii
(r=220 um) for d = 1.8, 1.1, and 0.40 mm, respectively, showing the small amount of spatial overlap between lasers that is sufficient

to induce mutual coherence between the two lasers.
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FIG. 5. Experimental values of the maximum fringe visibility
as a function of the separation d between the two lasers.

a; (=0.01) are the pumping and cavity loss coefficients,
while w, are the detunings of the lasers from a common
cavity mode. The index k =1, 2 stands for the two lasers.
The last terms on the right-hand sides of the gain equa-
tions (4.2} and (4.4) account for self-saturation of the
gains. Spontaneous emission, present in both lasers, is
modeled by the noise source terms V€, £, (¢), where

(ENER ) =28, 8(1—1") . i4.5)

The noise sources are independent, Gaussian, and &-
function correlated in time.

The xE, terms in the field equations represent the cou-
pling between the two lasers through spatial overlap of
the electric fields. We have not included any coupling of
the lasers through sharing of the inversions, since the
pump beams do not overlap to any appreciable extent.
Assuming that each laser field has a Gaussian intensity
profile and a constant phase front, the transverse field can
be written as

E (1) 2 2
E;:(x,y,t,l:?k———?ex I-&Q

4.6)
Ta- | 20°

where ¢ is related to the /e’ radius of the intensity
profile by r=v20. The overlap integral of the two
beams separated by a distance d is given by

{7 |7 dxdpE\(x +d,y,0E 3 (x,p,1)
E{HE$()

Tt P

2
40t

4.7)

The coupling coefficient x is obtained from the overlap
integral through appropriate normalization such that
|x|=1 when d =0. Then,

2

4

K= texp (4.8)

b
<

The question arises whether x should be complex. A
strictly imaginary coupling coefficient corresponds to
conservative coupling, while a strictly real coefficient cor-
responds to nonconservative (dissipative) coupling. Con-
sidering the nature of coupling between the lasers, we
take the simple point of view that « is predominantly
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real, and choose its sign in the equations to correspond to
the experimentally observed results for the relative
phases of the two coupled lasers, as will be explained later
in this section,

Equations (4.1) and (4.3) can be written in terms of the
intensity I, and phase ¢, of each beam. In the Stratono-
vich calculus, Egs. (4.1}—{4.4) are equivalent to the fol-

lowing [8]:

dl —
,_d_t‘_:%[((;l—-al)I]+K1/I11'2cos(xp2—q>1)]

+e,+2V e, plity, 4.9)

172
Eﬂ: -4-i i Ksinlg,—@,)
o 1 - 17, 27
172
+ _.‘_y nfiey, (4.10)
1

aG, 1
— =[p,—G,—G,I], (4.11)
di, —
: ':i[(GQ—aZJIE+K\/1113608(¢91—%)}
dt T,

+62+2\/JT]£(I) ) (4.12)

. 1 1/2
do, e €2
— o ? I, wsin{@; — ;) + E ni),
(4.13)

dG; _ 1 G, —G,I,] (4.14)
dr —Tf (P> 2 22l :

The n¥(t) are real Gaussian white-noise sources of zero
mean and obey

(om0 1) =8,8,8t—1") . (4.15)
We assume that a stable steady state exists for the intensi-
ty of each laser. The intensity of each beam fluctuates
about the mean value due to spontaneous emission noise.
Neglecting these fluctuations and assuming equal average
intensities for the two beams, we get from equations
(4.10) and (4.13) the following single equation for the
phase difference ¢ = (@, — @, ) of the two lasers:

d 1
fﬁ(wzéwl)“ . xksin{g)
1/2 172
4|2 g || pEo 4.16)
| " (ryy | MY '

The deterministic part of this equation corresponds to the
Adler equation [9] which has been widely used in the
study of coupled oscillators. The synchronization of an
electronic oscillator with an externally injected signal
gives rise to the same stochastic equation for the phase
when the amplitude evolves so rapidly that it can be adia-
batically eliminated as was studied by Stratonovich [10].
A similar stochastic equation also describes the voltage
due to thermal noise in the d¢ Josephson effect, as shown
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by Ambegackar and Halperin [11]. Through combina-
tion of the noise source terms, Eq. (4.16) may be rewritten
as the Langevin equation

dy _ _d¥VI@) LD i 4.17)
dr dg V Dyt

where
p = 4 = (4.18)
¢ (1) Iy

n(t) is a Gaussian white-noise source of zero mean and

correlation
{n(im(e))=8lr—1") (4.19)

and

V(q:)=—(m2*w,)cp—%xcoscp (4.20)

i

{a)

m, - w | << ] 2¢ |

Vig)

V{q\
\

1o, -a | >>]2¢]

Vg

@

FIG. 6. Schematic plot of the “potential” V() of Eq. (4.20)
for different relative magnitudes of detuning frequency (w; —w;)
and coupling strength «. (a} Potential which produces phase
locking, 7. \w,— | <<|2«|. (b) Potential at transition region be-
tween phase-locking and free-running phases, 7. |w, — = [2«].
{c) Potential when the detuning dominates the coupling strength
and no phase locking occurs, 7. [, — ;| >>[2«].
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is the associated “‘potential” for the overdamped motio
of the phase, '

Figures 6{a)-6(c) show representative plots of the po-
tential V (g} for three different sets of values of x and
7. lwy;—o,{. When 7. le,—w,{ <<|2«|, V is a sinusoidal
potential, and the system resides in one of the local mini-
ma, located at ¢ =2nw (n=0,1,2,...,) for «>0 and at
@=(2n +1)7 for « <0. Experimentally, we have only ob-
served @ = for the two phase-locked lasers, thus we will
only consider x <0, With the choice of x <0 in the model
equations (4.1)—(4.4), the nonconservative nature of the
coupling causes two out-of-phase fields to reinforce each
other while two in-phase fields are mutually destructive.
For small noise strengths, jumps from one minimum to
another will occur extremely infrequently. When
7. lw;—w,i = 2«i{, the potential shape of Fig. 6(b) is real-
ized, and noise is most important in this regime. The sys-
tem motion is a combination of sliding down the edges of
the “‘staircase” with diffusion on the plateaus. The lasers
lock imperfectly and we may expect that large fluctua-
tions in the visibility will be observed for operation in this
range of coupling. The measured visibility fluctuations
are apparent in successive averages over the ~ 10-ms
time window for which v is calculated.

For the exireme situation 7, |w,~a,| >>|2«/| [Fig. 6(c}],
the linear term dominates the potential and the phase
difference ¢ evolves toward = oo, depending on the sign
of (wy,—ew,). The lasers will be completely unlocked in
phase, and we may expect zero visibility in this case.

In our experiments there may be fluctuations in the
value of the detuning of the lasers (w,— @) due to envi-
ronmental changes. The coupling coefficient ¥ can be
changed by varying the pump beam separation, and small
fluctuations in beam diameter will produce large fluctua-
tions in «. To a certain extent these fluctuations can be
effectively accounted for in the diffusion coefficient D .
In the next section we interpret the experimental results
of Sec. IIl by comparison with the predictions of the
theoretical model.

V. THEORETICAL PREDICTIONS AND COMPARISON
WITH EXPERIMENTAL OBSERVATIONS

The Langevin equation (4.17) may be simulated numer-
ically, and the phase dynamics of the two lasers examined
from stochastic realizations of the time trajectories of the
phase difference ¢=(@,—¢;). We will present some re-
sults obtained from numerical simulations at the end of
this section. However, for many purposes, it ts very in-
formative to consider the related Fokker-Planck equation
for P(g,1), the probability density of the phase difference.
This equation is immediately obtained from an examina-
tion of Eq. (4.17) as [8]

PPt _ _ 2 g (5.1)
ar dp et )
which has the form of a continuity equation where
J{g,t)= _%D@i_dV( ) Plg, 1) (5.2)
dg do
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is the probability current density. Because any physical
observable is periodic in @ with period 2w, the densities P
and J must also be periodic. Therefore Eqs. (5.1) and
(5.2) must be solved subject to periodic boundary condi-
tions for P, ie., Plp+2nm,)=Plg,t], for
n=0%1,%2,....

The physical significance of J can be easily revealed by
considering the time-averaged Langevin equation (4.17),

Y4
(o) <drp> '
Assuming that the system is ergodic, the right-hand side
of Eq. (5.3) can be expressed, using Eq. (5.2), as

davy_ e dV
<dcp>_ fr} de qu'P(qp’”
2 ,
_,j; dg

= f:”d¢'1up') ,

where we have assumed periodic boundary conditions for
the probability density P(0,r)=FP(27,t). Combining
Eqgs. (5.3} and (5.4) we conclude that the integrated
current ff)"'drp'.l(cp’) 1s just the effective detuning fre-

quency between the laser fields, i.e.,
Qu={p)=[Tdg'Tigh .
a={g) fo ¢ J i)

Note that in the stationary state J will be independent of
@, so that the right-hand side of Eq. (5.5) is simply 27J.
Because the experimental data do not involve any
short-time transients, we look for the stationary solution
of Eqs. (5.1)-15.2). This solution is characterized by the
fact that P is independent of ¢, and J is constant, indepen-
dent of @ and 7. Note that, unlike many other problems
where J =0, in this case the tilt of the potential requires

J7#0. We get [10]

(5.3

ap |

J+1D ‘
2 q*a@:'

(5.4)

{5.5)

. 2 ¢+ 2
Plg)=Cexp | — —Vig) do'exp | — Vig') |,
¢ P M fv_‘ gexp | Vg
(5.6}
and the probability current is
D, ;
J=Cc—-*% l—exp 4—1-(@1*&)1) , (5.7
2 D, -

where C 1s a constant normalizing P{¢) to unity,
The vistbility of the interference fringes formed by the
superposition of the laser beams can be calculated from

Eq. {(5.6), since

2(EIE,)!

v= =!(explig))| (5.8)
GED+(ED e
for fields of equal magnitude. Then,
v=V {cosg)’+ (sing)? . (5.9

The averages of the sing and cos@ functions are obtained
using P{g}. From (4.20), (5.3), and (5.5), we have

oy
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5 [ Qe (=0T,

but we could not find a similar expression for (cosg).
From Eqgs. (4.20} and {5.6) it is clear that there are only

two effective independent dimensionless parameters,

namely

(sing} = — (5.10)

D
L andB=—-2i—,

T lwy—w)) 5.1)

A=
(wy— eyl
where according to Eq. (4.8) x depends on the pump sepa-
ration d and the beamwidth 0. The parameter A4 plays
the role of an effective diffusion rate whereas parameter B
is the effective coupling rate. In the limit |B| << | (weak
coupling) the exponent (2/D )V (@) in Eq. (5.6} can be
approximated as (2/D_ V(@)= —2¢/4, so that the
probability distribution P becomes constant, independent
of . Normalizing, we have P(@)=1/2%. As @ is uni-
formly distributed in the interval [0,27], the averages
{sing ) and {cosg ) vanish, so that the visibility vanishes
as well. For weak coupling and in the limit D‘p_>0, the
Langevin equation (4.17) reduces to the well-known
Adler equation [9,12]. 1t has the analytic stationary state
solution

Qeﬂ(f—'ro)
2

. 2k
T A0, —wy)

(!uﬂ"

= ~tan

tan
((U]—Ll)l)

2

'
2

{(5.12)

where Q5=[{w, —©, ¥ —(2c/7.)*)'%. In this case, both
lasers are monochromatic, but due to the nonzero fre-
quency difference, the visibility will vanish.

In the limit !B >>1 (strong coupling) the lasers will
phase lock to each other, i.e., (¢} =0. The locking angle
¢q corresponds to a minimum of the potential given by
Eq. (4.20), so that ¢,=7 —arcsin[(w,—ea, ), /(2x)]. We
can approximate the potential by a quadratic form and
the probability density by a Gaussian, since ¢ will stay
close to this lock angle, i.e.,

Vig)=Vip, — T:~(q9—qp(,)2cos(¢30)

C

=Vigy+1ly.do—gh, (5.13)
172
Ve J yeﬁ‘ 9
P = - — —_ )2
(@) 7D, j exp D, (p—qp) |, (5.14)

where ¥ ¢=[(2k/7. )" —(w,—,*]*’%. The visibility in

this approximation is given by

v=expl—D /4y 4 . (5.15)

Figure 7 shows a comparison of the experimental mea-
surements of the visibility versus beam separation with
those predicted from the theory, for several sets of pa-
rameters. We have a reasonable estimate for o because
we can measure the beam radii when the beams are well
separated. However, there is some distortion of the
beams when they are overlapped, and o can only be tak-
en to be an estimate, not an accurately determined pa-
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FIG. 7. Experimental and theoretical results for the visibility .
as a function of the beam separation. Dots correspond to the Lo e e e N LA o e s s
experimental measurements shown in Fig. 5. The theoretical 0.0 ) 0 10.0 15.0 20.0
visibility is calculated from Egs. (5.6) and (5.9 for t (ms)
(@, —w,)=>5000 rad/s, c=0.14] mm, and D, =8 s~' (dashed 100~
line); (@, e }=5000 rad/s, 0 =0.175 mm, and D, =1X10° s~ 4 (b
{solid line). -
80
60—
£ j ‘e
rameter. The parameter A4 which measures the ratio be- & 7 /
tween noise strength and the detuning is a parameter that P B S A
is not determined easily. From estimates of the spontane- . TN
ous emission noise, one would arrive at a value of o1 i ! |
A =107, but external sources of noise are far greater in 20 B S J
magnitude, and may give 4 =~ 10%. The theoretical curves .
shown in Fig. 7 reveal that the fits are not very sensitive 7
to the noise strength, over several orders of magnitude. R L S L B L
The observed transition from coherent to incoherent be- 00 20 100 15.0 <09
havior is very well reproduced by theoretical predictions. 0o t (ms)
For the phase-locked regime we note that the visibility ‘
measurements are quite scattered, and consistently lower
than the predictions. There are several possible reasons a0
for this feature. We have neglected the multimode nature ’
of the laser fields, as well as the possibility of intensity
fluctuations in the laser beams. Pump fluctuations have 50
been entirely neglected as well. Given these many o
sources of fluctuations that are not accounted for, it is 5
not surprising that the theory provides an upper bound to 10
the visibility measurements in Fig. 7. With these points
in mind, the agreement between theory and experiment is
very good. 50
The Langevin equation (4.17) may be directly simulat-
ed to examine the behavior of the phase difference ¢ in
time for different characteristic shapes of the potential 0o e —
V{g@). Ten trajectories each are plotted in Figs. 8(a)-8(c), 10.0 5.0 50.0
corresponding to the potentials of Figs. 6{a}-6(c). In Fig. t (ms)

8(a} the phase difference locks quickly at 7, and remains
locked thereafter, while in Fig. 8(b}, ¢ jumps at random
times from one step of the potential to the next. In Fig.
8(c), the evolution of @ is almost linear in time, indicating
the absence of phase locking between the lasers.

The three situations discussed above are characterized
by the measurements of visibility versus time shown in
Fig. 9. The visibility itself is a time-averaged measure-
ment, but the camera system shown in Fig. 1 predeter-

FIG. 8. Plots of ten phase trajectories obtained from the nu-
merical integration of Eq. (4.17) for (wy—e)=5000 rad/s,
D,=4 s, and different values of the coupling coefficient: (a)
The two lasers quickly lock at 7 out of phase, for
2k/1,=-5X10* s '. (b) Intermediate transient locking re-
gime, where the noise induces 27 phase jumps at random time
intervals between “‘constant” phase states, for 2«/7, = — 35X 10°

s ! (e¢) Unlocked regime, where the phase difference evolves

. nearly linearly in time, for 2x /7, = —5X 107 s/,
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mines the time averaging-window to be of the order of 10
ms. Figure 9(a) shows that, for strongly coupled lasers
that produce high visibility fringes, the visibility remains
relatively constant in time. When the distance between
the two lasers is increased so that it is within the narrow
transition region shown in Fig. 5, large fluctuations are
seen in the visibility, as shown in Fig. 9(b). Increasing the
laser separation beyond the transition region reduces the
visibility to zero for all time, as shown in Fig. 9(c). The
visibility measurements of Figs. 9ia)~9(c} correspond to
the respective phase dynamics of Figs. 8(a)-8(c).

4 (a)
=
Z 0.5-
:)_'
0 T
0 80
Time ts)
14 (b)
E 0.5+
S [, A
U 1
0 80
Time {s)
14 (c)
E 0.5+
2
0 ,
0 50
Time ()

FIG. 9. Experimentally measured visibility as a function of
time for different laser separations 4. (a) Two strongly coupled
lasers produce stable interference fringes for d =0.39 mm. (b}
in the intermediate transient locking regime, large fluctuations
are seen in the vistbility for d = 1.03 mm. (c) Uncoupled lasers
produce zero visibility fringes for d = 1.5 mm.
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VI. DISCUSSION

The experimental results and theoretical predictions
presented in the previous sections showed that a critical
separation exists for phase locking of two spatially cou-
pled Nd:YAG lasers. The two lasers exhibited stable
phase-locking = out of phase for separations less than a
critical value. In contrast, evanescently coupled semicon-
ductor lasers display phase locking only in a narrow win-
dow of coupling strength, a window which is not always
physically achievable [1,2]. It was also demonstrated that
a simple phase plate can be used to compensate for the
180° phase difference between the lasers and generate a
predominantly single-lobed far-field intensity.

Although the agreement between experimentally mea-
sured data and theoretical predictions was quite good,
there are several enhancements to the laser model which
could be made. The laser model predicted perfect phase
locking with v =1 for sufficiently small laser separations,
but Fig. 5 shows a scatter of corresponding experimental-
ly measured visibilities, with v < 1. The model does not
include several sources of noise which can reduce the
visibility below ¢ =1. The model neglected fluctuations
in the population inversion induced by spontaneous emis-
sion, intensity fluctuations of the pump laser, and fluctua-
tions in the overlap of the laser fields. These additional
sources of noise can also contribute to decreased visibili-
ty. Furthermore, each laser typically operates with two
to five Jongitudinal modes rather than the single mode as-
sumed in Egs. (4.1)-(4.4), thus introducing the possibility
of fluctuations due to mode competition. The noise
strength D was varied from D, ~10 to D(P~106. The
effect of increasing 2 by five orders of magnitude is to
cause a smoothing of the visibility curve in Fig. 7 and a
slight decrease of the critical separation. The larger
value of D may 1o some extent account for fluctuations
in the detuning of the lasers as well as some of the other
sources of noise mentioned above that are responsible for
the scatter of visibility values when measured on a ~ 10-
ms time scale. It i1s clear, however, that the theoretical
predictions should be regarded as an upper bound to the
measured values of the visibility.

It was assumed in the reduction of the model to a sin-
gle Langevin equation for the phase difference of the two
lasers that the intensities have negligible fluctuations, and
that there exists a stable steady state. This assumption
needs to be reexamined, particularly since the complete
form of the coupling coefficient « and contributions from
different coupling mechanisms are not fully understood
for the present system. x was chosen to be real and nega-
tive in the model, since this was consistent with the ex-
perimental observations, but there is no a priori reason
for x to have this form. We can calculate only the magni-
tude of « from Eq. (4.8). A more comprehensive calcula-
tion of the coupling coefficient is desirable for various
coupling mechanisms.

Finally, we mention the existence of solid-state laser
arrays with geometries more complex than that of the
two parallel lasers studied here, geometries which induce
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phase locking at relative phases other than w. A square
configuration of four Nd:YAG lasers has been observed
to lase with adjacent elements phase-locked 7 out of
phase, but a three-laser triangle was found to be phase
locked with a +2m /3 phase difference between lasers [4].
The only stable phase-locked mode for an odd number ¥
of solid-state lasers arranged in a ring has been predicted
[13] to have a constant phase difference between adjacent
lasers, where the phase difference is given by
@=1m(N—1)/N. The dynamics of both intensity and
phase of such complex configurations of lasers remain to
be explored.

O R AN AP
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E.xperimental Synchronization of Chaotic Lasers

Rujarshi Royv and K. Scott Thornburg. Jr.
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We report the observation of synchronization of the chaotic intensity Auctuations of two Nd:YAG
lasers when one or both the lusers are driven chaotic by periodic modulation of their pump beams.

PACS numbers: 05 45 +h, 4250 Lo

The svnchronizuation ol chaotic nonlinear oscillutors has the population inversions for the two lasers and x is a pa-
attracied much attention in recent years. motivated by rameter that provides @ measure of the mutual coupling
the possibility of practical applications of this fundamen- hetween the lasers [4.3]0 One or both the lasers may be
1l phenomenon, Severdl papers [1.2] have shown that driven chaotic through a periodic modulation of their
such synchrontzution may bhe achieved in electronic oscil- pump excitation, and synchronized, chaotic intensity fluc-
Lutor circuts, with applications in the transmission ol in- tuations may be observed in both cases when the lasers
formution signals masked in a hackground of chaos. fol- are sufficiently coupled. Thus it is possible, by a some-
lowed by real-time recovery of signals at the receiver. A what less restrictive procedure than that of Refs. [1) and
theory of synchronization of coupled. chaotic, nonlinecar [2]. 10 obtain synchronized chaotic intensity fluctuations
osciifutors hus been developed independently by Rubino- for two lusers. In particalur, we show that a master-slave
vich and co-workers {3} in the context of turbulence in relationship is not necessary to obtain synchronization of
fuids. Tt has also been known for several vears thut chaotic osctllators. Mutua! coupling can be used to ob-
lasers can exhibit chaotic intensity Hugtuations under tmin chaotic svachronization even for the cuse where the
different circumstances. Winful and Rahman have the- two uncoupled oscillators ure both chaotic.
oreticaily mnvestigated the possibility of svnchronizaton The laser system g 1G] consists of two Nd:YAG
of chaotie lasers. and some evidence ol such hehavior has Lasers of wavelength .06 gm generated in the sume crys-
been found in semiconductor laser arrayvs [4]. However, tal by two almost egual intensity 314.5 nm pump beams
a direct test of their predictions on an experimental sys- obtained from an argon faser {51, The spatial separation
tem where the coupling between the lasers s systemati- o of the parallel pump beams may be varied and is much
cally varied has yel to be performed. larger (> 0.5 mm) than their radius (about 20 pm)

The scheme lor chaotic synchronization developed by within the crystal, There is thus virtually no coupling
Pecora and Cuarroll [1.2] requires that a chaotic system through overlup of the population inversions of the two
cxasts. from which one can separate a stable subsystem lusers: instead. the coupling between Lhe lasers is provided
with only negaioo 1 urov exponent,. ‘When a chaotic by overlap of the mtracavity laser ficlds of approximate
system and a stable response subsvstem are linked with a radius 200 gm.  The laser cavity consists of a high
common drive signal. the two muy display svachronized reflectivity coating (at 1.06 gm} on one end of the 5 mm
chaos.  An example of this construction s given by the long laser rod and a tat output mirror with 2% transmit-
Lorensz system dx/dt=aly—x), dy/di=rv—1 =z tance. Fhe cavity tength s 1.5 ¢em, and the output power
dzfdr =y —hz and the response svstem dx'/dr =aly’ of the lasers was measured to be about 5 mW euch with a
=" dvidr=ee = = dsldr = =R (2] pump excitation of abuut twice above threshold.

While this ingemous scheme has been practically imple- A simple measure of the coupling 1s obtained from the
mented with clectronic oscillators, 1t appears impossible overlap integral of the two fields, normalized such that
1o separate the ciements of a chaotic laser and obtain o the coupiing coeflicient |x| =exp( —d?*/4a?) is unity for
stable subsystent tn precisely this manner, J =0 and where & is reluted to the 1/e? radius r of the in-
tn this paper we report the observation of synchroniza- tensity profile by r =2 [3] At the smuallest separation
tion ol two coupled. chaotic. Nd:YAG {necodymium of the beams in this study (d ~0.6 mm) the overlap of
doped vttrium aluminum garnet) lasers. The eguations the fields is [x:—~ 1.1 x 10 77 while at the largest separa-
that describe the lasers are of the form tion (d~1.5 mm) x| ~61%x10""" The coupling he-
. tween the lasers 1s varied experimentally by transiating
K £ —FE N E ) the beamn combiner in Fig. 1{a), which changes the sepa-

di [ Yo o ration of the pump beams.
and The far field of the vutput from the lasers 15 observed
y i'k‘z on 4 video camera. When the jasers are phase locked
£ |\, =g{f - VaxE ). (this occurs with a z-phase difference), the far field is a
arets double-lobed pattern with a node in the center. When the
where the £7s and NV are the complex electric tields and lasers are mutually incoherent, the far-field pattern is
V031-9007/94/72013)/2009(41506.00 2009
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FIG. 1. {a) Experrmental system for generating two spatially
coupled chaotic lasers und monitonng their oulpuls.  An
acousto-oplic modulator (AOMY} can be pluced in position (1)
to modulate only laser 1, or in position (b} to modulate buth
lusers simultaneously. Beam splitters divide the argon luser oul-
put into two beams, each of which pumps a spatially separate
region in the Nd:YAG crystal. The separation of the beams
can be varied by moving the beam combiner, BC. The video
camerz is used to monitor the beam profiles. A lens is used to
image the lasers so that the individuai beams cun be resolved
and monitored by the photodiodes PD and PD2. The time
traces of the two lusers can be displayed and stored by the digi-
1al oscilloscope. (b} Visibility of interference fringes for the su-
perposed laser fields vs pump separation (from Ref. (5D, Also
shown are two representative far-fieid intensity patterns for
pump beam separations of d =0.6 mm and 4 =1.5 mm.

Gaussian. The lusers are found to be phase locked for
separations of less than about 1 mm (x| ~3.7%x107°).
and display a very sharp transition from incoherence 10
coherence with decreasing separation of the pump heams.
A plot of the visibility of the interference fringes formed
by the superposition of the beams from the two lasers
versus the separation of the pump beams is shown in Fig.
1{b). along with representative far field intensity patterns
as described above, An imaging lens allows us to exam-
ine the near fields of the lasers as well, and two fast pho-
todetectors connected to a digital oscilloscope display the
temporal fluctuations of the individual laser intensitics.
A detailed description of this system of two coupled lasers
is contained in Ref. [5]. where the phase locking of the
tasers through spatial overlap of their electric fields was
investigated.
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F1G. 2. {(a) Relative intensity of the uncoupled lasers, for
d~1.5 mm. Only laser 1 is modulated, and there is no appre-
ciable interaction between the two lasers. (b) Relative intensi-
ties of lasers | und 2, with the AOM in position (b). Notice the
asynchronous Auctuations of the two inlensities, typical of the
uncoupled case, even though both lasers experience the sume
pump modulation,

In the Nd:YAG lasers studied here, the decay time of
the upper lasing level is t7~240 psec, while the round-
trip time of light in the cavity is 7.~0.12 nsec. This
leads to relaxation oscillations at a frequency Ve
=(1/20)[8Cy/yin— 1)/ 15112, where y and y are the
threshold and actual pump rates, § is the lractional cavity
toss (~2%) per pass [6]. At a pump excitation of twice
the threshold value, vi—130 kHz. This is in very good
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agreement with measured relaxation oscillation frequen-
cies for our luser system. An acousto-optic modulator
(AOM) may be used to sinusoidatly amplitude modulate
a single pump beam in position (a}. or to modulate hoth
pump beams simultaneously in position (h), indicated by
the dotted lines in Fig. 1(4).
the lasers is modulated at close 1w the refaxation oscilla-
tion frequency, the laser intensity may be driven into
chaotic fluctuations, as seen in Fig. 2(a). A wide variety
of periodic wave forms, including period-doubled oscilla-
tions, may be ohserved for different frequencies and am-
plitudes of modulation. Similar behavtor in other modu-
lated laser systems has been extensively studied in the
past [7].

With the AOM in position (a), and for a large separa-
tion d ~ 1.5 mm of the pump beams within the crystal,
the two lasers are elfectively wncoupled. We see in Fig.
2(a) that laser 1 shows chaotic intensity fluctuations
when the frequency and ampiitude of modulation of the
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FIG. 3. (a) Relative intensities of two intermediately coupled
lasers (¢ — 1.0 mm) when only the pump beam for laser | is
moduolated. Although still asynchronous, the modulation of one
taser now affects the other appreciably. (b) X-V plot of the two
taser intensities shown in (). The dispersion of the points indi-
cates that they are not synchronized.

D

If the pump beam of one of

pump beam are appropriately adjusted. In these experi-
ments. the maximum depth of modulation was adjusted
10 be about S0%. For a modulation frequency close to the
relaxation oscillation frequency of the laser, the intensity
fluctuations increase markedly in amplitude and become
chaotic. Laser 2 is unaffected by the fluctuations of laser
1 and shows a steady intensity.

I the pump beams of the two uncoupled lasers are
both modulated with the AOM in the position shown by
the dotted lines, both lasers display chaotic intensity Auc-
tuations that are not synchronized, as shown in Fig. 2{b).
Thrs 15 to be expected, since the lasers are not coupled to
any appreciabte extent at this large separation, as may be
verified from the Gaussian far-field pattern of the laser
intensities monitored by the video camera system.

For intermediate coupling at a somewhat smalier sepa-
ration {~1 mm), close to the phase-locking threshold,
the two laser intensities are both found to be chaotic and
irrcgular when only the pump beam for lfaser 1 is modu-
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FIG. 4. (a) Relative imtensities of two strongly coupled lasers
(e ~0.75 mm} with the pump beam for laser 1 modulated by
the AOM. Note the sirong synchronization of the two laser in-
tensities. (b} X-} piot of the two luser intensities shown in (a).
Note the strong linearity of this figure, indicating the synchron-
wed nature of the time traces. Compare this figure to Fig. 3(b).
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FIG, 50 Relative intensities of two strongly coupled Tusers
(ef 0 60 mmb, with the AOM in position (b). Notice that. in
contrast to the uncoupled case shown in Fig. 2(b)}, the fasers
now fluctuate synchronousis

tated. as shown in Fig. 3(a). Clearly, the chaotic behav-
or of luser 1 now has a significant influence on its neigh-
hor and destabilizes the intensity of laser 2. However. the
plot of the Aucltuations of laser 1 vs those of laser 2
displayed in Fig. 3(b} show a random set of points, indi-
cating that the fluctuations are unsynchronized.

For strong coupling at a smaller separation (d—0.73
mm} of the pump beams. the far-field pattern s distinethy
double tobed; this reveals that the lasers are phase locked.
Even in this “strong coupling™ regime, the overlap of the
two fuser intensity profiles is extremely small, [x]~%8.8
#1071 Modulation of the pump beam for laser | now
leads to well svnchronized chaotic fluctuations of the two
laser intensities, as shown in the time traces of Fig, 4(a).
A plot of the mntensity of laser | vs the intensity of laser 2
[Fig. 4(b)] is now remarkably different from the random
scatter of points shown in Fig. 3(h), und the synchronized
nature of the chaotic lasers 1s evident. Synchronization of
the chuotic lasers persists stably over periods of tens of
minutes, as long as the temperature and other environ-
mental conditions are maintained constant.

Figure 5 shows the resuit of modulating both the pump
beams simultaneousty for strongly coupled tasers with the
pump beams separated by 0.6 mm. In contrast to Fig.
2(b), where both the uncoupled lasers are independently
chaotic (and thus would have positive Lyapunov ex-
porients), we now see that the two mutually coupled
chaotic lasers are well svnchronized. The scheme for
synchronization 1s more general than those developed car-
lier [1,2] where a stable subsvstem with negative Lya-
PUNOY EXPONENLS 1S NECESSUry,

2012

The laser outputs, though adjusted to be roughly equal
in intensity. produce different voltages due to the differ-
ence in sensitivity of the photodetectors and differences in
apertures. beam splitters, etc. The lusers themselves are
of course not identical, due to imperfections in the crystal
and mirror, or nonparallehsm of the pump beams. One
faser may thus huve a somewhat higher pump threshold
than the other. and therefore a relaxation oscillation fre-
quency that differs by as much as 10% from that of the
other laser. Svnchronization is achieved despite these
differences. and is remarkably robust in nature. We also
note thuat the coupled lasers remain phase locked with a
a-phase difference even when their intensities exhibit syn-
chronized chaotic fluctuations.

In conclusion, we have reported the direct observation
of the syvochronization of intensity fuctuations of two
chaotic lasers. It should be possible to extend these ob-
servations o large arrays of coupled nonlinear oscillators,
including linear and two-dimensional arrays of lasers,
Josephson junctions. and other physical and chemical sys-
lems.
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