) 3‘ INTERNATIONAT ATOMIC ENERGA S AL

%&y UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZ ATION l” i”

;-!-n— INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS \._-_..=_|
LCTP., P.O. BOX 586, 34100 TRIESTE, ITALY, Cautt CENTRATOM TRIESTE o

T

SMA.764 -,

RESEARCH WORKSHOP ON CONDENSED MATTER PHYSICS
13 JUNE - 19 AUGUST 1994

MINIWORKSHOP ON
"NONLINEAR TIME SERIES ANALYSIS"
8 - 12 AUGUST 1994

"Neural Networks and Time Series "

Anderas WEIGEND
Computer Science Department
University of Colorado, P.O. Box 430
Boulder, CO 80309-0430
U.S.A

Bt Thi o 2FAFD Trupras J13iat Thies dne 10X Rpmeatsa Guest Hoowe b e Lk sane T DNaCAL Lo e I2aab Dok dedds
- Seeeor RREYEYe



T

LA



CONNECTIONIST MODELING OF

ANDREAS WEIGEND

DEPARTMENT OF COMPUTER SCIENCE
AND INSTITUTE OF COGNITIVE SCIENCE

UNIVERSITY OF COLORADO AT
BOULDER

ITP TRIESTE, AUGUST 1994

Page 1

STATE SPACE EMBEDDING

+ Express future value as function of past
values (Yule, 1927)

... and then just play “connect the dots”

+ Assumes system is time invariant
(stationary)

“Forget the mystery, buy the history”

+ Questions (whatever model is used):

« What time scale of observations?
(sampling time)
How far to predict? Direct? lterated?

How many past values are necessary/best?

How to preprocess series?
(log, differentiate...)

What (other) inputs are useful?
(subset selection)
* What cost function should be minimized?
(error model)
* What other outputs are useful?



SPACE OF TIME SERIES IS LARGE TRADEOFFS IN MODELING

+ Symbol sequences + bias - variance

+ Continuous variables. + deterministic - stochastic

« dynamical systems (nonlinear DEQ)
* maps
* (almost) random walks

+ strong/narrow - weak/broad

fh{;‘ory expert

rch system
Start from data
Al k
vs. connectionist
Al
start from assumptions theory
Loor

-

data poor [ dafta rich

+ Nnoise — nonstationarity
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PARADIGM CHANGES

Dimensions of the “Time Series Space”

+ stochastic --> deterministic
+ linear --> nonlinear
+ prediction --> characterization

Strong models --> Weak models
+ data poor & theory rich -->
data rich & theory poor
* the more flexible the model, the harder the
evaluation
+ in-sample error --> out-of-sample error

¢ models so flexible that they overfit, i.e., do
very well on the training data but do not
generalize well to novel test data

+ need to always set evaluation data apart
not used in the fit

STOCHASTIC vs. DETERMINISTIC

stochastic

driven by
external noise

i

en system closd

deterministic

driven by

internal dynamics




LINEAR & NONLINEAR

Global Linear Models

+ Interpretation (relatively) easy

e as linear filter
- frequency response, autocorrelation

— response independent of amplitude
(superposition)

- no “coupling” between the varlous inputs
« as surface fitting
- one hyperplane in state space

+ Model selection (relatively) easy

+ Needs to be excited by noise

« often good in very noisy systems (e.g.,
economics)

« but what if systems is low-noise and
nonlinear?

Local Linear Models and Nonlinear Models
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LOCAL LINEAR MODELS

Global linear models

Local linear models

+ Local in state space (not in time!)
+ E.g., vary size of neighborhood -->

characterization

s DVS Plots = “Deterministic vs. Stochastic”,
(Martin Casdagli)

¢ Bjas-variance trade-off

+ Extreme case: look-up closest value

* Instance-based learning

+ Want more points in state space?
Interpolate in time space !

¢ Fill in points of manifold, Tim Sauer



BIAS — VARIANCE TRADEOFF DV$ PLOTS

e construct family of local linear models from Casdagli and Weigend (1994)

* vary size of neighborhood R

Y L b
« vary number of lags o . |
e plot test-error (out-of-sample error) as b i ¢ Ta 5
function of number of neighbors 5
' |
E iQser aata comnputer geneated heawt kit
|
fest next ;
sef | | neighbor
error lookup

-
number of neighbors k
DVS-plots: deterministic vs stochastic

DVS-PLOTS
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NONLINEAR MODELS

+ Large class of models; focus here one
feed-forward networks

+ Essentially nonlinear regression (after
state space embedding)

+ Very flexible: neural nets often more
parameters than data points

+ Model comparison can become very hard

+ Summary:.

» Understanding (explicit model) great when
it works...

« ...but learning (implicit model / emulation)
broader

* Easy to make predictions...
* ...but how good are they?

Understand the error sources and predict the
uncertainty of the prediction.

HOW TO PUT TIME/MEMORY
INTO A NETWORK

« memory only at input

— explicitly glve past values at input

output

hidden 2

dden |

npat

+ distributed memory
- replace all weights by tapped delay lines

+ recurrent networks
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PREDICTING IMPREDICTABILITY

e Motivation
—risk

- combine predictors (Markowitz)
- find reglons of low uncertalnly
“profit boxes”

1. Local error bars (confidence intervals)

2. Local error bars due to chaos only
3. Probability density of next value

4. Probability density (uncertainly from
sampling errors only)

5. Monte Carlo (inject noise)

Local means: {l
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1. PREDICTING LOCAL ERROR BARS

with Dave Nix
ftp.cs.colorado.edu:/Time-Series/error-bars. ps

+ Theory / Tricks

« Maximum Likelihood framework
« Interpretation as weighted regression
¢ Three phases in training

+ Examples

— computer generated data (regression where
amount of noise added depends on location)

- Santa Fe laser data

+ Outlook
« Applicable in regression with any error
model with two parameters

e.g., hyperbolic distribution: it parametrizes
Gauss (Euclidean), Laplace (absotute), and
exponential errors

¢ Also for classification



ARCHITECTURE FOR LOCAL ERROR
BARS

expecled
value

expecled
variance

COST FUNCTION AND UPDATE }
RULES FOR LOCAL ERROR BARS

+ Predict error bars

» assume each observed data point d was
actually generated from a Gaussian whose
mean y and width ¢ depend on the input

e maximum likelihood (with early stopping)
» estimate y and o =sqrt(v)

error model: Gaussian(dataimodel)
1/5art(2nvix)) expl- (d; - y()2/2v(x))

cost function: -log(Gaussian{datalmodel))

C =05 (d- yox) v + In v(x)

weight change to y unit
Awy =1 T/V(X) [d - y(x)] h(x)

weight change to v unit

AW, =1 1/2v00) [(d, - Y0)? - vee)) h(x)

* interpretation as weighted regression
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COMPUTER GENENERATED DATA
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SANTA FE DATA SET A: LASER

+ Description

+ “Univariate time record of a single
observed quantity measured in a physics
laboratory experiment.”

+ Origin
« intensity of far-infrared laser
« stationary (sampling time 80 nsec)
* clean (signal to noise ratio 300:1, 8—bit)

+ deterministic chaos
¢ dimension around 2.1

+ Provided 1000 points

continuation kept secret until deadline

>

Task: predict 100 points and error bars



M
&
(=}

200

LASER CONTINUATION WITH
LOCAL ERROR BARS

L] ; LA T Rl r
5200! 1 ! * { t --il’lcdu hn:w w:lllml‘l.m l).ubi | ? ? * ’
E ¢ LI A B ' b
LI A ’ o
3 10 ‘ ]i . . ' e et 28 LAA
é o ‘T.’i_' _;_I. l..l ... " 0. ‘. *i .ﬁ.‘:\-.."'":"
F MOV v v eI

. | '
a0 350
Tune

1
250

400

Page 10

PREDICTABILITY VARIES IN STATE




2. LOCAL LYAPOUNOV 3. PREDICTING PROBABILITY

DENSI
We have trained a network with Ashok Srivastava
ftp.c§.colorado.edu:ffime-Series/prob-
This can be viewed as a “skeleton” density.ps

A~ « multimodal distribution
It captures the deterministic part of the
dynamics.

The stochastic part is removed

We can now estimate the local divergence
from the derivatives -

its mean is not a good description

This describes the local divergence (as a * representation
function of the point in state space)

— histogram?

suboptimal resolution for the predicted value
It contains much more information than (given by bin size)

averaging over the attractor (as typically

- use fractlonal binning (soft histogram)
done for the Lyapounov coefficient)

the target value (real-number) is distributed
over two adjacent bins

000000 O

T value to be represented
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ARCHITECTURE FOR
PROBABILITY DENSITY

TRICKS FOR PROBABILITY DENSITY

. Some tricks to make it work

probabilify
mean diistribution « predict the mean in addition to density
at time 1+/ to find a good representation in the set of

shared hidden units

* equal mass bins
not fixed binsize
« stochastic teacher forcing (annealing)
- training begins with exact values at inputs
- gradually replace them with the predictions

+ Note that iteration is straightforward

+ Place in the space of processes

¢ “noisefree Markov with metric”

+ Example: Santa Fe laser data

at time 1-(a+1) attimet
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SINGLE-STEP PREDICTIONS ITERATED PREDICTIONS

Inmnsay
- » ~
I

Lanar
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INTERMEZZO: SOURCES OF
UNCERTAINTY (NOIS

stochasticity
outside shocks

chaos
divergence of nearby trajectories

sampling noise
particularlly important for smali data sets

model misspecification

+ “true model” not in model space
+ parameters not estimated well

+ wrong error model
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GENERALIZATION
# MEMORIZATION

main goal: how good on future data?

Standard procedure to estimate
generalization performance:

+ Split available data in three sets

¢ training set (to estimate parameters)

- fitting or approximation error

- In-sample-error
* cross-validation set (to estimate stopping)
e test set (to estimate performance)

~ generalization error

- out-of-sample error

Question:

How large is the effect of this splitting?
(“sampling noise”)



DATA SET: DAILY VOLUME FROM
4. ESTIMATE SAMPLING NOISE v YORK $TOCK EXCHANGE

with Blake LeBaron + Data
ftp.cs.colorado.edu:/Time-Series/bootstrap.ps - December 3, 1962 ... September 16, 1987
6230 days
+ Bootstrap the split of the data _Total trading volume on NYSE
* bootstrap test/cross-validation/test sets, - Dow Jones Industrial index
then train networks on single-step
prediction, and make histogram . Network
« Inputs: 3 past values each of
- volume
+ Obtain distribution of central value log[turnover / 100-day average of turnover|
- dally returns, and thelr absolute values
return = logfprice(today) / price(yesterday)]
- log(volatility)
+ Results

volatilility: exponential decayed squared returns

* On predictions of NYSE volume data: e Hidden units
predict about 50% of the variance 2 10tanh

* Splitting more important for performance
than initial conditions of network * Output

: . volum
* No improvement over linear models ome
¢ Cost function: squared error

( prediction- actual value)
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LEARNING CURVES COMPARISON TO LINEAR MODEL

« Plot ratio of network performance

« Plot error (for one run) as function of the
compared to performance of liner fit

number of epochs (passes through the data)

g e e I ﬁw
\ -
20!:1)aural r:at parlrormancle Vs I|n:aar pertorman?e {ratio). [N=2523, mean=0.996, std=0 016}
180} '
160
1401
120}
E -
&
8 100}
g ]
I
e S ; 3 8of
10 10 10 10 i
epochs
- Training error (——) decreases monotonically sor |
— Overfitting: Cross-validation error (x) and test a0t
error (0) first dereases, then increase 7
20F
— Network extracts features from training data .
(In-sample) that do not generalize to new e et S S S S S -
data (out-of-sample) 095 096 087 008 089 1 101 102 103 104 105
{1-R*2) of neurat nat divided by (1-A*2) of linear it '

- early stopping: use network at that epoch
with minimum on cross-validation set
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EFFECT OF RANDOM SPLITS VS

(0]

NET

Solid: neural nets, dashes: linear (2523 resamplings sach). Dots: 897 nets (1 sampling).
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Volume {(zero mean and unit vanance., henght arbitary units)

PROBABILITY DISTRIBUTION

+ Captures uncertainty from splits

+ Time period includes 1987 crash

sohd ine: distribubon cver 1843 networks.  x: data points
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ENTICING NONLINEARITIES 5. GENERAL MONTE CARLO

Simple network no better than linear model + Add noise to inputs to obtain confidence

intervals

How to entice net to use nonlinearities?

« Example: Fraser and Dimitriadis (1994
Change task: P ¢ )
time
T —
+ Train on residuals of linear fit ]
14 — e
Change representation: 1 = e
12 ——eee . T
+ Thermometer code e~
+ Place coding; Fractional binning 7 =R S
i, S A
+ Make it a dlassification task 8 N ™
4_/‘?\-—‘.\
+ Predict quantiles s e
+ Use error-correcting codes (blow up into ' *//H\ij Sl
larger space with nonlinear combinations) 4 —_A_//:_
What else?? , 7\,\
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SUMMER 1994:
HU BERLIN AND CU BOULD

R

both accessible through World Wide Web
(WWwW)

Humboldt Universitat zu Berlin
(Wirtschaftsinformatik)

Methodenbank

Client - server architecture

Combines techniques from several
communities (e.g., economics, finance,
physics, statistics, neural networks,...)

Model management

importance of interactive exploratory analysis
(visualization)

University of Colorado at Boulder
(Computer Science)

Data Set Citation Index

Gatherers - broker architecture

For each benchmark time series, it maintains

hyperlinks to url’s of papers that use / analyze /
predict the data
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CU BOULDER AND HU BERLIN

Need / Chance for meta-analysis:

+ Can’t do much analytical (yet), need to do
as much empirical as possible:

+ Both projects allow the collection of
“meta data”: monitor user behavior to
learn more about interplay between
methods and data



DONT TRY THIS A HOME...
CALL A CONNECTIONIST!

or get the papers of this talk:
+ via WWW / Mosaic:

http://www.cs.colorado.edu/homes/
andreas/public_html/Home.html

+ orvia ftp:

ftp.cs.colorado.edu (128.138.243.1 51)

SFl-book.bibliography
error-bars.ps
prob-density.ps
bootstrap.ps

FURTHER INFORMATION

+ Book

TIME SERIES PREDICTION:

FORECASTING THE FUTURE AND
UNDERSTANDING THE PAST

edited by A.Sela N.A.Gershenfeld
Addison-Wesley (1994) 672 pages, 800 references

ISBN 0-201-62602-0 (pb, $32.25)
ISBN 0-201-62601-2 (hc, $49.50)

+ Overview article

anonymous ftp to ftp.cs.colorado.edu
Time-Serlesa/CU-C5-670-93

+ Data

anonymous ftp to ftp.santafe.edu
ortoftp.ce.colorado.edu
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