

## UNITED NATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION

## INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS 1.C.T.P., P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE CENTRATOM TRIESTE



SMR.764 - H

RESEARCH WORKSHOP ON CONDENSED MATTER PHYSICS 13 JUNE - 19 AUGUST 1994

MINIWORKSHOP ON "NONLINEAR TIME SERIES ANALYSIS" 8 - 12 AUGUST 1994

"Neural Networks and Time Series "

Anderas WEIGEND
Computer Science Department
University of Colorado, P.O. Box 430
Boulder, CO 80309-0430
U.S.A.

These are preliminary lecture notes intended only for distribution to participants

|   |  | ž. |        |
|---|--|----|--------|
| • |  |    |        |
|   |  |    |        |
|   |  |    |        |
|   |  |    |        |
|   |  |    | A<br>Ç |
|   |  |    |        |
|   |  |    |        |
|   |  |    |        |
|   |  |    | ;<br>} |
|   |  |    | Ā      |
|   |  |    | Ç      |
|   |  |    |        |
|   |  |    |        |
|   |  |    |        |
|   |  |    | ;<br>; |
|   |  |    | ,<br>, |
|   |  |    |        |
|   |  |    |        |
|   |  |    | :      |
|   |  |    | <br>   |
|   |  |    | i<br>H |
|   |  |    | 7      |
|   |  |    |        |

## CONNECTIONIST MODELING OF TIME SERIES

#### ANDREAS WEIGEND

DEPARTMENT OF COMPUTER SCIENCE AND INSTITUTE OF COGNITIVE SCIENCE

UNIVERSITY OF COLORADO AT BOULDER

ITP TRIESTE, AUGUST 1994

### STATE SPACE EMBEDDING

• Express future value as function of past values (Yule, 1927)

... and then just play "connect the dots"

Assumes system is time invariant (stationary)

"Forget the mystery, buy the history"

- Questions (whatever model is used):
  - What time scale of observations? (sampling time)
  - How far to predict? Direct? Iterated?
  - How many past values are necessary/best?
  - How to preprocess series? (log, differentiate...)
  - What (other) inputs are useful? (subset selection)
  - What cost function should be minimized? (error model)
  - What other outputs are useful?

## SPACE OF TIME SERIES IS LARGE

- Symbol sequences
- Continuous variables.
  - dynamical systems (nonlinear DEQ)
  - maps
  - (almost) random walks

Start from data

VS.

start from assumptions

#### TRADEOFFS IN MODELING

- bias variance
- deterministic stochastic
- strong/narrow weak/broad



• noise – nonstationarity

#### PARADIGM CHANGES

### Dimensions of the "Time Series Space"

- stochastic --> deterministic
- linear --> nonlinear
- prediction --> characterization

### Strong models --> Weak models

- data poor & theory rich --> data rich & theory poor
  - the more flexible the model, the harder the evaluation
- in-sample error --> out-of-sample error
  - models so flexible that they overfit, i.e., do very well on the training data but do not generalize well to novel test data
- need to always set evaluation data apart not used in the fit

## STOCHASTIC VS. DETERMINISTIC



### LINEAR + NONLINEAR

#### **Global Linear Models**

- Interpretation (relatively) easy
  - as linear filter
    - frequency response, autocorrelation
    - response independent of amplitude (superposition)
    - no "coupling" between the various inputs
  - · as surface fitting
    - one hyperplane in state space
- Model selection (relatively) easy
- Needs to be excited by noise
  - often good in very noisy systems (e.g., economics)
  - but what if systems is low-noise and nonlinear?

Local Linear Models and Nonlinear Models

### LOCAL LINEAR MODELS

#### Global linear models

#### Local linear models

- Local in state space (not in time!)
- E.g., vary size of neighborhood --> characterization
  - DVS Plots = "Deterministic vs. Stochastic", (Martin Casdagli)
  - Bias-variance trade-off
- Extreme case: look-up closest value
  - Instance-based learning
- Want more points in state space? Interpolate in time space!
  - Fill in points of manifold, Tim Sauer

### BIAS-VARIANCE TRADEOFF

- construct family of local linear models
- vary size of neighborhood
- vary number of lags
- plot test-error (out-of-sample error) as function of number of neighbors



number of neighbors k

DVS-plots: deterministic vs stochastic

### **DVS PLOTS**

## from Casdagli and Weigend (1994)



#### **NONLINEAR MODELS**

- Large class of models; focus here one feed-forward networks
- Essentially nonlinear regression (after state space embedding)
- Very flexible: neural nets often more parameters than data points
- Model comparison can become very hard
- Summary:
  - Understanding (explicit model) great when it works...
  - ...but learning (implicit model / emulation) broader
  - Easy to make predictions...
  - ...but how good are they?

Understand the error sources and predict the uncertainty of the prediction.

## HOW TO PUT TIME/MEMORY INTO A NETWORK

- · memory only at input
  - explicitly give past values at input



- distributed memory
  - replace all weights by tapped delay lines
- recurrent networks

#### PREDICTING IMPREDICTABILITY

- Motivation
  - risk
  - combine predictors (Markowitz)
  - find regions of low uncertainly "profit boxes"
- 1. Local error bars (confidence intervals)
- 2. Local error bars due to chaos only
- 3. Probability density of next value
- 4. Probability density (uncertainly from sampling errors only)
- 5. Monte Carlo (inject noise)



## 1. PREDICTING LOCAL ERROR BARS (CONFIDENCE INTERVALS)

with Dave Nix ftp.cs.colorado.edu:/Time-Series/error-bars.ps

- Theory / Tricks
  - Maximum Likelihood framework
  - Interpretation as weighted regression
  - Three phases in training
- Examples
  - computer generated data (regression where amount of noise added depends on location)
  - Santa Fe laser data
- Outlook
  - Applicable in regression with any error model with two parameters
    - e.g., hyperbolic distribution: it parametrizes Gauss (Euclidean), Laplace (absolute), and exponential errors
  - Also for classification

## ARCHITECTURE FOR LOCAL ERROR BARS



## COST FUNCTION AND UPDATE RULES FOR LOCAL ERROR BARS

- Predict error bars
  - assume each observed data point d was actually generated from a Gaussian whose mean y and width σ depend on the input
  - maximum likelihood (with early stopping)
  - estimate y and  $\sigma = sqrt(v)$

error model: Gaussian(datalmodel)  $1/\sqrt{2\pi (x_i)} \exp[-(d_i - y(x_i))^2/2v(x_i)]$ 

cost function: -log(Gaussian(datalmodel))

$$C = 0.5 \sum_{i} (d_i - y(x_i))^2 / v(x_i) + \ln v(x_i)$$

weight change to y unit  $\Delta w_v = \eta \frac{1}{v(x_i)} [d_v - y(x_i)] h(x_i)$ 

weight change to v unit  $\Delta w_{vk} = \eta \ 1/2v(\mathbf{x}_i) \left[ (d_i - y(\mathbf{x}_i))^2 - v(\mathbf{x}_i) \right] h_k(\mathbf{x}_i)$ 

• interpretation as weighted regression

## COMPUTER GENENERATED DATA



## SANTA FE DATA SET A: LASER

### Description

 "Univariate time record of a single observed quantity measured in a physics laboratory experiment."

### Origin

- intensity of far-infrared laser
- stationary (sampling time 80 nsec)
- clean (signal to noise ratio 300:1, 8 bit)
- deterministic chaos
- dimension around 2.1
- Provided 1000 points

continuation kept secret until deadline

• Task: predict 100 points and error bars

## LASER CONTINUATION WITH LOCAL ERROR BARS

# 

## PREDICTABILITY VARIES IN STATE SPACE



Page 10

### 2. LOCAL LYAPOUNOV "COEFFICIENT"

- We have trained a network
- This can be viewed as a "skeleton"

It captures the deterministic part of the dynamics.

The stochastic part is removed

- We can now estimate the local divergence from the derivatives
- This describes the local divergence (as a function of the point in state space)
- It contains much more information than averaging over the attractor (as typically done for the Lyapounov coefficient)

## 3. PREDICTING PROBABILITY DENSITY

with Ashok Srivastava ftp.cs.colorado.edu:/Time-Series/probdensity.ps

• multimodal distribution



its mean is not a good description

- representation
  - histogram?
     suboptimal resolution for the predicted value (given by bin size)
  - use fractional binning (soft histogram)
     the target value (real-number) is distributed over two adjacent bins



## ARCHITECTURE FOR PROBABILITY DENSITY

probability distribution mean at time t+1 hidden at time t-(d+1) at time t

## TRICKS FOR PROBABILITY DENSITY

- . Some tricks to make it work
  - predict the mean in addition to density to find a good representation in the set of shared hidden units
  - equal mass bins not fixed binsize
  - stochastic teacher forcing (annealing)
    - training begins with exact values at inputs
    - gradually replace them with the predictions
- Note that iteration is straightforward
- Place in the space of processes
  - "noisefree Markov with metric"
- Example: Santa Fe laser data

## SINGLE-STEP PREDICTIONS





## ITERATED PREDICTIONS



## INTERMEZZO: SOURCES OF UNCERTAINTY (NOISE)

stochasticity

outside shocks

chaos

divergence of nearby trajectories

sampling noise

particularly important for small data sets

model misspecification

- "true model" not in model space
- · parameters not estimated well
- wrong error model

## GENERALIZATION # MEMORIZATION

main goal: how good on future data?

## Standard procedure to estimate generalization performance:

- · Split available data in three sets
  - training set (to estimate parameters)
    - fitting or approximation error
    - in-sample-error
  - cross-validation set (to estimate stopping)
  - test set (to estimate performance)
    - generalization error
    - out-of-sample error

#### Question:

How large is the effect of this splitting? ("sampling noise")

#### 4. ESTIMATE SAMPLING NOISE

with Blake LeBaron ftp.cs.colorado.edu:/Time-Series/bootstrap.ps

- · Bootstrap the split of the data
  - bootstrap test/cross-validation/test sets, then train networks on single-step prediction, and make histogram
- Obtain distribution of central value
- Results
  - On predictions of NYSE volume data: predict about 50% of the variance
  - Splitting more important for performance than initial conditions of network
  - No improvement over linear models

## DATA SET: DAILY VOLUME FROM NEW YORK STOCK EXCHANGE

#### • Data

- December 3, 1962 ... September 16, 19876230 days
- Total trading volume on NYSE
- Dow Jones Industrial Index

#### Network

- Inputs: 3 past values each of
  - -- volume
    log[turnover / 100-day average of turnover]
  - daily returns, and their absolute values
    return = log[price(today) / price(yesterday)]
  - log(volatility)volatilility: exponential decayed squared returns
- Hidden units

2 ... 10 tanh

Output

volume

 Cost function: squared error (prediction- actual value)<sup>2</sup>

## LEARNING CURVES

 Plot error (for one run) as function of the number of epochs (passes through the data)



- Training error (----) decreases monotonically
- Overfitting: Cross-validation error (x) and test error (o) first dereases, then increase
- Network extracts features from training data (in-sample) that do not generalize to new data (out-of-sample)
- early stopping: use network at that epoch with minimum on cross-validation set

## COMPARISON TO LINEAR MODEL

 Plot ratio of network performance compared to performance of liner fit



## EFFECT OF RANDOM SPLITS VS NETWORK INITIALIZATION



## PROBABILITY DISTRIBUTION

- Captures uncertainty from splits
- Time period includes 1987 crash



## ENTICING NONLINEARITIES

Simple network no better than linear model

## How to entice net to use nonlinearities?

### Change task:

• Train on residuals of linear fit

### Change representation:

- Thermometer code
- Place coding; Fractional binning
- Make it a classification task
- Predict quantiles
- Use error-correcting codes (blow up into larger space with nonlinear combinations)

What else??

#### 5. GENERAL MONTE CARLO

- Add noise to inputs to obtain confidence intervals
- Example: Fraser and Dimitriadis (1994)



### SUMMER 1994: HU BERLIN AND CU BOULDER

both accessible through World Wide Web (WWW)

## Humboldt Universität zu Berlin (Wirtschaftsinformatik)

#### Methodenbank

Client - server architecture

Combines techniques from several communities (e.g., economics, finance, physics, statistics, neural networks,...)

Model management

Importance of interactive exploratory analysis (visualization)

## University of Colorado at Boulder (Computer Science)

#### **Data Set Citation Index**

Gatherers - broker architecture

For each benchmark time series, it maintains hyperlinks to url's of papers that use / analyze / predict the data

### CU BOULDER AND HU BERLIN

### Need / Chance for meta-analysis:

- Can't do much analytical (yet), need to do as much empirical as possible:
- Both projects allow the collection of "meta data": monitor user behavior to learn more about interplay between methods and data

## DON'T TRY THIS A HOME... CALL A CONNECTIONIST!

or get the papers of this talk:

• via WWW / Mosaic:

http://www.cs.colorado.edu/homes/andreas/public\_html/Home.html

• or via ftp:

ftp.cs.colorado.edu (128.138.243.151)

SFI-book.bibliography error-bars.ps prob-density.ps bootstrap.ps

...

### **FURTHER INFORMATION**

Book

#### TIME SERIES PREDICTION:

FORECASTING THE FUTURE AND UNDERSTANDING THE PAST

edited by A.S.Weigend and N.A.Gershenfeld Addison-Wesley (1994) 672 pages, 800 references

ISBN 0-201-62602-0 (pb, \$32.25) ISBN 0-201-62601-2 (hc, \$49.50)

Overview article

anonymous ftp to ftp.cs.colorado.edu Time-Series/CU-CS-670-93

Data

anonymous ftp to ftp.santafe.edu or to ftp.cs.colorado.edu