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and the Degcription of Complexity

Bai-lin HAQ

Symbolic dynamics provides a general framework to describe complexity of dy-
namical behaviour. After a discussion of the state of the field special emphasis
will be given to the role of the transfer matrix (the Stefan matrix) both in de-
riving the grammar {rom known symbolic dynamics and in extracting the rules
from experimental data. The block structure of the Stefan matrix may serve as
another indicator of the complexity of the associated dynamics.

1 Introduction

It is a commonplace nowadays that many physical systems are capable of un-
dergoing sharp transitions to more organized states when control parameters
are tuned away from the trivial, near equilibrium, or linear, regimes. Intuitively
speaking, these organized states are characterized by lower symmnietry, lower en-
tropy, more information, and a higher degree of complexity. By the way. it is
the change of symmetry, explicit or hidden, that makes the transition sharp, be-
cause symmetry is a property that must either be present. or absent: it cannol be
accumulated gradually. However, when one comes to the stage of characterizing
complexity, we see that this is a far from trivial task.

First of all, complexity is a notion which has been used in so many differ-
ent contexts and which can hardly be defined in general. On 10th September,
1992, there were 302 books in the U. S. Library of Congress that have the
word “complexity” in their title®. The most frequent usages include algorithmic
complexity (AC), biological complexity, computational complexity (CC), devel-
opmental complexity, ecological complexity, economical complexity, evolutional
complexity, grammatical complexity (GC), language complexity, elc.

Second, simplicity and reductionism has been a guideline in science. Many
scientists believe that the fundamental laws of Nature must be simple. Although
they encounter “complex” phenomena everyday and everywhere, they stili try
hard to reduce them to something simpler. Indeed, science knows a number of
ways by which simple things can get more complex. For, example:

1. Projection onto lower-dimensional space may make things lock more com-
plex or, put the other way around, adding new dimensions, sometimes in the

* We thank Dr. Ming-zhou Ding, Flerida Atlantic University, for checking the number.
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parameter space, sometimes in the configuration space, may simplify the de-
scription. Some nonlinear problems may be embedded into higher dimensions
as linear ones, some non-Markovian processes may be made Markovian by

adding more stochastic variables; even a discretized version of a continuocus
model may turn out to be more complex.

2. Repeated use of simple rules may lead to more complex behaviour. Everyone
knows that iteration of a quadratic polynomial may yield chaos, iteration of
“complex” (yet another context of the word) maps may produce the beautiful
patterns of the Julia and Mandelbrot sets. Simple nearest neighbour rules
of cellular automata may simulate the complexity of universal computers, as
was conjectured by S. Wolfram.

Furthermore, complexity appears in our description of Nature simply because
we are not. clever enough. For instance, the use of a wrong system of reference
may bring about unnecessary complications, as was the case with the Ptolemny
system compared to Copernicus. The modern notation of the Maxwell equations

for the electromagnetic fields, e.g., using the notion of exterior differential d,
codifferential & and differential 2-form @:

d6 = 0,
60 = J. (1)

look much “sitnpler” than the original ones in Maxwell’s paper in Philosophical
Transaction or in his Treafise. In order to view things simply, you must stand
high.

We see that the problem of complexity and its description are much like the
problem of heauty and the appreciation of the beautiful. One needs a definite
fraimework into wlich to set the problem and an ohjective way to estimate the
complexity. Historically, the quantitative description of information has experi-
enced similar problems. In a sense, it is a correct attitude to start with simple
sttuations, where complex behaviour is gencrated by a comprehensible mecha-
nism. If we cannot deal with these situations, there is little hope of coping with
“real” complexities.

Comparison of various classes of orbits in ene-dimensional mappings provides
a first challenge toward this goal. Here is the arena where symbolic dynamies and
its natural relation to formal language theory may play an instructive role. This
development comes concurrently with the need to characterize various chaotic
attractors at a more fundamental, “microscopic”, level.

In recent years there has been a new upsurge of interest in quantifying and
measuring complexity. Many meetings have been devoted to this problem, see,
e.g., [1]-[6]. In particular, the complexity of chaotic attractors and trajectories
have been the subject of many discussions. A number of new definitions of com-
plexity have heen suggested. We have in mind the use of grammatical complexity
to characterize the complexity of cellular automata by Wolfram [7]. the extensive
study of grammatical complexity of symbolic sequences in one-dimensional maps
and in cellular automata by Grassberger and his definition of “set cotmplexity”,
“true measure complexity”, “effective measure complexity” (8]. the construction
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of logical trees and calculation of “grammatical complexity” in a narrower sense
in [9, 10], and the “hierachical approach™ in [11], etc. An esgenttal advance 1s tlu:
understanding that some conventional measures of Comple)uty..(’.g..,'entropy, Al
in fact measures of randomness, not complexity. Although periodicity and pure
randomness are two extremes on the scale of randomness, th‘ey are (.'lose to eac.:h
other on the scale of complexity. Complexity is alway_s assouat..ed 'W.lt‘ll a certain
degree of organization and lies somewhere between simple periodicity and pure
randomness on the scale of randomness. .

Nevertheless, we would like to note that the state of the field is far f.rm.n
satisfactory. For example, some of the definitions me.ntioned abow.* ASSLEN ll.lfl-
nite complexity to the orbits at the accumulation point of the pe‘rlod-(.louh!mg
sequence of one-dimensional maps [8, 12], whil.e we knlow 1l.11at‘ t'h,F‘ (‘JI‘hIlF: 1..hf‘rv
are only quasiperiodic and the symbolic dynamics is qmt.(T sunplf'.. T'he dohmt:mn
in [10] gives finite complexity to the limit of so-lcalled F_‘|honacc| sequence, e,
the sequence of orbits, whose periods grow as Flbopa(‘(_‘l nuimbers. lllus limit. ls
also a quasiperiodic orbit and the symbolic dynamics is even more simple. We
will return to this issue later. - ‘

To provide a remedy for these shortcomings, some authors 1111.r0(lu.('m] A]uc‘rl
achical definitions which yield non-zero complexity only for systews in ligher
than one dimensions [12], hence put aside the whole pr()l:lv'm of <!o.~arr|h1ug con-
plexity of orbits in one-dimensional maps. Anyw‘ay. Oilf’—(il.lllt‘!l.‘%l()llal dynamics
inay be a result of projection from higher dimensions and it may be even more
complex.

Furthermore, while there ate convincing arguments [8] that there must he
infinitely many orbits in one-dimensional maps wllgsv complexity should go be-
yond “regular language”, the lowest step in the (fllnlllsky-lacl(i«\|’ of lnl.lglmgv
complexity [17], no explicit way of constructing or approac.hmg these orbits h.'.ls
heen indicated so far. On the ather hand, some seetningly simple Iangua'gvs such
as ROL™ or RTM™L" are more complex than regular (the fnr|n(“r 'Iwmg non-
regular, and the latter non-context-free), but they are not adwmwissible in any
known symbolic dynamics for one-dimensional maps. _

We will not go into details of any of the definitions mentioned above nor
analyze their pros and cons. Our main ain is Lo stress the lnsn-fllllle‘ss of l.r:nlllsl'vr
matrices as a bridge between the dynamics and the nuderlying Erammar. Smee
the most. workable definitions of complexity are related to synibolic dynamics and
our discussion of grammatical complexity will also he {'t\st.rirl.m] t("n the context
of symholic dynamics, a few words ou symbolic dynamics may be in order.

2 Symbolic Dynamics

Symbolic dynamics is a coarse-grained desrripl.io‘u of Liyl'la.llli(‘s.ulll.*-'lw‘ml of -1.r:1‘(“
ing the trajectories in the phase space in full detail, one d]Vl.(](‘.‘-i { ‘coarse-grains )
the phase space into a number of regions and labels each region will a I(ttt_vr from
sonte alphabet. The total number may be fimite or infinite; nn!_v the fintte case
can be studied in any great detail. The tine evolution of a trajectory shows wp



as a sertes of letters; a numerical trajectory is replaced by a symbolic sequence.
The correspondence may be many-to-one, thus opening the possibility for classi-
fication of trajectories. For theorem-proving, the exact way of partitioning does
not matter in most cases. However, when one divides the phase space according
to the “physics” or “geometry” of the dynamics, many detailed rules may he
derived in the case of one- or two-dimensional mappings.

In a sense, symbolic dynarnics is nothing but what experimental-physicists
do every day. Using an analog-digital converter of, say, 12 bits precision, there
are no more than 4096 different readings, i.e., symbols, from the instrument, yet
one intends to draw reliable conclusions on invariant, robust properties of the
system.

Symbolic dynamics as a chapter in abstract mathematics has a long history
from the work of Morse in the 1920s: see [18, 19] for the development until the
late 1970s. Applied aspects of symbolic dynamics have been developed maiuly
since the 1973 paper of Metropolis et al. (20] through the work of many math-
ematicians and physicists, see, e.g., {13, 15, 23]. Our group at the Institute of
Theoretical Physics, Academia Sinica, Beijing, has made some contributions to
symbolic dynamics of one-dimensional [21, 22] and two-dimensional [26]-[29)]
mappings, and in their application to systems, described by ordinary differential
equatious [21).

The essence of symbolic dynamics is rather simple. T will take a simple ex-
ample to demonstrate sonie of the most important ingredients.

In the simplest case of unimodal maps, one divides the phase space (the
interval) into two regions: one to the Left of the Central or Critical point, labeled
by L, another to the Right of C, labeled by R. These three letters have a natural
order

L<C< R, (2)

which is the basis for ordering all possible symbolic sequences. The ordering rule
is simple. Suppose two synibolic sequences

L) =L
and
Ya=X"r. ..

have a common leading part Z*, and the next letters ¢ and r are different.
Since they are different, they must have been ordered according to the natural
order (2). Then the order of I} and  are the same as o and 7 if the common
leading part ¥* contains an even number of the letter £; or the order be reversed
if there is an odd number of R in 5™ This rule holds for any one-dimenstonal
map, not only for unimodal ones, provided the R counting in L* extends to
counting all letters which represent a decreasing branch of the mapping function.

Although the letter C occurs only at one point, the sequence starting with C,
or, to be more precise, starting with the first iterate of C, i.e., F(C), where f(x)
15 the mapping function, plays an important role. It has acquired a special name
“kneading sequence” [13]. A map is best parametrized by its kneading sequence

(or sequences, when there is more than one critical point). Given the kneading
sequences, everything about the symbolic dynamics is determined.

Take, for example. a period 5 kneading sequence (RLLRC)™ in the unimodal
map. This is the symbolic sequence of the superstable period 5 orbit which starts
from the critical point C of the map. It is a good convention to denote a symbolic
sequence by the first nuinber that starts the iteration. Since iterations of the map
correspond to consecutive shifts of the symbolic sequence, we have the following
alternation of numbers-sequences:

rog=C=CRLRRC ...,
£y = RLRRC .-,

s = LRRC - (3)
Jta:R.H.("".
4= RC -,

then it repeats. Using the ordering rule of symbolic sequences, it is easy to check
that these sequences, and consequently the corresponding points, are ordered as
follows:

To < Iy < ryg<Irq<xy. (1)

Besides the ordering rule, another important issue is the admissibility condi-
tion. Obviously, not. every arbitrarily chosen symbolic sequence can correspond
to a realizable trajectory in a given dynamics. One needs some criterion Lo check
the admissibility. Referring to. e.g., [22]-[23], for a detailed formulation of the
admissibility condition, we note only that in case of unimodal maps the condition
reduces to shift-maximality of the symbolic sequences.

3 Coarse-Grained Chaos

A good example of how symbolic dynamics embodies the idea that ('omplex_ity
lies somewhere in between simple periodicity and pure randomness is the notion
of coarse-grained chaos, based on a generalized composition rule [25).

We start from a superstable fixed point, which corresponds to the kneading
sequence C°. By disturbing C' a little, it goes either to R or to L, according to
the natural order (2). Omitting the infinite power in the notations, we have a
symbolic fixed point window:

(L,C,R). {5)

Applying repeatedly the substitutions

R— RL,
€ — RC, (6)
L RR,

to the fixed point window (5), we get the symbolic representation of the whole
period-doubling cascade.

"
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The substitutions (6) hint at a generalization: find the conditions that the
following substitutions
R —p
p and A being strings made of R and I, applied to any admissible symbolic
sequence, would yield another admissible sequence. These conditions were found
in [25] and they happened to be a natural generalization of the well-known

*—composition in symbolic dynamics {15], hence the name generalized composi-
tion rule.

Now take the much-studied case of chaotic maps, namely, the map
L4l = 1- 21!i (8)
Its kneading sequence is RL™. [{ has many nice properties, for example:

I. There is a continuous distribution plz} for the orbital points z; for almost
all choices of initial points;

2. Each initiat point leads to a different symbolic sequence; there are as many
different symbolic sequences as real numbers in the interval (—1, 1) (This is
the symbolic statement of sensitive dependence on initial conditions);

4. There exist homoclinic orbits;

1. It is a crisis point;

[t is a band-ending point, beyond which a chaotic band no longer exists;

6. Tt is a surjective map;

T w?

and so on.

Applying the generalized composition rile (7) to the kneading sequence
1™, we get infinitely many kneading sequences of the form 2A™ for infinitely
many different choices of p and A. Alnost everything said about the map with
kueading sequence RL™ may be carried over to maps with kneading sequences
PA™ . The BRL™ map is the most random map with maximal topological entropy.
The pA™ maps have lower entropy, but if viewed with lower resolution, i.e | tak-
ing each of the strings p and X for a single letter, they are as randoin as the
121 map. However, if we look at them with higher resolution, we see patterns
of organization, embodied in the repeated structures of p and A This is what
we call coarse-grained chaos,

Now we have been prepared enough to introduce the transfer matrices.

4 Stefan Matrix

The main message 1 would like to convey [14] is that the transfer matrix, or
Stefan miatrix, as it is often called in this case [15], may be very useful both in
deriving the grammatical rules from a given symbolic dynamies and in inferring
the unknown rules from experimental data. Moreover, the Stefan matrix has a di-
rect relation to the transfer functions used in constructing the non-deterniinistic
finite automaton (NDFA), as well as the corresponding deterministic finite au-
tomaton (DFA), which accepts the language. ‘The block structure of the matrix

_ . . 9
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may serve as another indicator of complexity for the antomaton and the lan-
guage. In fact, the topological entropy calculation makes use Ol.'ll.y of the lz%rgest
eigenvalue of the matrix, the construction of the automaton utilizes more infor-

mation in the matrix. [ will devote the rest of this paper to the explanation of
what has been said.

3 b o] ol
2 (LR) o {RRLR}Y 3 (RRA) 4 (RLAR) !

Fig.1. Construction of the Stefan matrix for the period 5 kncading sequence
(RLRRC)™ .

Although we are more coucerned with the characterization of il.lrllli[v aperi-
odic sequences, we continue with the example of the period 5 kneading sequence
(RLRERC)™ for simplicity of presentation. In fact, we will try t‘(.) rfm_sl.rnvl every-
thing using this example, then the generalizations needed for infinite sequences
will become clearer. .

First of all, the ordered numbers in (4) are shown in Fig. 1. Also shown in
the figure is the way the orbit visits these points. The latter (“‘Ji_‘l‘: l‘hv in(vrvu!
into four segments, denoted by a, b, ¢, and 4. If one shifls the mﬂml point of
iteration from the superstable orbital points to other points in I.Iu‘ interval, I'hu-n
contimtity considerations alone tell us that the four segiments will transforni info
one another i the following way:

a—c+d,
b—d,
c—b+ec,
d — a

(*

Written in matrix form, they define the Stefan matrix

0011
. _loool
S=10110
10GO

[10)

The trace of 8" in the n — o Hmit, hence the largest eigenvalue of S,
gives the number of different periodic orbits of length n. In fact. the Ingnriilllm
of the largest eigenvalue, in our example X = 151288, yiekls the topological
entropy [16], which, as we have said, is rather a measure of randomuness, not
complexity. However, we will see that other approaches of relating complexity
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to the underlying grammar of the symbolic sequences just make more use of the
same Stefan matrix, going beyond its largest eigenvalue.

Fig. 2. Non-deterministic finite automaton constructed from the Stefan matrix of the
periad 5 kneading sequence {RLRRC)™ .

At each of the nnmbered points in Fig. 1 we have one of the symbolic se-
quences given in (3). They comtain the letter 7. By shifting from (7 1o the left
or to the right, we get two symbolic sequences, located on the two sides of the
numbered points according to the ordering rule. By comparing the sequences at
the two ends of cach segment, we get the lirst few symbols for any sequences
starting from that segient. These are the words (LR), (RRLRE), (RRR), and
(RLR), written under a, b, ¢, and d, respectively, in Fig. L. From the meaning of
the transfer matrix we deduce that these 4 words appear in the following 6 con-
texts: LRI, LRLR, RRLIR, RERLR, RRER, and RLR, cach corresponding

to a *1" in the Stefan matrix.

In the rightmost columm of the Stefan matrix § there are always two 1's,
one on top of the other. They come from the right and left neighbourhood of
the critical point (. Drawing a horizontal line between them, we see that the
segments above this line are located to the left of (7, and those below the line to
the right of (*. 'Taking the letters a through d as denoting different states of an
automaton, we can take the Stefan matrix as the definition of transfer function
for the automaton, see Table |.

Table 1. Transfer function for the NDFA associated with (RLRRC)Y™.

L | R
ale +d
b d
¢ b+e
d a
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The table reads, for example, state a on accepting a letter L goes into either
state c or state d, etc. Taking the states as nodes, we draw the graph in Fig. 2
to visualize the table, This is an NDFA, because, first, there is no distinguished
node to start with, one can start traveling along the graph from any node; second,
at some nodes there is more than one choice of where to go next on seeing the
same input. letter.

In formal language theory, see, e.g., [17], there is a standard method to derive
DFA from NDFA — the subset construction. It is simpler to continue with onr
example than formulating the rules. Instead of treating single states such as a or
b, we take a certain combination (subset) of states as a new state and see what
happens according to the transfer function. Let us start with {abed}, i.e., the
set of all single states. On seeing the letter L it goes into the set {cd}, while on
seeing the letter R it remains unchanged. We put these observations into Table 2
for a new transfer function:

Table 2. Transfer funclion for the DFA associated with {RLRRC)™.

L R
{abed}[{ed}|{abed])
{cd} {abc}

{abc} |{ed}| {bed}
{bed} {abcd}

The automaton, drawn in accordance with this table, is shown in Fig. 3.
Now there is a starting node, representing the state {abcd}. Beginning with the
starting node, encircled twice in the figure, there is a unique choice as to where to
g0 next on seeing an R or an L in the input. Amongst all the DFA accepting the
same language there is one with a minimal number of nodes. Wolfram [7] took
the logarithm of the minimal number of nodes as a measure of the complexity.

Fig. 3. Deterministic finite automaton corresponding to the period 5 kneading se-
quence (RLRRC)™,

s

Fu

Tu
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If we derive the Stefan matrix for a map with a pA® type of kneading se-
quence, there will be a transient part in the final DFA. In order to deal with the
stationary grammar, Grassberger [B] suggested to drop the transients. However,
when we turn to infinite Stefan matrices and the infinite limits of the corre-
sponding automata, sometimes the limit comes from the transient part of the
finite automata. So some caution is required.

For any periodic kneading sequence (£C)* or eventually periodic kneading
sequence pA™, at any admissible choice of the finite strings X, p, and A, one
always gets a finite automaton. Therefore, they belong to the lowest level of
grammatical complexity — regular languages. In order to go beyond the regular
level, one must turn to other types of kneading sequences, of which our knowledge
is rather limited at present. A convenient way to look for a breakthrough is to
construct a series of finite automata, then study the infinite limit.

Having mastered the construction of Stefan matrices and their relation to
automata, hoth NDFA and DFA, we can work only at the transfer matrix level
in our search for more complex limits. We continue with examples.

We first look at the & — oo limit of RLX(RL*~'R)® type kneading se-
quences, which includes the period 3 band-merging point RLL(RLR)*, studied
in [10]. The limit is clear: RL*. The (2k + 2) x (2k + 2) Stefan matrix has a
fixed structure with two simply growing parts. We show the matrix in Fig. 4.
Consccutive *1's are drawn as a thick solid line and a single ‘1’ is represented by
a filled circle; all blanks are zero.

Fir A Tha Stafan smadriv fae Brkiprk—1 pyoo
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We see that the structure of the matrix remains the same, only the size of
one upper block and one horizontal line grows with k. This tells us that in the
resulting automaton many similar nodes may be combined into one, and the
grammar does not get more complex with growing k.

The next example is the limit of the Fibonacci sequence we mentioned before.
Taking the letter R for Rabbit, and L for Little rabbit, and imposing a rule that
after a time step a Rabbit gives birth to a Little rabbit while an existing Little
rabbit grows up into a Rabbit, we get from a single R the following sequence:

R
RL

RLR

RLRRL (11)
RLRRLRLR

RLRRLRLRRLRRL

Note that the substitutions

R— RL,

L — R, (12)

which generate the symbolic sequences in (11}, do not satisfy the conditions of
the generalized composition rule. Consequently, not all sequences in (11) are
admissible. However, since we are interested in periodic orbits, it is always pos-
sible to make them shift-maximal by cyclic permutation. In this way we get the
Fibonacci sequence. For a member of period F, (the n-th Fibonacci number),
the Stefan matrix is a (F,, — 1) x (F, — 1) table. The case for Fg = 21 is given
in Fig. 5.

No matter how large the chosen Fibonacci number, this matrix always has
the fixed structure shown above. Horizontally, from left to right, the block sizes
are Fo,_5, Fu_3, and Fa_j — 1; vertically, from top to bottom, the sizes are
Fn_3, Fo_a— 1, and F,,_5. This implies that in the resulting automaton many
nodes may be combined and the final effective automaton and its F, — oo hmit
cannot be more complex, a conclusion drawn in [10] with some effort by explicitly
constructing the antomata.

Our last example illustrates a case to which many authors assigned infinite
complexity [8, 12], namely, the accumulation point of the period-doubling cas-
cade. It is the result of repeatedly applying the substitutions (6) to (5). The
symbolic dynamics notation of this limit, using the *-composition of [15}, is
simply R*®. It can be reached either from the period 2" orbits, or from the
2" — 271 band-merging points. In the latter case all the symbolic sequences
are of pA™ type and may be obtained by applying the substitutions (6} to the
kneading sequence of the surjective map (8), i.e., to RL*. The construction of
Stefan matrices is straightforward in both cases. We give the period 16 Stefan
matrix in Fig. 6.

This matrix has a more complicated, yet quite regular, block structure. The

RN —_ ~ e — 1
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Fn-2 Fn3 Fn-g -1

Fig.5. The Stefan matrix for period F, in the Fibonacci sequence.

16

16

Fig.6. The Stefan matrix for period 16 in the period-deubling cascade.

Bai-lin 11AO
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2777 ... 8,4, 2, 1 along the horizontal, and the same numbers alternating along
the vertical {rom top and bottom toward the two *1's in the rightmost column,
Even when each block is represented by a single effective node in the resulting
automaton, one still needs an infinite number of effective nodes to realize the
automaton. No wonder some authors get infinite complexity for this case. It
certainly goes beyond finite automaton, but the structure is oo regular (o he
called “infinitely” complex. Is it reasonable that a quasiperiodic orbit at the
accumulation of period-doublings is more complex than any chaotic orbit? In
order to discover more complex orbits. one must look at other types of infinite
Stefan matrices.

However, in doing so one should note that the overall structire of the Stefan
matrices is subject to strong restrictions, originating from the underlying map.
If one rotates the last three matrices anticlockwise by 90 degrees, there appears
a kind of “monotonicity”. To the Ieft of the two central '1's, the location of
I's is “nou-decreasing”, while to the right it is “non-inereasing™. Of course, this
ohservation holds only for unimodal maps.

Before concluding the paper, we would like to say a few words on the applica-
tion of transfer matrices to experimental data. Based on the assumption that the
systein under investigation has been in a stationary state and e sampled data
reflect a typical trajectory, one applies the standard phase space reconstruction
techuique and draws experimental Poincaré sections. The frst return maps for
one of the reconstructed coordinates may reveal the outline of an underlying
map. Il it is close Lo one-dimensional, as is usually the case with dissipative
systems, then there is a good hope (o intraduce a partition, using a few letters.
Then one can try to extract the grammatical rules from the symbolic sequence,
obtained from the original titne series. The siimplest cases deal with two or three
letters (in the presence of a diserete symmetry, as our experience with the Lorenz
model shows [30]).

Suppose we are lucky enough Lo start with a symbolic dynamics of two letters,
say, A and B, for Ahove and Below the average. The first thing to do is to count
the occurrence of A and B, then the occurrence of the pairs AA, AR, A,
and Bf, etc, and so forth, The ahsence of a pair, e.g., B would imply a
grannmatical rule “two consecutive B’s are not allowed in the language™. This
rule alone would cut the number of longer strings. The munber of 3-letier strings
would be reduced lrom 8 to 5; that of 4-letter strings from 16 to 8; that of n-
letter strings from 2" to [,42 — the Fibonacei number again. This rule alone
determines a smallest transfer matmx:

11 .
il

which, in turn, would give an upper bound for the topological entropy: logarithm
of the golden mean 1.618 - - - If new rules were to be discovered during the count-
ing of longer strings, they would change the number of allowed combinations of
even fonger strings, and yield larger approximants for the transfer matrices and
better estimates for the entropy.

g BT
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This way of thinking essentially follows the “pre-entropy” experiment of
Kahlert and Rossler [31], and the best results so far, to our knowledge, have
been obtained with the Belousov-Zhabotinskii reaction data by Lathrop aud
Kostelich [32], see also the recent work [33] along the line of Badii [9]. Never-
theless, the whole business of extracting grammatical rules and comparing the
complexity of experimental chaotic attractors is still in its infancy.

As regards the application of symbolic dynamics to description of complexity
in two and more dimensions, much more effort has to be made, since the symholic
dynamics itself has not been well-developed.
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