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Combining Topological Analysis and Symbolic Dynamics
to describe a Strange Attractor and its Crises

M. Lefranc,!} P. Glorieux,(!) F. Papoff,(?) F. Molesti,’® and E. Arimondo
() Laboratoire de Spectroscopie Hertzienne, URA CNRS 249, Université de Lille I, F-59655 Villenenve d'Ascq, France.
2 Physics Department, University of Strathclyde, 107 Rottenrow, Glasgow, G4 ONG, United Kingdom.
(3) Dipartimento di Fisica, Piozza Torricelli 2, 56126 Pisa, Italy.
{July 27, 1993. Revised July 22, 1994)

We show how to use topological analysis to construct from experimental data a symbolic coding of a
chaotic attractor. Time series data from a chaotic CO; laser with modulated losses operating within
parameter regions corresponding to attractor crises have been analyzed. A procedure for determining
a generating partition from the data is presented, and the connection between crises and a symbolic

description of the dynamics is determined.

PACS numbers:05.45.4+b, 42.50.Ne, 42.55.Lt

Unstable periodic orbits have been recognized as a ma-
Jjor tool in characterizing low-dimensional chaotic behav-
ior, particularly because they can be extracted from ex-
perimental time series [1]. An analysis of strange attrac-
tors proposed by Mindlin et al. [2] proceeds by determin-
ing the topological organization of these orbits, and has
been successfully applied to a few experimental systems
[3-5], including the laser with modulated losses (LML)
used in the experiments reported below [6].

Key to this approach is the fact that, for an attrac-
tor embedded in a three-dimensional (3D) phase space,
topelogical invariants, such as linking numbers or knot
polynomials [7], may be used to determine in which way
its periodic orbits are knotted and linked with each other.
Moreover, there is a one-to-one correspondence between
unstable periodic orbits of a 3D hyperbolic chaotic flow
and periodic orbits carried by a 2D branched manifold,
the “template” (or “knot-holder”) [8], each periedic orbit
of the flow having the same invariants as the associated
template orbit. Experimental strange attractors are gen-
erally not hyperbolic, but the existing orbits are orga-
nized as in the hyperbolic limit as they cannot intersect
on their whole domain of existence.

Coding trajectories as sequences of symbols (symbolic
dynamics}, is another powerful approach used to classify
chaotic evolution and is intimately connected to topolog-
ical analysis [8]. Methods to construct symbolic codings
for 2D maps, including Poincaré maps of 3D flows, have
been proposed [9], but their application to experimental
systems seems difficult. This explains why topological
analysis has been applied so far only to experimental in-
vestigations where symbolic coding could be obtained by
means of 1D first return maps [3-6].

In this Letter, we ap~'v the topological and symbolic
dynamics approaches to cases where methods based on
a 1D first return map method cannot be used. As the
modulation amplitude is increased, the LML exhibits a
series of crises [10-12] which widen or destroy the attrac-
tor [13]. Beyond the first crisis, no well-defined 1D map
can be found, and thus there is no simple symbolic cod-

ing. However, this does not preclude the existence of a
well-defined symbolic coding: one objective of this Let-
ter is to present a method of constructing such a coding
from the experimental data. We also want to show that,
with or without a symbolic coding, important informa-
tion can be extracted from the topological invariants of
the unstable periodic orbits.

To check if the topological structure of the attractor is
preserved in the crises, we have followed a self-consistent
approach first used by Solari and Gilmore in their analy-
sis of a theoretical model [14]. We have matched invari-
ants of experimental periodic orbits to those of orbits
with the same period belonging to the previously deter-
mined pre-crisis template [6], the Smale’s horseshoe (SH)
template with zero global torsion [8].

Identification of topologically allowed symbolic names
for the detected periodic orbits has revealed that the ob-
served crises are associated with the appearance of par-
ticular symbol sequences in the symbolic dynamics. If pe-
riodic orbits are classified on the basis of these sequences,
we find that a crisis occurs when all orbits in a given class
have been created. Furthermore, the topological identi-
fication of periodic orbits, with only a small part needed
to determine the template, has allowed us, to construct a
symbolic coding for the experimental data by determin-
ing an approximate generating partition. This allowed us
to study the order of appearance of periodic orbits with
specified names when parameters change, and to com-
pare this order with the “kneading order” [8] (the latter
classifies periodic orbits of unimodal maps of the inter-
val with respect to their symbolic name, and predicts in
which order they are generically created in such maps).

This approach, combining topology and symbolic dy-
namical concepts, represents a general and very powerful
method to analyze experimental data without the restric-
tion of the 1D first return map, and to define a more
precise generating partition than that found empirically
in Refs. [15,16].

The experimental setup consists of a waveguide CO,
laser with intracavity losses modulated at a frequency of
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382.5 kHz. This system is well-known to display chaotic
behavior [10-12,17]. Rather than the output intensity
I of the laser, we have recorded X = log/ which was
recently shown to be a more efficient variable to charac-
terize chaotic regimes [18]. Fig. 1 displays a segment of a
typical time series. For various values of modulation am-
plitude and laser frequency detuning, we have recorded
from 25 to 100 files, containing each 32000 §-bit sam-

ples, at a samplir ..te of approximatively 65 samples

per pered.
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FIG. 1. Plot of the logarithm of the output intensity vs.

time. The underlined segment shadows a period 3T orbit.

Periods of unstable orbits are integer multiples of the
modulation period T. A segment of the time series X (f)
where | X (t + nT) — X(t)| < e for tp <t <tp-+nT indi-
cates that the system trajectory in phase space shadows
a period nd’ orbit, and may be used as an approximation
of this orbit. Fig. 1 shows such a burst of periodic behav-
ior. We have only kept segments for which ¢ was smaller
than 4 % of the maximum amplitude of X(t), but for
most extracted orbits, representative segments with ¢ of
the order of the digitizing noise (i.e. 1 %) have been de-
tected, thanks to the very low internal noise of the laser
used in the experiments. For each set of parameters, we
have typically extracted from 20 to 38 orbits with a pe-
riod lower than or equal to 13T, with up to 304 pericdic
points in a Poincaré section.

I periodic orbits are embedded in a phase space with
coordinates (X (¢),dX (t)/dt, ¢), where ¢ = /T mod 1 is
the phase of the forcing term, their regular isotopy invari-
ants can easily be obtained by plotting the corresponding
time series segment versus ¢ (Fig. 2) [6], which gives a
representation of the orbit as a braid on n strands {7]. For
each periodic orbit, the following invariants were deter-
mined: self-relative rotation rates and torsion (the latter
characterizing the rotation of nearby trajectories around
the orbit), as well as relative rotation rates and linking
numbers with other orbits [3,14].

Template determination is most easily performed when
a symbolic coding of trajectories on the attractor is al-
ready available: the template is constructed so that at-
tractor and template orbits with the same name have
identical invariants. Let us recall that if a different sym-
bol is assigned to each branch of a template, this provides
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FIG. 2. Plot of a pertad 67 orbit vs. time module 7. Un-

der- and overcrossings are determined as explained in ref. [6].

for each periodic orbit on it a symbolic name listing suc-
cessively visited branches. We will call thereafter z (y)
the orientation-preserving (-reversing) branch of the SH
template.

Once a coding can be obtained from a partition of a
Poincaré section, with a different symbol for each of its
members, each trajectory may be coded with the sym-
bols associated to successive intersections with the sec-
tion plane. A partition is generating (i.e. associates to
each bi-infinite sequence a unique point in the section
plane), only if each periodic orbit is given a unique sym-
bolic name. While the existence of generating partitions
for nonhyperbolic systems is not rigorously ascertained,
there i1s numerical evidence that partitions can be con-
structed which are generating down to scales well below
realistic experimental resolutions [9].

Determining experimentally such a partition is not
straightforward, except when an almost 1D first return
map can be constructed, with a symbol assigned to each
monotonic part of the map. For low modulation ampli-
tudes, we could always find such a map and Fig. 3(a)
shows a Poincaré section obtained in this case. For these
parameters, the template is the SH template [6].

At higher amplitudes, after an interior crisis {13,10-12]
in which the attractor suddenly widens after colliding
with the zyy (= zy?) 37T unstable orbit, the first re-
turn diagram of X (f + T') versus X () associated to any
Poincaré section, such as the one in Fig. 3(b), is multi-
valued and thus not the graph of a 1D map. In this case,
it 1s not even clear whether new symbols should be used,
though the method of sweeping Poincaré sections (see
e.g. Ref [6]) apparently indicates that the stretching and
folding mechanisms remain unchanged. Thus we have
only the topological invariants from which to extract the
symbolic information.

Invariants of single orbits show remarkable robustness
with respect to experimental uncertainties. When the
signal to noise ratio is high, as here, very few (typically
2--3 %) measured linking numbers of close orbits may dif-
fer from their actual value due to spurious crossings [6].
These discrepancies are however easily detected, being
inconsistent with other measured invariants; unless dis-
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FIG. 3. Poincaré sections of attractors recorded: (a) at low
modulation amplitudes (contains only C> orbits), (b) after
collision with the 3T orbit ry2 {contains C; and Cs orbits,
circles are intersections of periodic orbits with the section
plane, the solid line is the boundary of an approximate gen-
erating partition), (c) after collision with the 47 z%y? orbit
{contains C%, C3 and Cy orbits)

carded, they prevent any template from fitting the data.
We found that the SH template is the simplest template
compatible with data recorded beyond the crisis.

For a certain number of periodic orbits, including most
of low period ones, invariants are genuine fingerprints:
they correspond to a unique SH orbit, and only one sym-
bolic name may be assigned to these orbits. More gen-
erally, determining all sets of SH orbits with invariants
identical to experimental ones left us with only a few
possible symbolic names for each periodic orbit.

Although symbolic names of all orbits are not fully de-
termined in this way, a remarkable feature nevertheless
emerges: defining a C,, orbit as having a name containing
the sequence ™~ !, but not the z™ one (e.g. the name of
a (', orbit only contains isolated z's), every orbit visiting
the pre- (post-) crisis part of the attractor can only be a
C3 {C3) orbit. The crisis thus coincides with the appear-
ance of the previously forbidden sequence z* in the sym-
bolic dynamics. This simple rule has also been reported
for a NMR oscillator {16], but it should be stressed that
it is obtained here from merely computing topological in-
variants, without relying on any partition. Furthermore,
we have found this rule to be part of a pattern, as shown
by the following scenario observed as the modulation am-
phitude was increased.

The attractor of Fig. 3(b) first collides with the unsta-
ble 4T orbit z%y? (identified by its invariants), and the
system switches to the stable 4T orbit z%y, which gives
birth through period-doublings to a four-piece chaotic at-
tractor. This attractor experiences then an interior crisis
involving the z?y? orbit again, after which the Poincaré
section in Fig. 3(c) has been recorded. The corresponding
attractor next collides with the z3y® orbit, and motion
settles down on the stable orbit zy.

All these crises are thus due to collisions with the
"~ 1y? orbits, and the sequences z" appear just after
such collisions, at least, as observed here, for n = 2, 3
and 4. Note that the 2" !y? and z"y orbits (n > 2)
are the only period n + 1 unknotted SH orbits. More-
over, just before the collision with the zy?® orbit, we have
unambiguously detected the 137 orbit (zy?)*y, which is
“quasi-one-dimensional” {qod): its presence implies the
existence of all periodic orbits preceding it in the knead-
ing order [19]. This proves the presence of all Cs orbits
up to period 13T, and of almost all higher order C» or-
bits: the collision with the zy? orbit very likely occurs
just after all Cy orbits have been created. Similarly, the
collision with the z%y? orbit should occur when all C3
orbits have been created, as shown by the presence of
the (2%2y%)3y qod orbit in files recorded just before this
collision. Thus, there appears to be » deep connection be-
tween the observed crises and the spectrum of periodic
orbits.

Selecting periodic orbits with an unambiguous name,
we have constructed a partition of the section plane in
Fig. 3(b), so that it gives to each periodic orbit its topo-



logical symbolic name. This partition is defined by a list
of reference points, each associated to a symbol; intersec-
tions of trajectories with the section plane are coded with
the symbol assigned to the closest reference point. To get
a partition as simple as possible, we proceeded through
successive refinements. First, 1T and 2T periodic points
y and zy were the only reference points. Then, for each
periodic orbit from low-pertod to high-period ones, the
following steps were carried out: (i) the cyclic permuta-
tion of the topological symbolic name least differing from
the name given by the partition was first determined, (ii)
petiodic points for which a discrepancy remained were
then added to the reference hist to update the partition.
In this way, large-scale features are determined from low
period orbits, while small-scale details of the partition
are extracted from high period ones.

The boundary of the approximate partition so obtained
usually can be localized within a region small enough
to code points not in its vicinity without ambiguity.
We have thus used this partition to identify substrings
of symbolic names of not yet identified periodic orbits,
and discarded symbolic names not containing these sub-
strings. Alternatively checking topological consistency
and refining the accuracy of the partition with newly
identified orbits, we finally determined for each orbit a
unique symbolic name, the resulting partition is shown
in Fig. 3(b). Note that, whereas detected orbits do not
uniformly cover the attractor, they are found in abun-
dance near the boundary of the partition, which makes
the precision of the latter of the order of the experiraental
resolution. Furthermore the partition is seen to pass near
but not exactly through the most apparent folds of the
Poincaré section, showing that naively connecting these
latter would not yield a correct solution.

Data files recorded as the modulation amplitude was
increased contain an increasing number of unstable peri-
odic orbits. Before the first crisis, we have observed that
periodic orbits appear in an order corresponding to the
kneading order for Cs orbits, at least up to period 8T
Similarly, between the collisions with the zy? and z2y?
orbits, kneading order governs the order of appearance of
lowest periodic orbits. Note that in this case, some sym-
bolic names have been obtained by means of partitions
as described above: the agreement, with the kneading or-
der seems to indicate that these partitions yield sensible
symbolic codings.

In unimodal maps of the interval such as the logis-
tic map, C, orbits appear only when all C,_; orbits
have been created. This is not true in the LML, which
is known to exhibit multistability {17,10-12,14]: Cs or
(4 orbits may coexist with a -~ attractor, and thus the
kneading order governs the order of appearance of peri-
odic orbits only within each class C,, of orbits. As noted
in Ref. [13], multistability and the subsequent crises can
occur even in highly dissipative systems, such as the LML
in our case, for which correlation dimension estimates

near 2.1 have been obtained [18], while the relation be-
tween multistability and dissipativity has been addressed
by Arecchi et al. [11] in the context of the LML. From
the above symbolic dynamical analysis, we see that these
phenomena are very much controlled by the topological
organization of the unstable periodic orbits, and certainly
deserve further study through topological methods.

In conclusion, we have determined the template for the
LML 1n parameter regions where there was no simple
symbolic coding. The topological information extracted
from unstable periodic orbiis allowed us to very simply
characterize the observed crises in terms of symbolic dy-
namics. The fact that their organization can be analyzed
entirely by symbolic dynamics implies that the features
reported here should hold for many horseshoe-like chaotic
systems. We have also constructed an approximate sym-
bolic coding for the experimental data from the topolog-
ical information. The methods presented here may be
improved, yet we believe they already clearly illustrate
how powerful topology methods can unfold chaotic com-
plexity in experimental systems.

We are very much indebted to R. Gilmore for useful
discussions and a careful reading of the manuscript. We
also thank N. B. Tufillaro and T. D. Hall for useful advice
and communicating their work before publication.
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Unstable periodic orbits have been extracted from chaotic time series coming from a CO, laser
with modulated losses. Topological analysis of their organization reveals that chaos in this laser
occurs through the formation of a Smale’s horseshoe.

A topological method has recently been proposed
to analyse experimental time series from low-di-
mensional chaotic systems [Mindlin et al., 1990].
It relies on the identification of unstable periodic
orbits embedded in the strange attractor associ-
ated with chaotic behavior, and on the analysis
of their topological organization. Indeed, periodic
orbits of dynamical systems are closed curves in
phase space, and the uniqueness theorem [Gucken-
heimer & Holmes, 1983| precludes that they inter-
sect each other as a control parameter is varied.
When a strange attractor can be embedded in a
three-dimensional phase space, topological invari-
ants from knot theory [Kauffman, 1987] may thus
be used to determine in which way its unstable pe-
riodic orbits are knotted and linked together. The
global organization of periodic orbits can then be
characterized by a two-dimensional branched man-
ifold, the template (or “knot holder”) [Birman &
Williams, 1983] (see also [Holmes, 1988; Tufillaro
et al., 1992]) in which they can be embedded while
preserving their topological invariants. The struc-
ture of the template is described with a small set
of integers which depend only on the properties of
orbits of lowest period, and can be used to classify
attractors.

This analysis has been successfully applied to
experimental time-series data from the Belousov-

PACS numbers: 05.45.+b, 42.50.Lc, 42.55.-f

Zhabotinskii reaction [Mindlin et af., 1991], from a
laser containing a saturable absorber [Papoff et al.,
1992] and from an NMR oscillator [Tufillaro et al.,
1991]. We report here the result of such an anal-
ysis in the case of the CO9 laser with sinusoidally
modulated losses.

This laser is known to reach chaos through
a cascade of period-doubling bifurcations and has
been the subject of intense investigations [Arecchi
et al., 1982; Midavaine et al., 1985; Dangoisse et
al., 1987]. The various control parameters include
cavity frequency detuning and the amplitude of the
external driving, the frequency of which being equal
to 382.5 kHz in our experiments. Experimental data
analysed here have been obtained from the laser as
described by Lepers et al. [1991]. Because of the
high stability of the laser, files may be successively
stored and sets of 25 to 100 files of 32000 samples
have been analysed for each setting of the control
parameters.

Correlation dimension analyses using the Grass-
berger-Procaccia algorithm [Grassberger & Procac-
cia, 1983] have been made on signals coming from
this laser operated in the chaotic regime. They have
shown that the reliability of dimension estimates is
greatly improved when time series of the logarithm
of the laser output intensity, rather than of the in-
tensity I(t) itself as in previous analyses, is used

5437
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to reconstruct an experimental strange attractor
through the time delay method [Lefranc et al.,
1992]. This occurs because typical time series dis-
play long sequences of very weak intensity, result-
ing in a very large inhomogeneity of reconstructed
strange attractors. It must be noted that because
of the particular nature of the laser equations, Log I
appears as a natural variable of the dynamical
system [Oppo et al., 1989|. Similarly, topological
analysis using intensity is made meaningless by the
uncertainties of the relative positions of trajecto-
ries in the near zero intensity region. The results
reported here have therefore been obtained from
time series of Log(I + Ip), where Iy is a very small
constant which can be adjusted in the logarithmic
amplifier used for signal processing. This proce-
dure was allowed by the high signai-to-noise ratio
achieved in this laser, limited practically by the res-
olution (8 bits) of the transient digitizer used in
these experiments.

Let us now describe the procedure of the anal-
ysis. First, unstable periodic orbits are extracted
from time-series data by searching for close returns
[Mindlin et al., 1991}. The fact that our system is
periodically driven simplifies this step, since peri-
odic orbits have periods which are multiples of the
modulation period T = 2x/w. A segment of the
time series X (t) where |X(t) — X(t + nT’)| < € for
to < t < tp + nT indicates the shadowing of a pe-
riod nT orbit by the trajectory of the system on the
attractor, and can be used as an approximation to
this orbit. In our analysis, ¢ was chosen to be equal
to 0.04 X (Xmax — Xmin). Examples of such seg-
ments are shown in Fig. 1. The fact that the period
T orbit on first row is shadowed very closely dur-
ing several periods of modulation is an indication
that the internal dynamics of our laser is very lit-
tle perturbed by noise (similar sequences lasting up
to 14 periods have been extracted). This allowed
us to extract high order periodic orbits up to pe-
riod 17T. Note the peculiar case of the second row,
where after a few cycles near a period 3T orbit the
system enters directly the vicinity of a period 2T
orbit. It should be stressed that a time series with
strong recurrence properties has almost certainly a
low-dimensional deterministic origin, as such bursts
of almost periodic behavior are extremely unlikely
in stochastic or high-dimensional systems.

Second, periodic orbits must be embedded
in a three-dimensional phase space. Taking advan-

tage of the particular nature of periodically driven
systems, we used {X({t), X(t + 1), ¢} or {X(¢),
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Fig. 1. Examples of time-series segments which closely
follow unstable periodic orbits. Periods of these orbits are
indicated at the beginning of segments.

X (t)/dt, ¢} embeddings, where 7 is a time de-
lay and ¢ = wt mod 27 is the phase of the exter-
nal modulation. We found that these two phase
spaces led to consistent results, provided that 7 be
small enough (i.e., smaller than T/4 in the worst
case). An experimental strange attractor and the
extracted unstable periodic orbits are displayed in
Figs. 2(a) and 2(b) respectively, using the first kind
of embedding. These two figures illustrate well the
fact that the essential features of the dynamics can
be obtained from the study of unstable periodic or-
bits. Note that {X(t), dX(t}/dt, ¢} is the natural
phase space of the system, as the free CO> laser is
well described by two first-order ordinary differen-
tial equations (see, for example, Dangoisse et al.,
[1987] or Oppo et al. {1989]).

More conveniently than in 3D phase space, the
topological structure of periodic orbits can be ana-
lyzed by plotting the corresponding time-series seg-
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(X(1)+%s) sing

{X(t)+Xqs) sing

Fig. 2. (a) Experimental strange attractor reconstructed using an {X(t), X(t + 7), ¢} phase space with 7 = T/4. (b) Some
unstable pericdic orbits embedded in this attractor and extracted from the time series.
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Fig. 3. Plot of a time-series segment corresponding to a
period 4T orbit versus time modulo T

ments versus time modulo T'. Periodic orbits are
represented in this way as braids on n strands [Bir-
man, 1975], provided we determine for each cross-
ing of two strands which one crosses over the other.
This is straightforward if a {X(t),dX(t)/dt, ¢}
phase space is implicitly used. Indeed, whenever
two strands cross, the one with a lower value of X (f)
before the crossing corresponds to a higher value of
dX (t)/dt {which is the coordinate perpendicular to

[3%}

7 N\

N

R 1/\ /
Z
<
/
2b
4 T T y
0.0 0.2 04 0.6 0.3 14
(t,/Tv mod 1

Fig. 4. Plot of time series segments to period T

(strand 1) and 2T (strands 2a and 2b) orbits versus time
modulo T

the plot) and therefore passes over the other. This
implies that only positive braids can be obtained.
A braid on four strands representing a 4T orbit is
shown in Fig. 3, where over- and undercrossings
have been indicated for clarity, following this con-
vention. Plotting together a period nT orbit and a
period mT orbit gives in the same way a braid on
n +m strands, as in Fig. 4, where 17" and 2T orbits
have been plotted.

g
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Several invariants can be computed from the
structure of the braid. They include linking num-
bers and relative rotation rates [Solari & Gilmore,
1988; Tufillaro et al., 1990] for pairs of orbits, and
self-relative rotation rates and knot polynomials
[Kauffman, 1987] for single orbits. For example,
the braid of Fig. 3 has self relative rotation rates
equal to 0, 1/4, (1/2)? and is a representation of a
trefoil knot with Conway polynomial V = 1 + 2°.
The linking number of the period 1 and period 2 or-
bits shown in Fig. 4 is 1, since they cross each other
twice, and their relative rotation rate is 1/2. This
information characterizes the topological organiza-
tion of periodic orbits.

The results reported below have been obtained
for chaotic regimes observed between the inverse
period-doubling cascade of the 17T orbit and a crisis
where the chaotic attractor collides with an unsta-
ble 3T orbit. In this region of parameter space, it
has always been possible to find a Poincaré section
of constant phase with a return map well approxi-
mated by a unimodal 1D map X(to + (n + 1)T) =
J(X(to+nT)). The existence of such a map allowed
us to assign a symbolic itinerary to each extracted
periodic orbit, by labeling each of its intersections
with the section plane “z” or “y”, depending on
whether the orientation-preserving or orientation-
reversing branch of the first return map was vis-
ited. This procedure was also used in other topo-
logical investigations of chaotic systems [Mindlin
et al., 1991; Tufillaro et al., 1991; Papoff et al.,
1992].

To illustrate this, Fig. 5 shows a 1D first re-
turn map obtained just before the crisis occurs, with
points corresponding to a 7T periodic orbit. From
the order in which they are successively visited, one
can read that the symbolic itinerary of this orbit
is zyzyzy®. The fact that two different extracted
periodic orbits receive in this way different names
indicates that this binary symbolic encoding is a
good approximation to a generating partition.

It can then be checked that a template can be
constructed, so that each experimental periodic or-
bit is associated with a unique orbit of the template,
with the same symbolic name and identical topolog-
ical invariants.

The topological properties of the three lowest
order periodic orbits suffice to determine the struc-
ture of any two-branch template [Mindlin et al.,
1991]. For most of the files analysed in the param-
eter space region under study, these orbits were the
y, zy, and xy3, orbits, whereas 37T orbit zy? could
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Fig. 5. 1D first return map on a Poincaré section of constant

phase. Orientation-preserving and -reversing branches are
labeled “z” and “y” respectively. Points corresponding to a
7T orbit have been plotted, from which the symbolic itinerary
“pyryry?” can be read.

Fig. 6. The horseshoe template with zero global torsion.
The “x” {respectively “y”) branch is orientation-preserving
{respectively-reversing).

be extracted from signals recorded in the vicinity
of the crisis. Indeed, this orbit is located on the
boundary of the basin of attraction of the chaotic
attractor, and the collision of this orbit with the
attractor is responsible for the occurrence of a crisis.
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Table 1. Relative rotation rates of extracted periodic orbits up to period 8T. Values in square brackets have been obtained
using the correction described in the text. Values in braces differ from those predicted by the horseshoe template.
Orbits 1 2 3 4 58 5b Ga 6b
Yy 1 0
TY 2 % 0, %
zy? 33 i 0
ay’ 4 : wi 3 0, 3 (3)°
=' s 3 : 0, (3)*
zyzy? 5b 3 H 3 : 2 0, ()"
zyay’ b2 3 33 3 23 : K 0, (3)* (3)°
N T T b g LY o n Gy
zyzy* a3 7 3 7 5 (3] (2] (31
zy® LI 7 3 7 : (2] 7 3]
(xy)’zy? ¢ 2 & i (28] 3 3 2t =
SO N . 3 LGy 3] L Ll
oy’ 8 31 33 3 2 3 3 53 {&h 3
L R T T 3 5 3 3] {Hh 2 31 2
wieyt s 3 3 : ; : 3 : :
Orbits Ta b Tc 8a 8b 8c 8d
zyxy? Ta 0, (%)s
zy® b (3] 0, ($)°
(zp)zy® ¢ (353 @G (G
(zy)’zy®  Ba (3 ; 3 0,5 (3% ()
Ty’ 8b (%] (3] % - 0, ()% (»*
zyxy® 8¢ (#) 3 (25 - HE 0, ()% )
ry'zy'  8d : : H 5 s s 0, (3

At each parameter value, the lowest order pe-
riodic orbits have been found to be knotted and
linked as in the Smale’s horseshoe template with
zero global torsion |[Holmes & Williams, 1985],
which is shown in Fig. 6. Furthermore, it has been
checked that invariants of higher order orbits were
correctly predicted by this template, as is required
to give definite evidence that its structure deter-
mines the global topological organization of the
attractor.

As an example, we present results for a chaotic
attractor about to collide the zy? orbit, as many

periodic orbits could be extracted from the corre-
sponding signals. The associated first return map
is shown in Fig. 5.

The corresponding relative rotation rates of or-
bits up to period 87 are shown in Table 1. To com-
pute them, the number of crossings of two strands of
the braids was determined by looking for time inter-
vals where the distance between them was smaller
than some constant 7. If the relative positions of
the two strands at the beginning and at the end
of such an interval were different, one crossing was
counted. Choosing 1 = 3 bp, where by is the least

Ac.
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Table 2. Self relative rotation rates of extracted periodic
orbits from period 9T up to period 127T.

Orbits Self Relative Rotation Rates
(ev)as” % 0, ()% (§)*

iy’ zy® 9b 0, (3)%, (4)*
(xy)’zy* 9c 0, (4)%, ()°
zy’zy! 9d 0, (1) (4)°
zyzy Ty 10a 0,2, (g)a
zyzy'zy® 10b 0, 3, (2)
(zy)'zy® 11a 0, ()2, ()%, (&)
zyay oy 11b 0, (£)4 (&)°
zyzy’zy® 1lc 0, (£)4 (&8
ry(zy”)® 11d 0, (&)

(zy)?zy 'y’ 12a 0, (%)4’ (%)7

zy*zy® 12b 0, (%)2, (15_2)9

significant bit of the digitizer (i.e., 1 is 1.2% of the
maximum amplitude of the signal), prevents count-
ing spurious crossings caused by digitizing noise or
by imperfect shadowing of orbits.

However, there remained a few discrepancies,
especially when dealing with orbits very close to
each other. We observed that these errors occurred
when two orbits were closer than n over more than
a full period of modulation. It was possible in these
cases to find long time intervals where no cross-
ing was detected by the procedure described above
whereas at least one crossing should have occurred,
as indicated by the fact that the two trajectories
had passed through the orientation-reversing part
of the Poincaré section. We have therefore modi-
fied our algorithm so that two crossings are counted
when such intervals were detected. This simple cor-
rection yielded the expected results in almost any
case. Values of Table 1 for which this has been ap-
plied are displayed in square brackets. It should be
noted that in many cases, the correct results could
also be recovered by decreasing 1 to 2bg, which gives
some confidence about the validity of this proce-
dure. However, decreasing n induces spurious cross-
ings for some other pairs of orbits, and a sensible
comparison between theoretical and experimental
values requires that these latter be obtained from a
unique algorithm with fixed parameter 7.

A1

Three values in Table 1 are not those predicted
by the horseshoe template and are displayed in
braces. We have observed that these errors were
removed by increasing 1 to 4by or 5by, and should
therefore be due to spurious crossings.

Self relative rotation rates of orbits up to period
12T can be found in Tables 1 and 2, and Table 3
displays knot polynomials of orbits up to period 87
Invariants of single orbits seem to be less sensitive
to experimental uncertainties than those character-
izing pairs of orbits, as self relative rotation rates
and knot polynomials computed from the experi-
mental data are in perfect agreement with those
predicted from the horseshoe template.

These results strongly support the hypothesis
that chaos in the COy laser with modulated losses
occurs through the formation of a Smale’s horse-
shoe, one of the simplest mechanisms responsible for
chaotic behavior. This result is consistent with pre-
vious theoretical investigations [Solari & Gilmore,
1988].
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Fig. 7. Poincaré sections of a chaotic attractor in a {X (¢},
X (& + 1), ¢} phase space with + = T'/4. ¢ increases by w/6
between consecutive figures.
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Table 3. Conway polynomials and knot types of extracted periodic orbits up to period 8T. (g, a1, -, @n)2n stands for the
polynomial ag + a1 22 v azzt + - 4 an2®.
Orbits Conway Polynomial Knot Type
Y 1 1 trivial
Ty 2 1 {rivial
ey? 3 1 trivial
zy® 4 1+ 22 (2,3) torus
zy? 5a 1+ 327+ 2* (2,5) torus
ryry® 5b 14322 4 2% (2,5) torus
zyzy® 6a L+82% + 1424 + 725+ 28 (3,5) torus
:.r:’y5 6b 1+ 822 +142% + 7% + 28 (3, 5) torus
zyzy® 7a 1+ 1622 + 602 + 782° + 442% 4+ 1121° 4 2"? (3,7) torus
ry® ™ 1+ 1622 + 602% + 782° + 442° + 112" + 22 (3,7) torus
{zy) zy® Tc 1+ 1222 + 312% + 272% 4 92° 4+ 210 (7, 3, —2) pretzel
(zy) zy’ 8a (1, 25, 155, 305, 451, 275, 90, 15, 1)16 {(2, 13); (2, 3)} iterated torus
xy’ 8b (1, 30, 235, 741, 1131, 936, 442, 119, 17, 1)15 (4,7) torus
zyxy® 8c (1, 30, 235, 741, 1131, 936, 442, 119, 17, 1hs (4,7) torus
zyzy’ 8d (1, 21, 105, 189, 157, 65, 13, 1)14 (3,8) torus

The template of a flow describes schematically
in which way trajectories on the attractor experi-
ence the folding and stretching mechanisms which
are responsible for chaotic behavior. When the at-
tractor has a fractal dimension sufficiently close to
2, the template is also easily determined by inspect-
ing the evolution of Poincaré sections at ¢ = ¢
when ¢g is varied from 0 to 2. This is illustrated
in Fig. 7, which shows successive Poincaré sections
as ¢ is increased in steps of w/6. Folding occurs
from Fig. 7(f) to Fig. 7(1), where the Poincaré sec-
tion has the characteristic form of a horseshoe. It
can be checked that the left branch of the section in
Fig. 7(1) contains trajectories which do not experi-
ence rotation between 0 and 27, indicating that the
global torsion of the flow is zero, whereas the right
branch corresponds to a torsion of half a turn.

It should be emphasized that topological analy-
sis is complementary to dimension or entropy calcu-
lations since it assigns the mechanisms from which
chaos originates (e.g., formation of a Smale’s horse-
shoe) in addition to simply proving that the data
set is chaotic. It is yet not disconnected from met-
ric measures of chaos, as the first return map of an

12

attractor with an n-branch template has a topologi-
cal entropy bounded by Log n. This means that the
positive Lyapunov exponent A of our system verifies
AT < Log 2.

In conclusion, unstable periodic orbits have
heen extracted from time series from a CO; laser
with modulated losses for various values of the
control parameters. While knots and links are de-
fined in three-dimensional space only, the topologi-
cal invariants of periodic orbits could be determined
directly from the time series, using only implic-
itly a three-dimensional embedding. Knowledge of
the topological organization of the observed chaotic
regimes allowed us to identify, in the range of
parameters studied, the template for our system
with the Smale’s horseshoe template with zero
global torsion.
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