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1. INTRODUCTION

Wave or charge confinement are being increasingly employed [1] to en-
hance the efficiency of several nonlinear optical processes in view of their ex-
ploitation in devices. The purpose here is to increase the interaction length or
the optical nonlinearity, respectively. As will shortly become plausible, the two
confinements cannot be implemented simultaneously in the same material as
they address aspects incompatible with each other. The first is achieved by
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confining the interacting optical beams in guides or resonators whose mini-
mal dimension must be larger than the opticai wavelength; this constitutes
the topic of the nonlinear guided optics [2] in the transparency region of
the nonlinear optical materials, where the nonlinearities, even for the most
favorable cases, are weak but the absorption losses can be kept minimal. The
second consists in enhancing the optical nonlinearity of materials with very
delocalized valence electrons, like metals, semiconductors, or conjugated
polymers, by artificially confining [3-5] the valence electrons in regions
much shorter than their natural delocalization length in the bulk, which ex-
tends over many unit cells or even to infinity; its most conspicuous feature
1s the appearance of discrete optical resonances whose position, oscillator
strength, and dynamics depend on the extension of the artificial confinement,
and hence can be modified to meet certain requirements. This is the topic of
the nonlinear optics of quantum confined microstructures.

In the present chapter, we shall restrict ourselves to the second type of
confinement or quantum confinement, and discuss its impact on the optical
nonlincaritics. Even so, we shall mainly concentrate our attention on the
degenerate odd order optical nonlinearities and, in particular, we have singled
out the optical Kerr eflect related [6] to the nearly frequency degenerate
third-order susceptibility ¥, — ', '), with w" = . to illustrate different
aspecets of the quantum confinement. Indeed. close to the quantum confined
resonances that one ultimately wishes to exploit, the quantum confined micro-
structures behave as truly isolated two-level systems, and the essential non-
linear mechanism then is the saturation or bleaching of the transition, which
is most clficient in the degenerate or quasi-degenerate odd order nonlinear
processes. where in addition the phase-matching condition is easily satisfied
in diflerent beam configurations: evidently, the important point here is to find
out under what conditions the optical Kerr eflect coeflicient is optimally reso-
nant. After a brief account of the fabrication techniques and the basic guan-
tum mechanical aspects related to confined microstructures, we proceed to
discuss the behavior of the optical nonlinearities in quantum confined micro-

structures. Technical aspects and details will be left out as they can be found
in the specialized literature.

2. NONLINEAR OPTICS IN QUANTUM CONFINED
MICROSTRUCTURES

The fabrication of quantum confined microstructures makes appeal [5] to
the most sophisticated technologies regarding crystal growth and deposition,
and the present interest in their nonlinear optical properties is only part of
very intensive und multifaceted research activity related to the longstanding
question of the validity range of crystal solid state concepts and behavior,
and their relation to molecular and atomic ones: this is essential in under-
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standing and predicting the properties of crystals with extended clectronic
states. like metals, semiconductors. or conjugated polymers, where the elec-
tronic density distribution of the constituent elements undergoes dramatic
modifications in the course of forming the crystal. The implications of these
aspects in miniaturized devices can be immense. With respect -to nonlipeur
optical devices, one of the goals in the use of the quantum f:onhnemenl 15 10
optimize the optical nonlinearity per valence electron in a given f.requt.:ncy or
time range, as dictated by the nonlinear optical device one has in mind. Tts
usefulness evidently relics on the possibility of artificially modifying the ma-
terial characteristics, and selectively enhancing or suppressing certain polar-
ization mechanisms with respect to the unconfined bulk matcrial.

In the bulk, an external electric ficld E. to the extent that does not exceed the
cohesive field in the material E,, induces a nonlinear polarization [6.7]

P=y"E+ yYEE + yVEEE + - -, (h

where y™ is the nth order susceptibility [6,7). whose magnitude is of the
order of

Z("' > ]/E: 1‘ (2]

where F. x e/al. where ¢, a renormalized Bohr radius, measures the ex-
tension of the valence electron wave function as is fixed by the interplay
between the bulk Coulomb potential and kinetic energies. By confining the
valence charges within a potential well of extension L < 2a.. one enhances the
kinetic energy over the Coulomb one, and the electrons then are free to move
within an artificial potential well whose cigenstate spacing and dynamics
depend on the extension L. Concommittantly, the caefficients z™ in the re-
sponse (1) to the external field are modified since the charge cohesion is now
maintained by the confinement potential. and the expansion accordingly must
be made with respect to a new paramelter related to the confinement strength
instead of E/E_. We shall not pursue this argument any further exeept to poimt
out that, because of the presence of interfaces that must be introduced to
enforce the confinement, the electric field that polarizes the charges inside the
microstructure, E,. is also modified through the dielectric confinement that
takes place, and is different from the externally applied one. This too can have
a dramalic influence on the nonlinear optical response superimposed on that
of the quantum confinement. The quantum and diclectric confinements are
two quite distinct effects, and affect the optical nonlinearity differently as will
be discussed in what follows.

2.1. Fabrication of Microstructures

The progress in the fabrication technigues [3.5,8] has been uneven: for
confinement in one dimension in semiconductors (quantum wells), they have
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reached a high degree of sophistication, while they are rudimentary for three
dimensions (quantum dots) and essentially nonexistant for two dimensions
{quantum wires). The situation of course will change in the near future as all
these microstructures are of vital importance in science and technology. The
theoretical understanding and treatment of the transport and optical proper-
ties of these microstructures has also witnessed [8] noticeable progress. Here,
we shall only recall the main aspects of the fabrication techniques.

The one-dimensional confined semiconductor microstructures or quantum
wells are obtained by controlling the crystal growth along a crystallographic
direction to within an atomic layer. The growth proceeds by layer after layer
deposition on an appropriately chosen crystalline substrate. Several tech-
niques have now been developed, such as molecular beam epitaxy (MBE),
metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy
(LPE), hydride vapor transport ('"1VT), and hot wall epitaxy (HWE). These
techniques, and in particular the first two are combined with powerful in situ
analytical ones that ensure that each atomic layer is properly deposited. Fi-
nally, confinement can also arise by the presence of local strain in the lattice,
and strained quantum wells [9] are presently under intensive investigation.

The preceding techniques, which have initially been developed to obtain
microstructures with quantum confinement in the growth direction, can also
be extended [9] to achieve confinement in two or three directions by pat-
terning the one-dimensional confined structure with nanoscale lithographic
techniques. Unfortunately, lithographic technigues and the ensuing elching
profoundly modify the characteristics of the microstructures as they intro-
duce damage that alters the dynamics as well as structure and defect content
in an uncontrolled way, such as carrier depletion, enhancement of nonradia-
tive defects, and others. For these and other reasons, these techniques are
heing abandoned in favor of other more direct techniques that respect free
growth in two or three crystaliographic directions.

Such a method for fabrication of quantum confined microstructures in two
dimensions, or quantum wires, is the use of MBE or MOCVD techniques for
layer by layer growth on vicinal surfaces through nucleation in well-organized
steps [10-12] on an appropriately patterned substrate. Also, growth on
sidewalls of cleared and etched multiquantum well structures provide excel-
lent channels for growth of quantum wires, but here too the removal of excess
semiconductor layers poses severe problems.

For fabrication of three-dimensional quantum confined microstructures
or quantum dots, the most commonly [13] used technique is more or less
thermally or chemically controlled precipitation in solid or liquid matrices. In
the case of solid matrices, one first forms [ 14-17] widely supersaturated glass
melts with uniformly dispersed semiconductor clusters, such as CdS,Se, . or
(CdS, Te, .. where x varies from 1 to 0, CuCl, CuBr, and more recently also
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GaP. In the ensuing striking process, these clusters grow to crystallites by
coalescence where larger clusters grow further at the expense of the smaller
ones, and reach sizes where volume properties overtake surface properties and
the solid-state—like features are acquired. Several structural techniques [13]
have revealed that these crystallites beyond the nucleation stage have the same
structural features as the bulk ones and, in particular, the same symmetry and
lattice constants. The size distribution is to some extent controlled by the
temperature and duration of the striking process, and this also fixes the color
of the doped glass. Solid matrices other than glass are also being used, where
the size distribution can be narrower than in glass, such as polymers or
zeolites [18], but other spurious effects and nonuniformity impose scvere
limitations here. Nanocrystals can also be obtained [19-22] in solutions or
colloids by the so-calied interrupted precipitation technique, and here the size
distribution can be narrower than in glass but the average size cannot be
varied easily; the surface properties also are not the same as in the glass matrix.
By subsequent evaporation of these liquid solutions, one has free-standing
nanocrystals, which can eventually be uniformly dispersed in a gel.

In principle, simil r techniques [13,23] can be used to obtain metal quan-
tum confined structures, but the efforts have not been successful yet. The most
studied systems here are small metallic particles embedded in a solid or hquid
matrix, most frequently glass or water. Incidentally, much of the impetus for
the study of electron quantum confinement originated from theoretical and
experimental work [23-25] on the magnetic properties of such systems. Fi-
nally, we also wish to mention that conjugated polymers to some extent can
be patterned to obtain quantum confined microstructures.

2.2. Quantum Confinement

The quantum confinement and 1o a certain extent the dielectric confinement
have a relevance only for crystals with very delocalized valence electron states,
as in semiconductors, metals or conjugated polymers. The states there can be
written as Bloch-band states [26]

Y (F) = Leik'ru"k{r)' (3
VY
where V, is the normalization volume in dimension d (crystal volume).
ualr + R) = u,, (r)is a real space periodic function, and R is any lattice vector.
The corresponding band energy E,(k) is a reciprocal space periodic function,
ie. E(k + K) = E (k) where k is the wavevector that labels the ¢lectron state
in the band n within the first Brillouin zone (B.Z.) that has dimensions of the
order of the inverse of the lattice constant. Except close to the border of the
B.Z. the space periodic part u,,(r) is fairly insensitive to k as it essentially
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reflects the wavefunctions centered at the atoms within a unit cell. For most
purposes, 1t is sufficient to only consider a two-band model, a filled valence
band and an empty conduction band, separated by an energy gap E, in the
center of the Brillovin zone.

The essential aspect of (3) is that it has the form of a periodically modulated
free wave and k is a good quantum number. In particular, close to the B.Z.
center where the k-dependence of u,, is weak and can be disregarded, the
energy spectrum is

E h?
El:.v = i(?s + 2m,:k2) (4)

namely the same as for free particles with mass m* and m*, which from now on
will be labelled m¢ and m}, for the conduction (+) and valence (—) bands,
respectively, also termed electron (negatively charged) and hole {positively
charged) bands. In the case of semiconductors, the valence band is usually
spin-orbit splitinto several subbands, the so-called light and heavy hole bands.
For most purposes (see Fig, 1), the main qualitative difference between metals
and semiconductors is that for semiconductors E, # 0and the two bands are
asymmetric with respect to the Fermilevel E, as they are formed from different
combinations of s- and p-type atomic wavefunctions and m* < mp < m, while
for metals £, = 0 and the two bands are symmetric with respect to the Fermi
level is they are formed from the same combination of s-type (and eventually
p-type) wavefunctions and m* = m¥ ~ m (initially, one actually has a single
half-tilled band up to the Fermi level that for most purposes can be replaced by

) conduction
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big. 1 Conductionelectron] and valence tholed buands Tor o metal ta) and Tor a semivonductor
thr Ao indicated are the s- and f-1ype orhitads that make up the band waveluntions
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an equivalent pair of parabolic bands that are mirror images to cach other
with respect to the Fermi ievel where they touch (see Fig. 1)).

Actually. the approximation (4) amounts the replacing the one-electron
periodic Hamiltonian

H hz VZ + l’/(r) (g)
“ 2m i
by the free-electron and hole Hamiltonian
- h? h?
H, = vli- VL . {6)

Zm* ° 2mt

whose spectrum is a continuum characterized by a dimensionality 4 and a
joint density of states that can be easily derived. Indeed, the Schridinger
equation for a particle of mass m* in free space of dimensionality d = 1.2, 315

h?

2m*

VZyir) = Egir).

and can be easily solved to obtain

1 ‘
hir) = == e {7}
v
- ,2 2
Fik) = i’jk‘. 17h)

where r and k are vectors with ¢ independent components, and 1, 15 a
normalization volume in dimension 4. chosen sufficiently large so that k can be
varied contineously. The density of states at the energy E is given by

dN, B dN, dk

DAEY=" 1 = i ke (Hal
where
,
’qu,):Jdk (8h)
b

is the total number of states up to the level £. One gets, with allowance for spin
degeneracy:

« oneg-dimensional (1D). d = 1.

] ] 2m*12 E'.EUII
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«  two-dimensional (2D), d = 2,

I (2m*\ (E - E
DZ(E)=2H(%”2—)0( . ‘), (9b)

where (H(x) is the Heaviside step function;
+ three-dimensional (3D), d = 3,

1 2m* 32 E—E 1:2
DJ(£)=M—2(T"L~_) ( 5 2) . 9¢)

where, £, K, E, are the gaps E, with the appropriate dimensionality, namely
a point, a line, and a surface, respectively, as specified by the topology of the
critical region or Van Hove singularity {26]. In the case of metals, one sets
E; = 0 in (%a,b,c) but their dimensionality remains unaltered, being a topo-
logical invariant intrinsically related to the dimensionality of the electron
density distribution. In Figs. 2 and 3, we schematically depict the density of
states (9a. b, c).

This free electron behavior is modified by different interactions that were
not included in H,, such as:

{i} clectron-electron coulomb and exchange interactions;
{ii) impurity and interface interactions;
(i) confinement by mterfaces or strain.

The first one does not affect the crystal periodicity. but the other two do. The

strength of each interaction can be measured by a characteristic energy as
follows.

The dominant part of the electron—electron interactions can be taken into
account through the electron-hole interaction:

Ven = —‘f'zf'f“'e -l (10

density
of states

E; E, a energy

Fig. 20 Density of states Tor an ideal one-dimensional (a). two-dimensional (b), and three-
dimensionad (o) ideal semiconductor. When E, = 0, 1he sume curves are vatid for an ideal metal of
the same dimensionality.
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i EI El.
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C
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3
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Fig. 3. Modification of the density of states of un ideal three-dimensional semiconductor (a)
as il is gradually subject 10 one-, two-, and three-dimensional confinement {eurves b, ¢, and d.
respectively).

where € is the semiconductor dielectric constant which is finite for q — 0 as
E, # 0.For metals, E, = 0 and € -+ oz as q — 0, and all Coulomb interactions
are completely screened out within a unit cell length. As a consequence of (10),
in semiconductors one may have [27] electron-hole bound pairs, or exciton
states, with a binding energy of the order of

E,=°, (1

where a,, = h%e/pe? is an effective Bohr radius, with
u=1/m* + 1/mt. (12)

In metals, such states are absent in general because of the complete screening
of the Coulomb interaction. Besides the e—h interaction (10), one may have

P
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electron—hole pair-pair interactions that result in biexcitons with binding
energy Ey., < E,,, the most studied case being the biexciton in CuCl, or more
complex many-body Coulomb and exchange interactions, which we do not
need to specify here [28,29].

Similarly, the electron impurity interaction in analogy to (7) may be repre-
sented with a central potential

=" (13)

which introduces two characteristic lengths, the hole and electron radii
d.p, = hie/m¥ e, and its strength is
2
Fon= -, (14)
€a,
where a, < a, > a,,, since in general m¥ < m* and the validity condition
for (10) and (13) is that the unit cell dimension @ is much smaller than the
characteristic lengths a, and a,. This is the essence of the effective mass
approximation [267, which amounts to representing the electron and hole
wavefunctions by wave packets of Bloch states (3) with an envelope that
vanishes at infinity and with the characteristic lengths just defined. These
lengths are the effective Bohr radii associated with the potentials (10) and (13)
and are also defined by the condition that the average value of the electron or
hole kinetic energy operator (6) roughly equals to that of the potential. Thus,
these characteristic lengths, or effective Bohr radii, reflect the distance at which
the kinctic and potential energies balance each other or. more precisely, where
the total ground state energy is minimal.
The introduction of electron confinement that restricts the envelope within
a region of extension L equal to or smaller than any of these characteristic
lengths 2a..ie. L < 2a, with a, = a,, ay. or a,,, clearly perturbs this balance
since the kinetic energy, which now varies as {a./L)*, becomes larger than the
potential energy, which varies as a, /L. The effect of the potentials (10) or (13}
can then be neglected in a first approximation with respect to the kinetic en-
crgy. and the electrons and/or holes behave as free particles within the con-
fined region. Accordingly. if we assume this to be represented by a spherical
potential well of infinite height. the characteristic energy of the confinement is

L Woono e fa\? s
Camr L2 2 \L) ()
The important point to notice in (15) is its dependence on a parameter, namely
the dength £, that can be externally modified. in contrast to the lengths dy.
da..and . 3w, which are intrinsic to the material, Thus. as L decreases £,
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increases and gradually suppresses the effect of the other interactions, and
eventually becomes the dominant energy term; one also says that the bound
electron and hole states get ionized. The main consequence [30] is that now
the initially continuous energy spectrum of the free-electron Hamiltonian {6)
is radically modified and replaced by a discrete energy spectrum. namely one
of quantum confined levels whose spacing depends on L, and can be accord-
ingly modified by appropriate choice of the value of L. At the same time, the
selection rules for transitions between these levels introduce fundamentally
new features in the optical spectrum. In particular, the conservation of the
wavevector k, which only allows vertical optical transitions in the infinite
crystal and is a consequence of the crystalline periodicity, breaks down in the
confined system since the wavevector is no longer a good quantum number.

This is the essence of the quantum confinement, and its usefulness resides
in the possibility of altering the energy spectrum and electron dynumics by
changing the extension of the confinement. Clearly, the modifications of these
features with respect to the bulk depend on the form of the confinement. its
dimensionality, and its extension, but they also depend on the chemical ¢on-
stitution of the interface and several other aspects.

The previous approach is based on the assumption that the effective mass
approximation is valid [30]. and this has certain limitations, in particular
regarding the inclusion of interface states, which play a major role in the
relaxation but cannot be accounted for within this scheme: one can only
introduce them in an ad hoc manner. An alternative approach would be (o
start from the molecular constituents and form a molecular cluster. and then
study its inner and outer electronic states and supramolecular excitations as
the cluster grows in size in one or more directions to recover the states of the
infinitely extended crystal. In this approach. the electronic states are cx pianded
in atomic functions and the interface states can then be properly taken into
account. There exists presently a whole set of methods [31]. from simple
empirical to highly sophisticated ab initio methods. to address these problems.
In principle, the two approaches, the one based on the effective mass Approx-
imation and the other on the molecular cluster, should mingle into cach other
but this problem has not been consistently tackled yet. Here, we shall only
use the effective mass approximation to analyze and assess the impact of
quantum confinement in semiconductor and metal microstructires and also
conjugated polymers.

2.3. Dielectric Confinement

Along with the quantum confinement, the diclectric confinement too miry
substantially affect the nonlincar optical susceptibilites. The electric field that
effectively polarizes the charge distribution inside a sotid in general is not the
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same as the externally applied field that also enters Maxwell equations. These
two fields are differently weighted averages of the microscopic field inside the
manner. They are identical only in the case of a uniform charge density with
infinite extension, a situation that can be approached only in metals. If the
charge density distribution is nonuniform, the two fields, the effective and the
Maxwell or external, are different in general. Interfaces introduce nonunifor-
mity in the charge distribution, and accordingly modify [32] the field strength
distribution to the extent that this is not the same on either side of the interface.
This is the origin of the dielectric confinement in microstructures; differently
stated, in addition to the applied field, there is a field originating from the
induced surface polarization. The derivation of the expression of the effec-
tive licld in general, and inside the quantum confined microstructures in par-
ticular, is very complicated and depends on the geometry and dimensionality
of the confinement. For later refere.ce, we shall illustrate [33] this point here
with the simple case of the spherical three-dimensional confinement, which
will be extensively discussed later in connection with the quantum confine-
ment (quantum dots) as well.

Let us consider metal or semiconductor particies uniformly and randomly
dispersed in a transparent isotropic dielectric with dielectric constant e,
which will be assumed to be a scalar and real quantity. The particles will be
assumed ideally spherical in shape with diameter L = 2R that is much smailer
than the optical wavelength 4. The volume concentration of these particles is
p << 1, so that each crystallite is entirely surrounded by the dielectric, and the
interparticle distance is large with respect to their diameter (Fig. 4).

Let a, be the polarizability of such a crystallite of volume ¥, which has real
and imaginary parts, i.€., @, = a} + iay, so that we may formally define its
diclectric constant € by the relation

x
€ =1 +4nyi' =1+ 4n—V5, (16)
_E.
S B M
cﬂ

Fig. 4. A small sphere of diclectric constant € and radius R = L;2 embedded in a matrix
of dielectric constant €, and submitted Lo a uniform clectric field E. This leads to dielectnic
confinement.
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which in general is expected to be a function of crystallite size and form, but
here we shall identify it with the dielectric constant of its bulk, € = ¢’ + je”.
The presence of such polarizable particles modifies the dielectric constant of
the composite dielectric since it results in an additional polarization
€—¢€

4nPE(Efeo)E=3peoe+22 E, (1n
0

where € is the effective dielectric constant of the composite medium and £, is
. 4nP

the local field, given by E, = E + T The field inside each particle is [32]
0
e,

E, = E = [|E,
f+2€0 t fl “8'

and the dipole induced by the applied field E in a spherical particle surrounded
by a dielectric is

€ — €,
0 .
€+2€0 !

P.4= R%
Inserting this in (17) and assuming p <« {, one obtains

G_eo
€+ 2¢,

€=1¢; + 3pe, (19

This expression was initially derived by Maxwell-Garnett [34]. To the extent

that € is complex and frequency-dependent, we see that one has an enhance-
ment close to a frequency w, such that

€{w,) + 26, = 0. (20)

This is the condition for the surface excitation or surface plasmon resonance;
its width is determined by €”, and one can also obtain the extinction coefficient

w
o= PEU](‘UH €.

It s also the origin of the local field enhancement of several nonlinear optical
effects in interfaces. Its impact is most striking on the nonlinear optical Kerr
coefficients and below we will consider this case only [33,35].

For this, we recall that in the presence of an intense electric field, the induced
polarization may be written {6, 7]

AP:P(I]+P(2)+P{3)+,”

where P, n > 1, is the nonlinear polarization term of order n. Since the

o

e

e

o
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medium is isotropic, all even order terms are zero while
P = JVE, 1
P = FIEEE, (22)

where ¥'"" and 7' are the effective linear and third-order susceptibilities of
the composite, respectively, and are in general frequency-dependent. Their
quantum mechanical expressions wilt be given in Section 2.4 For the optical
Kerr effect, we are interested here in the relevant polarization induced by an
intense field E of frequency w is

PPw) = 37w, — o, 0) E(w)|2E(w), (23)

and may also be described as an optically induced change of the optical di-
electric constant € = 12n¥'*|E(w)}? or by differentiating (19), retaining only
the contribution of the inclusions, and introducing the factor f, defined in (18):

88 = 12npl £} 1V E2E (24)
or
=l e (25)

where y'*'is the cubic susceptibility for an inclusion and we have dropped any
reference to the [requency.

Thus. y'* can be enhanced substantially [33, 357 if « is close to the surface
plasmon resonance, Eq. (20), in addition to the enhancement that results from
quantum confined resonances of ¥'*'. The previous derivation can be made
more rigorous [36-37], and also can be extended to nonspherical particles,
for instance ellipsoids, although with considerable effort and at the expense
of simplicity. by introducing appropriate statistical averages or using the T-
matrix approach and miscroscopic considerations for the electric fields and
induced dipoles. The final conclusions and results pertinent to the experi-
mental investigations remain the same as before. Similarly, one can extend
these considerations to microstructures with two- or one-dimensional con-
finement. The fourth power dependence on the efective field factor f, in 7
applies in all cases. but the actual dependence of f; on the dielectric constants
¢ and g, is different for the different geometries and will not be discussed here.
It is clear that the local field enhancement results from resonant behavior and
can be substantial in metal inclusions, but in general much less so in semi-
conductors. There are also predictions [ 39] that one may have local field me-
diated intrinsic bistability. Such an cffect may be difficult to observe, however,
because of the large absorption that is always present whenever the local field
cnhancement condition (20 is satisfed.

The induced change de of the diclectric constant (or equivalently J€) as
previously defined pertains to the stationary regime. Since these materials wil
oncrate in a pulsed nonstationarv regime when imolemented in nonlinear
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devices, the temporal evolution of n, is of ¢ntral importance and i1s usually
described by a Debye-type cquaton:

dag(ny 1 2
Wl ¥ ity = 2 IEL (26)
de T T
or in integral form:
1
an_(r}=”?z J|E{s)|ze a s gy, (27)

where 7 is the decay time of the optical Kerr effect, which together with the
magnitude of n, plays a crucial role in assessing the potential use of an optical
Kerr materials.

We also wish to point out that n, in general is a complex quantity and
therefore, in addition to its magnitude and time constant, its phase 15 of
importance as well. Only in the extreme cases of purely dispersive and purcly
absorptive nonlinearity is 1, real and imaginary, respectively. The first case
occurs when 18 very far from uny resonance and one then expects 1 = 0. while
the second case occurs close to a resonance and 1 then is related to the re-
laxation processes of the resonance. In the vicinity of a frequency . one
defines [2] a figure of merit for each one of these extreme cases:

fa = @y ing. {2%)
f. = Vit {29}

which serve as a measure of the potential usefulness of the material in o
nonlinear device operating close (o the frequency . The important feature of
these figures of merit is their independence from the valence clectron den-
sity since it cancels out when the ratios (28) and (29) arce taken. and hence
they effectively measure the nonlinearity per valence electron: they are also
renormalized to oscillator strength unity. These aspects will be better ap-
preciated when we give the quantum mechanical expressions of the optical
coeflicients.

2.4. Optical Nonlinearities

In the previous section. we introduced the nonlincar susceptibilities as
phenomenological coefficients of the series expansion of the induced polari-
zation in powers of the applied clectric ficld. Here, we wish to give their
quantum mechanical expressions and. anticipating the comparitive analysis
that will follow, we shall do so both for an infinite (periodic) crystal and for a

confined one. the latter being treated as a molecular system of size £, much
smaller than the wavelenoth of the radintinn field 5 dn the Geer caee ha
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electronic states are extended Bloch states, while in the second one they are
localized states.

A radiation field E(r, t) couples to a material system through the interaction
term in the Hamiltonian,

Hr.t) = P(r.t) - E{1), (30)

where P is the dipolar polarization operator in the interaction representation,
and it is sufficient for our purposes Lo only assume electron contributions
there. This electron-radiation coupling induces a polarization AP in the
material, which for not too strong fields can be written as a power series
expansion in the field, or

AP(r,1) = PV, 0) + PO(r1) + P, 0),

where
P“WL:)=-52-f dty [P(r.0), H'(r,t )], (1)
4] —x
iy i
P21, 1) ={ vl) I dt, J dey {[[P(r, 1), Hr, 1)), Hir 6501, {32)
0 B ¢ -
Y A N t2
PYir.1) = i) J. dt, j d!zj diy
UO - —a —an
x ([[[P(r, 1), H'(rt )] Hr 1)1 H )] (33)

and averages are taken over the initial density matrix operator p,. If we ap-
ply Fourier analysis to the radiation field and the polarization, we obtain
the standard expressions of the susceptibilities of different orders, x*"(w),
x' Py, wy),and ¥¥(w,, wy, 04), from (31),(32), and (33), respectively. Itis also
convenient to introduce the corresponding polarizabilities a(w), Blw,,w;),
and yla,,w,,1w,), defined by

() = oz(w) (34)
g
W, wg) = M (35)
to
Py 0, w;)
¥ Mw,,w,y, wy) = — (36}
0

where 1, is the effective volume per repeat molecular unit, which in the fol-
lowing will always be the unit cell of the crystal. The quantum mechanical
expressions of these coefficients can be found in the literature [6,7]. For our
purposes we reproduce here only the expressions of the x-components foreach
clectron.
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For small systems of size L much smaller than the optical wavelength /,
one has

alli((u] = a((u} [ ugr.urg “ﬂr#rs B
Zf (W —w — i) ¥ (We+ @ +il) ] (37)

2 _
a' P, w,) = flw,, w,)

Hor i i
fl: Ir. sHsg ) )
hl BZ,-:, $ {w’! — Wy — twy — r]"rg)(w!’ S — il",gl + Sterms |,
{38)
1
“m(uh vy ) = Pl g, wy) = 53 fg X
REST

[ P brs e g 47 term
: . , erms |,
(wpg il —w) —wy —wyfw, — T, —w;, —a, Ny, — il —wy)

{39)

where £, is the occupation number, 0 or 1, of the lowest energy level g,y = exis
the x component of the one-electron dipole moment operator; g, s. ¢, u label the
states with energies E,, E,, E,, E,. respectively (g stands for the lowest energy
state), hw,, = E, — E and I, come from the damping processes: [, = /7, if
s#¢tand I, = 1/T, where T; and T, are respectively dephasmg and en-
ergy relaxation times, which are different for different pairs of levels but we

dropped any such reference. Sometimes it is convenient to transform (hese
expressions by introducing

€
m
where p is the momentum operator of the electron, which satisfies the identity
h
[Hr]=-i—p. 41
m
If we take the limit w; = 0 in expressions {37), (38), and (39), we get
’ i r ey
x=2Y) f’_—'E L {42a)
0 s
P’ F#flﬂs ,t“ #5
_32-{‘ TRrirsitsg EIZ $57758 . [42b,
g.7.5 E E 5

. HarPesits My  Hg it s Has
= 4 B $ _ b 1L ] gsHisg
! lgs-'fg( ErlE:gErg Zl Erg Zs E‘zg )‘

Hyrbhrslho 1 e v Hosl
=4 8 sttig arhig gsHag

2
rs.d rRUSR ] E,g 5 Esll

(42c)

;e

e

P

wy =

e
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where 2" means that the terms with E_, = 0, etc., will be excluded from the
summation. These coefficients are also related to the electric field induced
shifts in the energy of the ground state g. Throughout the previous discussion,
for simplicity, we assumed that kT, where T is the temperature, is much smaller
than any electronic transition energy hw,,. so that thermodynamic consid-
erations will not enter the picture; we recall that we are neglecting alt con-
tributions to the response from degrees of {reedom other than electronic.
For systems with infinitely extended electronic states, like the Bloch-band
slates in bulk crystals, some care must be given in the use of the dipolar inter-
action Hamiltonian (30) as a perturbation since the matrix elements of the
dipole moment operator u = et between states within the same band, the so-
called intraband elements, are singular and can only be defined in terms of
distributions. Without geing into details, one can indeed show [40] that

J. rend (ndr = iV, A (k' Kk} + 8(k — k'), (k). {43)
where
A,k K) :J Y (rlgy(r)dr
and
Q, (k) = ij uk Vi, dr. (44)

where d7 stands for integration over a unit cell only so that the order of mag-
nitude of Qs the dimension of the unit cell. ie., Q,, % a, which is also the
extension of the atomic wave functions that constitute the basis set of the
bands. Thus, ¢€),., is of the order of an atomic transition dipole moment. For
the interband terms, n # o', the first term in (43) vanishes, but for the intraband
ones, n = ', this term introduces a highty singular behavior. One way to cir-
cumvent this problem is to go over to the momentum operator p whose in-
traband terms are zero. but this causes difficulties in our later comparison of
the nonlinearities of the bulk crystal [41] with those of a microstructure of
the same material, the latter being expressed in terms of ye; evidently, one may
revert [42] to the r-operator elements but this is exceedingly cumbersome.
An alternative and very elegant approach is the one devised by Genkin and
Mednis [43]. which by a proper transformation in state phase space allows
one to directly derive the expressions in terms of the effective transition dipole
moment matnx elements ,.(k). We give here only the expressions [44] of
the x-components of the linear. second. and third susceptibilities of a crystal
- the limit of @; -0 in the two-bund approximation. a completely filled

‘o
—
wn
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valence (v) and completely empty conduction (¢} band:

4e2J

" = chchdk; 45}

I, e ‘
Bet 1 885,48

= — e S8 Jdk 46

A I o o SRR [

where fw,, = E, — E, and S, = Q.,/w,,, ¥, is the normalization volume. and
all quantities under the integral are functions of k and the integrations cxtend
over the first Brillouin zone. In setting up (46), we have assumed for simplicity
that the system possesses inversion symmetry so that in particular ' = 0.
For non-centrosymmetric systems, the expression of x'*? is stightly more
lengthy [44] and the second order susceptibility is different from zero, and is
given by [44]

b /. 8. oS, . ﬂ
B O s s 0, - Q) [ S L Oes Yk @)
T, L_z [ el = fed) 2( Ak k)

The preceding expressions are valid for an ideal intrinsic semwonductor
described with & two-band model, an empty conduction and a filled valence
band. For a metal with a half-filled band. one has a contribution from the
intraband motion, which for a parabolic band is that of free electrons and
leads to the linear Drude dielectric constant

(l)z

=1 - - Ter =€)+ fe (M) {48)

e + 1 1y) .
where w, = (dze?N/m)' 2 is the plasma frequency. N is the total clectron
density within the band, and ¢, is the election scattering time in the bulk. We
recall here only that although one obtains {457 the same cxpression {48)
classically and quantum mechanically, the number of clectrons actually
involved are not the same in the two cases. There are no contributions to
y'# and #'* from the electron motion in a single parabolic band: such con-
tributions only arise [46] from nenparabolic bands. but ceven there the
contribution to ¥'*' vanishes [43] because of time reversal symmetry. Before
concluding this section and in order to prepare the ground for the lollowing
two sections, we wish to make two important general remarks concerning the
cxpressions (45). (46), and {47}

The first remark concerns the integrations over the Brillouin zone. The main
contribution to these integrals comes from a few nonoverlapping critical
regions i the joint density of states, the so-catled Yan Hove singularitios
defined by

Vi (k) = 0, BN
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and are a point, a line, or a surface depending on the dimensionality of the
electronic density distribution, since close to these regions one may assume a
parabolic approximation (4) and the joint density of states there will have the
behavior described by (9a), (9b), and (9c), respectively. This directly establishes
[47] a relation between the odd order optical susceptibilities x'*** ' and the
topology and dimensionality of the joint density of states. To the extent that
quantum confinement modifies these aspects, we expect the former to have an
impact on the odd order susceptibilities. For the even order susceptibilitics
1'*" as will become evident, the critical regions (49) do not play (44,47 ] such a
prominent role.

The second remark concerns the contribution of two competing mecha-
nisms in ¥, which determine its magnitude and sign (compare with (46)). The
first, which will be termed intraband, is connected with the first term in the
integrand in (46). and arises from electric field mixing of Bloch states with
wavevector conservation between the two bands and within each band (the
latter being reflected by the derivatives in k-space). The other, which will be
termed interband, is connected with the second term in the integrand in (46),
and arises from electric field mixing of stales across the gap with wavevector
conservation. In contrast, the linear susceptibility y'*' (compare with {45))
involves only interband terms. This competition in y'*' between the inter- and
intraband contributions has crucial qualitative and quantitative implications
[47]. These terms can also be interpreted as displacements of opposite signs of
the elfective bund gaps at the critical points when an electric field is applied.
The interband term can be identified as the analogue of the Stark shift for
atomic levels, and consists in a repulsion between valence and conduction
states at cach k and in particular at the critical regions {49). This leads to an
increase of the effective energy gap there or a negative contribution to ', as
can also be inferred from the negative sign in front of this term in the integrand
in (46). The intraband term on the other hand, which is also responsible for
the Franz- Keldysh eflect, consists of a repulsion of the states within a single
band. which results in a net repulsion of the states in the critical regions from
all other states within the same band or a net attraction of the states across the
gap al the critical region; this amounts to a decrease of the effective energy gap
there or a positive contribution to x'*. It is quite evident that the intraband
term will be dominant whenever the bands vary strongly with k (wide bands),
which will be the case of very delocalized electrons. On the other hand, this
contribution will be negligible for highly localized systems, and the interband
term will become dominant. Clearly, these two terms have their analogue in
the two terms in (46). To the extent that quantum confinement precisely affects
the delocalization, we expect that the first term will be affected but not the
sccond one or, expressed otherwise, we expect that quantum confinement
has a drastically different impact on the intraband and interband terms. In
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particular, it is quite clear from (43} and (46) that the quantum confinement
will affect inter- and intraband transition dipole moments differently, and this
makes the distinction between interband and intraband confinement mean-
ingful and will be the basis for our discussion of the optical nonlinearities in
confined structures; it will be examplified by the ideal metal and semicon-
ductor confined structures. respectively.

3. QUANTUM CONFINEMENT

We wish now to approach the quantum confinement more quantitatively
than it was done in Section 2.2, and to introduce a rationale in assessing its
impact on the physical properties in general and optical ones in particular, We
shall concentrate our attention on aspects that are insensitive to the form of
the quantum confinement, and assume [ 26, 30] throughout the discussion that
the effective mass approximation is valid. It is sufficient to consider a sin-
gle pair of bands, a conduction and a valence band; the effect of spin-orbit
splitting of the valence band into several subbands can be taken into account
by pairing each subband with the conduction band, and adding the spectra
assuming that the pairs are not coupled. Without any other preamble and with
the notations of Section 2.2, we may then represent the electron and hote states
around the center of the Brillouin zone, k = 0, as wave packets of Bloch-band
states in the form

Wir.,r,} = F(r_.r,ur Ju,(r,). (50)

where u, and u, are the cell periodic part of the Bloch-band states (3) for the
conduction (electron) and valence (hole) bands, respectively, at k > 0, and
F(r,,r,) is the envelope function [30,29], which satisfies the Schrodinger
equation:

R, BT,
(2m,"‘ A% _MV!‘ + Vg + Vo + Vi + W)F(r,.rh) = EF(r..r,). {51)
where V,, is the electron—hole Coulomb interaction, ¥V, includes the residual
electron and hole coulomb and exchange interactions, which here will be
lumped under the term many-body effects, V, is the electron (hole)-impurity
interaction potential, and W is the confinement potential.

The solution of Eg. (51) in general can only be tackled with numerical
methods and even so with limited usefulness because of the uncertainitics in
the definition and determination of the different potential terms in (51). How-
ever, the essential features of the quantum confinement can be even quantita-
tively accounted for if some simple analytical forms for these potentials are
introduced, and in addition their relative strengths are properly taken into
account as discussed in Section 2.2. Keeping in mind the physical systems

e
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where the quantum confinement has any relevance, namely metals and semi-
conductors. and anticipating its main impact on the electron motion there,
we propose to distinguish two types of quantum confinement:

+ the intraband or metal (free electron) case;
+ the interband or semiconductor (bound electron) case.

The first one pertains to the modification of the intraband electron motion,
while the second one 1o that of the interband motion. This distinction is
actually dictated by the nature of the electron motion that gives rise to the
linear optical properties of the ideal metal and semiconductor, and in par-
ticular to their linear dielectric constant €(w). In the nonlinear optical co-
efficients, however, the two types mix up and interfere in general, but the
distinction there too is physically meaningful and useful.

Since we will mainly be interested in resonant behavior, the primary char-
acteristic is evidently the probability for transition between electron- hole
pair states |i) and |} of energies E, and Ey. respectively, ie.,

2
wio) = T B D1 B, — E, - o) (52

from which one can also obtain the absorption coeflicient

2nha 2nthe?
n) = 0 e = < St
afen) nelEJ? w{e) e N (e, — hoy),

‘4

where N, is the number of unit cells per unit volume. 1 istheoscillator strength
per uni cell,

, _ Atlepll?

mhoN, t53)

N, is the total number of unit cells within the normalization volume V,, and
€ 15 the polarization direction of the electric field. The oscillator strengths
satisfy a sum rule, but its use gives rise to some complications because of the
introduction of the effective mass. From (he preceding expressions, one can
directly obtain the imaginary part € “(w) of the dielectric constant:

€(n) = dny"tw) = A 2.‘]1‘|<r|€ Sl 1 = Py otk — hew), (54)
Ta

where 4 is a constant, ¢, is the degeneracy of state. and p; and p, are the
occupation probabilitics of states £ and i, respectively.
3.1.  Intraband Quantum Confinement: Metal Case

. Inanideal bulk metal. one has a single band half-filled up to the Fermi level
Ey . and the cell periodic part w{r) of the Bloch function {3} is usually formed
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form s and eventually p orbitals. This half-filled band, for most purposes. can
be replaced by an equivalent pair of parabolic bands, mirror images of each
other, see Fig. 1, with the same cell periodic part u(r), the upper one for the
electrons and the lower one for holes, that touch at k= 0 and are situated
on either side of the Fermi level E; with m¥ = m}¥ ~ mand E, = 0 in (4). The
wavevector-dependent dielectric constant €(k, w) then being infinite for k = 0,
the potentials V,,. V,,,. and ¥, are completely screened out within a distance
rg = 17k, the inverse of the Fermi wavevector, which is typically of the order
of a few Angstréms and roughly equal to the lattice comstant. Thus, the elec-
trons and holes behave and move as free noninteracting particles over any dis-
tance in the perfect crystal if we momentarily disregard the effect of phonons
and other coherence limiting processes (actually, the effect of the impuritics
should also be discussed separately).

The essential characteristics of such a behavior are the dimensionality and
density of states, which can be easily derived from Section 2.2 if we ussume
complete screening of all potentials and use the free-electron Schrodinger
equation (5) to describe the electron motion, i.e.,

D{E) ~ t/JE. (550}
D,(E) ~ O(E). {55h)
D,(E) ~ JE. 155¢)

for the ideal iD. 2D, and 3D metals respectively. The quantum confinement
precisely affects these two features and by the same token the intraband
transition moment {43), which determines the dielectric constant and other
oplical coefficients.

Indeed, in the quantum confined metal. the periodicity is broken through
the introduction of the potential W, which restricts the electron and hole
motion within a confined region. If we assume for simpligity that the complete
screening persists even in the quantum confined metal, then we may neglect all
potential terms in {51) with respect to the kinetic part and the confinement
potential W, so that the electron and hole motions are decoupled and within
the effective mass approximation cach obeys the equation

,Az
( i Vit W) Firy = E_EAr), (56)
2nt

where F.{r) is the one-particle envelope function and we approximate m* —
my = m; v stands for all quantum numbers that label the state. The wave-
function for the electron and hole in such a potential well 1s

g (r) = Fir)uir). (57)

where w(r) is the same for electrons and holes. and actually it s immaterial
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whether we work in two bands or in the original half-filled band, as can be
casily seen.

Although the numerical details of the spectral modifications in (56) due to
the quantum confinement depend on the actual form of W, the gross features
of the optical properties and the behavior of the optical coefficients ¢**’ can
be understood without reference to a precise potential form. To fix the ideas
and substantiate certain general results, however, we may refer to the simple
potential forms to be discussed in Section 3.3, where the interfaces are repre-
sented with infinite height potential walls where the envelope function F(r)
must vanish. As can be inferred from the expressions of x™, the important
parameters are the:

+ transition dipole moments (intraband) and selection rules:
+  level spacing;
+ the level broadening and lifetime.

3.1.1. Transition Dipole Moment (Intrahand)

This concerns the dipole transition moment in a direction defined by the
unit vector € between a hole state and an electron state, or equivalently
hetween an electron state below the Fermi level and an electron stale above it,
namely

e x ey el = ('Jf'ttrllc*(r)e - rF (rju(r) dr, (58)
where we have dropped any reference 1o electron and holes since the cell
periodic part u(r) is the same for both particles (see Fig. 5a). Let us set

r=R+p,

where R is a latlice vector situated at the center of the unit cell and p only
varies within the unit cell, which for simplicity will be assumed centro-
symmetric, which is always the case in metals, so that

eju(p)s - puipldt = 0. (39)
Taking into account that F(r)is a slowly varying function over several unit

cells while u{ p) is fast varying and concentrated within one unit cell, (58) can be
approximated by

w6 xe J‘F‘:ir)e -rF ) dr (60)

where a summation over lattice c=ll centers within the confined region was
replaced by an integration over the same region. It is clear from (60) that,
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(a} (b}

Fig. 5. Schematic view of the wavefunctions and envelopes in a guantum well used 1o
calculate the imtraband {a) and mterband (b) matrix elements. Also indicated are the s-and p-1ype
orbitals that form the basis of the wave functions.

irrespective of the actual form of W, onc has

H’vv'(e) = L(~ (h])

where L, is the extension of the confinement in the direction specified by the
unit vector €. This is an essential feature of the intraband confinement and is a
consequence of the identification of the electron and hole cell periodic part of
the wavefunction. We recall that in the infinite crystai the intraband transition
dipole moment is given by (43) for n = n’, namely a very singular function.

3.1.2. Level Spacing

From the outset, the level spacing and degeneracy depend on the form of the

potential W.However, apart from numerical form factors, the level spacing for
large quantum numbers v varies as

AE ~ /L3 {62)

and the densitly of states and degeneracy evolves to that of the free-electron
system.
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3.1.3.  Level Broadening and Lifetime

Level broadening and lifetime are features entirely related to the coupling of
the electron motion with the very perturbations that induce transitions
between the levels, and to the extent that they depend on the phase space
available and the bath to which the electron coordinates are coupled we expect
that quantum confinement also affects level broadening and lifetime and
modifies their bulk values. This in particular can be inferred through the
drastic modification of the intraband transition dipole moments as discussed
previousty.

in the ideal bulk metal, the free electrons in the half-filled conduction band
suffer collisions with phonons and other electrons that induce intraband
transitions with a rate 1/7,,, where 1,, is the mean time lapse between successive
cvents, and will be termed scattering time; it is the time that is included in the
Drude model [26,45). In a quantum confined region of dimension L <1,
where £, 15 the electron mean free path, electrons in addition undergo col-
lisions with the spherical wall at an average rate vg/L; here vy is the speed
of the clectrons close to the Fermi level E, where the essential contribution in
the quantum mechanical (one-band) Drude model for e(w) in (48) comes from.
To the extent that the two processes are uncorrelated, one may introduce an
cffective collision time [48]:

Loty (63)

g Ty L
This problem has been extensively discussed [48] in the case of spherical
metallic particles of diameter L < /.. One also introduces a dephasing time
1,.T,/2 = 1,,. the same for all dipole allowed transitions. which lcads to a
homogencous broadening of the transitions independent of the crystaltite
radius, Accordingly, the delta functions in (54) are replaced by Lorentzians.
This classical argument is also corroborated by a detailed guantum mechan-
tcal calculation [48, 38] where, however, (63a) is only the limiting expression
lor e — 0 of

I o) (64)
Ter Ty L T Ler
where
I : 2 1:2
g iv) = N JI ‘ e L S R (65)

with v = o'k,

Fora statistical assembly of metal crystallites in a dielectric, as is the case in
all studied samples, one must perform an average of (54) over the size distri-
butions Py, with w = £L./L,, where 1., is the average size, and Pl du is the
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probability of the normalized size 1 being in the interval du. This introduces
in principle an inhomogeneous broadening, which, however, in the optical fre-
quency range around the surface plasmon resonance o, defined by (20), where
the level spectrum and density become essentially identical to those of the
bulk metal, has eflectively an inconspicuous impact on the overall broaden-
ing and can be disregarded there. This is no longer true in the far infrared.
where the quantum confinement has a stronger impact but the density of
states 1s also substantially reduced.

In addition to the dephasing mechanism of broadening. there is also un
energy relaxation mechanism, which will be accounted for with a time 7. the
same for all transitions. With the introduction of thesc two relaxation times T,
and T,, which determine the dephasing and energy decay rates, respectively.
one can proceed to calculate the linear and nonlinear polarizabilitics using the
corresponding quantum mechanical expressions.

The size-dependent broadening of the surface plasmon resonance as pre-
dicted by (63) has been experimentally confirmed [48,38] for gold particles
both in colloids and solid matrices (glass). In particular. using the cxperi-
mental values for the diclectric constant for the bulk and expression (63) for
the dephasing time, the variation of the absorption coeficient as a function
of the average crystallite radius could be accounted for (Fig. 6). On the other
hand. there is essentially little [49] or no information concerning the encrpy
relaxation time T,.

3.2. Interband Confinement: Semiconductor Case

In ideal bulk semiconductors, the situation at the outset 1s drasticalty dif-
ferent from that of metals. Here (oo, for most purposes, 1t is suflicient 1o use
the two-band model, a filled valence and an empty conduction band on cither
side of the Fermi level, also designated the hole and eléctron bands. respec-
tively. In contrast to the metal case, however, at k = 0, the (wo bands are
separated by a finite energy gap K, # 0. Furthermore, the two hands are not
symmetric with respect to the Fermi level as each originates from a dilferent
basis of atomic states, predominantly s states for the conduction band and
predominantly p states for the valence band | Figs. Land 7). Consequently, u,
and w, are drastically different. and in particular possess different symmetry
properties. We recall that at zero temperature, the Fermi level for an intrinsic
semiconductor is situated halfway between the top of the valence and the
bottom of the conduction band. For states quite close to the bottom of the
conduction band or to the top of the velance band. one may ussume parabolic
bands of the form {4} separated by a gap k,. The essential characteristics are
again the dimensionality of the electron density distribution and the somt
density of states between the valence and the conduction bands. These can be
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Fig. 7 Schematic view of the formation of bonds and two bands, conduction and valence,

starting from a pair of s~ and p-type atomic orbitals in silicium (from Ref. 70). (Reproduced with
permission. © 1990 by Annual Reviews, Inc.)

easily derived from the corresponding Schrodinger equation, and by taking
into account the dimensionality one has, from (9a,b.c),

Dy(E) ~ YHE — Eo)'u, (664)
DyE) ~ O(E — E)), (66b)
Dy(E) ~ (E — E))'72, (66c)

for the ideal 1D, 2D, and 31 semiconductors respectively, and where E,. E,.
and E, are the corresponding gaps in the Brillouin zone, a point, a line, and
a surface, respectively. In actual semiconductors, the electron density distri-
bution is not uniform. Indeed, the atomic orbitals that form the basis of the
valence and conduction bands being directive and more or less strongly over-
lapping among themselves along certain preferential directions, the electronic
density distribution possesses a quite complex topology with 4 superposition
of 3-, 2-, and 1-dimensional features. As a matter of fact, the joint density of
states of a given semiconductor is dominated by three nonoverlapping crit-

ical regions, Ey, E;, and E, in k-space (Van Hove singularities), defined by
the condition

ViLE.(k) — E (k)] =0,

and corresponding to the three cases (66a), (66b), and (66¢), respectively, with
E, > E, > E,. In Fig. 8, we depict a fitting of the absorption spectrum of a
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E; £, &

Fig. 8. Schematic view of the density of states (actually. absorption spectrum) of a real
sermuiconductor, and its simulation as a superposition of the three ideal densities of statesindicated
in Fig. 2

bulk semiconductor, which roughly also represents the joint density of states,
as a superposition of the density of states of these three critical regions
{66a,b.c). Since these critical regions arc well separated in energy and in k-
space, we may consider each case separately, and we shall mainly concentrate
our attention on the ideal three-dimensional bulk semiconductor with free-
electron and hole joint density of states given by (66c).

Because of the finite gap E, that now scparates the hole from the free-
electron spectrum, the wavevector dielectric constant €(k) is finite fork = O or
€(0) = €, and accordingly the screening of the electron and hole potentials
Vens ¥anand Fin Eq.(S1)is only partial. and bound states may exist {27] with
finite extension determined by the relative strengths of the potentials. These
are cxcitons, biexcitons, or electron and hole impurity bound states described
with envelope functions of characteristic extension a,,, a,, u,. the exciton,
clectron, and hole radii, respectively, with a,, > a, > a,.

In 4 guantum confined semiconductor structure of extension L, the free and
bound state spectrum of the bulk semiconductor is modified by the confine-
ment in a way that depends on the strength of the quantum confinement
potential relative to those of the other potentials in (51), or equivalently the
confinement length L relative to the exciton, electron, and hole Bohr radit
respectively. One may then distinguish three confinement regimes [30, 507:

Strong confinement L|2 < a, < a,. Here, all potentials in (51) in a first
approximation can be neglected with respect to the kinetic part and W. the
confinement potential. Hence. the electron and hole motions are decoupled,
and they reduce Lo that of free particles of effective masses m* and m¥* . re-
spectively, in a potential well W. The corresponding Schrodinger equation is
uscd remembering that m must be replaced by m* and m} . respectively.
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Intermediate confinement a, < a,. Here, the electrons can still be treated as
before and their states are the same as in the strong confinement regime. For
holes, on the other hand, the situation is radically different since the electron-
hole interaction cannot be neglected with respect to the hole kinetic energy.
Since the electrons are higher than the holes, one can assume that the adia-
batic approximation applies, and proceed [30] as in the Born-Oppenheimer
treatment of the nuclear motion in molecular systems.

Weak confinement a, < a, < L. For such confinement ranges, the buik
properties of the semiconductor are to a large extent established. In particular,
the electron-hole potential can now allow bound electron-hole states or
exciton states that are only slightly distorted with respect to those prevailing in
the bulk. The essential difference with respect to the bulk 1s that there the
exciton translational motion is confined, and this can be taken into account by
treating the ¢xciton as a free particle of mass M = m¥ + m[ ina potential well
W of extension L. One may similarly discuss the biexciton case. but we refrain
from going into such details here.

The analytical treatment of the different regimes is quite involved [ 50] cven
in the simplest case, where one assumes spherical confinement, which most
closely preserves the isotropy of the bulk semiconductor; However, us in the
metallic case, some gross features of the quantum confinement and its impact
on the optical properties can be obtained without reference to a specific po-
tential. In order to single out the main differences between the interband and
intraband confinements, let us concentrate on the strong interband conline-
ment regime and analyze Lhe following features:

« transition dipole moments {interband and intraband) and selection rules;
+  level spacing;
+ level broadening and lifetime.

3.2.1.  Transition Dipole Moments

Here, we must distinguish between intraband and interband transitions
dipole moments,

i, €l =¢ JFT(r]u,‘(r!e crF (ruride, i = eh, {67)
and
€ x t’jf‘:‘.(r)u:‘[r]e < TFy n (n) dr, 16%)

respectively, The first one concerns transitions between two guantum conlingd
electron (hole) states. Since they involve states within a single band (the
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conduction or valence band), the cell periodic part u; is the same, and pre-
dominantly s- or p-type, respectively {see Fig. 5). Hence, the analysis of the
metallic case of Section 3.1 applies here, too, 1.e.,

i (e} xel,, (69)

where L is the extension of the confinement in the direction specified by the
unit vector €.

For the interband transition dipole moment, however, the situation is
drastically different, since assuming centrosymmetric units cells (this is not
strictly the case in semiconductors), making the substitutionr = R + p, and
sctting

J“e(ﬂ)i - puptpydt = p,. {700

which in contrast to (59) does not vanish (i, and u, have predominantly
oppasite parities (see Fig. 5b)), one gets

“vv"‘] x pcv .[.F:(r)Fh\-'(r] drv (71]

namely pu,, (€)is proportional to the bulk interband transition dipole moment
p., with 4 proportionality factor equal to the overlap of the electron and hole
envelope functions. In particular, for centrosymmetric confinement,

Hew = Py 6“": (72)

namely, only transitions between a hole and clectron state with identical
quantum numbers (complete overlap) are allowed, and the transition dipole
moment is then equal p_, % eq, the same as the interband transition dipole
moment for the bulk semiconductor. This is an essential characteristic of the
interband confinement, and a consequence of the different symmetry prop-
erties of the cell periodic parts u, and u, of the wavefunction. {see Figs. 5b
and N,

1.2.2. Level Spacing

The intraband leve! spacing, namely that between two electron or two hole
states, is the same as in the metallic case, ie.,

AE = 1/L2, (73
but between a hole and an electron state,
hik? hix?
AE, =E + —=E + (74)

2m T 2l
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where we have assumed complete overlap, 1/p = I/m? + 1/m¥ and k, = % /L
is the quasimomentum related to state v.

3.2.3. Level Broadening and Lifetime

One never obtains sharp lines at the frequencies (74) since these are
broadened (Fig. 9) by several mechanisms. In quantum confined semicon-
ductor microstructures, the siluation concerning the broadening and lifetime
of the optical transitions is far more complex than in the metallic case, and
this for two main reasons as can be inferred from (73) and (74), namely,
superposition of inter- and intraband effects and the nonuniform and non-
centrosymmetric ¢lectron density distribution. However, we may single out
(51] two main broadening mechanisms: the electron-phonon coupling,
which introduces homogeneous broadening, and the fluctuations in £, and
L, which introduce an inhomogeneous broadening. The apparent line form
and width result from a convolution of the two. Their relative impact can be
studied by nonlinear spectroscopic techniques, and in particular with the
frequency- or time-resolved hole burning technique [52] or photon echoes.

The electron-phonon coupling in quantum confined semiconductor
structures has recently been addressed {53-55] both theoretically and

1.5
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Fig. 9. . Absorption spectra fur three semiconductor doped ghass samples of CdS, Se, . The
mean radii are (16 nm. (2 2.5 nm. and (3) 1.5 nm {from Rel. §2).
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experimentally, and certain aspects are now qualitatively understood. There
are three electron—phonon coupling mechanisms:

» the electron—optic polar phonon or Fréhlich coupling;
+ the deformation potential;
+ the piezoelectric coupling,

All three have been extensively studied for bulk crystals. The electron-optic
polar phonon or Frihlich coupling can be accounted for along the lines of the
Huang-Rhys theory [57] and is not expected to be different [53, 56] in the
confined microstructures, as the optic phonons are related to intracell polar
vibrations and their dispersion over the Brillouin zone is rather flat. In con-
trast, the deformation potential and eventuully the piezoelectric coupling,
because of the mvolvement of acoustic phonons there, may be drastically
affected by the quantum confinement. Indeed, the acoustic phonon branches
show a very strong dispersion over the Brillouin zone and are therefore sensi-
tive to the quantum confinement. Thus, in the case of a spherical semicon-
ductor crystallite, breathing modes appear, with frequencies «w, = v,/L. where
r. 15 the sound velocity, that modulate the electron - hole motion and intro-
duce a broadening that is size and temperature dependent, the latter because
of the temperature dependence of the phonan populations, We also point out
here that the deformation potential also gives rise [38,59] to quantum con-
finement in strained microstructures, and to self-trapping of an electron by
an acoustic lattice mode.

To the extent that in quantum confined microstructures one exploits
resonantly enhanced optical nonlinearities, the nature of the broadening,
whether homogeneous or inhomogeneous, plays an essential role, and several
nonlinear spectroscopic techniques have been applied 1o understand this
aspecl. The most straightforward ones are the time resolved and spectral hole
burning techniques and their variants [ 52]. There is presentty much interest in
understanding these broadening mechanisms as they mostly condition the
nonlinear optical properties of the quantum confined structures.

3.3, Confinement Potential

As was briefly discussed in Section 2.1, the confinement of the delocalized
electron and hole states in 4 metal or semiconductor is achieved through
interfuces with a different material that impedes the motion of charges outside
the confined region. in the ideal case. these interfaces are planar to better than
an atomic layer if they correspond 1o natural growth planes. If we disregard
the constitution of the substrate, these interfaces in a first approximation can
be represented by sharp potential walls of infinite height where the envelope
functron must vanish. With such a boundary condition, charges are confined
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whatever their energy might be. and their level spacing is ~ L %, where L is
the extension of the confinement. '

In practice, this is never the case and the height must be taken as finite, so
that above a certain energy level the charges may move out of the confined
region to acceptor states of the surrounding medium. Furthermore. to the
extent that the surrounding medium is polarizable and dielectrically responds
to fields. the confinement potential cannot be sharp to within an atomic layer
but has to be corrected to include the polarization poténtial and other terms,
and therefore acquires a smoother spatial dependenice with a range that
extends over several unit cells on either side of the interface. Clearly, these
additional terms depend on the electronic distribution inside the conlined
region, and this implies that a self-consistency procedure must be applied to
obtain the potential. Such a treatment is in general quite involved, and can be
tackled only with highly idealized models where the shape of the conflinement
is either spherical or consists of parallel ptanar walls.

The fact that the potential is neither sharp nor of infimte height also com-
plicates the formulation of the boundary conditions for the envelope Tune-
tion, and. as a consequence in the case of the intraband confinement, neither
the L2 level spacing law nor the L-dependence of the intraband matrix cle-
ments are rigorously obeyed. The interband confinement on the other hand is
less sensitive to these aspects, although the selection rules become less strict.

Notwithstanding the previous considerations, an additional comphcation
arise from the potential within the confined region itself, which. as discussed
in Section 2.2, consists of the electron hole Coulomb petential, the many-
body interactions, and the potential of the impurities and other defects. Therr
relative impact depends on the extension of the confinement with respect (o
the characteristic lengths that were associated to these potential terms and
determine their respective strengths, As discussed in Section 2.2, whenever the
confinement extension is larger than any of these lengths, the encergy spec-
trum is determined by the corresponding potential term while the confincment
only acts as 4 perturbation on the spectrum. As the confinement extension
15 reduced below these lengths, however. the roles are inverted and the
confinement suppresses the different potential terms and imposes Hs own
spectral distribution. However. the effect of these terms cannot be altogether
neglected. Since the variation of these potentials is smooth over distances
smaller than the corresponding Bohr radius. to a first approximation ther
effect can be replaced by that of an equivalent homogencous electric ficld.
which then leads to a Stark shift of the quantum confined levels. These
equivalent electric fields evidently depend on the electronic distnibution inside
the crystathite, and the problem can only be tackled self-consistently here. too.

The preceding remarks were made both to keep in mind the extreme
difficulties refated to the solution of the Schrodinger cquation (51, ¢ither
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analytically or numerically, and also to appreciate the importance of even
highly idealized potentials that allow one to extract meaningful results.
Keeping these remarks in mind, we summarize in the following the most
salient features of the simplest potentials that are being used to study the
impact of the quantum confinement on the optical properties without undue
numerical or analytical effort; these are the quantum well of square and
triangular shape (Fig. 10), the quantum wire, and the quantum dot potentials
with sharp and infinitely high boundaries. For deiails, we refer [60] to
standard textbooks on quantum mechanics.

3300 Quamtum Well
The Schrodinger equation
ht a2
|:" Gt W(Z)]U"(Z] = Eyl(2), (75)

with W(z) =0, for |z2{ < L /2, and = o, for z = L,/2, and the boundary
condition ¢( + L_/2) = 0 has the eigenstates

vz} = \/Lz sink,z,

ht o h? [nn?
n = = =7 =12..., 76
Q b [
d

e

Fig. 10, Five simple quantum wells: {2) infinite square: (b) finite square; (¢) double squure;

() miangulas; ) square with a step.
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and the transition matrix elements

16 nn’
= L for odd |n — n’], {77

Huy = 72 (n2 e

=0, otherwise.

The Schrodinger equation for finite height symmetric square well potential
W can be readily solved. Since it is relevant for strained quantum wells, we give
the main results. The eigenstates and eigenenergies are obtained by making the
ansatz sinkz or cos kz for the wavefunction inside the well, with exponential
decay outside. The continuity of the wavefunction and its derivative at 1he
boundary z = + L,/2 gives

wtan(kL_/2) =k,
kcot(kL /2) = —k,

for even states,
for odd states.
where

2m*E
k= Ut
and «? = 2m*(E + W)/h* These relations determine k for the even, re-
spectively, odd, parity states and the corresponding eigenenergies from (77).
The solutions can be obtained graphically [60]. There is always one bound
state. The total number of bound states is

2m*WL?
nL,)=1+ lm( i )

nih?
where Int(x) denotes the integer part of x.

In connection with the Stark effect, we will also need the solution of the
Schrodinger equation for the triangular quantum well

hz (‘.}2
(Aﬂ; 7 + eFz + W)u';(z) = Eyz), i78)

where W and the boundary conditions are as before. The nonsingular
solutions of this equation are the Airy functions

. 2mF 1:3
Al[(hTel) (er—E,,)]. (79)

which oscillate for z < L/2, and decay exponentially for ¢ - x, where
E, = —(e*F*h?)13g {80)

LS
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where a, are the zeros of Ai(£), which approximately are

a, = —[3;(!1 + %)]“ {81)

Using these simple potentials, one can proceed to soive more complex cases
like the double square well potential (Fig. 10) or the multiple square well
potential, and also include tunneling between wells.

3.3.2. Quantum Wire

For a rectangular cross section, the Schridinger equation is

hz 62 hl "\2
e Ty = ey WG X ) = Edlxy), 82
[ 2m¥ ax* 2m¥ Oy N H‘”]wv'}) vy (82)

with W(x,3) = 0,for{x| < L,/2and!y| < L,/2, and = o outside this region.
This is separable to two equations, each of the form (75), and the solutions
then are simply

Wl X, ¥} = W, (XD 1),
Errm = ‘En + Em- (83)

For a circutar cross section with m¥ = m} = m*, the Schrodinger potential
well is Wix,3) =0, for x? + v? <(L/2)%. and = o0 outside this region. After
transforming to cylindrical coordinates p and ¢, one finds

8 12 l 2‘} i
(1, ) = (I?) j“ l(a;) J,.(O!,. i )t’ . {84)
h2k}
E 1%
T 2my (83)

where k, = 2x,/L is fixed by the boundary condition
Jik,Li2) =0, {86)

Because Bessel functions asymptotically approach trigonometric ones, we
expect a correspondence for large n between states (83)and (85)when £, = L,.

333 Quantum Dot

The Schradinger equation for & quantum parallepiped of lengths L., L .
and L. 1s readily solved since it is separable into three equations, each of the
form (75). The spectrum presents degeneracies whenever the three lengths L.,
L..and L., are rational numbers, and are in particular threcfold degenerate
for a quantum cube (L, = L, = L,). Of particular interest is the spherical
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quantum dot with m¥ = m¥ = m¥ = m* and
Wix,y,2) =0, for x? + v + 22 < (L/2),
= o, outside this region.

After transforming to spherical coordinates r. 8, ¢, the Schrodinger equation
can be solved in terms of Besse! functions and spherical harmonics:

T ASE 2r
Y N TR L T 87
d’ntm(n U~ (ﬁ} (LJ) J,+ . J(anl L) I ( (;b} { ]

Putting £, = #%/2mL? and k, = 2a,,/L. the eigenenergies arc
g by nt nl

Epm = (2 VEq = hikk/2m*, (88)

nli
where &, is the quasimomentum defined by the boundary condition
Stk Li2y =10, (89

and the orbital and angular numbers, n and [, respectively. can vary indepen-
dently of each other withn =0, 1,,..,and /= 1,2...., the azimuthal number
imi =0, 1, 2,... I the states (88) thus have a (2/ + 1)-fold degencracy. Here
again, because of the asymptotic correspondence between trigonometric
and Bessel functions, we expect the spectra of a quanium cube and a sphere
to correspond to each other.

The intraband transition dipole moment is

2LEJEE)?
{nlmlp|n'I'm™y = 7(#:(—’[::1 Arapr

{9))
where r=nfand s = nV with ! =] =Tand m=m"m 1 1. It s casy Lo
check from the previous expressions of the cnergy levels that the energy
spacing for allowed transitions obeys the law

AE, ~ 1iL%, {413

and the intraband matrix elements ~ L as expected for ntraband
confinement.

[n contrast, for interband transitions, the dipole mament element s

Cenlm|pdh''m™> < po 0, Oy S i92)
and the energy spacing is
VT L ’2’5\) 193)
.=k ; =f, + . .
¥ 2u TR

as expected for interband conlinement.
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The preceding results using simple confinement potentials allow one to
grasp the salient features of the quantum confinement and the way it affects
the optical transitions. Clearly, its main eflect is a spectral condensation where
the widely and continuously spread transition energies in the bulk change to a
serics of discrete states. Since the electron density is unaffected. this implies
that a much larger number of electrons participate in the allowed transitions
between these discrete states in the confined system than in the same energy
range in the bulk.

In Fig. 3, we show how the density of states of a bulk isotropic semicon-
ductor, close to its gap E,, is modified as it is successively subject to one-,
two-, and three-dimensional confinement.

234 Strain Confinement

We give here a simple description [58] of the confinement through local
deformation or strain. Suppose that a crystal lattice is deformed, producing a
dilation Afr)over a localized region, and let us denote by x(r) the displacement
of a small quantity of matter at the point r, so that

A(r) =V - x(r).

Then, un clectron {or a hole) at the bottom (top) of the band feels a perturbing
polential [61]

Vir) = E, A(r).

where k15 the deformation potential constant. Let us for simplicity assume
that

Alr) = A, forr < R,
= 0_ rOr r> R.

Then. the elastic potential energy is given by

4 | e o
N I Z 2l =
v‘(3”R )(2CA )_2m R,R

where Cis an effective elastic constant, Ry = ImEZ/rh?C, and

. 2m
() = ? R ZEdA,
The condition for a bound state in the potential well is § > (m/2)%. il E,A s
negative, and the binding energy is
2

E= - (ot
L= o5 L. Col),
2mR~
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where [ is determined by
{/sin)? = o, a2 <<

From the preceding considerations, one can see that local strain leads to
localization and confinement. Clearly, this confinement can exist with the
confinement brought about by interfaces, as previously discussed. and can also
introduce additional states or level displacements and broadening. Since most
quantum confined microstructures are alloys of the type AB.C, .. where
0 < x < 1, one may also have localization and confinement because of Jocal

fluctuations of x. This problem can be treated [59] along the same lines as the
strain.

4. THE IMPACT OF QUANTUM CONFINEMENT ON
OPTICAL NONLINEARITIES: NONRESONANT CASE

The quantum confinement acts on all characteristics of an optical transi-
tion: oscillator strength, selection rules, level spacing, broadening, and lifc-
time. Here and in the following section, we wish to assess the compound cflect
that these changes have on the optical nonlinearitics. As stated in the intro-
duction, we will concentrate our attention on the cubic optical nontincari-
ties and in particular on the resonant and nonresonant optical Kerr effect.
which we recall is also defined as the light induced changes in the index of re-
fraction and absorption. We will complete this discussion with some remarks
on the second-order susceptibilities as well, which are conditioned by the
asymmetry of the intracell charge density distribution, a characteristic that
is not directly affected by the quantum confinement. To be more precise in
the following, we shall first discuss the impact of dimensionality on the cubic
nonlinearity x'* as this is reflected in the critical regions of the juint density
of states. We will see that these lead to scaling laws for the cubic and higher
odd order susceptibilities. The impact of the quantum confinement on the
optical Kerr effect and related parametric effects will be subsequently dis-
cussed in two specific cases, the linear chains and the quantum dots. Both
cases concern giobal confinement where one can single out the size eflects
brought about by confinement without any reference to a precise potential
and bulk behavior. We will see that the inter- and intraband quantum con-
finement act in a quite distinct way. We also briefly discuss the modifications
that arise from coupling of two or more quantum confined microstructures.

4.1. Dimensionality Effects and Scaling Laws

As was stressed in Section 2, sce (45), (46), and (47), the susceptibilities in the
transparency region are expressed as integrals over the Brillouin yone, and the
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main contribution to these integrals is expected to come from the critical
regions in the joint density of states. Since the signature of the latter is directly
related to the dimensionality of the electron charge density, this establishes
[47] a relation between the optical susceptibilities y*"* " and the topology
and dimensionality of the joint density of states, and in particular allows one
to express these nonlinearities in terms of the values of Q. and w,, at these
critical regions only, and derive scaling laws. In contrast, the second-order
susceptibility ¥'2'is not sensitive to these critical regions in k space but rather
to the overall joint density of states, since x'? is determined by a local prop-
erty, namely the asymmetry of the intracell charge density distribution. We
will summarize the salient results of this discussion since the details can be
found elsewhere [47,62], and concentrate our attention on the nonresonant
case only. Since the critical regions in a given system are well separated from
cach other, one may assume that their effect is additive and consider the
contribution for each one separately.

One-dimenstonal system with critical point E,. One finds [44]

7= 7""(%})& (94a)
/ N Ky
and, more generally,
PO ”(E.F)h 2 {94b)
Eq
where ' Ui is the (2n — [)th order polarizability of an isolated unit cell.

The crucial quantity here is the delocalization length

k,
Ly=ua'' = aN,. (95)
E,
Expressions (94a and b) are valid when E, /£, » |, which corresponds Lo very
dispersive bands or very delocalized electrons. If such is the case, a careful
analysis of (46} shows that the first term inside the integral, also called the
intraband or Franz- Keldysh term, is the dominant term. and this leads to
¥ > 0. For flat bands or localized electrons (N; = 1) the second term, also
called the interband or Stark term, becomes dominant, and ¥ < Q.

Two-dimensional system with critical tine F. One linds [47.62]
1= pl B (96a)
and, in general.

tn

7 Li > PS! E‘;’" l‘ lgﬁb,
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Three-dimensional system with critical surface £,. One finds [47,62]
7'M s PLIEY? (974)
and, in general,
y77 VU PLIETTR {97b)

The preceding results are valid for frequencies « well below the onset of
electronic transitions. For frequencies not too close to the gap energics £, k.
or E,, one can still use the previous expressions and expressions (9a.b.c) for
the joint density of states simply by replacing E; by E, = E; — hw. Close to
the critical regions, the expressions break down as the behavior is dominated
by the dynamics of the resonance there and other characteristics of the tran-
sition, and each case musl be examined separately.

We wish to complete this discussion with a comment concerning the second-
order susceptibility z'2'. In this quantity, the inter- and intraband terms in (47)
can have either sign so that they may add or substract inside the integral.
Careful analysis of Eq. (47) reveals [44,47] that contributions to the integral
only come from regions where Q,, is a complex number. The integrand van-
ishes whenever £, becomes either only real or pure imaginary. and this is
precisely what happens at the edge of the Brillouin zone where the critical
points occur, Thus, in constrast 1oz, ¥ does not tuke full advantage of
the infinite density of states at the critical points and the highly delocalized
character of the states there. In particular, the critical point analysis and the
derivation of scaling laws is not as straightforward as for y'*"

4.2. Size Effects in Conjugated Chains

We shall discuss here the case of the optical nonlincarities of fimite conju-
gated chains, and see how size effects are brought in by quantum conlinement.
We shall explicitly consider chains with and without bond alternation. With
some simplifying assumptions concerning the clectronic distribution [ 44, 63],
one can use a fully analytical treatment and gain somg insight into the im-
pact of the quantum confinement, Despite the very idealized picture we will
use here, the general conclusions are of interest in ongoing rescarch activity
on nonlinear organic materials, and deserve some atlention.

4.2.1. Chains withour Bond Alternation

We use the Hiickel approximation [63,64) and write the wave lunction as
¥ =1, c,¢, where ¢, is the atomic orbital on atom n and the coetlicients <,
for a finite chain with 2N equally spaced atoms in the presence of an electric
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field E are determined through
(ol —€ +nwh+ Ble, 1 + ¢piy) =0, (98)

where /1 is the resonance (hopping) energy between neighboring atoms, the
energy € is determined through the boundary conditions ¢, = c;54, = 0, and
w = eak, where ais the interatomic distance (unit cell length). The solution of

(98) is

Cp = Ajn - s,tw( - ZW,"B) + BYn* c,'w( - ZW,”B) = 01 (99)
where J,and Y, are the Bessel and Yon Newman functions. From the boundary
condition ¢y = ¢35, = 0, one gets

D2, (29) = oy e Y e(23) = 0, (100)

wherey = — fi/w, & = —d/f,and ¥ = (N + 1)y. The roots of this equation give
the 2N eigenvalues €,.
For zero electric field E = 0, the roots reduce to

_nm
TN
while at the high field intensity limit (3 « 1) one obtains the Stark ladder
[65,66] spectrum

€2 = 2pcosd?, 0 n=12...N, (101)

€, = nw = nak, {102)

and the same is true for intermediate field intensities (¥ <« 1 buty » 1). For low
field intensities where perturbation theory can be used, namely y » | and
¥ » 1. using the double asymptotic development of Bessel functions and
rearranging the expressions, one obtains [44], for the total energy of the
eleclron system,

W=)=:le,‘=W0ANBE,'—M. (103

where the A*s are constants that in principle can be calculated. Inserting
7 = -(N + )p/eaE, using the definition of the polarizabilities for a sym-
metric molecule,

x 1

- _ _ lllt'l]Elkfl1 “04)
W =W, nzl T T3

and identifying terms of the same order in E in Eqs. {103} and {104), one
obtains

au"_ 1) = N2n+192n¢12nfﬁ2n—! - L2n+ Ieln/aﬂzn"l‘ “05}
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which is valid for N » 1; L = Na s the half length of the chain. In particular,
for the linear and third-order polarizabilities one has

a~ N3e2a?/f = L3e*/af, (106a)
¥~ Nie*a*/p = L3e*/af?, {106b)

respectively, results that were also obtained [67] by directly calculating {42a)
and (42¢) with the matrix elements and energy levels of the free-electron model
in a box [68,69] with infinite potential walls (see Section 3.3). This is clearly a
size-dependent effect brought about by intraband confinement.

In order to place this in the proper context, let us also write down the results
for the infinite chain. Without bond alternation, one has

€(k) = 2ficos ka, (107)

where k varies over all values within the interval [0, 7/4] (Brillouin zone).
From a development for ka < 1, one obtains [70] the effective mass
hz
A 10
2P’ (108)

&

Thus, we see that the discrete states (101) of the finite chain fall exactly on
the bands (107), and are only those that have nodes at the chain ends. This
precisely excludes the end points 0 and n/a of the band and their neigh-
borhood (see Fig. 11). As a consequence, the two extreme levels of the dis-
crete spectrum (101) are shifted above and below, respectively, the band end
points by an amount that is precisely the characteristics confinement energy
h*n?/2L*m*. A simple calculation of (101) for #, < | shows that the discrete

spectrum can be written as
E - r* (mn\?
" 2m*\L )/’

precisely the same as for a free particle in a box with eflective mass m*. We
notice that the latter strongly depends on 8, and this parameter measures the
delocalization ability of the electrons along the chain and also determines
the band width. The transition dipole moments are clearly only intraband

ones as given by (77), and their introduction in (42} together with (76) lead to
expressions (106a) and { 106b).

4.2.2. Chains with Bond Alternation

The chain with bond aliernation is related to the chain without bond
alternation by a Peierls-type phase transition. One introduces [63.44] two
resonance energies i, and f, to characterize bond alternation, and one finds
that for the infinite chain the energy spectrum consists of two bands that are
mirror images to each other, the valence {hole) and conduction (electron)

o

Ty

e
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Fig. 11, A schematic view of the gquantum confinement in a one-dimensional chain without
bond alternation ¢from Rel 70).

bands, with respect to the Fermilevel E, = fi, + fi,, which coincides with the
total half width of the band. The minimum separation of the two bands, or
band gap E,. is an E-type critical point where the joint density of states
becomes infinite according to (10). Analytically, one has [44]

Eotk) = 48,51+ 7 + 2vcoska = +f,¢, (109)

for the 1wo bands with effective masses [71]

BRIV T
mf=mf=[(-+- |-; 110
" (/;, ﬁz)a* o
Eo=Eo=2f — B, (1)
for the gap and
e, = eall - v)45E {2
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for the transition dipole moment. which reaches its largest value at ka = 7

1 E.
bitby 1B, (113)

Bl - ﬁl 2 Eg

where L, was defined in (95). The critical point Eq at ka = thus plays a crucial
role; it is the point where the valence and conduction states respectively reduce
to bonding and antibonding molecular states within ecach unit ccll. It is
worthwhile noticing by going over to the Jones zone that this critical point
plays a pivotal role, and is the only one that preserves a metal-like character
in the Peierls transition.

As we go over the finite bond alternated chain of length L = Nau. the quan-
tum confinement starts excluding states from the band extremes. and pre-
cisely from the part of spectrum where the critical point is located since the
molecular orbitals must possess at least two nodes at the ahain ends. As long as
4L, < L, these changes are minor and most states are still accumulated there.
This part of the band being relatively flat, however, as a consequence. the
optical properties and the nonlinear ones in particular are not affected. and
one finds [63] that, for 41, < L,

¥V~ NS~ LS, (114)

namely the same dependence on Nyior Ly) as for the infinite chain, which also
implies that any defects along a chain more distant than 4L, apart have no
effect on the behavior of the optical Kerr effect.

However, as L becomes comparable to L. & dramatic change oceurs in the
spectrum since the average state spacing now is of the order of £, in (15),
namely of the order of {fi, — f3,|. and the singular behavior of the encrgy
region around the ghost of the energy gap of the infinite chain is suppressed
for 4Ly > L. Actually, for 4L, > L one obtains a free-electron behavior in a
box of length L. Indeed, the L§-law (114) breaks down, and one recovers the
L*-dependence (106b) characteristic of a chain without bond alternation.

Itis worthwhile also to notice that the two terms in (46). the Franz  Keldysh
and Stark terms, have their counterparts in the two terms in (42¢) il the
occupation of the states is properly taken into account. From this analogy.
one may say that even a molecule or an atom with more than two energy levels
has Franz—Keldysh and Stark energy shifts related to the first and second
terms in (42c), respectively. and the sign of 3 is determined by the relative
magnitude of these two shifts in a way similar to that discussed for the infinite
system.

To summurize the previous discussion, the nonresonant optical non-
linearities show size-dependent cffects brought in by quantum confinement
only when all involved virtual optical transitions arc intraband. The resonunt
optical nonlinearities. on the other hand. must be discussed by taking proper
consideration of the broadening and lifetime in the involved resonances. This

el . Am) = a
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will be exemplified in the following in the case of semiconductor spherical
crystallites of size smaller than the electron radius, also called semiconductor
quantum dots.

5. IMPACT OF QUANTUM CONFINEMENT ON
OPTICAL NONLINEARITIES: RESONANT CASE

As was stated in the introduction, we shall mainly be concerned with the
resonant optical Kerr effect and its related parametric effect, the electroab-
sorption. This is because in this effect one can exploit a multiple resonant
behavior in a very narrow frequency region. We shall concentrate our atten-
tion only on spherical quantum confined crystalities, and we shall distinguish
the metal and semiconductor cases as they roughly correspond to the intra-
band and interband confinement cases, respectively.

5.1. Optical Kerr Effect in Quantum Dots: Metal and
Semiconductor Crystallites

We now wish to discuss [13] the resonant optical nonlinearities of quantum
confined metal and semiconductor spherical crystailites. There are two main
reasons for the present interest on these systems. First, the confinement here is
imposed isotropically in all threc dimensions; hence, the behavior of their
optical properties can be more naturally contrasted with that of the usually
optically isotropic bulk metal or semiconductor crystal. Second, these crystal-
lites when embedded in a transparent dielectric constitute a class of compo-
site materials that have potential applications for optoelectronic devices, and
therefore are of certain technological interest. In order to give a qualitative
as well as a quantitative presentation of the effects related to the confinement,
we will introduce some drastic simplifications regarding these composites,
which have already formed the basis of our discussion of the dielectric con-
finement {see also Fig. 4).

These metal or semiconductor crystallites are uniformly and randomly
distributed in small volume concentration in a transparent dielectric, solid or
liquid, which will be asstmed to be an ideal isotropic medium of dielectric
constant €, a scalar thar .hows no resonances and hence no absorption or
dispersion in the frequency range of interest. The crystallites will be assumed
spherical in shape with a diameter L that is much smailer than both the optical
wavelength A and the interparticle distance, so that mutual interactions can
be neglected. These assumptions formed the basis of our discussion of the
dielectric confinement (Section 2.3), and it was shown that this is quite distinct
from the quantum confinement. Furthermore, the dielectric confinement
turns out to be important for the metal composites but much less so for the
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semiconductor ones, Here, we concentrate our attention on the quantutn con-
finement effects and discuss separately the metal and semiconductor cases
to illustrate the two quantum confinement types, the intra- and interband,
respectively.

In contrast, however, to the case of the dielectric confinement discussed in
Section 2.3, here the size distribution of the particles affects the behavior of
the optical properties, and in particular the nonlinear ones since 1t introduces
a spread in the level spacings that leads to an inhomogeneous broadening
[13,51,55] in the transitions in addition to the homogenecus one. which
usually arises from electron—phonon coupling. We recall [13] that these
particles are grown inside the dielectric matrix by a more or less thermally
controlled diffusion process, and to a first approximation their average size is
L., and their size distribution around this average value can be derived with the
help of the Lifshitz—Slezhov model [72]

_ 4 173
L=(§O’D('T) s (115}

I4e ple HA12uB
Plu) = —e
(1) 5 (w1 30 — e u< 1.5 (116)
=0, u= 1.5

where u = L/L; it is an asymmetric distribution with faster fall-off for L. > L.

Our concern here is the optimally resonant optical Kerr cffect susceptibility
¥'¥{w, —w, ), and more generally ¢'¥(w. —w’, ') where i and w’ are close to
resonances. We shall also discuss the limiting case of @' — 0, which is a
parametric process.

5.1.1. Metal Quantum Dots. Intraband Confinement

In an ideal metal with a single half-filled band formed from s wavefunctions,
u,(r) = u,(r) = ! and m* = m} =~ m, and the electron and hole wavefunctions
are identical and coincide with the envelope wavefunctions. The wavefunc-

tions and energy spectrum were given in Section 3.3.3. For n » I, the roots
of (89) can be simplified by

gy = (2n + HHn/2,

and when a density of states can be defined, it is given by the buik value

V 2m 3z 2 Elfl
(E)= — = v 22
HE) 2n1(h2) Er=nEm

including spin degeneracy, where V is the volume of the spherical crystallites.

e

e

s

s



346 C. Flytzanis and J. Hutter

The energy spacing between two states, the one of energy E, connected by a
dipole allowed transition is

AE = n(EE,)'",
If we assign the same value to all states between £ and E + AE, their number is

2E

N(E) = WE)AE = 3L

and the Fermi level E is independent on the crystallite size:

hl NZ;']
E,=— 2 .
=)

The intraband transition dipole moment between stales r = afm and s =
n'i'm where|{ —I'| = 1,is

where 4, is an angular factor. Finally, we associate two relaxation times T,
and T, the coherence and energy relaxation times, respectively. the same for
all transitions.

With these preliminaries, one gets from (37) [38,73.74].

atw) Q} o,

rs

[R] - i
[t} = - R [ R
(el V. driw + 0T, fu )2 ZP" Il Wl e +iT, Y
(117

for the lincar QUbLCpllbllliy where €0, is the plasma frequency. QF =
dnNeZimV, and 4, = 1/3 for [ » 1. The first term is the bare Drude term,
the same as for the bulk if we disregard the small term T 2 in the denominator
{compare with (48)). In the second term in (117). taking into consideration {90),
we expect that the main contribution comes from transitions with «,, = 0
or a,, = . The first case amounts to a small correction in the real part of
the Drude term. which actually renormalizes the plasma frequency, while the
second case. after reverting to an integration over the density of states and
then using the identity 1/(x + i) = P{lsx} — indiy) when T — 0, reads

b

QL

plw) = i—— = g (v} (T18)
4men x

where g g1 s given by (65). This term lumped Logether with the first term in

(117} agamn gives a Drude term with mean collision time 7, that takes into

account the encounters of the clecirons with the surface as well. In the large
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sphere limit, 7 reduces to 1, = T,/2. The important point to remember 1s
that x'"(w) is essentially size-independent, and this also comports with our
previous assumplion in connection with the dielectric confinement (Sec-
tion 2.3) that €, defined by (16) can be identified with the bulk dielectric
constant.

The resonant third-order susceptibility is calcuiated [38,73] for (42¢) by
inserting the expressions for =, and AE,, derived in the preceding. One gets

64 2 et a
13 . R S ‘; o
7N, —w, ) = [457!2 It 3 zhswjl‘,.g,(l)(l ““). (119}

with a, given by
ag = TH2E /m)' g (v)/[g200) + g,(M].

where ¢,{v} g,(v), and g4{v). like g.(v} in (65), are numbers of order 1. The
important point to notice in (119) is that x'* is negative imaginary and size-
dependent, 'Y x 1/L* for a < u,. Actually, this term rigorously vanishes for
the bulk metal since it results from electric dipole transition. We recall [ 7]
that in the bulk metal '*' results from the magnetic part of the Lorentz force
in the equation of 1ntrdband motion of the electron, while the electric dipole
contribution is zero.

The experimental results [ 74] actually never showed such a size dependence
in x***. The reason is that the intraband contribution in actual metal crystal-
lites is not the sole polarization mechanism. Two more mechanisms contri-
bute there with quite distinctively different behavior that dominates that of
the intraband term. One mechanism is an interband term that arises from
electronic dipole transitions between the filled d band states and the empty
quantum confined ones in the s-p band. and gives a contribution that is
negative imaginary but size-independent since the d-electrons arc unaflected
by the confinement. The other mechanism is the hot electron contribution that
results from the modification of the populations of the electron states, the
Fermi - Dirac distribution, caused by the elevation of their temperature sub-
sequent to the absorption of photons in the resonant process, but before
the heat is released to the lattice of the crystallite: this leads to a contribution
to y'¥ that is positive imaginary and size-independent. A careful analysis
[44,74] of the optical Kerr coeflicient using the the optical conjugation tech-
nique clearly showed that the third mechanism is the dominant onc, and
also that even the interband term is larger than the intraband one.

Thus. intraband confinement leads to a characteristic size-dependent
term in the optical Kerr susceptibility, while it roughly leaves unaflected the
linear susceplibility. However, this contribution to ' in real metal quantum
dots 1s dominated by other contributions. and cannot be cxpernimentally
demonstrated.



M8 C. Flytzanis and J. Hutter

5.1.2. Semiconductor Quantum Dots: Interband Confinement

The ground state of the quantum confined semiconductor crystallite being
the empty hole and electron state, the optical nonlinearity will result from the
creation of electron-hole pairs by interband photoexcitation and the sub-
sequent interaction of this pair with different perturbations inside the quan-
tum confined crystallite.

For semicondbictor crystallites, the situation is far more complex than for
the metallic ones, and this resides in the complexity of the interaction terms in
the Schrodinger equation (51), which are only partially screened. They are the
clectron hole interaction, the many-body interactions, which also include
the electron- hole pair-hair interactions that lead to biexciton formation in
the bulk, and the electron/hole-impurity interaction. These interactions can
introduce drastic modifications in the spectrum of the quantum confined
crystallite and its optical characteristics, and accordingly modify the optical
nonlinearities [75,77]. If we assimilate these interactions by those of equiv-
alent felds, these modifications will result from three causes:

+ level shifts;

«  breakdown of selection rules and appearance of new allowed transitions;
+ redistribution of oscillator strengths;

and will affect the optimal resonant behavior of the third-order susceptibility
1M, — ' w').
We concentrate our attention on the Is- s quantum confined transition
and designate by w,, the transition frequency, so that
hn?
hw, = E, + —. 120
b * 0 2ul? (1200
where 1/ = 1/m* + Im}, and we have neglected any corrections from po-
larization interactions. To the extent that this transition may be more or less
moditied by the different terms in the Schrdodinger equation [51], we may
distinguish [13] three types of nonlinearities.

Saturation nonlineavity {51] 1 the electron and hole motions are com-
pletely decoupled and the sclection rules (92) rigorously apply, then the
ts- Is transition is isolated enough and each crystallite behaves as an ideal
two-level system that may be bleached at the same frequency w that is reso-
nant with ,,, and thus contribute to the degenerate optical Kerr suscepti-
bility " w, —w, w).

Coulomb interaction mediated nonlinearity | 75-78]. If electron - hole pair~
pair Coulomb and exchange interaction is important, then an electron-hole
pair created by resonant photoexcitation at @ = w,, will shift the transition
frequency for resonant photoexcitation of a second electron-hole pair 1o a
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new frequency w, or, otherwise stated, in the presence of Coutomb inter-
actions, transitions between one-pair and two-pair states lead to induced
absorption at a frequency different from w = w,.

Impurity dominated nonlinearity [ 79]. If the photocreated electron and hole
are rapidly trapped by surface defects of the crystallite, they set up static
electric fields that shift the quantum confined levels, inducing absorption in
new frequencies @' so that the optimally resonant Kerr effect susceptibility 1s
1w, —w,w). 1t is difficult at the present stage of our knowledge 1o give
numbers for such a mechanism, and we shalil not discuss it any further except
to point out that this mechanism can be time resolved from the two previous
ones since it takes time for the electron or hole to be trapped.

Let us consider [80,81] the first case, and restrict curseleves to the |s |y
transition. The relevant degenerate third-order susceptibility (e - o, w),
with w % w,, can be easily calculated from (36) using the interband transition
dipole moment matrix element (72) and introducing the coherence and energy
relaxation times 75 and 7}, respectively. Since the system actually behaves asa
two-level system, we may also use the analytical treatment of a two-level

system in an intense optical field of frequency w and arbitrary intensity I o
obtain [80]

alw, ) 1 |ep|*t 1 14 (o, — )T}
X((U,l) o P B - - . T
4 Vimo| ho,—w-—i/T; 1+ (w,— oy T+ I
(121
where
/- mwh|®  nc
*Tlep. | 8T\Ty

which also shows the saturation regime anticipated in the preceding. At low

intensity, a Taylor expansion around / = 0 gives the desired optical Kerr
coefficient of crystallite of volume ¥ and extension L:

1 lep.t* T, T3 |

13) _ _ [ 112 )

W, —w, W) = o122

xil 10, ) VR w | wy, —w — /Ty 1+ (w,, — wPT3 1:22)

while for the linear susceptibility,
2
(ny epcv ]

- S — (123
Xe) Vitlmw| w, —w —i/T, )

Taking the size distribution in actual composites into account, one gets

¥

rPlw, —m,w) = J P Mw, —w,0) fiL)dIn L, (124)

-

and similarly for the absorption coefficient.

o
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From (122} and (123), one can casily derive the expression for the figure of
merit,

z p?

3
Za— (125)

L —— = p'T\T,
wy, —w—ifT,

and assuming size-independent relaxation times, this ratio becomes almost
size-independent (averaging over the size distribution slightly complicates
the result). There have been experimental studies that roughly confirm this
behavior [80, 81] (see also Fig. 12a,b).

The case of the Coulomb-mediated nonlinearity is more complex and can
be treated analytically only under certain simplifications concerning the Cou-
lomb interaction between electron-hole pairs. Banyai er al. [77], extending
Takagahara's [75] approach, derived an expression for y'¥(w, —w, w) for

oL 250+ oL —/‘
+ 2.00 | i i
L ~/ , R
/»" s j;/ 1.50 )
o 1.00 / (d)
N R
/"" 50 L ///
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w close to w,,, which we reproduce here:
2.2
@ _ l{ da’t |

X )

4V [y, —w) —ift D+l —~ w)t
212 I

— 2 —_— — P
{{(uz — e — ) — T L+ (e, — w)T?
| 1
Wy, — W) — T {wy, — 20) — it
1s 2

1 |
* L‘(Uz —wy, — w) — i/t B (W, ~ w) — i,'rJ}}'

while z''Y(ew) is the same as in (124); o, and w, are the transition frequencics
for one and two electron - hole pairs, respectively, A and B are the correspond-
ing transition dipole moments,

A = |<0fer|15>|2,

B = {01 pt1s> (s pi23].

and 1 is a phenomenological relaxation time independent of the nature of the
damping processes. The latter is a very drastic simplification that actually
unduly exaggerates the impact of the Coulomb interaction, which. ias can be
inferred from (127), introduces an asymmetry above and below the resonance
{frequency |, (see Fig. 13). The parameters B and , cannot be casily evitl-
vated or extracted from experiment, and the size distribution in actual com-
postties actually averages out most of the eflects. For B=0und v, = 20.(126)
reduces to (122) after redefinition of certain parameters and setting 7, = 1,

As can be seen in (126), the main consequence of {thc ¢ h pair pair in-
teraction) is that the optimally resonant susceptibility is not 7',
with w = .. but rather y"™*'(¢, — @, '), where v’ = y — o and ey 2 e
As stated in the preceding. the impurity dominated nonlinearity also shows
similar frequency behavior, and it is therefore difficult to distinguish the two
merely by studying their frequency behavior. Rather, ong must resort to time
resolved studies to differentiate between the two.

The characteristic size dependence of ¥'* for small semiconductor crystal-
lites as derived in the preceding is due to the mterband quantum contine-
ment, and is valid for crystallite sizes smaller than the clectron radius but
larger than the unit cell. There has been a great deal of interestin the nonlincar
optical properties of the crystallites when the crystalhbite radius is lirger than
the electron radius, as is the case in practice for CuCl crystallites, where the
electron radius a, ~ 8 A. The initial treatment of the problem [76]. intro-
ducing the coherent extension of the exciton wavefunctions and using the
superradiant state approach. indicated that the nonlinear cocetticient '™
grows in proportion to the crvstallite size. A careful analvsis T8 837 however

(126)

(127}
(128)

1), {3}
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Fig. 13 Real and imaginary parts of ¢ n the strong conlinement (b) and intermediate
conlinement (a) regimes showing the influence of Coulombreflects. £y is the Rydberg energy of the
exciton (from Ref. 77).

showed that this claim was incorrect and traced back to the unphysical way
that the third order dipole moment induced at a given site inside the crystal-
lite was related to the three electric fields acting on three different sites. The
analysis of Refs. 82 and 83 clearly showed that all size-dependent contribu-
tions cancel out as the crystallite size grows.

5.2. Parametric Effects of Electroabsorption: The Quantum
Confined Franz—Keldysh Effect

The previous discussion concerned changes in the absorption and index of
refraction at frequency w induced by a light field of intensity I, at frequency
', which in the most favorable case is either equal (degenerate) or close to w
{ncarly degenerate). These changes are related to an effective light-intensity -
dependent susceptibility y(ew; I,-), which also is defined by the relation

£, = il )E, (129)

between the induced total polarization and the applied field. both at frequency
tw (the roles of w and ' can be int .changed), which for low intensities [,
reduces to the third-order polarization. Thus, [, in a certain sense, plays the
role of an external parameter that i .15 to modify the spectrum and dynamics
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of the system (129), which can be viewea as a special case of a parametric
process. There is a whole host of other external parameters that may change
the spectral features, and by the same token the abserption and index of
refraction. One such parametric process is of particular interest, namely
changes in the absorption induced by the static electric field E,, which can be
formally considered as a special case of a field of frequency w’ = Galthough its
effect cannot be easily deduced by taking the limit «0’ — 0 in the previous ex-
pressions. This is because in the previous discussion, by working close to
resonances, we tacitly ignored certain contributions, and in particular we as-
sumed that pE < E_, where u is the transition dipole moment and £, mea-
sures the level spacing in the quantum confined structure as given by (15},

The effect of a static electric field E, in a bulk semiconductor gives risc to
the Franz-Keldysh eflect [84, 85], whose main characteristics are the appear-
ance of an absorption tail [86] well inside the forbidden band gap and a
modification of the ideally parabolic shape of the absorption onsct in £,,. the
critical region in the joint density of states of an ideal semiconductor. In the
case of an atom, the same static electric field leads [87] to the static Stark
effect, whose main characteristic is a shift of the atomic levels, which in the
case of an ideal two-level atomic system ieads to a repulsion of the two levels,
and consequently to an increase of the apparent two-level separation. If
we momentarily view an ideal two-band semiconductor as resulting from a
periodic array of mutually interacting two-level atomic systems (see Fig. 7)
whose closest neighbors’ interaction strength also gives the band widths, we
see that the applied static electric field leads to strikingly different effects in
delocalized and localized electronic states: an attraction of interband levels
close to the critical region, and a repulsion of the localized states, respectively.
Atacloser examination, it turns out that the underlying mechanism is one and
the same as what was hinted in Section 3, namely replusion of states taken
in pairs. In the case of defocalized band states, this has a different impact on
the interband and intraband transitions. In the former, it leads to a global
repulsion of the centers of gravity of the two bands, which can roughly be
accounted for as a static Stark effect by using perturbation theory. The latter
however, because of the close spacing (essentially vanishing) of the intraband
levels, need a particular treatment and are the transitions that impose the
conspicuous behavior close to the critical points, as observed in the Franz-
Keldysh effect [86].

Since the quantum confinement precisely modifies the intraband spectrum.
we expect that the Franz- Keldysh effect will be affected by the confinement.
and in particular will evolve to a static Stark-like effect as the extension of the
confinement is reduced. This is indeed corroborated both by the theorctical
[88.89] and experimental [90] studies.

The theoretical analysis [88] of electroabsorption in square guantum wells
acted upon by a static electric field allowed the close relation between the
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stutic Sturk and Franz- Keldysh effects to be clearly shown. In the case of
onc-dimensional confinement using a square well potential {75}, and intro-
ducing the effect of the static electric field in the Schradinger equation as
itterm

H =tz - 20 Ea. {130y

'
th
n
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(d) Fig. 14 (continned)

and neglecting the electron - hole interaction altogether. the analysis simply
reduces [88] to the calculation of the absorption spectrum of a triangular
potential wetl that is given by the solution of {78). The complete muthematical
analysis can be found in Refl. 88, where numerical results are also presented.
in Figs. 14a-d, we reproduce [88] such a calculation, which strikingly shows
how the spectral modifications give rise to the bulk and quantum confined
Franz - Keldysh eflect. and how the latter evolves to the former as the con-
finement extension is increased.
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In the case of three-dimensional confinement, or quantum dot, the problem
can be tackled [89, 90] along the same lines, and reduces to the solution of the
Schridinger equation of the envelope,

h2

H:—Z—IFV,-2+W[r,-]—e,-ri-Eo, (131)
withi = e.h. which for eLE,/2 « E_ can be treated by Rayleigh-Schrodinger
perturbation approach (one usually neglects the electron-hole interaction in
calculating the effect of the static field E,). The main features are that any nl
state is now mixed with all w'(f + 1)ones, and its energy is shifted by an amount
proportional to £2. In particular, its 2/ + | degeneracy is partially broken
and gives rise to ! + 1 distinct levels, each with double degeneracy. As a con-
sequence, new fransitions now appear with oscillator strengths borrowed
from the initially allowed transitions in the absence of the static electric field.
The oscillator strength of the latter is reduced in the presence of E, because of
the incomplete overlap of the electron and hole envelopes. The compound
effect of this rearrangement is the appearance of oscillations in the differentjal
absorption coefficient da = a(w; o) — 2{ew; 0), whose period should reflect the

o
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confined level spacing. All of these features are the same as the those expected
in the static Stark effect in atoms or molecules. One can also write

o = 12me0 Im 30,0, w) E2/ne (132

and get the value of the static Kerr effect susceptibility ¥*¥'(0,0, w).

As the crystallite size increases, the condition pE, < E, will eventually
cease to be valid and one must resort [89] to a nonperturbative solution of
the problem along the lines of the treatment used for the one-dimensional
square well potential [88] and for the bulk semiconductor [85].

Before discussing the experimental observations, we wish to complete the
preceding discussion with the following remarks. The restriction to the two-
band model can actually be relaxed by also introducing the spin- orbit split-
off valence band. Besides the two-band contributions as before, one may also
have three-band contributions and in addition the electron—hole interaction,
which substantially complicate the treatment.

The experimental studies [90,91] of the electroabsorption in small qguan-
tum confined semiconductor crystallites strikingly corroborated the previous
trends, and in particular the two main features. First, the displacement of
the energy levels induces a shift of the elementary absorption peaks, which is
also accompanied by a decrease of the oscillator strength as the overlap
between hole and electron wave functions is decreased. Second, due 1o the
breakdown of inversion symmetry and mixing of states, new transitions
appear. As a consequence, the absorption change da = ai(E,) — 2(0) shows
oscillations with spacing that depend on the crystallite size. Furthermore, this
modification varies as E3. In Fig. 15, we show the representative electroab-
sorption measurement series for three different sizes, which corroborate
these predictions. As expected from quantum confinement, the whole structure
broadens and blue shifts as the radius is decreased. All these observations
clearly indicate that one has a static Stark effect. For the large crystallites, one
sees [90] a replica of the oscillations due to the spin-orbit split-off valence
band. This is also visible for the intermediate size crystallites but disappears in
the smallest size particles because of the increased broadening or the valence
band mixing.

The experimental behavior can also be quantitatively produced [90], as
shown in Fig. 16. There, the results of the calculation of the absorption change
da and the absorption coefficient a for a small crystallite are shown. [n the cal-
culation, hoth level broadening and size dispersion were taken into account.

The preceding results confirm the interpretation of the electroabsorption as
a static Stark effect for quantum confined crystallites. As the crystallite size
increases and one recovers the band states. one expects that the electroab-
sorption will start revealing its Franz - Keldysh effect signature. This was
experimentally confirmed [917. These observations also confirm that the
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same microscopic mechanisms underlie the two effects as pointed out in the
preceding.

Clearly, there are numerous other nonlinear and parametric processes that
can be aflected by the quantum confinement, and discussed along similar lines.
Of particular interest and closely related with the previpus processes are the
two-photon absorption [92]. the optical Stark effect [93]. and Raman scat-
tering [94], but also magnetooptical, piczooptic, and thermooptic effects can
be of particular interest and will certainly be properly addressed in the near
future. We shall conclude with a few remarks on second-order optical pro-
cesses, which can only occur if the system mucroscopically does not possess
the inversion symmetry.



360 C. Flytzanis and J. Hutter

5.3. Second-Order Nonlinearities

In the previous discussion, we tacitly ignored that quantum confined strue-
tures may lack inversion symmetry and this for two reasons: (i) The semicon-
ductor material by its intrinsic chemical and crystalline structure may lack
inversion symmetry, and this is the case in all 11I-V, 1I-V], and [-VIil com-
pounds. (i) The confining potential well may be asymmetric, the simplest
cases being the triangular potential well and the asymmetric double square
well potential. In the first case, the asymmetry is related to the intracell charge
asymmetry, and is not affected by the confinement since the latter extends over
several unit cells. In the second case, on the other hand, the asymmeltry can be
affected and clearly depends on the details of the asymmetry of the potential,
which substantially complicates its quantitative treatment. We shall restrict
ourselves to some general remarks. It is important to point out that for a
second-order optical process to take place, such as second harmonic genera-
tion, optical rectification, or linear Pockels effect, a macroscopic array of such
asymmetric quantum confined structures must also lack inversion symmetry.
If these structures form a periodic array and in addition are coupled, the
situation gets complicated because “bands™ may be formed out of the quan-
tum confined states. If they are uncoupled, one may assume additivity for §,
and concentrate on its magnitude for a single quantum well. This case can be
analytically treated to a large extent, as the asymmetric potential has simple
forms: triangular, asymmetric double well, or a well with a step.

The relevant guantity is the second-order polarizability f{w,,w,), whose
magnitude clearly depends on the potential asymmetry and on whether w, and
, are close to any of the quantum confined resonances. In the latter case, only
the resonant term in (38) needs to be considered, and the behavior can be ex-
tracted by computing the relevant transition dipole elements [94,95]; there
are experimental investigations and estimations for the resonant rectification
effect [96]. When w, and w, are well below any resonances expression, (42b}
must be computed, which a priori implies the knowledge of all level spacings
and dipole transition elements, which are both intra- and interband, (60) and
{72). respectively. Actually, powerful perturbation techniques similar to the
ones applied to calculate molecular second-order polarizabilities [7] can be
extended and used here too to calculate $(0,0). An order of magnitude can be
obtained by applying [97] the Unsdld approximation, which amounts to
approximating all energy spacings by an average one, which can be calculated
by making the same approximation in the sum rule for oscillator strengths,

2
h—TZ|ﬂu|2= 1. (134)

A complication arises here because of interband and intraband transitions,
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and the rise of the effective mass, and care must be paid to properly take into
account the corresponding contributions. We shall not pursue this discussion
any further except to point out that for a family of potential wells of the same
shape but different effective asymmetry strength », which can be defined by

nL:J.rp(r)dV, {135)

where p(r) is the charge density distribution in the quantum confined structure
and can vary from 0 to 1, there is an optimal second-order nenlinearity [98]
for an intermediate value of #; this can be estimated to be n = 1/4/7 since for
the extreme cases of # = 0 and # = | one has symmetric quantum wells and
£ = 0. Such an optimal second-order susceptibility was initially point out in
Ref. 98 for an isoelectronic semiconductor family. We wish to point out that
in contrast to the second-order polarizability f§, which shows such an optimal
behavior and therefore is bound, for the third-order polarizability one cannot
use similar or other considerations for its optimization.

6. GENERAL REMARKS AND CONCLUSIONS

In the previous treatment, we have purposely concentrated our discussion
on the most elementary aspects of the quantum confinement, as these pertain
in the strong confinement limit where the electron and hole motions are totally
uncoupled, and we have shown that one has two types of quantum confine-
ment, the intraband and interband, with quite distinct impacts on the optical
nonlinearities. Only the former leads to size-dependent effects, while the latier
does not, and this can be simply taken into account by using the expressions
of the polarizabilities as in the case of atoms or molecules in the one-eleciron
picture.

Beyond this regime, namely when electron - hole interaction is relevant, one
must resort to Hartee or Hartree-Fock perturbation techniques, which
greatly complicate the quantitative treatment. There have been some calcula-
tions along these lines, but the interpretation of experimental observations
cannot be considered altogether satisfactory.

Along with these fundamental aspects of the nonlinear optical properties of
quantum confined structures, the impact of the quantum confinement on the
efficiency of several optical processes of potential use in devices still is a point
of debate. It is quite evident that the figure of merit is not substantially im-
proved by the quantum confinement since the ratio is quite insensitive to the
number of electrons involved in an energy range, and this is precisely the only
feature that changes in the interband confinement, the oscillator strength
being unaffected. The situation a priori is different when intraband confine-
ment is involved. However, in the case of semiconductors this quile often

ry
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implies the use of resonances between excited states, with all complications
related to lifetimes, and in the case of metals this contribution is dominated by
others insensitive to quantum confinement. Clearly, much work is still needed
to understand the dynamics of the quantum confined states, and work in the
future will concentrate on these aspects.
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Abstract : We show that by time resolving the nonlinear response of selenium-rich Cd(S,Se)-
doped glasses with various degrees of photodarkening, we can clearly assess the origin of the
resonant optical Kerr effect in these materials. Usually a combination of a fast free-carrier

contribution and of a slow trapped-carrier one is observed. Their relative magnitude depends on

the origin and on the past history of the sample.

The linear and nonlinear optical properties of semiconductor-floped glasses, mainly CdS,
CdSe and CuCl corresponding to different confinement regimes, have been extensively studied
in the last ten years [1,2]. Here we will concentrate on the strong confinement regime
exemplified by CdSe or CdS,Se, ., alloys with a not too large value of x. In their case, the
consequences of valence band degeneracy have been clearly established [3], the dynamics of
free carrier recombination are well understood [4], the line broadehing mechanisms have been
studied [5-7] and estimations of the resonant Kerr susceptibility have been made assuming that
a single mechanism is operative {1].

However, neither the range of applicability of the different mechanisms nor their relatve
contributions to the effective Kerr susceptibility have been clearly delineated. We know that
carriers are created. We may then expect a nonlinear response due to the saturation of the
ground state to one-pair excited state transition [8] and to induced absorption corresponding to
interband transitions between the one-pair and a two-pair excited state or to intraband
transitions. We will denote this mechanism the free carrier contribution. We also know that
carriers may be trapped in long lived states and that these trapped carriers may also modify the
optical properties of the semiconductor nanoparticles [9,10] either through the static electric
field they create or through a phase space filling mechanism. This will be called the trapped
carrier contribution.

Intensity-dependent measurements of the x3)ew,-@,09) and of the xM{w,-w,w@) / a(w)
spectra (x3Xw,-w,w) is the degenerate Kerr susceptibility and o{w) is the absorption
coefficient) carried out on CdS; 43¢0 ¢ doped samples using optical phase conjugation were
interpreted as follows [11] : at low laser intensity, the dominant contribution is the mapped-
carrier one whereas at higher laser intensity the free-carrier contribution becomes dominant.
Here we address more quantitatively the relative contribution of these two mechanisms taking
into account two aspects that have been overlooked in Ref.[1}]. First, when the laser beam
intensity is increased, the phase conjugate beam intensity saturates and is no longer proportional
to the Kerr suscepribility squared. Secondly, frequency dependent measurements are not the
clearest way of distinguishing the two contributions as we will see below.

In this letter, we will report on time-resolved measurements performed on samples having



experienced various degrees of photodarkening [12] which we feel more reliable. We will see
that both mechanisms can contribute and that their relative magnitude depends on the sample
and on its past history. The samples are either commercial Schott filters such as RG 630 or
experimental samples having the same chemical composition as the RG 630 filters, x = 0.4,
The technique is optical phase conjugation with copolarized forward pump and probe beams
(the pulses being time coincident) which create a population grating which is probed by a cross-
polarized backward pump beam. The diffracted (phase conjugate) pulse energy is measured.
The laser intensity is always small enough in order to avoid saturation of phase conjugation. In
time-resolved measurements, the backward pump pulse is delayed. We also performed
frequency-dependent measurements by tuning the laser wavelength and working at "zero" delay
i.c. when the conjugate pulse energy is maximum. The laser we used is a distributed feedback
dye laser (DFDL} tunable between 560 and 610 nm and delivering a 25 psec pulse from which
the three incident pulses are derived. It is pumped by the second harmonic (A=532nm)ofa
Nd:YAG picosecond pulse. Most of the measurements reported here have been performed at
TOOM temperature.

The consequences of photodarkening [12] are now well known. The slow component of
luminescence due to trapped carrier recombination is drastically reduced as if trapping centers
were no longer existent or efficient, the nonlinear response becomes faster, the nonradiative
decay rate of free carriers increases [4] and the "zero” delay %™ decreases. The absorption
spectrum is not significantly altered however. We took fresh samples and deliberatcly darkened
them by exposing them 1o a laser beam at A = 532 nm for 1-2 h. The darkening beam diameter
was 2.5 mm with a gaussian profile, the pulse energy = 0.6 mJ and the repetition rate 1 pulse
per second. The laser beam diameter in the phase conjugation set-up was smaller (~ 0.7 mm) so
that we could probe spots on the sample having received various doses. Measuring 3 a
“zer0" delay, as a function of position, we got results such as the one shown in Fig.1.

Fig.1 clearly shows how photodarkening reduces the magnitude of the measured
susceptibility x®). The ratio between % for a nondarkened area and % for the most
darkened one is larger for a commercial glass than for an experimental one. We recall that for

these samples, commercial ones have more trapping centers than experimental ones [13]. We

also observe that the decrease of %3 can be fitted by a gaussian profile reproducing the 532 nm
laser profile. The minimum value of 3 does not decrease to zero. When the darkening dose is
increased, we observe a saturation of darkening, the bottom of the x®! profile becoming flat.

We then choose a given position of the sample and time-resolve the nonlinear response by
delaying the backward pump pulse. Two typical results are shown in Fig.2, Fig.2a
corresponding to a less darkened area and Fig.2b to a more darkened one. We clearly see that
the, nonlinear response is made of two components, a fast component decaying exponentially
with a time constant varying between ~ 30 psec and ~ 1 nsec and a slow component whose
decay constant is at least tens of nanoseconds. This is in agreement with previous observations
(see Fig.1a of Ref.[14]). We notice that our set-up is not well suited to measure long decay
times since the DFDL beam is not perfectly collimated. It is however quite reliable when the
decay time is smaller than 1 nsec.

We now argue that the slow component corresponds to the trapped-carrier contribution
whereas the fast component corresponds 1o the free-carrier one. The larger the darkening dose

is, the smaller the time constant of the fast component and the smaller the relative magnitude

Cy/C¢ of the slow and fast components. One can get to the point where there is only a fast
component ; assuming C, to be proportional to the number of active trapping centers, this
would then mean that the trapping centers have been completely deactivated. On the contrary,
when working with a fresh commercial sample in the exponential 1ail of the absorption
spectrum such as OG 530 at A = 532 nm, there is usually only a slow component. Near the
1s,-1s, transition (the substructure due to the 183, and 283 hole levels [3] is not visible for
these samples) however, even for fresh samples, the nonlinear response is the sum of a fast and
a slow component. The results shown in Fig.2 and those discussed above correspond to such a
resonant regime,

If the fast component corresponds to free carriers and neglecting intraband transitions
which arc presumably weak, it is due to satration of the 1sy-1s, transition and to induced
absorption betwezn this one-pair excited state and a two-pair excited state. The expression for
such a xP) is well known [15). Keeping only the resonant two-pair state, the

hyperpolarizability y; reads :
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where g is the wansition matrix clement of the dipole moment between ground state 10> and
one-pair state 11>, [, is the transition matrix clement between state i1> and the two-pair state
12>, T, is the dephasing time assumned to be the same for the two transitions, 8 = (Wg - @)T, =
{0y, - )T, is the normalized detuning and T, is the lifetime of level [1>. T is the time constant
of the fast component.

Using laser puises of duration ¢, (25 psec) smaller than the response times, we are in the
transient regime and we measure an effective susceptibility. Its fast component C; at "zero”
delay and for rectangular pulses is related to the rue x{f” by:

12

Co=x®| i1 -y - L0
tp 2-y 2)

where y = exp(-t,/T;). More detailed calculations will be given in a forthcoming publication.
From the measured value of T, and of C;, we can then get the value of X?)- Since photo-
darkening does not change the absorption spectrum, 4, §, T; and presumably W, are not
modified by photodarkening. Equation (1) then tells us that the ratio x?]ﬂ'l should be
constant. Table I shows the values of T, and of the ratio xP}ﬂ'l for various degrees of
darkening and we see that, within the experimental uncertainty, the ratio xP) [Ty is indeed
constant. (7)

For the range of valucs we measure for Ty, the fast component of the effective
susceptibility C; is roughly constant as can be seen in Table 1. If we assume that the slow
component C, is proportional to the number of still active rapping centers, then we understand
why the x (or C,+Cy) profile in Fig.1 follows the intensity profile of the darkening laser
bearn : the number of deactivated centers is simply proportional to the radiation dose. We also
notice that the measured xf’) is about 100 times weaker than the value one would get by
neglecting the second term in eqn (1), i.e. by neglecting induced absorption between the one-

pair state and two-pair states. Induced absorption has been observed in the nondegenerate case

£6]and our results indicate that, in the degenerate case, it leads 10 an important cancellation
effect.

Working at "zero" delay, we also measured the xmla spectrum. A typical result is
shown in Fig.3. In the exponential tail of the absorption spectrum, the ratio 1(3}/ o is observed
1o be frequency independent but the reason for this is still unclear. We also observe a resonance
in the vicinity of the 1s;-1s, transition. This is in agreement with previous observations [16] :
notice that, in Fig.2 of Ref.{16), the logarithm of %13} is plotted whereas in Fig.3 a linear plot
is shown. We observe that this resonance is more apparent for experimental samples for which
the transition is narrower. It is also sharper at liquid nitrogen temperature than at room
temperature. We recall that, at room emperature, the broadcning is mainly homegeneous or
intrinsic and that the width of the 1s,-1s, feature in the absorption spectrum decreases when the
temperature is reduced [7]. '

In the vicinity of the resonance, the 1(3) /o spectrum is however about the same for a
fresh and for a darkened sample when the nonlinear mechanism has changed as discussed
above. A study of this x{3)/a spectrum is not the best way of assessing the origin of the
nonlinearity. In fact, as shown in eqn (1), x{3)/o: should exhibit a resonance in the vicinity of
the 1s,,-15, transition for the free carrier contribution, at least whén homogeneous broadening
dominates. But, in the case of the trapped carrier contribution , although XP) is proportional to
the number of trapped carriers, assuming for example the nonlingarity to be due to the static
electric field, xlj} is also proportional to the static 1{3](0.0,03) and the ratio x(ﬂ/  is also
expected to show a resonance in the vicinity of the same transition [17].

In conclusion, we have shown that, by time resolving .the nonlinear response of
semiconductor-doped glasses having experienced various degrees of photodarkening, we are
able to more clearly assess the origin of the resonant optical Kerr. effect in these materials. In
limiting cascs, this nonlinearity is mainly due to only one contribution, trapped carriers or free
carriers. More generally, it is the sum of these two contributions. The relative magnitude of the
two contributions is difficult to assess a priori. The best way of determining it is to time resolve

the nonlinear response at low enough intensity.
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FIGURE CAPTIONS

Fig. | : The "zero” delay cffective Kerr susceptibility plotted as a function of position for a
sample which has been photodarkened with a laser beam having a gaussian profile and a
diameter of 2.5 mm. The dots correspond to the experimental data and the solid line is a

gaussian fit. One can notice a faint saturation of the darkening process.

Fig. 2 : The effective Kerr susceptibility, proportional to the square root of the conjugate pulse
energy, plotted as a functien of the backward pump pulse delay for (a) a less darkened arez and
(b) a more darkened one. The solid line is a fit with the sum of a fast exponential component

and of a slow one,

Fig. 3 : Absorption () spectrum and x® / & spectrum for a fresh experimental sample with a
mean particle radius of = 32 A. 3 is the "zero" delay effective susceptibility. From the second

derivative of the a(w) spectrum, we know that the 1s,-1s, transition occurs around A = 590

nmm.
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