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Excitations, responses, and backactions in
nonlinear photo-excitation processes of
low-dimensional semiconductors
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Phone: Japan(81)-3-5454-6532 Fax: Japan(81)-3-3467-1281
e-mail: shmz@ASone.c.u-tokyo.ac.jp, smz@tansei.cc.u-tokyo.ac.jp

Nonlinear responses of low-dimensional semiconductors to optical fields have been at-
tracting much attention. I will talk about some of our work in this field.

[ will first discuss two-photon absorption spectra, laying emphasis on roles of quasi-low-
dimensional excitons. I will show that the two-photon spectroscopy is much more sensi-
tive probe of the dimensionality than the one-photon spectroscopy, and that dimensional
crossover effect occurs when the confinement size varies across the exciton diameter. Both
theory and experiment (on guantum wells and quantum wires) will be presented.

Most nonlinear optical responses, including the two-photon absorption, can be under-
stood without quantization of electromagnetic fields. In contrast, the second topic of the
lecture is a new direction of research, in which quantum nature of electromagnetic fields
plays the essential role. 1 will show that an electron interferometer composed of quantum
wires works as a quantum non-demolition photodetector, which measures the photon number
without changing it. Both backaction and error of the measurement, as well as their physical
origins, will be discussed.

This interesting photodetector leads us to reconsider what happens to the electromagnetic
fields in nonlinear photo-excitation processes. The third topic discusses this subject by
analyzing the generation of THz electric pulses through “virtual” photo-excitation of a de-
biased multiple quantum well structure. 1 will show that the photon frequency is subject to
an extra red shift in addition to the usual self-phase modulation, whereas the photon number
s conserved. The extra red shift occurs because of the coupling of the exciton system to the
external circuit, and thus depends on the imppedance of the external circuit. This example
reminds us that in some circumstances not only a quantum system under consideration but
also “external” classical systems join in the game of determining the state of the quantum

systeni.
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Two-photon absorption in quantum-well structures near half the direct band gap
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Two-photon absorption {TPA) of gquantum-well structures is theoretically discussed with quasi-
two-dimensional exciton effects included. The simple theory agrees with recent experimental re-
sults which show strongly anisotropic TPA spectra reflecting subband quantization. The TPA
spectra in a static electric field normal to the quantum-well layers are also discussed. Substantial

changes in the spectra are predicted.

Optical nonlinearities of quantum-well structures
(QWS’s) show a wealth of phenomena which have not
been observed in bulk crystals. Most of the work, howev-
er, has been focused on the nonlinearities near the band
gap.' Optical nonlinearities of QWS’s with the photon
energies close to half the band-gap energy®? are interest-
ing not only because they provide a powerful tool for the
study of electronic structures but also because they may
open up new applications. A pioneering experimental
work has recently been performed by Tai er al.” on the
two-photon absorption (TPA) spectra of GaAs/Al,-
Gay - As QWS's. They found that the TPA spectra are
strongly anisotropic in QWS’s reflecting the subband
quantization, which is much different from the TPA spec-
tra of bulk crystals. A part of their results can be ex-
plained by the theories of Spector® and Pasquarello and
Quattropani.® However, those theories did not take ac-
count of exciton effects, while the experimental results in-
dicate strong effects of quasi-two-dimensional (Q2D} ex-
citons. The exciton effects have been discussed only quaii-
tatively by Tai et al.’ to explain their experimental re-
sults.

The purpose of the present paper is threefold. The first
15 to present a simple theory of TPA of Q2D exciton sys-
tems. The theory requires neither a complicated interac-
tion Hamiltonian® nor the sum over all subband func-
tions,** and thus is easy to apply to complicated systems.
The second is to use this theory to explain the experimen-
tal results on TPA spectra of Tai er al.' Although the
basic physics of our results is the same as that of their
qualitative discussion, we shall give a more rigorous dis-
cussion. The third is to predict TPA spectra of QWS’s in
a static electric field normal to the quantum-well (QW)
layers. Optical nonlinearities due to the lowest-lying 1§
exciton have previously been discussed by the present au-
thor.” Here we will discuss the whole spectra of the TPA
which has not been investigated previously.

First of all, we present a simple theory of TPA of Q2D
exciton systems, which is based on successful theories for
bulk crystals.®” A basic formula for the two-photon tran-
sition rate W per unit time per unit volume has been given
in many pieces of literature [see, e.g., Egs. (2.1)-(2.3) of
Ref. 6]. When the photon energies Aw; and hw; are both
close to half the band-gap energy Eg, and if the exciton
binding energy is much smaller than E; (as in GaAs), the
energy denmominator E,— hw, can be approximated by

40

L,

E/2, where E, is the energy of a many-body intermediate
statc (measured from the ground-state energy) and
Jj=1,2. Mahan showed that resulting errors are indeed
negligible.® Then, the summation over the intermediate
states becomes trivial (X | v}{v| =1) and we obtain {(tak-
ing crystal volume =1)

W’z—f:r-ZImesz(hw|+hwg), ([)
/
2e? PN .
Vigm —55— A, A0 [1(&- p) (& p)
m-c E(;

+(ég'p)(ft'p)]|g), (2)

where |g) denotes the ground state, Sr is a line-shape
function for a final state |f), m is the free-electron mass,
A; and & are, respectively, the vector potential and polar-
ization vector of w, photon, and p represents the {many-
body) momentum operator. When the well thickness L, is
smaller than the three-dimensional (3D} exciton diame-
ter, the wave function of a Q2D exciton with zero center-
of-mass motion wave vector is well approximated by

¢3’”(ri,,r;, } "'L‘/E, Z Ufﬂ(R.s\ -—R‘,‘|;}¢£‘(Z,)¢f" (Zj‘)

Y
xw.(r, =R Iw*(t; =R}, (3)

where vg is the unit-cell volume, § is the QW area, w. and
w, are Wannier functions of the conduction band ¢ and
the valence band v (=hh for the heavy hole, lh for the
light hole), respectively, R, =(R,;,Z;) denotes a lattice-
site vector (the z axis is taken normal to the QW layers)},
¢£(z) is the ath-subband envelope function of band b
(=c,0), and U (r, — ) is the envelope function of the
2D exciton associated with subbands a (of electron) and g
{of hole), with relative motion quantum number v. For
E<Eg, v=nm (n=12 ..., |m|<n), and for
E = Eg, v=k;,m. Analytic expressions for U, have been
given by Shinada and Sugano.® Note that we define n ac-
cording to recent convention, i.c., the present n=n (Ref.
8) +1. For example, the lowest state for each pair of sub-
bands is the 1.5 (n=1, m=0) state given by

U‘l‘?;-(S/Jra,fﬁ)'/zexp(—-Z!ral/aaﬁ), 4)

where ry ™1, — 1y is the 2D relative-coordinate vector, and
dqp is, which for an ideal 2D system would be equal to the

1403 © 1989 The American Physical Society
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3D effective Bohr radius,® treated here as a variational pa-
rameter. > The exciton energy E¢ is also determined
variationally. We shall assume that U2 and EZF are given
by those for the 2D exciton® with the effective Bohr radius
replaced by a,s and the effective Rydberg energy replaced
by (E& — E§8)/4, respectively, where E P=Es+el+elis

_ 1
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the quantized band-gap energy with & and &f being sub-
band energies.

Let us assume the direct allowed gap as in GaAs. In-
serting Eq. (3) into Eqs. (1) and (2), and considering the
twofold degeneracy due to spin, one finds for & =&z
{transverse-magnetic (TM) polarization],

2
W—sz:l(c |p. fv)|? [;"’-] a‘f"vlp“"l 2jyab (g, =0) | S (hw+hay), (5)

and for & =& 1 £ [transverse-¢lectric (TE} polarization],

I pd

2
w-xzucmlvw[ﬂ I
v I a.pv

where i} and ui are the reduced mass (of the electron and
hole of band ©) for the motion along Z and in xy plane, re-
spectively, and

64re’A 12A32

T AmR B (L. ALy "
(c|plez) -—L‘%fcc“d Spul (p)%Vu(.i(p) . (8)
Is= [ dz 02" (2)02) )
Pos= [ dz ¢f'(z)*?-?az'¢f(z). (10)

where Lz is the thickness of a barrier layer (this factoJr

W=KMYq:

2
ﬂ] APRERL

—f_l——aa—Uf’s(ru) 'r

Hz pﬁ‘e"jl""/[hrh Ycosh(n/hgg)] (hont+hor= E&),

2
Sfﬂ(hw1+hw2) . (6)
4]

r A
comes from the QW density?), and u. and u,; are, respec-
tively, the cell-periodic parts of the k— 0 Bloch functions
of the electron and hole. In general, #.x strongly depends
on the direction of k, i.e., w.x— U, a8 k— 0.7 The Q2D
exciton wave function is a highly anisotropic superposition
of Bloch functions as secn from Eq. (3), so that only ¢
for k=2 has appeared in the above equations. We define
as usual Mi=|{c|p;|vk)|? averaged over k. The
band-to-band matrix elements in Eqgs. (5) and (6)
are then given bg'” | (c|p.|vE)|*=qiM* and
| clp. o) ] gt M respectively, where g =0,
ghm2, gfh= 1, and gl = £. We shall assume M? con-
stant for states of interest.

Using the results of Shinada and Sugano® for
| U(0)] 2t 80 and |U0)] 2& §|m|.1, We finally obtain
for TM polarization,

8

Y lrady(n— + )21 7'S5p (hoy+hoy<EF),

an

and for TE potarization, taking account of the twofold degeneracy of m= 1t 1,

=12

w-mzzq;[i’%l ):lt.,all[ h ]
v My af

Agqp

where for hay + han= EZ,

hap= (o +hor—EEY (W 2uiaid)'? . (13)

Equations (1 1)-(13) together with Egs. (7), (9), and (10)
complete the solution,

Physical meanings of Eqgs. (5) and (6) are easy to un-
derstand.’ For a two-photon transition from |g? to | /) to
occur, two changes in parity in the polarization direction
are needed as seen from Eg. (2). One parity change
occurs in Bloch functions and has appeared as the factor
{c|plvz). For TM polarization, the other parity change
can occur only in subband functions (as P,g), and the fac-
tor | U,(0) 2just describes enhancement of the transition
can occur only in subband functions (as P.s), and the fac-

ui1 +A,fﬂ/4)e'/l“’/[nh ?cosh(n/heg)) (hon+hwrz= E&®),

Y 2n(n— 1)/ [ralsn— 1Y518% (ho+hao, < EE),

(12)

Z)r | U.€0) ] 2 just describes enhancement of the transition
due to electron-hole correlation in xy plane. Conscquent-
ly, the selection rule is a =8 =odd and m=0. For TE po-
larization, on the other hand, the parity change occurs in
U,, and the factor |15} % just describes overlap of the
electron and hole in z direction. Consequently, the selec-
tion rule is @ — f =even==0 and | m | =1. It is worth not-
ing that the factors U{0) and U'(0) in Eqs. (5) and (6)
also appear in the one-phonon absorption (OPA) coef-
ficient for direct allowed and direct forbidden cases, re-
spectively.® Thus, TPA spectra for TM (TE) polarization
for each subband is similar to OPA spectra for direct al-
lowed (forbidden) transitions.

The absorption edge is of special interest. For TM po-
larization, the TPA edge is at hw+haw: = £ 12 (energy
of the 1S exciton associated with the first electron and the

)
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second light-hole subbands), at which W is given by

2

W=2kM? |2 | Py =25l (1)
M: ndc1h?

For TE polarization, the absorption edge is at

hoi+ho;=ESH and

2 2
[ 2 h
"ﬁ] AT [ J
Hi Q. thhi
8

16 ocinhi
X— 4y . (15)
’rarzlhhl 243 i

Considering that Pop~8L,~%a,s one finds that the
latter W is much smaller in magnitude than the former W.
Considering also the smaller (~ &) binding energy of
A=2 2D excitons as compared with n=1 2D excitons,
which results in broadened S,p, the absorption edge for
TE polarization would be smeared out in usual experi-
mental situations. This situation is essentially the same as
in bulk crystals, for which no distinct peaks can be found
at the TPA edge of direct allowed gap.®’ By contrast, for
TM polarization in QWS’s, a rigid peak is expected at the
TPA edge.

The complete spectra for the GaAs/AlyssGag <sAs

We=1KM?
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FIG. 1. TPA spectra of GaAs/AlLGa-.As QWS

{L: =120 A, x=0.45) (a) for TE potarization and (b) for TM
polarization, with (solid curves} and without {dashed curves)
exciton effects, Contribution from each pair of subbands is indi-
vidually shown: e.g., the continuous spectrum the edge of which
is indicated by ¢ Thhl is a conteibution from the first clectron
and tirst heavy-hole subbunds, The height of discrete spectra {9
functions) represents the integral height dwvided by 10 meV.
Discrete spectra due to #P excitons for TE polurization ure in-
visible in this scale.

QWS with L, =120 A are shown in Fig. I, where contri-
bution from each pair of subbands is individually plotted,
so that the overall W is given by the sum of these contri-
butions. The 1S exciton energies and Bohr radii have
been variationally determined? and the subband functions
have been numerically evaluated.'” We have assumed
standard values at room temperature (RT) for band pa-
rameters in the z direction,'' and in the xy plane we took
pi" =0.07m and ul' =0.06m according to Maan e al.'?
As for the line-shape functions, we have assumed in the
figure 6 functions for S, of discrete levels in order to indi-
cate cach contribution clearly. In actual QWS's, S, is a
Gaussian-like function with the full width at half max-
imum I approximately given by I' =~ [oh+ Timp, where Ipy,
is due to phonons, whereas Fimp is due to QW imperfec-
tions.' The 'y, is related with the exciton binding energy
and the electron-phonon interactions, the latter being
nearly independent of 2D quantization.! Our variational
calculation has confirmed the conjecture of Ref. 3 that the
binding energies of 1.5 excitons associated with different
subbands are approximately equal in magnitude. Conse-
quently, Fpn is also expected to be nearly equal in magni-
tude among the 1§ excitons, which is = 3 meV at RT and
== 0 at low temperature (LT).' On the other hand, Fimp is
proportional to subband energy;'’ we expect [pp==12
meV for the 2nd subband if I'mp=3 meV for the Ist sub-

(a) ¢ L 2 (TE}
10}
o ™~
s 223 5
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= el D ,
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Iy + has — Eos (et

FIG. 2. TPA spectra of the same QWS as in Fig. | with a
static electric field of 100 kV/em applied normat to the QW lay-
ers. (4) tor TE polarization and (b) for TM polarization, with
(sofid curves) and without (dashed curves) exciton effects. Con-
tribution [rem each pair of subbands is individually shown. The
height of discrete spectra (9 functions) represents the integral
height divided by 10 meV. Continuous spectra due to the ¢ 2hih?
subbands for TU polarization are invisible in this scale at this
particular field strenpth.
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band. Therefore, for TM polarization, we expect 4 times
(at LT) or 2-3 times (at RT) larger I for the TPA edge
exciton (c1th2, 15) than T for the OPA edge exciton
{cllhl, LS).

Another important effect of scatterings by phonons and
QW imperfections is that it would destroy exciton correla-
tion between an electron and a hole for excitons with large
spatial extension of U%F. For continuum states (i.e.,
E = E&), in particular, the spatial extension is large, so
that the correlation scems to be destroyed for the QW
samples used in Ref. 3. In that case, enhancement of W
due to exciton effects disappear, and the resulting W is
given by Eqs. (11) and (12) with g~ °, which corre-
spond to the results of Ref. 5.'¢ The results are plotted in
Fig. 1 by dashed lines. These dashed lines together with
discrete spectra agree with experiment.™'* For QWS’s
with better sample quality, or for QWS’s of semiconduc-
tors with smaller Bohr radius, we do expect excitonic
enhancement for continuum states.

Finally, we shall discuss what changes are expected in
the TPA spectra if one applies a static electric field F nor-
mal to the QW layers, no experiments on which have yet
been reported. Equations (1)-(13) remain valid in the
presence of F. However, the selection rules for a —f are
removed, since F causes parity mixing in subband func-
tions. For example, the absorption edge for TM polariza-
tion occurs at ESYP! at which W is given by Eq. (14) with
the subband index “th2" all replaced by “Ih1”. The re-

sulting equation corresponds to a “‘momentum representa-
tion” of optical nonlincarities discussed in Ref. 2, in which
the second- and third-order nonlinearities of this lowest-
lying exciton have been discussed. The complete spectra
for F=100 kV/cm of the same QWS as in Fig. 1 are plot-
ted in Fig. 2. In addition to the red shift due to the
quantum-confined Stark effect,'® substantial changes are
seen. TPA peaks which are common with those in Fig. 1
become smaller because of loss in | 7o or | Pagl. On the
other hand, TPA peaks due to excitons which were forbid-
den for F =0 grow drastically. In particular, TPA for TM
polarization due to the 1§ exciton of ¢21h2 becomes very
strong, which is due to large P.n2 under this strong F.
Considering effects of broadening, which is larger for
higher subbands as discussed above, we may conclude that
actual magnitude of TPA just at the exciton peaks are
nearly equal between c¢llhl and ¢2lh2 excitons in Fig.
2(b). As for dependence of W on L, or F, higher sensitivi-
ty on F for larger L, can be easily speculated, as shown for
the lowest exciton in Ref. 2. Quantitative discussions re-
quire detailed numerical calculations, which is beyond the
scope of this short paper and thus will be described else-

where,

The author thanks Dr. K. Tai for making his results
available prior to publication. A part of numerical calcu-
lation has been performed with a computer program
developed by K. Nakamura.
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We present a unified theory for two-photon absorption {TPA} spectra of Wannier excitons in a low-
dimensional semiconductor of an arbitrary dimension 4 =0, 1, 2, and 3. It is found that the spectra
strongly reflect the anisotropies of hoth the band structure and the quasi-d-dimensional exciton envelope
functions. Therefore the low dimensionality can be sensitively detected by the TPA spectroscopy. This
18 in striking contrast to the one-photon absorption spectra, anisotropies of which cannot be taken as evi-

dence of quantum confinements.

Stimulated by recent progresses in fabrication tech-
niques of quasi-one-dimensional {(Q1D) and quasi-zero-
dimensional (Q0D) semiconductors, low-dimensional
confinement effects of excitons have been attracting much
attention. The confinement had been believed to be
detected in experiments as optical anisotropies and/or
blueshifts of one-photon absorption (OPA) spectra.
However, Bauer and Sakaki' showed recently that these
cannot be a proof of the confinement. Therefore another
probe is being searched for to confirm experimentally the
low dimensionality,

In this Brief Report, we develop a unified theory for
two-photon absorption (TPA} spectra of semiconductors
of an arbitrary dimension 4 (=0,1,2,3}, while previous
work discussed either 3D (bulk) (Ref. 2} or Q2D (Refs.
3-8) systems. The shape and anisotropies of the TPA
spectra are found to depend drastically on ¢. Hence the
dimensionality can be probed directly by TPA spectrosco-
py” with the help of the present umfied theory.

Consider an undoped quasi-d-dimensional (QdD)) semi-
conductor {or insulator), which consists of a d-
dimensional well region surrounded by barrier regions.
We take the x, (£=1,2,...,d) axes along the
unconfined directions (denoted by the subscript ||), for
which a normalization length is L., and the x.
({=d+1,d+2,...,3} axes along the confined direc-
tions (denoted by 1), for which the well width is L. Ac-
cordingly, a position vector r is decomposed as
r=(r,r)=0x,|,|x-{). We assume a semiconductor
with a one-photon-allowed direct band gap at the I
point, which consists of a single conduction {¢) band and
one {the nondegenerate case) or two (the degenerate case)
valence (v} band(s). In the degenerate case, the {3 —d)-
dimensional confinement lifts the degeneracy, and
modified heavy-hole (hh) and light-hole (Ih) bands are
formed, so that the v-band parameters become anisotrop-
ic and d dependent. By contrast, in the nondegenerate
case, they are isotropic (if isotropic for & =3) and 4 in-
dependent. Since we are maost tnterested in QdD-exciton

45

etfects on the TPA spectra (rather than effects of bulk ex-
citons confined in a QdD systemn), we assume that the lat-
tice constant <[ < the exciton Bohr radius. In this
case each QdD exciton can be assigned to a pair of ¢ and

ly. The exciton envelope function for zero center-of-
mass-motion wave number may be writien as’

L l— (f/zUl‘liﬁ(rc‘l—rh.‘ )¢a( rﬂ_)é[;(rhl) r (l)

where U% represents the d-dimensional electron-hole (e-
A relative motion along the unconfined directions, which
is specified by a quantum number(s) v, and ¢, {¢;)
denotes a subband envelope function in the conduction
{valence) band. The exciton has discrete spectra {(bound
states) when its energy E“? < E;(a;) and has a continu-
ous spectra (unbound states) when E# > E.(a;8), where
Eg e, 3)= E; + €, e, 15 the quantized band-gap energy,
with £, (£,) the subband quantization energy of the ¢ (v}
band and E. the bulk band-gap energy. Because of the
finiteness of the spatial extensions of ¢, and ¢, the v
deviates from those of the pure d-dimensional excitons
when 4 <2.'!" For d =2 we take account of the devia-
tion by replacing the Bohr radius in the analytic form'’
of U with a variationally determined value.® For d =1
we employ an analytic solution,'! assuming a regularized
e-h interaction. In both cases we here define *“the princi-
pal quantum number” # as starting from 1, whereas n in
Refs. 11 and 12 starts from 0. For d =0, U%# =1 because
excitonic effects are weak under our assumption of small
L.

Suppose that many identical QdD systems are ar-
ranged with a period of L =L | + L. where Ly 15 the bar-
rier thickness, to constitute a (3 —d)-dimensional array.
We calculate the TPA rate W%, per unit time per unit
volume of this array, as well as the OPA rate W4, for
comparison. For an incident light beam of photon ener-
gy #iw, polarization vector € and vector-potential ampli-
tude A, the OPA rate is easily calculated as

11 338 €)1992 The American Physical Society
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W(dlj’ — dme |A|
OPA 12534

fimgc L v =hh,Th

h |(c1?-p\v)lllzﬂl(¢a|¢3>|z2|U“’,’B(rt|=0)|2S$B(ficz)), (2)

where m denotes the free-electron mass, S2 a line-shape function of the aBv exciton, (¢ |€-plv), the interband matrix
element, with p the momenturn operator, and |v), is the Bloch function of the valence band when k approaches zero

(d)

along the confinement directions.>!* Note that & dependence of W5}, arises only from the interband matrix element.
Therefore anisotropies in the OPA spectra cannot be evidence of the low dimensionality.

To calculate the TPA rate, we employ the same method as the previous theory for Q2D systems,” which agreed with
experiment.® This method is valid when the photon energies #iw, and fiw, of incident light beams are both close to 1Eg
and when the exciton binding energy is much smaller than Eg (as in GaAs).2? For the incident light beams of vector-
potential amplitudes 4, and A4,, with a common polarization vector €, we find the following general formulas for the

TPA rate.
When €|/, (a confined direction),
lielpglon

6amfiet| A A,
2

(d) A =
WTPA(e”xg)_ 2 42
moc"Eg v =hh,lh Byt

G El%,) (3)

where p,, is the electron-hole reduced mass for the motion along the confined directions, p, the ’i; element of the

momentum operator, and
2
GNERy=LT T Y

a5

(8] 52 |¢s)

9
i axg | v

S Ui, =028 (fie| +Fiwy) . (@)

Here the factor L¢ ~* comes from the density of the QdD systems, (LL/L)E’“', and the summation over v can be per-
formed for continuous states using the joint density of states. When penetration of the wave function into the barrier
regions is small, ¢, and ¢ take decoupled forms such as ¢ ,(r)) =[] ¢, (x;), where $, 's denote the subband envelope

functions along the x . axis. We then find the subband selection rules:

a.—B.~odd for the polarization direction ,

ay—fB.=even=0 for the other directions .

On the other hand, when €|{Z; (an unconfined direction),

_64nfiel 4, 4|

Wi (%) = Nelps ),

1 Ap2 2
mgc Eg ¢ =hh,lh oy

(5a)
(5b)

. (6)

where y, is the electron-hole reduced mass for the motion along the unconfined directions, p, the X element of the

momentum operator, and

GlMeR =LY 'S e " 3
a.f3 v

The subband selection rule in this case becomes the same
as Eq. (5b). We can also obtain the formula for the TPA
rate in the absence of excitonic effects by making the sub-
stitution U%F(r)) —L l’d”e'k"lr"L in the above equations.
There appeared two factors in the summations in Egs.
(3} and (6): () G'?%&), which may be called the
“envelope-function part” because it is determined by the
envelope functions only, and (i) “the band part,” which
consists of the interband matrix element and the reduced
mass. The TPA rate is found to depend strongly on the
light-polarization direction through (i) the envelope-
function part, which reflects strong anisotropies of the
QdD-exciton envelope functions, and (i), in the degen-
erate case, the band part. This is in striking contrast to
the OPA rate [Eq. (2], for which polarization depen-
dence comes only from the interband matrix element.
Even if the band structure is isotropic, the TPA spectra
for d =1 and 2 exhibit drastic dependence on the light
polarization through G,“(&), unlike the OPA spectra.
We will demonstrate this fact by plotting G.?'(€) below.

L) S, ey | o
iax; ir1=0

—
To do this we must specify a few band parameters such as
effective masses, which themselves are functions of d for
the degenerate case. However, to see the most fundamen-
tal features coming from the G,%’ part, it is convenient to
assume common band parameters for any 4. (This is, of
course, a good approximation for the nondegenerate
case.) We here employ typical band parameters of the ¢
and lh bands of a GaAs/Aly,sGag ssAs quantum well.
For example,® we take ti, =0.06m, for any 4. We also
assume L, =Lg=90 A. Actual TPA spectra of a QdD
structure can be obtained from our general formula once
the band structure is known from, say, measurements of
the OPA spectra. Note that in the degenerate case the
actual spectra will be more complicated because of (i}
modifications of the values of G/’ caused by the d depen-
dence of the above band parameters, (ii) anisotropies and
d dependences of the band part, and (iii) additional con-
tributions from the hh band. For example, the ¢-Ih intet-
band matrix element for €%, is generally a few times
larger than that for &||X;,% 0.3 so that the relative TPA

T
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intensity for €[|X, will be a few times stronger than ex-
pected from the following figures. Keeping these things
in mind, let us separately discuss characteristic features
of the TPA spectra as a function of d.

{a) Three-dimensional case. When d =3 there is no
“confinement direction,” so that Eqs. (6) and (8) should
be used for any polarization direction. Hence, if the bulk
band structure is isotropic around the I point, the TPA
spectra are also isotropic.” The G'*' in this case is shown
in Fig. 1{a). Energies and lengths are, respectively, mea-
sured in  units of an effective Rydberg energy
Ry, E,u[h”e‘/ZﬁzeZZS.Z meV and an effective Bohr ra-
dius ay, = €A’ /p1,,e =110 A, where ¢ is a dielectric con-
stant. The lowest absorption peak is the 2P exciton,
whose oscillator strength is much smaller than those of
the n =1 excitons observed for d =1, 2.

(b) Quasi-zero-dimensional case. In the opposite case,
d =0, an ¢-h pair is confined in all directions, so that Eqs.
(3) and {4) should be used for any polarization direction,
where the factor 3 [U™|° should be dropped because
excitonic effects are negligible as compared with strong
effects of subband quantization (recall that we assume
small L), The TPA spectra consist of discrete lines,
each corresponding to a pair of subbands which satisfy
the selection rules of Eq. (5), as shown in Fig. 1(b), where

50 T T ™ T T T
(8) 3D system
_ 40t
|::;_'
2a 30t
g
> 20 F
1C
O L} o A n
(b} QOD system ERERET
45t [NERN ]
E S
= i}
05 1
O A i e A i i
-10 0 10 20 30 40 50 60 70
fiwy + han — Koo ol )
FIG. 1. Envelope-function part G is plotted as a function

of the sum of photon energtes of incident light beams {a) for a
bulk crystal and tb) for a multiple-quantum-box structure. The
horizontal axis is scaled by the effective Rydberg energy K., .
The vertical lines represent the discrete spectra, the height of
which tndicates the integrated TPA intensity divided by &, .
In (b) each discrete hne s assigned by ! fer- 1501 where e
and }73.] denote the subband indices of the ¢ and ¢ bands, re-
spectively. In this assignment €'Z is assumed. The dashed jine

Im ta) represents G, in the absence of exciton effects.
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G!Y of a multiple-quantum-box structure is plotted.
Note first that the vertical scale of this figure is expanded
as compared with Fig. 1{a). This reflects the fact that the
TPA intensity is as a whaole weakened with lowering d, as
seen more ciearly from the plots of the d =1 and ? cases
discussed below, because the density of the well regions is
decreased. The well density for the ~ase of Fig. 1(b) is
(L, /L)3:%, which results in an order-of-magnitude
reduction. Nevertheless, it is seen that the TPA intensity
at the lowest peak is much stronger than that at the
lowest exciton peak in Fig. 1(a) of the bulk crystal.

{c) Quasi-two-dimensional case. When d =2 our gen-
eral formulas reduce to those given in Ref. 5, as it should
be, and the TPA spectra strongly depend on the polariza-
tion direction €. For ?“ig {an unconfined direction), the
subband selection rule is Eq. (5b),* "% and the derivative
of U% in Eq. (7) is nonzero only for m = +1 excitons (so-
called P series),”*'? as shown in Fig. 2(a). On the other
hand, for €}jX. (the confined direction), the subband selec-
tion rule becomes Eq. (5a),* © and U in Eq. 4} is
nonzero only for m =0 excitons (§ series),”*'? as plotted
in Fig. 2(bl. Note that the lowest exciton peak for €%, is
much stronger than that of the bulk crystal, despite the
decreased well density mentioned above,

{d) Quasi-one-dimensional case. These features become

10 a T
{a) Q2D system

T T T T

sl

(b) G20 system

10 0 10 20 30 40 50 60 70
oy 4 hay - Eg (R

FIG. 2. Envelope-function part G''(&) of a multiple-
guantum-well structure, for the light polarization € parallel to
ta) an unconfined direction and ibl the confined direction. In {(al
2P exciton peaks are invisible 1n this seale, and quasicontinuous
spectra Just below the continuous ones are not shown. Origins
of the TPA are shown by the subband indices («:f8) and the ex-
citon gquantum numbers #,m. The Q21 Bohr radius o' has
heen vanationally determined for the 15 states for ecach subband
pair, and a /" ~ a il has been assumed for v 15, The dashed
lines represent (G, -'in the absence of exciton effects.
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more drastic when d =1 because the exciton binding en-
ergies become larger. For €|ix; (the unconfined direc-
tion), the subband selection rule is Eq. (5b), and the
derivative of U™ in Eq. (7) was given in Ref. 11, which is
nonzero only for odd-parity excitons. The G}''(€[|%;) of a
multiple-quantum-wire structure is plotted in Fig. 3(a).
Here we have taken z,=0.12ay, for the value of the
cutoff parameter, in accordance with L,=9% A.''" On
the other hand, for €|, (a confined direction), the sub-
band selection rules become Eqgs. (5a) and (5b), and U b
in Eq. (4) was given in Ref. 11, which is nonzero only for
even-parity excitons. The G,''(€|/X;) in this case is plot-
ted in Fig. 3(b). Comparing these figures with Figs. l(a)
and 2, we see that the relative magnitude of the discrete
spectra to the continuous spectra becomes larger for
d =1. This is due to increased oscillator strengths for
discrete states in Q1D systems.'' In particular, a strong
exciton peak can be observed even for €||%., in contrast to
the cases of d > 2. 1f we look at the continuous spectra, it
is interesting that exciton effects enhance the TPA for
?Hig (the unconfined direction), whereas they reduce the
TPA for €||%. (a confined direction). By contrast, the
TPA is always enhanced by exciton effects for d = 2 [see
Figs. 1(a) and 2 and Refs. 2 and 5]. The reduction of the
continuous TPA spectra of a direct-allowed-gap (two-
photon-forbidden) gquantum wire by exciton effects has
the same origin as the reduction of the OPA of a direct-
allowed-gap quantum wire, that is, an anomalously
strong concentration of the oscillator strength on the
lowest exciton state.!’ The enhancement, on the other
hand, has the same origin as that of OPA of a direct-
forbidden-gap quantum wire; an envelope function of the
Jowest odd-parity exciton has a large slope at r,=0 be-
cause the e-# Coulomb attraction becomes more effective
for d =1. In the case of the TPA of Q1D systems, on¢
can observe both the reduction (for €||X;} and enhance-
ment (for €||X;) in the same sample simply by rotating the
polarization direction.

We finally note that the strong TPA intensities at the
lowest peaks in Figs. b}, 2(b), 3{a}, and 3i(b) indicate
strong dispersions of the optical Kerr coefficient, which
suggests possible applications to ultrafast nonlinear de-
vices.™

In conclusion, we have developed a unified theory for
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FIG. 3. Envelope-function part G,'t€) of 2 multiple-
quantum-wire structure, for the light polarization € parallel to
(a) the unconfined direction and (b) a confined direction. [n (b}
discrete absorption lines due to the n =2 even excitons are in-
visible and quasicontinuous spectra just below the continuous
ones are not shown. Origins of the TPA are shown by the sub-
band indices {{a-};1B:1) and the exciton quantum number n
and party. In {b) &% is assumed in this assignment. The
dashed lines represent G.''in the absence of exciton effects.

TPA spectra of Wannier excitons in a low-dimensional
semiconductor of an arbitrary dimension & =0,1,2,3.
The spectra strongly reflect the anisotropies of both the
band structure and the QdD exciton envelopes. The
TPA spectra give us a proof of the low-dimensional
confinement of the electronic and excitonic states, which
information cannot be obtained from the OPA spectra.

The authors thank T. Takagahara and H. Kanbe for
discussions and K. Nakamura for supporting numerical
computations.

*Present address: Institute of Physics, College of Arts and Sci-
ences, The University of Tokyo, Komaba, Meguro-ku, Tokyo
153, Japan.

IG. E. W. Bauer and H. Sakaki, Surf. Sci. (to be published!.

2. D. Mahan, Phys. Rev. 170, 825 (1968); C. C. Lee and H. Y.
Fan, Phys. Rev. B9, 3502 (1974).

3D. Fréhlich, R. Wille, W, Schlapp, and G. Weimann, Phys.
Rev. Lett. 61, 1878 (1988); W. H. Knox, D. §. Chemla, D. A.
B. Miller, I. B. Stark, and S. Schmitt-Rink, ibid. 62, 1189
(1989).

$H. N. Spector, Phys. Rev. B 35, 5876 (19871 A Pasquarello
and A. Quattropani, ibid. 38, 6206 (1988).

5A. Shimnizu, Phys. Rev. B 40, 1403 (1989).

K. Tai, A. Mysyrowicz, R. J. Fisher, R. E. Slusher, and AL Y.
Cho, Phys. Rev. Lett. 62, 1784 (19891 I. M. Catalano, A.
Cingolani, R. Cingelani, M. Lepore, and K. Ploog, Phys.

Rev. B 40, 1312 (1989} Solid State Commun. 71, 217 (1989).

M. Nithisoontorn, K. Unterrainer, 5. Michaelis, N. Sawaki, E.
Gornik, and H. Kano, Phys. Rev, Lett. 62, 3078 (19891,

8K . Fujii, A. Shimizu, J. Bergquist, and T. Sawada, Phys. Rev.
Lett. 65, 1808 {1990}

9Als0, the exciton binding energy, band offset, and subband
structures can be obtained from the TPA spectroscopy, as
demonstrated in Ref. 6.

10D, A. B. Miller, J. S. Weiner, and D. $. Chemla, 1EEE J.
Quantum Eleciron. QE-22, 1816 (1986).

T, Ogawa and T. Takagahara, Phys. Rev. B 43, 14325 (1991);
44, 8138 (1991).

12M. Shinada and S. Sugano, J. Phys. Soc. Ipn. 21, 1936 (1966).

13y Yamanishi and L. Suemune, Ipn. 3. Appl. Phys. 23, L35

{1984).

4



PHYSICAL REVIEW B

VOLUME 48, NUMBER 7

15 AUGUST 1%93-1
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We develop a theory of one- and two-photon absorptions {OPA and TPA) of Wannier excitons
in the tntermediate regime, where the dimensionality of the excitons is intermediate between one
and two. We find that the TPA spectrum changes drastically with variations in the dimensionality,
whereas the OPA spectrum keeps its qualitative nature, The theory explains the puzzling results of
a recent experiment on the TPA spectrum of a quantum wire {R. Cingolani et al., Phys. Rev. Lett.

69, 1276 (1992)].

Following the many intensive studies on quasi-two-
dimensional (Q2D) semiconductors {quantum wells) over
the last two decades, optical properties of quasi-one-
dimensional (QID) semiconductors (quantum wires)
have recently been attracting much attention. How-
ever, most experimental work on quantum wires
{(QWR's) reported linear properties only, e.g., one-
photon-absoerption (OPA) spectra. Cingolani et al! re-
cently reported the first measurement of the two-photon-
absorption [TPA) spectra, which is one of the most fun-
damental nonlinear properties® of a QWR. Since the ex-
perimental QWR sample was fabricated from a quantum
well (QW), we shall take the » axis along the confinement
direction of the QW, and the y axis along the lateral con-
finement direction, with the z axis being along the free
motion. In the experiment,! the spectra were measured
for two polarization directions: € || £ and € || §.

A theory of TPA in a QWR was first developed by
Spector,? who neglected exciton effects. We recently de-
veloped a general theory, which is valid for semiconduc-
tors of arbitrary dimension d = 0, 1, 2, 3, that takes
exciton effects into account.? Both theories predict that
the TPA spectrum for ¢ || £ would be much more smeared
and broadened than that for ¢ || §. However, the experi-
ment in Ref. 1 reported puzzling results: {i) the observed
TPA spectrum was indeed very anisotropic, (ii) but the
strengths of the peaks were, on average, almost isotropic.
This cannot be explained as the spectrum of a Q2D sys-
tem either, because the spectrum of a Q2D system is
isotropic in the zy plane, in contradiction to (i).

In this report we clarify the physical origin of the ob-
served spectra. We note that the lateral width L, of the

QWR sample is several times ag), where a(;) is the QdD-

exciton Bohr radius and ¢’ < o'? < o'¥ in general.
):} 8 B E

Although this size of L, does not violate the assumption
of the nonexcitonic theory,® it does violate that of the
excitonic theory,® which assumes either L, < a'}’ (Q1D
regime} or L, — oc ((Q2D regime). Hence. we here de-
velop a theory of OPA and TPA of Wannier excitons in

. . i1 .
the intermediate reqime (L, = a'b,)). where the dimen-

¥ o~

sionality of the excitons {which we call Q1-2D excitons)
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is intermediate between one and two.

We first point out that although it has frequently been
used in the literature, the model of Q2D excitons with a
quantized center-of-mass motion (QCMM) does not ex-
plain the experimental results because the TPA spectrum
of such excitons is almost isotropic in the zy plane, as we
will show. By assuming a more realistic wave function,
we will show that the TPA spectrum in the intermediate
regime is very different from that for the Q1D or Q2D
regime, and that it changes drastically with variations
in L,, i.e., in the dimensionality. In contrast, the OPA
spectrum keeps its qualitative nature with variations in
the dimensionality. Hence, besides explaining the exper-
imental results, our theory shows that TPA spectroscopy
is a much more sensitive probe of dimensicnality than
OPA spectroscopy.

We confine ourselves to an undoped QWR, whose weil
region is made of a semiconductor with a one-photon-
allowed direct band gap of energy Eg,,. We assume, in
accordance with the experiment,’ that the photon energy
huw o~ %Esap. The cross section of the QWR is assumed
to be rectanguiar, L, x L,.° Since we are interested in
the crossover between d = 1 and d = 2, we vary Ly
as a parameter, while L, is fixed and small. That is,
considering that energy is inversely proportional to the
square of the length scale, we assume that

LX< L? and o* < L2« (ad)?, (1)

where ¢ is a lattice constant.® Typically,a >~ 5 AL, ~40
A, ag) ~ 100 A, and L, 2 3L,. In such a case, we must
first diagonalize the k-p Hamiltonian taking into account
the z-direction confinement. This causes the valence-
band mixing, and Q2D subbands are formed. The cell-
periodic part u of the Bloch functions {around the I’
point) is altered into a Q2D form, u(?). We then take
account.of the lateral (y) confinement and the exciton
effect. Under condition (1), these effects cause no sub-
stantial change in u because energy separation between
Q2D subbands is much larger than these perturbations
(except when there is an accidental degeneracy in Q2D

4510 ©1993 The American Physical Society
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valence subbands). That is, u =~ u®. On the other
hand, these perturbations cause state mixing within each
Q2D subband, or, more strictly speaking, mixing and
correlation within each pair of Q2D conduction and va-
lence subbands. As a result, envelope functions can be
strongly altered into lower-dimensional excitonic forms.
Therefore, we have a marginal situation that u's are of
Q2D forms while the envelope functions are of lower-
dimensional forms. This allows us to treat each pair of
Q2D conduction and valence subbands separetely, and
the overall spectrum is just the sum over the pairs.

We first consider the hypathetical case in which a Q1-
2D exciton is a Q2D exciton with a QCMM, which we
call a Q2’'D exciton. Its envelope function is

W) (re, Thi [as; Bz
=Gn(Y) U,(lﬂ(l', L [az;ﬁz])éa,(ze)ﬁbﬁ, (z1), (2)

where ro = (e, Ye, z¢) is the position of an electron (e),
r = z. — zp is the relative coordinate of an electron and
a hole (h), and Usd represents the relative motion of the
Q2D exciton with two quantum numbersn =1,2,... and
m = 0,%1,...,+ln ~ 1{.77° The QCMM is represented
by a normalized function Gn (Y} with a quantum number
N =1,2,..., where Y is the y coordinate of the center of
mass. A subband envelope function in the e, th conduc-
tion (5.th valence) band is written as ¢o, (¢s,). Since
the summation over all intermediate states is essential
to get the correct result for TPA, we perform, follow-
ing Ref. 8, the complete summation by approximating
off-resonant energy denominators as constant.

We find that the OPA or TPA rate, W{¥}, of a Q2'D
exciton is simply given by'©

2
wi = Li w2 o}, (3)
¥

/GN(Y)dY

where W'2{2'} denotes the OPA or TPA rate obtained
from W of a Q2D exciton® by replacing its Q2D band
parameters (effective masses and Bloch functions) with
the corresponding Q2'D band parameters. We see that
the selection rules are those for the Q2D excitons® and,
additionally, N = 1,3,5,.... More importantly, the po-
larization anisotropy in the ry plane can only come from
a possible anisotropy of Q2'D effective masses (which
results in an anisotropy in the Q2D envelope-function
part!) and/or of Q2'D Bloch functions (which results
in anisotropy in the interband matrix element M., in
Ref. 4). However, as mentioned earlier, these Q2'D band
parameters, under the condition (1), approximately equal
the Q2D band parameters, which are isotropic in the zy
plane. Therefore, when condition (1) is satisfied, the
model of a Q2'D exciton (i.e., a Q2D exciton with a
QCMM) does not lead to significant zy anisotropy in
either the OPA or TPA spectrum. This means that
the Q2'D model is wrong because strong anisotropies in
the experiment! cannot be explained. This conclusion
will also be supported below by a numerical calculation,
which shows that the true exciton states significantly de-
viate from the Q2'D forms.

4511

To find a more realistic wave function, we note that the
QWR structure is invariant under z — —x, and under
y — —y. This allows us to classify Q1-2D exciton states
using corresponding parities, oz = +1 and o, = £1. We
also note that the Q1D envelope function,

‘I"(.‘L.)(l'c, Thy [ayvaz;ﬂmﬁz])
= Ur(llél')('r; [av’aﬁﬁwﬁz])
X¢qv (ye) ¢5y (yh) Qsa. (ze) ¢'.@x (Zh)r (4)

also has definite parities of o, = & and g, = (—1)%v*+%.
Here, A represents the Q1D exciton relative motion,'!
which is specified by two quantum numbers: n =
1,2,....° and ¢ = £1 (even or odd}, and ¢, and ¢g,
are the lateral-subband envelope functions. We will sim-
ply call {n = 1,0 = +1} and {n = 2,0 = —1} states
“16)” and “2P()" states, respectively. We can also
arrange the Q2'D states of Eq. (2) to have definite pari-
ties (a;0,), by taking a linear combination of m = +|m|
and m = —|m)| states. For example, linear combinations
of {n = 2,m = +1,N = 1} states yield {n = 2,|m| =
1, N = 1} states of (c;0,) = (+—) and {(—+), which we
will call {2P§2') : N =1} and {ZP,ET) : N = 1} states,
respectively. A schematic energy diagram of low-lying
levels of the Q1D and Q2'D states is shown in Fig. 1,
where (0,0, of each state is indicated.

We may approximate a Q1-2D envelope function of
(o:0,) parities by a linear combination of the Q1D and
Q2D states of the same parities; that is,

(1-2) ~ 5 o g " o@)g)
p2 cOe L N7 @), (5)

where the sums are taken over the states of the same par-
ities. Here, we have assumed that the band parameters
can be approximated by the Q2D band parameters. This
is justified under condition (1), as discussed earlier. To
determine the superposition coefficients C'!) and c{2),
we solve the matrix equation obtained by substituting
Eq. {(5) into the Schrodinger equation and taking the in-

Q1D Q1-2D Q2D Q2D
iR —y— N1
2P0 21 5 2PN
PTRN=2++)
LA TR —— 25PN 1) 5%
P L +) =P Y Y PNy e 2R
“' ZP;}J

—y— 2PUN=1 ()
L8124 -} —Yp— ._yZ e 15N (4
LS+

15 N {44 ) 181

FIG. 1. Schematic level diagram of low-lying exciton states
of Q1D, Q1-2D, Q2'D, and Q2D semiconductors. The
z-subband indices &; = 3, = 1 are assumed and suppressed.
The TPA activity is indicated by the bold letters x and y,
corresponding to € || Z and € || § polarizations, respectively.
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ner product with each of ¥V and ¥}, (A little care

should be taken in doing this because ¥} and ¥(2) are
not orthogonal.} Results will be given afterwards.

Using Eq. {5), the OPA and TPA rates W(1-2 can be
evaluated in the same manner as W*') [Eq. (3)]. We find
that W('=2} can be cast in the form

w2} o ‘Z’C(l)w(l}{z} + Z'C(Z’)W(T){Z}’z, (6)

where [w!"{2}]? and |w®){2}|? are the OPA or TPA
rate of a Q1D exciton* and of a Q2D exciton in Eq. (3).
respectively, and in both of them, the band parameters
are replaced with the Q2D band parameters.

An immediate conclusion of Eq. {6) is that the OPA
spectrum of the Q1.2I) excitons, under condition (1}, is
almost isotropic in the zy plane. This is because, in the

case of OPA, wgl))}\ {2} and wgr’,k{Q} are totally isotropic
(although wgg, 4 would have been slightly anisotropic if

the Q1D band parameters had been used), as seen from
Eq. (2} of Ref. 4 and Eq. (3). For example, at the OPA
edge, both w(olllA and wgp)A exhibit a strong peak due to
{151 [1;1]} and {189 N = 1} components, respec-
tively (see Fig. 1). a superposition of which will approx-
imate the lowest Q1-2D exciton state. Since both rom-
ponents are isotropic in the zy plane, the Q1-2D OPA
err(l—2) " . _

spectrum Wop,™ also becomes isotropic. Moreover. we
see that the OPA oscillator strength varies only slowly
as a function of L,. This is because, besides the oscil-
lator strengths of both components varying slowly, both
the strengths at the same value of L, are of the same
order of magnitude; hence the total oscillator strength
becomes insensitive to the state mixing of Eq. {5). Asa
result, the OPA spectrum in the intermediate regime be-
comes similar to the Q2D spectrum, i.e.. we can observe
neither significant anisotropy nor sharp dependence on
L,. Therefore, the OPA spectroscopy is a poor probe of
the dimensionality in this regime.!?

The situation is very different for the TPA SDPC-
trum, which varies drastically, in both anisotropy and
oscillator strength, as a function of Ly, The strong
dependence of the zy anisotropy on L, appears be-

cause, in the case of TPA, wf(rlF),A{‘?} becomes strongly
anisotropic (through the anisotropic envelope-function

part!) whereas w%&{?} is isotropic. Therefore, the
TPA spectrum becomes very anisotropic for small L, {for
which Cts become large), and almost isotropic for large
Ly (where C'?)’s become dominant).

To see this explicitly, let us examine the spectrum at
the TPA edge, which is of particular interest because it
is most sensitively detected by experiments. Henceforth,
we assume that ¢ is in the zy plane (in accordance with
the experimental configuration!) and that a, = 3, = 1
(because this is the lowest z-subband pair which is re-
sponsible for the TPA spectrum for such polarization},
and these z-subband indices will be suppressed.

Let us first summarize the edge spectra of the QLD
and Q2'D excitons. In the QLD case,* the TPA edge
spectrum for € || I is composed of 2P excitons of

12
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lay; By] = (1;1] subband pairs, whereas that for ¢ Il &
is composed of 151 excitons of [1; 2] subband pairs. In
Fig. 1 these states are indicated by the bold letters x
and y, which denote that the state contributes to the
TPA spectrum for € || £ and for € || §, respectively. In
the Q2'D case—Eq. (3) with the help of Ref. 8— on the
other hand, the TPA edge spectrum for ¢ {| £ is cornposed

of the 2P,£2’) excitons of the N = 1 QCMM subband,

whereas that for € || § is composed of ‘.Zng2 ! excitons of
the same QCMM subband. These states, as well as the
corresponding Q2D states for reference, are indicated in
Fig. 1 by x or y.

We now turn to the Q1-2D spectrum, which is our
main interest. We note that a hybridization of Eq. (5)
occurs between states with similar energies. Hence, to a
first approximation, the Q1-2D excitons can be obtained
by the superposition indicated by the arrows in Fig. 1.
For example, the Q1-2D exciton of the lowest energy of
{o:0y) = (—+) parities would be a linear combination of
the {2P{*) . N = 1} Q2'D exciton and the {2PV) : [1;11}
Q1D exciton. Since both components have x activity,
with oscillator strengths of similar magnitude, this state
exhibits a TPA peak only for ¢ || £, whose strength varies
slowly with Ly, as will be shown in Fig. 3. On the other
hand, the lowest exciton of (+—) parities would he a lin-
ear combination of the {15 : 11:2]} exciton (with y
activity), the {157 : N = 2} exciton {no activity), and
the {QPLSZ ):Nzl} exciton (y activity) (see Fig. 1). In
contrast to the (—+) state, this (+—) state exhibits a
TPA peak only for € || g. As a result, the total spec
trum exhibits a strong zy anisotropy (as regards the en-
ergy positions of the TPA peaks), in agreement with the
experiment.!

To fully interpret the puzzling experimental results.
we must also explain why the strengths of the observed
TPA peaks are, on an average, almost isotropic. For this
purpose, we performed numerical calculations, assuming

Superpositon coetficients

FIG. 2. The superposition coefficients for the lowmst (~—)
state {see Fig. 1) are plotted as a function of L, The

solid (:C.'l(_;)), dotted (Céiv)) and dashed (Cf.;)) CUrves rep-
resent the coefficients of the components of the {15 [1; 2]},
2PN = 1}, and {1577 . N = 2} excitons, respectively.
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typical values of u/M = 0.15, p/my = 0.2, a(;)/a(g) =
0.8, and Lz/ag) = 1.0, where i, M, and m;, denote the
reduced, center of mass, and hoie masses, respectively.
The result for the lowest (+—) exciton is shown in Figs. 2
and 3. Figure 2 clearly demonstrates that as Ly is in-
creased (by only a factor of 2) the character of the lowest
(+—) state changes drastically from the {15 : [1;2]}
exciton (with y activity) to the {1S®) : N = 2} ex-
citon (no activity). As a result, the oscillator strength
(Fig. 3) decreases rapidly from a large Q1D value toward

zero. In particular, at Ly/ag) ~ 3, which corresponds
to the QWR sample of Ref. 1, the strength of the low-
est (+—) state for € | § becomes comparable to that of
the lowest {—+) exciton for & || £, which is indicated by
the dashed line in Fig. 3. Consequently, the TPA spec-
trum becomes almost isofropic in peak strength, and,
as discussed above, very anisetropic in peak positions,
in complete agreement with the experiment.! Figure 3
also shows that the TPA spectrum rapidly approaches
a totally isotropic spectrum (in both energy positions
and strengths of peaks) for larger L, (because the {+—)
state loses its strength], and, for smaller L,, a totally
anisotropic spectrum [because the (+—) peak becomes
much stronger than the (—+) peak]. Therefore, TPA
spectroscopy is a much more sensitive probe of the di-
mensionality than OPA spectroscopy.

Although the above discussions concern quantum
wires, it should be noted that similar crossover effects will
also occur in quantum wells and quantum boxes when
they are not small enough. Moreover, imperfections in
their structures (such as wall roughness) can induce a
similar effect because it causes state mixing. These ef-
fects will distort the pure QdD TPA spectrum of Refs. 4

25 T

Lowest (+-) state N

20
SN CNRY)

15}

10 |

Lowest (-+) state

TPA oscillator strength (arb. units)

e —— - ———

FIG. 3. The TPA oscillator strengths of the lowest (+-}
state for € ]| ¢ and of the lowest (—+) state for € || & are
plotted as a function of Ly by the solid and dashed curves,

respectively.

and 8, depending on the nature of a sample, while the
OPA spectrum will be almost unchanged. This may ex-
plain variations in the observed TPA spectra of QW’s.2
Lastly, we stress that our argument relies completely on
the excitonic effects. In fact, if we had ignored the e-h
Coulomb attraction, the length scale ag) would not have
appeared, and no qualitative change would have resulted

when L, varied.
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We have measured two-photon absorption spectra of quantum-well structures in siatic electric flelds
for photon energies close to half the band-gap energy, and found drastic static-field-induced changes in
the spectra. Our experimental results agree with a theory based upon an infinite-level model, the validity
of which was previously established at zero bias, except that a field-induced growth of the two-photon
absorption peak at haif the lowest light-hole exciton energy is more drastic than the theoretical predic-
tion. At high bias fields the peak height approaches a large value predicted by another simplified theory

based upon a two-level model.

PACS numbers: 78.65.Fza, 42.65.—k, 71.35 +z

Two-photon absorption (TPA) of quantum-well struc-
tures (QWSs) is a subject of growing interest.'™® In par-
ticular, intensive studies have been devoted to the TPA
spectra of QWSs near the TPA edge, i.c., for the photon
energy hw==E;/2.°"* When the incident light is polar-
1ized in the plane normal to the confinement direction,
€12, rather smooth TPA spectra, which are not much

different from those of the bulk crystal, were predicted

by theories which did not consider excitonic effects.®7 If
the excitonic effects are included, one may expect from
the selection rule nP exciton peaks.'™ Their oscillator
strengths are, however, shown to be very small {as com-
pared with 1§ exciton peaks which appear in the éliZ
spectra).>® In agreement with theory,® Tai er al.® ob-
served only a tail due to a 2P exciton, and Nithisoontorn
et al.* observed only shoulders attributable to 2P exci-
tons. On the other hand, when the incident light is po-
larized parallel to the confinement direction, €ilZ. the
TPA spectra become much different from those of the
bulk crystal, reflecting subband quantization.** In
particular, strong 1§ exciton peaks, followed by steplike
continuums, were observed by Tai er al.’ in agreement
with theory.® In addition to these TPA spectra for non-
biased QWSs, the theory® also investigated the TPA
spectra in the presence of external siatic electric fields
(IZ), and predicted drastic changes in the éliZ spectra,
which are caused by parity mixing in subband wave
functions. In this Letter, we present the first experimen-
tal results for these drastic field-induced changes in the
TPA spectra of QWSs.2?

The experimentai setup and the sample structure are
shown in Fig. 1. Difference-frequency light pulses of 6
ns duration were generated from a Q-switched Nd-doped
yttrium-aluminum-garnet and a dye laser. The tuning
range is 1.45~1.75 ym. The energy per pulse is about 6
ml}, and its pulse-to-pulse fluctuation is about 20%. The
light pulses were attenuated and were coupled into a
sample of ridge-type waveguide using a 20X objective
lens. The coupling efficiency was about 5%. At the out-

put from the waveguide, the propagation beam was
separated from scattered light using a 100x objective
lens and a pinhole. The experimental arrangement al-
lows either the é1Z or éilZ polarization configuration.
Moreaver, because of the two-dimensional confinement
of the light field, we can avoid self-focusing effects and
surface effects, so that values of the TPA ceefficient a3
can be estimated more accurately than in conventional
experiments. The samples consist of an undoped
GaAs/AlysGaggAs multiple-quantum-well (MQW) core
region embedded in Alg4GageAs cladding regions. We
employed a p-i-n structure to apply static electric fields
to the MQW region, perpendicularly to the QW layers.
To avoid possible absorption changes in the waveguide
due to carrier-density changes caused by the electric
fields, the MQW region as well as portions of the clad-
ding layers are undoped. All measurements were per-
formed ar room temperature.

We have measured the beam intensities [, and [, at
the input and output, respectively, using Ge photodiodes
of 0.5 ns rise time and a boxcar integrator. We have also
measured the induced photocurrent J, using a transim-
pedance amplifier.'” Light attenuation due to nonlinear

FIG. 1.

Experimental setup and sample descriptions. The
ridge width and length are 3 and 500 um, respectively. The
thickness of the MQW layer (75 periods of 100-A-GaAs/62-
A-Ala4GagsAs) and the i-Alg 4Gao ¢As layers are about 1.2 and
0.4 ym, respectively.
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processes was less than several percent for propagation-
beam intensity less than 6 MW/cm?” The duration of
one photocurrent puise was 6 ns, which is just the dura-
tion of one light pulse.'” Figure 2 shows the light-
intensity (/) dependence of the photocurrent. As it
should be, the quadratic dependence of J upon [
(J/1 @ ag+al) holds quite well. The magnitude of the
TPA coefficient a; at each wavelength is estimated from
the relation of J/ fou vs Tou (as shown in Fig. 2) and also
from the relation of [ou/lin vs I In the latter esti-
mate, to get a sufficient signal-to-noise ratio, we have es-
timated a:(V) —a,(0) rather than a:(F) itself. Since
a,(0)} for £l1Z vanishes at wavelengths longer than twice
the Ih2-cl;1S exciton wavelength®®’ (th denotes light
hole: ¢, conduction), we can deduce a:(V) itself in such
wavelength regions, and we have compared it with that
deduced from the photocurrent measurement. They are
consistent if we take account of the bias-voltage depen-
dence of n, the quantum efficiency of converting photo-
generated carriers into currents, and linear scattering or
absorption due to photogenerated free carriers.'''? We
have also confirmed that all samples processed from the
same epitaxial wafer showed almost the same TPA spec-
tra.

Let us first look at the TPA spectra for £LZ polariza-
tion. According to Ref. 8. aa of the exciton, which has
the relative-motion quantum number v and is composed
of the ath conduction subband and the Sth heavy-hole
(hh) or light-hole (Ih} subband, is given by, for € LZ,

ay gt /i | AU (0)] 2528 (1)
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FIG. 2. Photocurrent divided by the light intensity plotted
againsi the light intensity. for three different wavelengths.

where v =hh or lh, q_l“‘- 3, q}"- I, s is the overlap

integral between the subband envelope functions, ui is
the reduced mass for the motion in the QW plane, # is
Planck’s constant divided by 2z, UZ'(0) is the first
derivative of the in-plane envelope function at r; =0, and
5% is a line-shape function. The validity of the theory
was previously established at zero bias.™*® Since the
theory does not assume any symmetries for QWSs, we
expect that it is also valid at finite bias fields F.® For
discrete states (v=n,m), U (0) is nonzero only for nP
excitons, However, we do not expect any distinct spec-
tral structures in our experiment because the nP excitons
are unstable at room temperature. As for continuous
spectra (v=ky,m), |Uf%,(0)| increases monotonicaily
with energy. Hence, we expect smooth, monotonicaily
increasing spectra.® Since the in-plane envelope function
(characterized by the Bohr radius of the exciton) is not
very sensitive to F,"’ the main F dependence of a; comes
from the factor {,; and the quantum-confined Stark
shifts'* of the exciton energies.® This situation is simi-
lar tc one-photon absorption (OPA).'* The experimen-
tal result for the TPA photocurrent spectra in the pres-
ence of a bias field of F == 80 kV/cm (which was estimat-
ed from the bias voltage ¥ =155 V) is shown in Fig. 3.
In agreement with the theory, the spectra are smooth
and no clear peaks are seen at the wavelengths of half
the Stark-shifted energies of the lowest heavy-hole
(bh1-c1;1S) and the lowest light-hole {Ihl1-cl;1.8) exci-
tons. On the other hand, we do not understand why the
TPA photocurrent decreases at shorter wavelengths,
whereas the theory predicts a monotonic increase.® One
possible reason for the discrepancy is that some recom-
bination channel might open at shorter wavelengths.®

Let us next investigate the TPA spectra for éllZ polar-

81% ."'
V=15.5volts (F=80 KV/cm) - .

> k] -"
= ' [ ] [ ]
E - _
; = Ihi-ci:1S

2k L :
g - -'""{ s
g ) 4&
- L]
g v Y hhiclils
Y Y
=
2
i " 1
[+ 9
f

n
0 L 1 i
1.55 1.60 1.65 1.70 175

Wavelength  (um}

FIG. 3. Photocurrent spectra for the light polarized parallel
to the QW layers, at the applied voltage of 15.5 V. The verti-
¢ul lines indicate twice the wavelengths of the hhl-cl;1§ and
Ihi-c1:1.S excitons which are determined from the one-photon
absarption spectra.
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ization. According to theory,®

ay e gt Poglu i P\ U (0)| 2524 (2)
where g =0, gh=2, P, is the momentum matrix ele-
ment between the subband envelope functions, u! is the
reduced mass for the z-direction motion, and UZ?(0) is
the in-plane envelope function at r,=0. For discrete
states, U/75(0) is nonzero only for nS excitons. At room
temperature, we expect strong peaks only for LS exci-
tons, because among nS excitons they are the only ones
which have large binding energies as well as strong oscil-
lator strengths.® As for continuous states, |U/#5, (0)] is
almost constant independent of energy. Hence, we ex-
pect stenlike spectra’ along with the strong 1S exciton
peaks.™* The main F dependence of a; comes from the
factor P,z and the quantum-confined Stark shifts.® The
experimental result for the spectra of a:(V)—a:(0) is
shown in Fig. 4, where the spectra for wavelengths
longer than about 1.66 um are equal to a-(¥) itself, be-
cause a2(0) =0 there.*** In agreement with theory,®
we have observed growth and redshifts of the peak of the
lowest light-hole (Ih1-cl:18) excitons, which vanishes at
zero bias.>* To confirm that the observed peak indeed
corresponds to the Ihl-cl;18 exciton, we compared half
the wavelength of the lowest peak with the lhl-c1;15 ex-
citon wavelength determined from the OPA spectra. At
each bias voltage they agreed quite well, which confirms
our attribution.

In order 1o investigate a; at shorter wavelengths,
where a;(0)=0, let us look at photocurrent spectra (Fig.
5). In this case, we must keep in mind that n(¥)}, the
quantum efficiency of converting carriers into currents, is
smaller for lower applied voltages V. Hence, let us look
at the spectrum at the highest voltage (V' =155 V} rep-
resented by solid circles. In addition to the lhl-c1;15 ex-
citon peak, two peaks are clearly observed at shorter

6
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FIG. 4. Spectra of ax(F) —ax{0) determined from the

trunsmission measurements. at three different bias voltages
The hght 1s pularized perpendicularly o the lavers.
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wavelengths. On the basis of Eq. (2) and simple calcula-
tions of the energy-level structure, we attribute the peaks
to the [h2-c1;15 and [h1-c2;1.S excitons, which were also
observed in the zero-bias spectra.’ On the other hand,
the smallness of the TPA photocurrent for shorter wave-
lengths (= 1.55 um) could not be explained within the
framework of Eq. (2). As in the case of éLZ spectra,
one possible reasen for the discrepancy is some recom-
bination channel for shorter wavelengths.*

We finally make quantitative comparison with theory.
Let us estimate the magnitude of a; at the lowest-energy
peak (lhi-c1;15) induced by the bias field of 80 kV/cm.
We assume that the time-integrated photocurrent is
equal to the quantum efficiency n{¥) times the number
of carriers generated by TPA. Then, we obtain
a:=007/n(¥V) cm/MW. Considering that <1 and
that absorption saturation might have occurred, we con-
clude that @; > 0.07 cm/MW. This peak value of a1 ar
the TPA edge is comparable with a3 (=0.03 cm/M W)} %
of bulk GaAs crystals ar shorter wavelengths (deep in-
side the TPA spectra), and is an order of magnitude
larger than the theoretical prediction.®'® It is interesting
that the observed value is close to that predicted
by another simplified theory'® based upon a two-level
model. It suggests that a crossover occurred from an
infinite-level-model-like behavior at zero bias to a two-
tevel-model-like one at high bias voltages. Although we
do not understand at present why this happened, it has a
significant meaning in applications, because the large
peak of a;(V) at the TPA edge gives rise to a large peak
of Rex'¥ just below the TPA edge. Such a large peak is
absent in the bulk crystal.'” Since MQWSs are “ultra-
transparent” in this energy region®'' (because both
OPA and TPA are absent, and also because the TPA tail
is much sharper than that of bulk crystals) and the
response time 1 of the nonlinearity is ultrafast, we can
obtain a large figure of merit x°'/(ap+a>f) 7 in biased
MQWSs even at room temperature.

The present experiment has been performed using the
Quantel laser system in the Research Institute for Poly-
mers and Textiles (Tsukuba, Japan}. We thank Dr. H.
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FIG. 5. Photocurrent spectra for the tight polarized perpen-
diculariy to the QW Javers. at two different hias voltages.
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exciton is largely reduced by the clectric ficld (see Ref. 8).
However, we did not observe the negative values. (i) Our
samples showed strong photoluminescence at 77 K with the
narrow full width of —2 meV. This indicates that our sample
quality is not much worse than those of Refs. 3 and 4 which
did not observe any effects of deep impurities,

t7G. D. Mahan, Phys. Rev. 170, 825 (1968); C. C. Lee and
H. Y. Fan, Phys. Rev. B 9, 3502 (1974).
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We have investigated the polarization-dependent two-photon absorption in GaAs/AlGaAs quantum
wires. The anisotropic selection rules of the multiphoton absorption process are exploited to study the
one-dimensional 2p ¢xciton states and the transitions between quantum wire subbands of different quan-
tum numbers (an, =0 selection rule), The deviations lrom the selection rules derived for the strict one-
dimensional case are discussed, and depend on the actual quasi-one-dimensional character of the exci-

tonic wave functions.

PACS numbers: 78 65 Fa, 42.65.—k

The nonlinear optical properties of low-dimensional
semiconductors have attracted great interest in the last
few years. In particular, two-photon absorption {TPA)
has been investigated in detail in two-dimensional (2D)
semiconductor quantum wells. both experimentally and
theoretically, to elucidate the impact of the reduced
dimensionality on the nonlinear absorption processes f1],
Currently, interest has turned to systems with even lower
dimensionality, like 1D quantum wires and 0D quantum
dots (for a review see Ref, [21). The optical properties of
undoped low-dimensional systems are strongly governed
by excitonic effects. An interesting aspect of TPA is that
it gives direct access to excited excitonic states having a
signtficantly larger excitonic radius (2p states). [t i
therefore expected that the intluence of lateral con-
finement is stronger on these excited 2p states than on the
excitonic ground state, ie., the s exciton A special situ-
ation should occur when the width of the lateral
confinement is in between the extension of the |s and 2p
states. In this Letter we report an experimental study of
TPA in GaAs/AlGaAs quantum wires. We find a strong
quantum confinement effect on the 2p exciton states,
significantly enhanced with respect to that on the I
states observed in conventional photoluminescence excita-
tion spectroscopy (PLE). The TPA curves show rich ex-
citation spectra with a strong polarization dependence. in
agreement with theoretical predictions (3.4}, In fact, we
find that optical transitions between quantum wire states
with the same quantum numbers (An, =0} are allowed
when the polarization direction of the exciting heam (¢)
is perpendicular to the wire quantization direction ().
whereas An. = * | transitions are dominant in the ely
geometry. These peculiar selection rules allow us to
discriminate between true onc-dimensionat und quasi-
two-dimensional excitonic states which are involved uas
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the final states of different {inear and nonlinear absorp-
tion processes,

The investigated quantum wire array has been fabri-
cated by holographic patterning and subsequent reactive
ton etching of a molecular-beam-epitaxy-grown multj-
ple-quantum-well heterostructure. The quantum well
structure consisted of 23 GaAs wells of width £. =103 A
and Alg13GagesAs barriers of width Ly: =148 A grown
on top of a l-gm-thick Alg1sGagesAs cladding layer pro-
viding optical confinement of the luminescence {through-
out the paper the indices z and y indicate the confinement
directions of the quantum weil and of the quantum wire,
respectively). The processed quantum well structure re-
suited in a regular array of quantum wires with 280-nm
periodicity and a crystalline wire width L,=60%3nomas
determined by the uanalysis of high-resolution x-ray
diffraction spectra. Details on the structural and linear
optical properties of the sample are reported in Ref. [5]
and Refs. [6,7], respectively. The nonlinear absorption
has  been  studied by measuring  the two-photon-
absorption~induced photoluminescence excitation spectra
{TPA-PLE) at 10 K for different polarization directions
of the exciting laser beam. The detection €nergy was set
at  the fundamental gquantum wire exciton state
(E}f=1.554 eV), independently measured by linear PLE
spectroscopy, and by scanning the exciting photon energy
in the transparency region of the crystal. The laser
source was a two-stage amplified dye laser pumped by the
second harmonic of a Nd:YAG laser, operating at 10 Hz
repetition frequency and with 9 nsec pulse duration, The
dve-laser radiation was frequency converted in the in-
frared by a low-pressure H, Raman cell. The output
beam could be tuned in the spectral range 0,75
eV <hw <082 eV with tuning accuracy of the laser dye
of about 2 A and with maximum power density of the or-
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der of 10 MWcm ~2 after focusing. The emitted radia-
tton was detected by a 0.5-m double monochromator
equipped with a 60ER photomultiplier tube and the excit-
ing beam was monitored by a fast-response photodiode.
Both signals were sent to a digital oscilloscope for further
processing. To reduce the effects of fluctuations in the in-
put beam intensity, the ratio of the photomultiplier signal
to the second power of the monitor signal was used.
Moreover, the quadratic behavior of the detected
luminescence signal versus excitation intensily was
checked at each experimental point and several measure-
ment runs were carried out at all exciting wavelengths.
With the adopted experimental conditions the signal-to-
noise ratio was of the order of 200:1. In Fig. | we show
the typical intensity dependence of the nonlinear lumines-
cence induced by the absorption of two photons of energy
hw=0795 eV (2hw=1.590 eV) and hw=03805 eV
(2hw=1.610 eV) versus the laser power density. Much
care has been taken to reduce and test the influence of the
inhomogeneity of the power distribution across the excit-
ing laser section. The experimental points exhibit the ex-
pected quadratic behavior as shown by the comparison
with the quadratic regression curves {solid lines in Fig.
I}). The slope-2 curves fit the experimental data points
within 3% at all wavelengths. The experimental TPA-
PLE spectra at T=10 K in the eLly and eily con-
figurations are shown in Fig. 2 together with the linear
PLE.

Before entering into a detailed discussion of the TPA-
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FIG. |. Logarithmic plot of the intensity dependence of the
photoluminescence induced by two-photon absorption at energy
(a} 2hw=1.590 eV and (b) 2hw=1610 cV. respectively,
versus the laser power density in the €Lz configuration. The
straight lines are the best-it quadratic regresston curves 1o the
experimental poirts, Curves At all daty points within = 37,

PLE data we briefly summarize the results of the linear
spectroscopy under low and high excitation intensity. As
a result of the relatively large width of the investigated
quantum wires, which amounts approximately to 4 times
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FIG. 2. {a)} Linear photoluminescence excitation (PLE)}

spectrum of the quantum wire array at T =10 K. The detection
energy was set at the low-energy tail of the fundamental quan-
tum wire exciton state (around 1.552 eV}, E™ indicates the
energy of the exciton continuum. (b) Two-photon-ab-
sorption-induced  photoluminescence  excitation  spectrum
(TPA-PLE) of the gquantum wires measured in the ely
configuration at T =10 K. The vertical lines indicate the calcu-
lated energy positions of the 2p exciton states associated with
Any =0 transitions (E27, transitions). The 3.0-meV splitting
indicates the estimated binding energy of the 2p excited state of
the n, =1 exciton in the quantum wire. The vertical error bar
deriving from signal-to-noise ratio and slope-2 regression on ex-
pertmental points is indicated. The horizontal error bar coin-
cides with the solid dots (the tuning accuracy was 2 A). (c)
The same as (b) but in the elly configuration. The vertical lines
indicate the calculated energy positions of the ls exciton states
associated with am, = £ | transitions (£,%, +(). For both
TPA spectra the detection energy was set at around 1.554 eV,
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the bulk exciton Bohr radius (ap). the quantum effects
induced by the lateral confinement (y direction) are ex-
pected 1o be different under different excitation condi-
tions. It has been shown that [D intersubband transitions
can be clearly resolved under high-excitation conditions
in stationary [6] and time-resolved photoluminescence ex-
periments [7]. Comparison of PL spectra with Kohn-
Luttinger-type calculations taking into account the com-
plex valence-band structure in the wires [8] allowed us to
identify intersubband recombination processes involving
quantum wire subbands with quantum numbers as high
as n, =5 and the selection rule an, =0 [6,7). In particu-
lar, the confinement energies of the 1D valence subbands
were taken from Ref. [8] for a GaAs wire with L, =60
nm and L, =10 nm, whereas the confinement energies of
the conduction subbands were caiculated by the square-
well model assuming infinite height of the potential bar-
rier. However, when the optical properties are dominated
by excitonic effects, as is the case under low-excitation
conditions, the quantum size effects induced by the
lateral confinement appear to be different. 1t was poiated
out in Ref. [9] that in the rather wide quantum wires of
our experiment the lateral confinement leads to a quanti-
zation of the excitonic center-of-mass motion, which
leaves the internal structure of the exciton (ie., the wave
function of the refative motion of the electron and hole)
unchanged and therefore 2D-like. The center-of-mass
motion quantization manifests itself in the split heavy-
hole exciton peaks of Fig. 2(a), which are quantized
states of the translational motion of the is heavy-hole ex-
citon. Therefore the linear PLE profile of Fig. 2(a) still
maintains some 2D character (including a sharp light-
hole exciton resonance around 1.574 eV} and does not ex-
hibit pure D states. The results of these experiments
demonstrated that quantum size effects are differently
pronounced under different experimental conditions. In
fact, depending on the wire width L, one can find one-
dimensional excitons if L, < ap and two-dimensional exci-
tons if L, * ag. In our sample we have roughly £, = 4aq;
hence, Is excitons behave almost hike 2D excitons, while
2p excitons, having a larger extent of the relative motion,
should exhibit an almost 1D character (with transition
energies close to the | D intersubband transitions observed
in the high-excitation-intensity photoluminescence spec-
tra of Refs. (6,71},

Due to the complementary selection rules, two-photon
spectroscopy offers the unique possibility to access direct-
ly 2p excitonic states. Since the diameter of the 2p excit-
ed states is enlarged by a factor of 4 {valid for 3D exci-
tons} in comparison with s excitons, these states should
be effectively quantized and therefore exhibit a true one-
dimensional character. This shouid enable us to observe
1D excitonic states in the TPA-PLE spectra. In order to
use the famibar classification of 2D excitons for 11D exci-
tons aiso, we will label states of even parity by "5 and of
odd parity by “p” [10]. This allows us to classify one-
and two-dimensional excitonic states without changing
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notation Furthermore, it leads to identical selection
rules for 1D and 2D systems with respect to the confined
and unconfined directions. Inspection of experimental
TPA spectra in the eLy and ¢lly configurations reveals a
clear difference with respect to the linear PLE spectrum
[Fig. 2(a)]. In addition, the TPA-PLE line shapes are
different depending on the relative orientation of the laser
polarization vector with respect to the quantum wire
lateral quantization direction. Such an anisotropy is
theoretically predicted by the theory for quasi-one-
dimensional systems [3,4]. In particular, in the eLly
geometry it is expected that the matrix elements of the
TPA process do not vanish for transitions involving quan-
tum wire states with the same quantum numbers (selec-
tion rule an, =0). Conversely, in the elly geometry only
intersubband transitions with An, =+ 1, =3, . are al-
towed In addition, if excitons are included in the ID
theory of two-photon absorption {4], it results that only
2p exciton states related to An, =0 tcansitions are al-
lowed as final states of the TPA process in the ely
configuration. On the contrary, 5 exciton states are al-
towed in the ¢lly geometry for An, #0 transitions. These
additional constraints result from the requirements of
parity conservation in the two-photon-absorption process.
In the light of these thecretical arguments we can inter-
pret the experimental spectra of Figs. 2{b) and 2(c).

In the eLy configuration (Fig. 2(b)] we observe five
structures whose relative energy splittings are the same as
those observed for the An, =0 transitions in the time-
resolved [6] and in the stationary luminescence spectra
{71 under the high-photoexcitation condition, ie., they
directly reflect the 1D subband spacing. Furthermore,
the first resonance of the TPA-PLE spectrum in Fig. 2(b)
is about 3 meV below the onset of the centinuum in Fig.
2{a). This confirms that indeed 2p excitonic states are
observed. The estimated binding energy of 3 meV for 2p
state is additionally in pood agreement with that predict-
ed {or a perfectly quantized 1D exciton. In fact, such a
2p exciton follows the normal 3D hydrogenic series [10]
that gives for its binding energy a value of abeut 4 meV
in GaAs quantum wires. The speciral positions of the
higher-energy transitiens [which are indicated by dashed
tines in Fig. 2{b)] have been obtained by adding the 1D
subband spacing of Ref. [6] to the transitions labeled
Ef{“. The coincidence strongly supports our assumption
that the observed resonances are related to one-di-
mensional excitonic transitions. Therefore, we conclude
that the TPA-PLE peaks of Fig, 2(b) are related to 2p
excited states of the 1D excitons associated with An, =0
transitions, in agreement with the theoretical expecta-
tions.

In the elly configuration the TPA-PLE spectrum ap-
pears to be even more structured, and exhibits several
transitions. The vertical lines of Fig. 2{c) represent the
energy posittons of the 15 exciton states associated with
Any =2 | transitions in the gquantum wire. These are
calculated by adding the net confinement energies of the
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ID conduction and valence subbands to the E i exciton
energy (i.e., the detection energy). Comparison of these
calculated transitions with the experimental data points
reveals reasonable agreement. This demonstrates that in
this configuration |s states with An, = T I are allowed, in
agreement with the theory. However, the TPA-PLE
spectrum of Fig. 2(c) exhibits rather broad peaks in this
configuration, which requires further comment. In fact,
the TPA selection rules employed for the interpretation of
the presented nonlinear absorption data have been de-
rived by a strict one-dimensional model [3.4]. which obvi-
ously should be modified to treat the intermediate regime
of quasi-one-dimensional excitons where L, = 4do. Under
these conditions departures from the selection rules valid
for the strictly 1D systems are expected due to the residu-
al 2D character of the exciton wave functions. In partic-
ular, one should consider either nure !D exciton states
(both ts and 2p states) or 2D excitons with quantized
center-of-mass motion as final states of the multiphoton
absorption process. A linear combination of the wave
functions of these two different excitons can be used to
represent a realistic form of the quasi-1D exciton wave
function. Additional broadenings are expected in the
TPA spectra cue to this superposition. which quatitatively
explains the observed broad structures in the TPA-PLE
spectrum of Fig. 2(c). A detailed discussion of these pre-
liminary theoretical results will be reported ¢isewhere.

in conclusion, we have reported the first study of two-
photon absorption in GaAs quanium wires. Qur experi-
ment provides evidence for the strongiy anisotropic selec-
tion rules of the interband two-photon absorption related
to the reduced dimensionality of the system. Further, we
have observed the excited 2p excitonic states and several
An, = * | transitions in these one-dimensional structures.
Finallv, the mixed 1D and 2D confinements of the exci-
tonic siates in wide quanium wires huve heen discussed
with relevance to the peculiar nonlinear absorplion selec-
tion rules.
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We propose to modulate quantum interference currents in a semiconductor electron interferom-
cter by optical fields using intersubband virtual transitions, in which the optical fields are subject
0 no absorptions despite a high modulation efficiency. The electron-light interaction is more
direct and efficient than those of previous proposals, and morcover, extra transitions, which could
cause absorptions and/or destroy the electron coherence, are almost perfectly suppressed.

It has recently become possible to observe quantum in-
terference currents in small-size (“mesoscopic”) metal or
semiconductor structures.' Most previous work treated
modulation of the interference currents either by staric
magnetic or by siatic electric fields (or potentials}.! A
possibility of modulation of the interference currents by
time-dependen:t fields (such as optical fields) was first
considered by one of the authors (M.Y.).? He proposed to
drive an electrostatic Aharonov-Bohm (AB) device by a
dc voltage generated by optical “virtual™ excitations (i.e..
optical rectification). The most remarkable point may be
that the interference currents can be modulated without
light absorption. Although in that scheme electron-light
interactions are rather indirect ones (i.e., the light field
does not interact directly with electrons in the AB device),
he recently proposed another scheme in which electrons
interact with photoexcited “virtual” excitons through an
exchange interaction. *

In general terms, these ideas are summarized us fol-
lows. Although it is applicable to any time-dependent
field. we call the field “optical field” and call the associat-
ed quanta “photons” for convenience. Consider the ab-
sorption spectra of an electron system in an “optical
field.” If the “photon” energy lies within a gap of the ab-
sorption spectra, the optical field is subject to no absorp-
tions. However, it does not mean absence of effects of the
optical field upon the electron system. Electron wave
functions are slightly deformed by perturbations of an
electron-field interaction. By expanding the deformed
wave functions in terms of unperturbed eigenfunctions, we
can interpret that electrons are coherently excited with
small amplitudes to excited states.® These coherent exci-
tations are sometimes called “virtual excitations,”? In
contrast, when the photon absorptions occur, parts of elec-
trons are incoherently excited to excited states, which are
called real excitations. The basic idea is use of the slight
deformation of electron wave functions induced by virtuai
excitations. Although the wave-function deformations
are, in general, small (less than a few percent, typically),
they can have strong effects on electron-interference
currents, because a small wave-number change caused by
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the small wave-function deformation can lead to a large
phase shift as an electron travels a distance long compared
to its wavelength. As a result, electron-interference
currents can be modulated drastically by optical fields
without absorptions. From a view point of applications,
the total system works as an “absorption-free detector™ of
the field intensity, because the magnitude of the electron-
interference currents varies as a function of the field in-
tensity. This type of device has wide potential applica-
tions.>? In particular, it has been recently pointed out
that well-designed absorption-free photodetectors work as
quantum nondemolition photodetectors. *

At first sight, the absorption-free property may look to
be inconsistent with a fundamental requirement of quan-
lum mechanics: any measurement must accompany dissi-
pations. In our case, the dissipations do occur in classical
systems of external apparatus (including contact regions
which work as electron reservoirs) which are used to mea-
sure the interference currents. However, the dissipations
do nmot cause dissipations in the optical fiefds if the
measuring apparatus are decoupled from the optical
fields, and if the apparatus are only coupled with electrons
which have finished interactions with the optical fields.
This last point is of particufar importance, although it has
not been stressed before. In fact, it can be shown® that
dissipations (absorptions) of the optica! fields would occur
when the electrons interacting with the optical fields are
simultaneously coupled with a classical dissipative sys-
tem, such as a resistor and a transmission line. That is,
“virtual excitations™ are nor necessarily free from dissipa-
tions of the optical fields.®

In this Rapid Communication, we propose a scheme’
for the absorption-free optical modulation of electron-
interference currents, in which electron-light interactions
are more direct and efficient than those >? previously pro-
posed, and, more importantly, extra transitions, which
could cause photon absorptions and/or could destroy elec-
tron coherence, are almost perfectly suppressed. The
basic idea is the use of the optical Stark effects of inter-
subband virtual transitions.® Figure | shows schematic
absorption spectra of a doped quantum-welf (QW) struc-
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FIG. 1. Schematic absorption spectra of a doped narrow
quantum well for the light potarized perpendicularly to the lay-
ers. The absorption is negligibly small if the photon energy is
just below (as indicated by the solid triangle) or just above (as
the open triangle} the absorption peak of the transitions from
the first to the second subbands, a— & Multiphonon absorp-
tions occur for lower photon energies, while for higher photon
energies the absorption spectra approach those of the free-
carrier absorptions of a bulk crystal,

ABSORPTION

ture for the photon energies A in the range of intersub-
band transition energies.” The light is assumed to be po-
larized perpendicularty to the QW layers, We set the
photon energy as

hw =gy —E;,— A, )

where &, and &, are the tirst (¢) and second (b} subband
energies, and A is called the detuning energy. Absorptions
and/or scatterings of the light fields are absent if ho
> optical phonon energies and if |A] > I, the width of the
a—- b transitions. Main origins of [ at low temperatures
are QW imperfections and nonparabolicitics.g Owing to
recent rapid progresses in crystal growth techniques, the
broadening due to the former has already been greally
suppressed,'? and is expected to become negligible in the
near future.*? [n that case, [ is almost due to the nonpar-
abolicities which make transition energies different for
different values of transverse (parallel to the QW layers)
wave numbers. For thin QW’s as we will assume below,
this [ may become as large as 10 meV. However, 1
should be noted that in contrast to other broadening
mechanisms this broadening does not degrade the device
proposed below, because only the states at the Fermi level
carry currents and the width of each of the states is much
smaller than . Their contributions in the absorption
spectra appear at the lower-energy edge of the a -~ b ab-
sorption peak. All we have 10 do is to replace & —& in
Eq. (1) by this lower energy.

There are many reasons for using intersubband virtual
transitions rather than interband ones: (1) Extra transi-
tions, such as interband transitions and free-carrier
scatterings, are almost perfectly suppressed. In contrast,
if one used interband transitions, the light not only would
induce interband virtual transitions but aiso would in-
teract directly with conduction clectrons. This could
cause photon absorptions and/or could destroy electron
coherence. (ii) The transition dipole moment is very
large,” which leads to smaller light intensity to modulate
currents. (iii} Electron density can be made very high be-
cause it is unnecessary Lo maintain excitons as in Ref. 3.
As a result, a large Fermi velocity vf 1s obtained, which
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leads to a high operation speed, a long coherence length
({,=vpt,), and a high monochromaticity (6k/k¢
~kgT/er) of electron waves.! (iv) It is possible to make
A negative as well as positive, as seen from Fig. 1. Conse-
quently, as explained below, the optical fields need not be
focused upon a very small spot as in previous work, 23 and
also the optical Stark shifts of two arms can be utilized
constructively [see Eq. (10) below]. (v} The operation
wavelength is compatible with ultralow-loss optical com-
munications.

Figure 2 shows the proposed structure. This is based
upon the electrostatic AB effect device proposed by Datta
et al.'! To modulate interference currents, they utilized a
change in electrostatic potential, whercas we utilize the
optical Stark shifts of subband levels induced by optical
fields,® as explained below. Two quantum-well wires
(QWW's) of different well widths, the narrow (N) and
the wide (W) ones, constitute an AB geometry. The ring
should be made within the coherence length /, of elec-
trons, which is of the order of 10 pm at 1 K.' For simpli-
city we further assume that the electrons move ballistical-
ly,! although the interference may also occur in the
diffusive case.! We also assume that the confining poten-
tial in the y direction is common for the two QWW's, 50
that they have the same eigenfunction ¢, (y) and eigenen-
ergy &, For the z direction, we denote the lowest-subband
energy and wave function in Nor Why e % and o ¥(2),
respectively, and the second-subband energy by &%, By
appropriately designing the widths and alloy compositions
of the wells. we can easily make the subband energies to
satisly the relations

£r =€ Sea, (2)
e e <hw<el—el. (3)

E1G. 2. Schematic diagram of the proposed structure. The
large circle represents the cross section of the light beam. The
ciectrons at the Fermi level flow from left to right. The band di-
agrams and eigenfunctions in the left. middle, and right regions
4re shown in the lower side. 1n the middle band diagram, the
arrows indicate the directiens of the optical Stark shifts of the
subband energies.

Y



9250

In the coupling regions lying between the ring and the
contact regions, the lowest subband state is given by

os = (oY + o) /V2. (4)

Al temperatures lower than the energy separation be-
tween this state and the second-subband state, an electron
which is injected from the left-contact region into the
lefi-coupling region is in this ¢5 state.'’ Despite the
difference in the well widths of N and W, the weights of
o and oY are equal in ¢s, as in Eq. {4), owing to the re-
lation (2). Hence, as an electron proceeds to the ring re-
gion, its wave function will just be halved into (wo parts:
e*%0, ()l (z)/V3 and e®*o ()o¥ (z)/V2. where k is
the wave number of the motion in the x direction and is
related with the Fermi energy e by

e =h"k*2m*+e .+, . (5)

with m* being the effective mass. In the center region
{we call it the interaction region) of the ring region, a -
polarized optical beam propagating in the + direction is
shown. In this interaction region, &, * is slightly changed
duc to the optical Stark effect by*

agg ==\ w6l /Ay w
1

(6)
e

where py w is the o) " — ¢ " transition dipole mo-
ment,*™ & is the electric-field amplitude of the optical
field, and Ay i is the detuning energy. As a result of the
above optical Stark shift of £ ", the wave number & is
also changed in the interaction region according to Eq. {5)
by

Ak‘\-‘_u-=(k!2m"Ag,',\'“/h3)”3—!\' , (7)

Alter the electron passes through the interaction region,
the two parts of its wave function in the 1two QW W's ac-
quire the relative phase difference given by

AB={Aky —Aku )L +AB, . ()

where L is the length of the interaction region (ie.. the
width of the optical beam) und A8y is un offset phase
difference caused by possible difference in the path lengths
atong the two QWW's. While entering the right-coupling
region, only the in-phase part of the wave function can go
tnto the coupling region, '~ Hence, if we neglect multiple
reflections for simplicity, the conductance & between the
two contact regions varies as '

G xcos {AQ/2)

Since A8 is a function of the light intensity J (& |&F) as
seen from Eqs. (6)-(8). G varies with /. To get larger A9
for a given value of 7, it is particularly effective to make
Ax and Ay different in signs; Av > 0 and Ay < 0. (This is
possible for intersubband virtual transitions.) In that
case, the directions of the optical Stark shifts in the two
QWW’s become opposite, as indicated by the arrows in
Fig. 2, und consequently the two QW W's contribute con-
structively to A8 in Eq. (8):

Ak —Aky =‘Ak\|+|ﬁku'l .

(9)

{10}

IF we assume GaAs/AIAs QWW's of about 40-A well
thickness, the photon wavelength 4 becomes about 2.8
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um, which is compatible with ultralow-loss optical com-
munications.'' We also assume the beam width L~/
(refractive index)~1 ym, the detuning encrgies Ay
= — Ay =10 meV, and the electron density ~10° cm ~.
Then, G is modulated over 50% at the light intensity of
=2 MW/cm?, which intensity is an order of magnitude
smaller than those of previously proposed structures.?’
Since the beam area is | um?, the light power is only 20
mW, and its fraction hitting upon the QWW’s is as small
as about 0.2 mW,

In the above discussions, we have assumed that the
light-induced level shifts are due to the pure optical Stark
shifts as observed in simple atomic systems. In other
words, many-body effects, which were important in the
case of Ref. 3, have been assumed to be unimportant in
our case of intersubband virtual transitions. Although
this was experimentally confirmed in un undoped QW
no experiments have been performed for doped QW’s or
QWW’'s. We evaluated many-body corrections using a
simple theory and found that they are indeed very small
for intersubband virtwal excitations in thin QW’s or
QWW:s. ¥ This conclusion should be contrasted with the
case of intersubband real excitations where many-body
corrections to the subband energies are important.” ' Al-
though the theoretical result’™ may need an experimental
test, we note that Egs. (73-(9) are valid irrespective of
ortgins of the level shifts. Hence, the currents can be
modulated even if the many-body effects played a role.

We finally consider the feasibility of observing the pro-
posed effect. The structure of Fig. 2 or of Ref. [2 has not
been fabricated so far. However, we note that our pro-
posed effect does not depend on the specific structure ol
the electron interferometer. That is, the absorption-free
optical modulation of electron-interference current should
be observable in any electron interferometers whose in-
terference patterns are altered by intersubband virtual
transitions. For example, the effect should also be observ-
able n the resonant tunneling diode of Fig. 3 of Ref. 5, or
in the eiectron interferometer of Rell 14, in which the ex-
act 111 branching ratio as well as the single mode
transmission in an AB ring cun be achieved by lorming a
ring-shaped electron path in a srraight double-quantum-
wire structure by control of wave functions by gate volt-
ages. " Another possibility of observing the eflect ts Lo ob-
serve changes in magnetoresistance in an AB ring struc-
ture caused by intersubband virtual transitions. Lxperi-
ment on these possibilities 5s in progress.

[n summary, we have proposed a scheme for an
absorption-free optical modulation of electron-inter-
ference currents. The electron-light interaction is more
direct and efficient than those previously proposed, and,
more importantly, extra transitions, which could cause
photon absorptions and/or could destroy electron coher-
ence, are almost perfectly suppressed. Among structures
ever proposed, the most efficient current modulation has
been achieved.

We wish to thank Professor H. Sakaki for Truitful dis-
Cussions.
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We discuss effects of quantized electromagnetic fields upon the electronic conduction in inter-
ferometers of semiconductor microstructures. An optical field in an arbitrary quantum state is as-
sumed to hit the interferometer, and the time evolution of the coupled photon-electron system is
evaluated. It is found that the interferometer works as a quantum nondemolition photodetector if
the interferometer is designed such that the interaction is switched adiabatically.

Electronic conduction in microstructures of metals or
semiconductors is a subject of growing interest.' Most
previous works discussed effects of static magnetic or
electric fields upon the electronic conduction.! A few
works have appeared recently that discussed the conduc-
tance modulation by classical electromagnetic fields.” In
this paper we discuss effects of guantized eleciromagnetic
fields upon the electronic conduction in semiconductor
interferometers of a “mesoscopic’ size. An optical field
in an arbitrary quantum state, such as a number state or
a coherent state, is assumed 1o hit the mesoscopic inter-
ferometer, and the time evolution of the coupled photon-
electron system 1s evaluated. Various guantitics, such as
a quantum-mechanical noise 1n the electron-interfercnce
current, are given in closed forms. Most importantly, it
is found that the interferometer works as a quantum non-
demolition (QND) photodetector® 7 if the interferometer
is designed such that the interaction is switched adiabati-
cally. That is, one can measure the photon number
without “hackactions”™ upon the photon number by
measuring the clectron-interference current. ln contrast,
ordinary measuring apparatus contaminate the observ-
able of interest [the photon number) by backactions of the
measurements.’ [Mue to the specific natures of the elec-
trons i semiconductor microstructures as probe quanta,
the operation principle of the present QND scheme 1y
different from any of the previously proposed ones.”

To contrast the present case with the case of classical
optical fields,” and also to reduce mathematical complexi-
ties, we employ the structure of Fig. 1 as a model system,
although experiment may be more easily performed in
other structures, as mentioned later. Qur structure is ba-
sically the one described in Ref. 2, except that the “elec-
tron mode converter” is employed and both of the quad-
rature components of the interference currents, J _ and
J _, are measured. This improvement has been made to
avoid reflections of electrons back to the source region,
and also, as explained later, to improve the signal-to-
noise ratio (SNR) of the device. Two quantum-well wires
QWWs) of differens well widths, the narrow (V) and the
Aharonov-Bohm (48]

wide (W) ones. constitute an

geomelry. We assume that the size of the ring 15 small

enough (~ | pm typicallyi tor the electrons at the Fermm
43

surface to move ballistically from the source to the drain
regions. This can be realized in, say, high-quality
GaAs/AlAs QWW’s at low temperatures. An optical
field polarized in the z direction propagates in the +y
direction, and is confined in the center region (which we
call the interaction region) by an optical waveguide struc-
ture, where the optical field interacts with electrons in the
QWW's. If the photon energy #iw is slightly detuned
from the intersubband transition energies, or, more
rigorously, if the right-hand side (rhs) of Eq. (3) is small
enough, the interaction induces only “virtual transitions”
so that no photons are absorbed. The virtual transitions
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FIG. 1. Schematic structure of the quantum nondemolition
photodetector used in the analysis. The optical fieid propaga-
ting in the +y direction is confined in the center dotted region,
with the-transversal mode function u (x,z}), which is schemati-
cally shown in the upper side. The band diagrams and subband
eigenfunctions in the source and center regions are shown in the
lower side. where the arrows indicate the directions of the opti-
cal Stark shifts,
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cause phase shifts in the electron wave functions, and
thus give rise to changes in the electron-interference
currents, from which we can deduce the photon number.
We will investigate the time evolution of the initial
(i.e., prior to the interaction} photon state of the general
form: |¢)=3,a,/n), where [n) is the number state,
which is defined according to the following quantized op-
tical electric field:*
1/2

i [@u(x,z)e’®+H.c.}, ()

eLy

& (r)=

where € is the dielectric constant, @ is the photon annihi-
lation operator, u(x,2) is the normalized transversal
mode function, 3 is the propagation constant, and L, 15 a
normalization length in the y direction. Electrons are
supplied from the source region. We note that the wave
function of each electron must be a wave packet of some
finite length [. Previous experiments on a neutron
source’ and an electron source'’ suggest that the wave
packet has a Gaussian-like envelope and that [ is close to
the length determined by the uncertainty principle. It is
thus natural to consider that the electron wave function
in our case also has the Gaussian envelope of the length
{ =v,7,, where v, 1s the Fermi velocity and 7, is the
phase breaking time' in the source region. ity would be
shorter than that in the 4B ring region). We can safely
employ this assumption because our final results are in-
dependent of the length and detailed forms of the wave
packet."' For the same reason, we will not write explicit-
ly the Gaussian envelope function in the following equa-
tions. We will also drop in the equations the eigenener-
gies and eigenfunctions corresponding to the y-direction
confinement, because they play no important roles.'!

By appropriately designing the widths and alloy com-
positions of the wells, we can easily make the lowest
subband energies of the 1wo QWW’s 10 satisfy Eu\'ze:‘v
=€,. An electron wave packet emitted from the source
region will be split into two, and its wave function with
the Fermi energy of e, =g, +#k*/2m* becomes of the

R
form-

i¢):(cjr1,r-¢:>+_L,JA\ ({‘:‘)]/VE ' (2)

where ¢ > ¥iz2) is the lowest-subband eigenfunctions of ¥
or W. Hence, the initial state of the total system (elec-
tron plus optical field) is W) = |} Y. We can analyti-
cally solve the time-dependent Schrodinger equation (o
obtain the time evolution of this initial state, using an
adiabatic approximation (ADA) to separate the x and z
coordinates of the electron, another ADA to treat pulsed
optical fields, the rotating-wave approximation (RWA),
and the Wentzel-Kramers-Brillouin (WKB) approxima-
tion.!! The total resulting error is estimated to be ~ 1%.
which is dominated by the RWA. However, the RWA as
well as the WKB approximation are irrelevant 1o the
QND property of the device because the neglected terms
cause ro real transitions.'’ It s found that the error re-
sulting from the two ADA's, which is refated with de-
struction of photons, is given by

2

i ) (3)

TJ'A

% =W apall’ _ l yvn
o) A

where 7, is the characteristic time that it takes for the
photon-electron interaction to switch, ¥ is the maximum
value of y,(x) {see Eq. (7], and [l =min({Ayl, |14, 1
[see Eq. {(6)]. This equation is the standard expression for
the validity of the ADA in time-dependent problems, and
thus demonstrates that our QND device relies upon the
adiabatic switching of the interaction. 7, is of the order
of the shorter one of 7,, the transit time of the electron
through the interaction region, and the optical-pulse
duration 7,. Owing to the smooth profiles of the optical
fields as a function of x and y, as described by u (x,z) (see
Fig. 1) and the optical-pulse shape, the collision of the
electron moving in the +x direction with the optical field
becomes adiabatic with the switching time of r,. This
should be contrasted with the situation of the Jaynes-
Comming model,? where the collision occurs abruptly, re-
sulting in the quantum Rabi flopping.® In the numerical
example discussed below, 7,~1 pm/v.~10 ps for
vp 107 ¢m/s, so that, if we assume 7, > 10 ps, the error
due to the ADA's is estimated to be as small as 107°.

Because the full analysis is quite lengthy and compli-
cated,'’ we will describe essential points only. As the
electron proceeds to the interaction region, the electron
and the photons will be coupled by the interaction,
H,=—ez&,(r). Since this interaction does not commute
with #, the photon number is not conserved during the in-
teraction.'* Each component e¢**lg?)[n} in |¥), where
g =N or W, evolves into the dressed state® of the form

V' k /K fexp

i fﬂxdx'Kf(x’)y

X (cos@4 @i ) in ) +sindl@idn —1)), (4

u

where
tanfdxi=y (x)vn /A, . (5)
A, =le] el —fw (6)
7
27k .
Yo lxi= Tw wix,z, ghi—ezlgl) - (7
v

Here, z, denotes the z coordinate of the QWW g4, and
K/tx) is the local wave number, which is shifted from &
due to the local (i.e., x-dependent) optical Stark shift.®

Yolx)'n /24,

wki/2m* ®

Ki{x)=k

When the eiectron further proceeds off the interaction re-
gion, the interaction is over and each component of [¥)
adiabatically returns to its original form, but with a
phase shift

. et NJ‘\‘ ; o) ! d 3
W )ZEU”L‘ note ’1<p:)+ef” ;(p:”))/\/z, (9}

where we have dropped the common factor
expiikx —i€p1 /A, and the phase shifts are given by

¥
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o4 =L{on plus terms independen: of n, where &, is the
effective coupling constant given by

. v (x)¥/A

&= [ ax T8

= Ak /2in

The electron then enters the mode converter, which con-

sists of the crossed QWW's and the thin barrier layer of

50% transmittance (see Fig. 1). Just as the 50% beam

splitter for optical fields, the mode converter transforms
the electron wave function in Eq. (9 into

W)= S a,e "adC, g, ) +C, lp. ),

ﬂ‘-&

k
- . 10
) (10}

{(1n

where ¢ and ¢ . are cigenfunctions of the final two out-
put channels, and, for o = + 1,

ot oap

STs2 .

A .
i e AT
e 7 Y e {12)

i

Here, A9, is u phase that is determined by the structures
of the mode converter. We finally measure the currents
of the two output channels: J, =jog, g, where s
a constant,

Based upon the above resuits for the system of optical
field plus single etectron, we next consider the actual Citse
when many electrons at the Fermi surface travel from the
source to the drain regions. To do this, we note that (i)
there ts no coherence between different electron wive
packets emitted from the source region, and (i) they do
not overlap each other for a small source-drain current,
such as the one we are treating. In this case, the caleuly-
tions on the system of optical field plus & traveling clec-
trons become straightforward.'” Here, V is nor the total
number of electrons in the QWW's, but the number of
electrons detected as interference currents during the
measurement [see Eq. (17)]. Let us first consider how we
can deduce the photon number from the measurements of
J.. In order to get the maximum sensitivity at n =0, let
us design the device such that A8,= -~ 7/2. In this case,
we can deline the readont rarable i, by

J.oJ

o i3
+

sinigh, |

where g =&y oy s the overall effective coupling con-
stant_of the device. and the rhs is well defined because
[/..J ]=0. It can be shown that

(sin(gﬁ,)):<sill{gr'z})',, IS Y

({dsintgh, 1]°) = {[5sinlgh NP+ (costigh )Y /N
(15)

where (), (i o) denotes the average over the initial
photon-number distribution. Equation 114} ensures that
the device works as 4 photon-number counter. In parte-
ular, i g (i) << 11 as reduced to (A ) = (i }. On the
other kand, Eq. 13/ is reduced to (o) -Lan
Ton,,,. where on o, is the tor
quantum nofse in the measurement!. which is given n

-4
MeASUrement crror

16!

28

I =1/g°\
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Note that a similar expression for n % was obtained for
the QND measurement based upon the optical Kerr
effect,’ although the operation principle of such a QND
photodetector and that of the present one are very
different (for example, in the former one n is conserved
throughout the measurement®). This is because Eq. (16)
reflects the general principle of quantum mechanics that
many particles in the same state are nceded to measure
the phase of the particle’s wave function. In our case, N
is determined by the quantized conductance’ e’/mh and
thus is given by

N=er, Ny Ve /mh | (7

where T, is the optical-pulse duration or the detection
period din the case of cw optical fields), V. is the
source-drain voltage, and we have assumed that an array
of N, devices are used as a single photodetector. We
can make N arbitrarily large by increasing N, or by
confining the optical field in a cavity and thereby making
7, long, as discussed later. Hence, &n & Can be made ar-
bitrarily  small:  for example, we can realize
Sry, < (8A7), when & > 1/g°(87%), Note also that N
itsell fluctuates from measurement to measurenient at a
microscopic level, because the electron emissions from
the source region are random processes. This fluctuation,
however, is irrelevant to the above results because N is
canceled between the numerator and the denominator on
the rhs of Eq. (13). Hence, the SNR s better for the
present structure than that of Ref. 2.

Let us next consider the final photon states. The final
density operator traced over the electron coordinates iy
evaluated 1o be

o~ ® 10N ot {
ph 2 aya,c myn
1, m

[RZ |
)\

X! N
Xt le Le {18}

If the initaal photon state is a number state la, =6, ,
A

we can see that the photon wave function is unchanged
by the measurement, which means an absence of backac-
tions. For ather initial states, the photon wave function
must be reduced by measurement (even when it is a QND
measurement).” However, Eq. (18) tells us that the final
photon-number distribution for the statistical ensembie is
', % which is just that of the initial photon state. In
particular, (A)={(i), (84°)=(8n’ o This invari-
ance of the distribution, together with the fact that &n f.rr
can be made sufficiently small, are Tust those required for
general QND measurements.* ® On the other hand, the
phase of the photon state is randomized through the mea-
surement.'” 7 To see this, we assume a coherent state for
the initial state, and evaluate the fluctuation of the cosine
operator,™ Then, for (n)>>1 and for ¢°N <1, the
phase fAluctuation of the final photon state 15 evaluated to
be (hd') = ((‘)cbz)u-%hcbf,,\, where 8, is the backaction
[

phase noise! * given by

Db = Ngt /4 (19
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Note that the minimum uncertainty relationship®™®

holds: 8nZ, 8dp.~ 1.

We finally consider a numerical example. For the same
structural parameters as in Ref. 2, the readout [Eq. (14)],
which increases with the light intensity [/, reaches its
maximum value | when / =1, =2 MW/cm’. If 7, =10
ps, this corresponds to 10° photons. The resolution is
determined by the measurement error, and is given by
Ieac/V'N =07 kW/cm® for, say, N =10". This corre-
sponds to 300 photons, which is smaller than the quan-
tum noise V'n of n =10° coherent state. To realize
N =107, we may confine the optical field and thereby
make 7, long, or we may increase N4, . For the latter
case, for example, we can estimate N, by noting that
Vsp should be kept small."> When V5, =0.1 mV, we ob-
tain, from Eq. (17}, N,, =2X10". If we assume a
20X 10% array of the devices with a 200-A period, the
length of the array in the direction of light propagation is
2 ¢m, which is much shorter than the interaction length
of QND photodetectors based on optical nonlinearities
due to virtual transitions.™® In actual experiments, one
may measure a highly stabilized optical field in an open
cavity," where 7, can be made large and thus the above
farge scale integration is unnecessary. Also. the electron
interferometer of Fig. 1 can be replaced with other ones
such as those proposed in Ref. 15 and Fig. 3 of Ref. 3,
which are much easier to fabricate.

In summary, we have analyzed the collision between
photons in an arbitrary quantum state, and electrons in a
semiconductor microstructure, which constitutes an elec-
tron interferometer. By evaluating the time evolution of
the coupled photon-electron system, we have shown that
the interferometer works as 2 quantum nondemolition
photodetector if it is designed such that the interaction is
switched adiabatically. The measurement error &n,, de-
creases with N, the number of detected electrons as in-
terference currents, in proportion to 1/V'N. A backac-
tion of the measurement occurs as the increased phase
noise 8gal « V' N} in the photon state. Here, dn, and
ddpa satisfy the minimum uncertainty relationship;
onl 5oy~ Owing to the high efficiency of the
photon-electron interaction, the required_length is typi-
cally as small as 2 cm to achieve 8n,, < V' for n =10°.

Note added. After the submission of the present paper,
there appeared two papers on QND photodetectors by
M. Brune e ai. [Phys. Rev. Lett. 65, 976 (1990)} and by
M. D. Levenson [Phys. Rev. A 42, 2935 (1990)]. Their
operation principles are, in a way, analogous to the
present one.
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Abstract. Measurement and fluctuations are closely related to each other in
quantum mechanics. This fact is explicitly demonstrated in the case of a quan-
tum non-demolition photodetector which is composed of a double quantum-wire
electron interferometer.

1. Introduction

Recent rapid progress of studies on nanostructures is opening up possibilities
of new measuring apparatus using nanostructures. For example, a tiny change
of the electric charge in a nano-scale region can be detected through a single-
electron-tunneling transistor {1]. Another example is a quantum-wire electron
interferometer that works as a quantum non-demolition (QND) photodetec-
tor, which measures the photon number without absorbing photons {2]. The
functions of these nanostructure devices are hardly accessible by conventional
devices. thus make nanostructure devices very attractive.

On the other hand, these devices stimulate studies on a very basic prob-
lem of physics— what happens when you measure a quantum system? To
discuss this problem the nanostructure devices are useful because they allow
microscopic analysis of the measuring devices. As a result, we can clarify close
relationships among the measurement error, backactions, and fuctuations. I
here demonstrate these things by reviewing our studies on the quantum-wire
QND photodetector.

2. Quantum-wire QND photodetector

A schematic diagram of the quantum non-demolition (QND) photodetector [2]
is shown in Fig.1. Before going to the full analysis in the following sections, I
here give an intuitive, semi-classical description [3] of the operation principle.

The device is composed of two quantum wires, N and W. The lowest sub-
band energies (of the z-direction confinement) €¥ and €% of the wires are the
same, but the second levels ej;v and €V are different. Electrons occupy the low-
est levels only. A z-polarized light beam hits the dotted region. The photon
energy Aw is assumed to satisfy €}’ — € < hw < €} — €¥| so that real excita-
tion does not occur and no photons are absorbed. However, the electrons are



excited “virtually” [4], and the electron wavefunction undergoes a phase shift
between its amplitudes in the two wires. Since the magnitude of the virtual .
excitation is proportional to the light intensity [4], so is the phase shift. This
phase shift modulates the interference currents, J4 and J_. By measuring J+,
we can know the magnitude of the phase shift, from which we can know the
light intensity. Since the light intensity is proportional to the photon number
n, we can get information on n. We thus get to know n without photon ab-
sorption, i.e., without changing n: hence the name QND [5]. (More accurate
definition of QND will be given in section 7.) In contrast, conventional photode-
tectors drastically alter the photon number by absorbing photons. Keeping this
semi-classical argument in mind, let us proceed to a fully-quantum analysis,
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Fig. 1 A quantum nou-demolition photodetector composed of a
double-quantum wire electron interferometer. (Taken from [2])

3. Quantized light field for a waveguide mode
We assume that the measured light of frequency w. plane polarized in the 2z

direction. is confined in the x and z directions in a waveguide, propagating in
the y direction with the propagation constant 8.. A normalized mode function
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u(r) then takes the form

u(r) = (0,0,u(r)), u(r)=v,(z,z)exp(if.y)//L,. (1)

Here, L, is a normalization length, and v, (z, 2) is the lateral mode function.
u(r) is normalized as [6]

fe]ulzdsr =1, (2}

where € is the dielectric constant. (The permeability is unity at the optical
frequency.) The quantized optical electric field in this mode is expressed as [7]

E(r,t) = V2rhw (du(r)e™* + he]. (3)

The annihilation operator @ thus defined is the one for a freely propagating
waveguide mode. When mirrors are placed at y = +L,/2, on the other hand,
the measured light is confined in all directions, and u(r) is then given by a
superposition of Eq. (1) with +8,. Using such u(r} in Eq. (3), we obtain &
for the confined mode [9], and 7 = 4'4 then defines the photon number in the
confined mode [7]. We can also treat the case where the measured light takes
a wavepacket form, for which the “mode function” is given by a superposition
of u{rje™** of Eq. (1) over a narrow range of w. Replacing u(r)e™™* with
this mode function in Eq. (3), we obtain & for the wavepacket mode [9], and
7 = a'a then defines the photon number in the wavepacket [7]. In any case,
the number state is defined by #|n) = n|n), with n = 0,1,2,.. .. and any state
vector of light in the mode of interest can be expressed as

'wph) - Z”’nln)a (4)

Tt

which we assume for the state before the measurement.

Either of the above three cases can be treated in a similar manner in the
following discussions. However, since equations become slightly complicated in
the wavepacket case, we hereafter assume the former two cases.

4. Single quantum-wire structure

Before going to the full analysis, let us consider the simplified case where the
light field interacts with a single electron which is confined in a stngle quantumn-
wire structure.

Assuming for simplicity that the confinement potential in the y direction is
high enough, we can decompose the y dependence of the electron wavefunction;
Yerr, t) = ¥ (z, 2, )Y (y). Hence, we hereafter drop the y-subband eigenfunc-
tion ¥ (y) from equations.

The electron is emitted from the source region, which is in the thermal
equilibrivm (of zero temperature, for simplicity). Hence, no quantum coherence
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exists between the electron and photons before they interact. To describe this
fact, it is convenient to consider that the initial (¢ = 0) wavefunction of the
electron takes a wavepacket form;

Polz, z,t =0} = e*2G(z)pal2). (5)

Here, ¢, is the eigenfunction of the lowest level (which the electron is assumed
to occupy) of the z subbands, and G is a localized function. When G does not
change appreciably on the scale of the Fermi wavelength, the detailed form of
G(z) is irrelevant to the following results. We will therefore use the stmplified
notation like |1} = |@a). Combining this with Eq. (4), we write for the initial
state vector of the coupled photon-electron system as

1¥) = [¥pn) W) = D anlnd|@a)- (6)

Our task is now to investigate its time evolution — I will present here only the
final state, i.e., the state after the photon-electron collision.

Let us work in the Schrédinger picture, in which the optical electric-field
operator £(r) is given by E(r,t = 0) of Eq. (3). The Hamiltonian of the coupled
photon-electron system is given by

H=Hp+Hy+Hpo Hy=—er-£(r), (7)

where Hpp and He denote the free-photon and free-electron Hamiltonians,
respectively, and Hy is the photon-electron interaction in the dipole approxi-
mation. Since u(r) varies on the scale of the photon wavelength, &(r) does not
vary appreciably on the scale of the electron Fermi wavelength. As a result,
H; induces only an “adiabatic change”™ in the state vector [2], and we can show
that the final state is simply given by (2]

[#') =Y ane'®n)lea)- (8)

n

where
#, = {(n + terms independent of n. (9)

Here. ¢ is an effective coupling constant which is a function of the structural
parameters such as the effective mass m” and the wire width:

(= Aol /o [~
hzk/m“

lulx, yo. 20)* dz. {(10)

=

where yy. zg denote the center position of the wire (which extends along the x
axis), and
A=¢~eq — hw (11)
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is the detuning energy. (e, and €, are the first and the second subband energies. }

We see that the final state acquires n-dependent phase shift, 8,,. If we could
measure &, we would be able to know the photon number n. However, for
the single quantum-wire structure as we are assuming in this section, there
is no way to measure #,,. In the case of a, = 8 n, for exammple, 8, is the
absolute phase of the wavefunction, which is not a physical quantity, and thus
is unable to observe. We therefore see that we could not measure n if we used
a single-wire structure,

5. Double quantum-wire structure

We now turn to the case of Fig.1; a double-wire structure composed of nar-
row (N) and wide (W) quantum wires. As before, suppose that an electron
wavepacket is emitted from the source. As it proceeds towards the positive x
direction, the electron wave is split into two, and the state vector of the coupled
photon-electron system becomes

1¥) = [pn)a) = 3 anlnh(lod) + 12 ))/ V2, (12)

where ¢ (z) and ¢%{z) denote the lowest-subband eigenfunctions of the N

and W wires, respectively.
Similarly to Eq. (8. the final state is shown to be [2]

1) = 3 anln)(e® o) + e (oW ))/V2. (13)

where 8¥W = (ywn + terms independent of n. Here, (x5 and {w are the
effective coupling constants of the N and W wires, respectively, which are given
by Eq. (10) with ¢, — d)(‘;\f})w, A — Ay w, and yp, 29 — yév,quév,w_

Unlike the absolute phase in Eq. (8), we can measure the relative phase
8% — 6% in Eq. (13) by the method described in the next section. The relative
phase is given by

oy -6 =gn (14)

where g = (& ~ (w is an overall effective coupling constant. Since the intersub-
band transition energy is higher in the N wire than in the W wire, the detuning
energies have opposite signs: Ay > 0. Ay < 0, as seen from Eq. (11). This
results in (x > 0, (w < 0, hence g = [(n| + |[¢w] # 0. (Typically, {w ~ —(x.
so that g o 2(y.) Measurement of the relative phase thus provides us with the
knowledge about n {see Eq. (17) below).

Since (n # (w (i.e., g # 0} is essential to the above discussion. we also see
that a double-wire structure composed of identical quantum wires would not
work as a photodetector. Hence, the use of double-wire structure composed of
non-idenfical wires is essential to the present QND photodetector.
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6. Measurement of the relative phase

We can measure the relative phase 67 —8% in Eq. (13) by composing an electron
interferometer. In Fig.1, a simple interferometer is employed: The two phase-
shifted components of Eq. (13) is superposed at the “mode converter”, which
is composed of a thin barrier of 50 %, transmittance. The mode converter plays
the same role as the beam splitter does for the optical beam: the input electron
waves are superposed, so that the state vector evolves into

18" = 3 anln)(Corles) + Cn-lo-)): (15)

where |4} are the traveling modes of the two output channels, and
Crg = 787 +80) 3 o#0n —fe}] 2, (16)

Here, the additional phase angle g is a function of the structural parameters,
such as the height and thickness of the barrier, of the mode converter.

We measure the intensities of the output electron waves as the interference
currents, J4 and J_. Equations (15) and {(16) yield

(1) x g (a2 |Crs |? = %Z (e 2[1 % cos(gn + 0)] = %{1 1 {cos(gn + B))].
{17)
When the mode converter is designed in such a way that 8y = —n/2, for

example, this relation yields (J4) — {J_) x {sin gn). We can therefore measure
n by measuring J4.

7. QND property

As we will see in section 9, we need many electrons to reduce the measurement
error. The many-electron versions of Egs. (12), (13) and (15) are obtained
by taking their Slater determinant for the electron part. (Here, each electron
state must of course be different in either of spin, or the center position of
the wavepacket, etc.) Since we measure Js of such a many-electron state, the
state vector after the measurement is “reduced” to an eigenstate of the many-
electron J.. (See also section 9.} For the reduced state vector, only the photon
part is of our interest. When N. electrons are found in the % channels, the
photon state after the measurement is found to be

N\
(Vs N2)) = [P(N+.N_)/(N+)] S (o)™ (o)
’ (18)
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where P(N,,N_) is the probability of finding N4 electrons in the + channels
{for a given N = N, + N_), and is evaluated to be

PN = () o laalfICa G Y- (19)

In other words, with the probability of P{N,, N_) the post-.ueasurement pho-
ton state becomes [¢;’h(N+. N.)}. Let us confirm the QND property using
these equations.

We first consider the case where the initial photon state is a number state;
[Ypn) = |ne). Since a,, = &, ., in this case, we find from Eqgs. (18) and (19)
that |, (N, N_)) = |no). That is, when the pre-measurement photon state
is a number state, the post-measurement state becomes the same number state
— no change occurs by the measurement either in the photor number or in the
state vector! Hence the name a QND photodetector [5].

We next consider the general case where the initial photon state is given
by Eq. (4) with a, being arbitrary. In this case, the generel requirement of
quantum mechanics requires some changes in the state vector. Otherwise, the
uncertainty principle, for example. would be broken. (See the next section.)
Therefore, even when you use a QND detector the state vector of the measured
system must be changed [5, 2, 8]. Indeed, the post-measurement photon state,
Eq. (18), is clearly different from the initial state. In particular, the photon-
number distribution after the measurement is

Ia1A|2|Cn+|2N+ lCﬂ*|2NV

" 2 _
[l (N, NN = Y (am P [Cong PN+ [ Con P9 {20}

which is different from that before the measurement, [(n{ypa)[* = |aa|?.
However, the unique property of a QND detector can be seen by considering
an ensemble of many equivalent systems [5, 2. §] such an ensemble has been
very frequently used {either explicitly or implicitly) in discussions on quantum
physics [12]. For each member in the ensemble, the above equations can be
applied. We can therefore calculate the density operator § of the ensemble
as follows. Here, I will present the density operator traced over the electron
degrees of freedom, gpn = Tr.y[p]. which is of our principal interest. Before the
measurement, all members have the same state vector of Eq. {4), hence

Pph = Zrzmu,"[rn)(n[. (21}

and the photon-number distribution over the ensemble, Prob{n). is simply given
by Prob(r) = |a,|?. After the measurement, on the other hand, a member in
the state of Eq. (18) is found in the ensemble with the probability of Eq. (19).
Therefore, the photon density operator {for a given N = N + N_) becomes

f);:h = ZP(N+-N_)W’;;h(N+»N—)>(”¢’-";:h(N+~N—H
Ny



. 1 icnim=-n) 1 icw(im=-n) Y
= Y amalm)in | 3 + e (22)
™,

and the distribution after the measurement is

Prob”(n) = 3 P(NeiNo)l(nlppu(Nss N
Ny

N 2 N AN
S () lonfCnel?e G0

Ny
= Ian|2(icﬂ+t2 + icn—lz) = |a’fll2, (23)

where use has been made of Eqs. (16), (19) and {20). We thus find that the
photon-number distribution over the ensemble is unchanged. In this sense the
QND photodetector is said to cause no change in the “statistical distribution”
of the photon number, or, to cause no “backaction” on the photon number
[5, 2, 8]. In particular, we find from Eq. (23) that the final state has the same
average and variance of n as the initial state:

(1) finat = (inits {677} finat = (617 )inae. (24)

This is in a sharp contrast with conventional photodetectors, which drastically
alter the photon-number distribution by absorbing photons.

Note that all the above results referred to either the initial or the final state.
It can be shown that Prob(n) does change during the measurement, l.e., during
the photon-electron collision [2, 8]. The absence of change is claimed only for
the post-measurement state, and this suffices to claim the QND property [2, 8].
This is in a sharp contrast with previous QND photodetectors [5], which were
claimed to cause no change of Prob(n) throughout the measurement. This fact
demonstrates that the operation principle of the present QND photodetector is
much different from the previous ones. We recently developed a general theory
which clarifies the physics of various types of QND measurement (8].

8. Backaction noise generated by the measurement

We have seen that our QND photodetector causes no backaction on the mee-
sured variable - the photon number n, in the sense of Eqs. {23) and (24).
On the other hand. we expect from the uncertainty principle that the detector
must cause some backaction on the phase ¢ - the conjugate variable of n —
of the photon field [5, 2].

To demonstrate this, we consider the case where the initial photon state 15
a coherent state |£), for which

a, = e €7 2en /ol (25)
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which yields (n)inie = (6n%)inie = [€|?, and the phase fluctuations are evaluated
to be (8¢)in; > 1/4[€]? for large |¢] [10]. (In the large-|¢} limit, in particu-
lar, both (6n2)inis/((ndinit)? and (66%)inie tend to zero, and |€) approaches
the classical state in which d in Eq. (3} is replaced with £ [10].) It is conve-
nient to introduce “quadrature variables,” &, and a5, which correspond to the
amplitudes of the cosine and sine parts of the optical field (10];

iy =(a+a"/2, a,=(a-al)/2 (26)

The above fluctuationsin n and ¢ are translated into fluctuations of these vari-
ables as (8a3)init = (6a3)iniy = 1/4. Therefore, in the @1-a3 plane a coherent
state can be represented as a circular “cloud” (10], which schematically visual-
izes the fluctuations, as shown in Fig. 2 (a). In this diagram, n corresponds to
the square of the radial distance from the origin, and ¢ to the azimuthal angle
(10]. Fluctuations in n and ¢ are therefore represented by the spread of the
cloud in the radial and azimuthal directions, respectively.

It is instructive to consider first the case of identical wires, for which (y =
{w (= (). In this case Eqs. (22) and (25) yield

Pon = Y Amane ¥ iy (] (3N Gy (3N e (27)

r,m

where. as before, N denotes the number of colliding electrons. Thus, the identi-
cal wires just induce the phase rotation in the parameter £, and the final photon
state is the same coherent state as the initial state except for this unimportant
phase rotation. This is illustrated in Fig. 2 (b) for the case of N = 1.

For non-identical wires, on the other hand, {§ # Cw. and ﬁ;’h can no
longer be factorized in such a simple form. In particular, off-diagonal terms,
(m|,6;,’h[n) with m # n, are significantly reduced with increasing N. This leads
to phase randomization because the quantum-mechanical phase is a measure
of the off-diagonal coherence. In fact, we can show for large [£| that [2]

{60%) finat = (66 hinie + 80%,, 6% 4 ~ Ng?/4, (28)

where, as before, ¢ = (5 — {w. The physical origin of this backaction noise,
8¢, 4, is sketched in Fig. 2 (c)-(f). where for simplicity (x = —Cw (= () is
assumed. When one electron collides with the photons, the electron amplitudes
in the two wires simultaneously cause rotations of angles (y = ¢ and (w =
—(, as shown in Fig. 2 {c}. As a result, the photon state is split into two
clouds. When one more electron joins the game, each cloud is again split into
two. and the photon state becomes as Fig. 2 (d). Similarly, we get Fig. 2
(e} for N = 3. and finally Fig. 2 (f) for large N. This banana-like state is a
graphical representation of ﬁ;h, Eq. (22). As compared with the initial state
{a). we see that the final state (f) indeed has larger phase fluctuations {which
correspond to the azimuthal distribution), while the magnitude of the photon-
number fuctuations (the radial distribution) remains the same. Comparison

-
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Fig. 2 (a) When the initial photon state is a coherent state, it can be repre-
sented as a circular “cloud” in the aq-a2 plane. (b} When two quantum wires
are identical, the photon state rotates by ¢ after the collision with an electron
in the wires. (c)-(f} When two quantum wires are non-identical, on the other
hand. the photon state is drastically deformed. (¢). (d), (e} and (f} represent
the photon state after the collision with one, two, three and many electrons,
respectively. In (b)-(e} a large value of ( is assumed in order to make the
diagrams vivid, whereas realistic small ¢ is assumed in {f).
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between (b) and (f) demonstrates that the pair of non-identical wires, for which
(~ # Cw, is the very origin of the backaction noise, ¢% ,.

9. Measurement error

A principal postulate of quantum mechanics is that when “ideal measurement”
is performed the state vector of the measured system is reduced to an eigenstate
of the measured vartable. For photon-number measurement, for example, ideal
measurement would lead to the post-measurement density operator of the form,

ﬁ;ieaf meas _ Z |anl2|n>(n!_ (29)
n

Actual measuring devices, however, are non-ideal in two points: (i) they would
destroy (demolish) the photon state by, say, absorbing photons, and (ii} they
have a finite measurement error. Therefore, the density operator (or the state
vector) will be reduced to another form. Theory and experiment of such non-
ideal measurement have been attracting much attention recently [7, 8, 11].

The present QND photodetector is a good example to understand the
physics of non-ideal measurement. Although the QND photodetector does not
absorb photons, it may be non-ideal because of a finite measurement error, and
the state vector would not be reduced completely. Let us examine this subject,
as well as the origin of the measurement error.

Measurement consists of a series of physical interactions which occur among
many degrees of freedom in the measured system and the measuring apparatus
(12]. In our case, the interactions consist of that between photons and electrons,
that between the electrons and ammeters which measure J, that between the
ammeters and a recorder which records the vaiues of J4, and so on. The key
to treat non-ideal measurement is the fact that among these interactions we
can (almost always) find an interaction process which can be approximated
as ideal measurement— for such a process we can apply the above principal
postulate of quantum mechanics, and everything can then be evaluated (at
teast in principle} [8]. Note that we do not need any additional postulate; we
can treat non-ideal measurement within the standard framework of quantum
mechanics [8].

In our case, we have assumed in section 7 that the measurement of the
electronie current, Jy, is ideal. As a result, the state vector of the coupled
photon-electron system is reduced to an eigenstate of J4. The photon part of
the reduced state vector is shown in Eq. (18), and the reduced density operator
in Eq. (22). The photon number n is estimated from the measured values of
Ji through Eq. {17). Since we get information on n, the whole process can be
called measurement of n. That is. we measure n through ideal measurement
of J4. This measurement of n is non-ideal because it has a finite measurement
error. In fact, since Ji are quantum interference currents, they have finite
quantum fuctuations [13}-[18], which make the estimation of n ambiguous
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[2, 18, 19]. (This is a quite general result for guantum interference devices, as
shown in [18, 19].) Namely, the fluctuations of J; give rise to a finite error in
measurement of i, and the present QND device works as a non-idesl measuring
device of n. As a result, the post-measurement photon state is not completely
reduced to an eigenstate of n, as explicitly seen from Eq. (22), which shows that
Pon # ﬁ;‘ﬂ“’ meas for finite N.

As N is increased j7, approaches pideal meas, We thus expect that the
measurement error decreases with increasing N. This is indeed the case; the
measurement error is evaluated to be [2]

énl.. = 1/¢’N. (30)

This result can be understood as follows. As the effective coupling g is in-
creased, the flow of information from the light field to the electrons is increased,
hence §n2,,. oc 1/g%. On the other hand, we get to know the photon number
by measuring the electron phase shift. To measure the phase shift, however,
we need many electrons because of the number-phase uncertainty principle (of
electron waves) [13, 18]. This results in én?.. o 1/N. It was shown in Refs. (18]
that similar discussions can be applied to most quantum interference devices,
and their fundamental limits have been derived [19].

Interestingly, if we multiply 6nZ .. by the backaction noise 5¢% 4, Eq. (28),
we get a constant; énZ_8¢%, ~ 1/4, whereas the number-phase uncertainty
principle (of a light field) gives én?..6¢%, > 1/4 [10]. This means that the
present device is a very effective measuring device in the sense that it extracts
the information on the measured variable n with the minimum cost of the
backaction noise in the conjugate variable ¢.

10. Summary

1 have analyzed a quantum non-demolition (QND) photodetector composed
of a double quantum-wire electron interferometer, which measures the photon
number n without absorbing photons (more precisely, without changing distri-
bution of n). It is shown that (i) If we used an single-wire structure, or if we
used a double-wire structure composed of two identical wires, we could not get
information on the photon number. It is therefore essential to use a double-wire
structure composed of non-identical wires. (ii) Such a double-wire structure, on
the other hand, is the very origin of the backaction noise, which appears as an
increase of quantum fluctuations of the phase of the light field. (iii) The QND
photodetector works as a non-ideel measuring device because it has a finite
measurement error. As a result, the photon state is not completely reduced to
an eigenstate of n. (iv) The measurement error, én?, ., comes from quantum
Auctuations of electrical currents in the interferometer. Because of this fiuc-
tuation, we need many electrons to measure the phase shift which is induced
by the light field. As a result, én2,. x 1/N, where N denotes the number of
colliding electrons. (v) The error is also inversely proportional to an effective
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coupling constant g? between photons and electrons. The coupling constant is
a function of the structural parameters of the quantum wires. (vi) The mea-
surement error and the backaction noise is closely related: én2_ 64% , ~ 1/4.
Namely, the backaction noise is proportional to Ng® and is also a function
(through ¢?) of the structural parameters of the wires.

These results demonstrate close relationships between measurement and
fluctuations, and not only shed light on the physics of quantum measurement,
but also suggest fundamental limitations and possibilities of nanostructure de-
VICes.
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We consider generation of an electrical pulse by an optical pulse in the “virtual excitation” regime.
The electronic system, which is any electro-optic material including a quantum well structure biased
by a dc electric field, is assumed to be coupled to an external circuit. [t is found that the photon
frequency is subject to an extra redshift in addition to the usual self-phase modulation, whereas the
photon number is conserved. The Joule energy consumed in the external circuit is supplied only

from the extra redshift.

PACS numbers: 42.65.Vh, 03.65.Bz, 78.66.-w

Virtual excitation of electronic systems by optical fields
has been attracting much attention recently {1-5]. Here,
“virtual” means roughly that the photon energy is lower
than the absorption edge by some detuning energy A, so
that photon absorption does not take place. More pre-
cisely, it means that the excitation takes place adiabati-
cally so that no real transitions occur and the quantum-
mechanical coherence is preserved. For a simple two-level

system (with a long dephasing time), for example, the ex-
citation will be virtual if

(Te/)? > (uE/ AT, (1)

where Ty is the transient time for which the envelope
of the optical pulse changes appreciably, 1 denotes the
transition dipole moment of the two-level system, and £
is the envelope of the electric-field amplitude of the opti-
cal pulse. The concept of the virtual excitation has been
widely used, for example, to describe ultrafast nonlinear
optical responses [1-5]. It was also shown that “quan-
tum nondemolition” (QND) measurement of the photon
number N (i.e., measurement of N without changing its
statistical distribution) is possible by the use of the vir-
tual excitation of an electron interferometer [6].

On the other hand, many studies have recently been
devoted to generation of an electrical pulse by excitation
of a material by a short optical pulse [2-5,7]. For the ma-
terial, we can basically use any materials which possess fi-
nite electro-optic (EO) coefficient, x(% = x(0; —w, w).
Of particular interest is a quantum well structure {QWS)
biased by a dc electric field [2,3]. The dc field is applied
to induce large x», which results in high efficiency for
the generation of an electrical pulse. In particular, it was
suggested that the ultrafast response would be obtained
by working in the “virtual excitation” regime [2,3]. How-
ever, present understanding seems quite insufficient to
investigate such a fancy combination of the idea of the
electrical-pulse generation with the concept of the virtual
excitation.

0031-9007/94/72(21)/3343(4)306.00

In this paper, we raise and answer the following fun-
damental questions on the electrical-pulse generation by
virtual photoexcitation: (i) What is the state of the op-
tical pulse after it passes through the EQ material? In
particular, what is the photon energy and photon num-
ber? (ii) What role is played by the external electric
circuit in determining the photon state? (ili) When the
material is a biased QWS, what supplies the energy to
the electrical pulse—an external battery (which induces
the dc bias field) or the optical field? (iv) Is it possible to
perform QND measurement by monitoring the generated
electrical pulse?

Let us start with a biased QWS. We suppose that
metallic contacts are deposited on both sides of a QWS
sample in order to apply the static bias field Fy (> 0) by
an external battery Vy (Fig. 1). The sample thus works
as a capacitor, whose capacitance is eL = Co, where ¢
denotes the linear dielectric constant at low frequencies.
Exciton states of the QWS are strongly deformed by Fp,
and each exciton acquires a large static dipole moment,
! [2,3].

It is convenient to describe the exciton dynamics in
terms of such deformed states. If, for simplicity, we look
at the lowest-exciton state only, an effective Hamiltonian
in the optical field, £ coswt, may then be written as (8]

H =cata— p(a’ + a)€coswt — I(Fp + Fa'ae, (2)

where a! (a) and £; denote the creation (annihilation)
operator and the energy, respectively, of the deformed
exciton state. When the detuning energy A = &; — fw
satisfies Eq. (1), the optical field virtually excites the
deformed excitons, which induce the static electric field
Fp = —l{a‘a}/eg [9], which is nonzero (< 0) only in
the well region {2,3]. Since ! is large (= 101=2) eA), |Fp|
becomes large, which results in a large EO coefficient @
[2-5]. On the other hand, to cancel out Fp, current J
is induced which alters the surface charge density of the
metallic contacts from the equilibrium value g9 = efy
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FIG. 1. A schematic diagram of the system under consid-
eration. An optical pulse goes into a capacitor, the center
region of which is made of a biased QWS or another EO ma-
terial. An electrical pulse is generated in the center region,
and the current J flows in the external circuit. We find that
the optical pulse, after it passes through the capacitor, is sub-
ject to an extra redshift, in addition to the usual self-phase
modulation which occurs in the initial and final transients.

into ¢ = oy + o1, and o generates the canceling field
F, = o,/e. Therefore, the total dec field in the QWS is
F = Fy + Fp©(z) + Fi, where © is a unit step function
which is nonzero only in the well region. The equation
of motion of o; may thus be

dery 1 Fp

4t~ CoR "RL’ ®
where % = well thickness/W. The models of the previous
work (2,3], which assumed the absence of the external
cireuit, correspond to the limit of R — 00 of our model.

It is seen that the optical field £ interacts with the
quantum-mechanical excitonic variables a, a! via the u
term in Eq. (2), and the excitonic variables interact with
the classical surface charge oy via the Fp and F} terms in
Egs. (2) and (3). The interesting point here is that only
the motion of oy suffers explicit dissipation [due to the
CoR term in Eq. (3)]. We will show below that this dissi-
pation eventually causes, through a chain of interactions,
energy dissipation in the optical field.

We first note that Fy has not appeared explicitly in
Egs. (2) and (3): all effects of Fo have been incorporated
only in the deformed exciton state which defines a, a', 4,
and I. Consequently, the external battery which produces
F, supplies no net energy: the Joule energy RJ? must
be supplied by something else--the only possible supplier
is the optical field. The role of the battery (and Fp) is
just to produce large x?). The absence of energy supply
from the battery will be confirmed also in the following

3344

calculations.

We are interested in the evolution of the optical field
and energy flow. We here evaluate them to 0(£?), be-
cause the analysis [10] which includes the third-order
nonlinear effects shows that the second-order effects are
essential (11]. We also found [10] that concerning the
quantities which we will discuss below the microscopic
model of Eq. (2) gives the same results as a phenomeno-
logical model in which the excitonic (or electronic) sys-
tem is phenomenologically treated as a transparent EO
material. The only difference is that in the former model
x@ is obtained by solving Eq. (2), whereas in the latter
x? is a given parameter. The phenomenological model
is therefore applicable to any transparent EQ materials
including the biased QWS. For this reason, we hereafter
present our results in the language of the phenomenolog-
ical model: for example, Fp is now

Fp = —(co/eXPE?, (4)

where x(? is, as in the case of the biased QWS, the value
of x(?) in the presence of Fo.

To avoid inessential complexities, we assume that the
light intensity is almost constant over the cross section of
the optical beam, and also that the cross section agrees
with that (W x W) of the capacitor. In the propagating
direction x, the optical pulse is assumed to have a portion
(of length ¢T') of constant intensity in between the initial
and final transient portions of length ¢Ti,. To focus on
new phenomena only, we assume that Ty, € GoR, T;
under this condition o does not change during the tran-
sients and thus what happens in the optical field of the
transient portions is just the usual seif-phase modulation,
which is well known and of no interest here. We therefore
focus on the constant-intensity portion, and take t = 0 as
the time at which that portion begins to enter the capac-
itor. We further assume, for simplicity, that L < ¢T'/n
(i.e., £ = const in the capacitor), where L is the length
of the capacitor, ¢ the light velocity in vacuum, and n
the refractive index.

Under these conditions, Eq. (3) can be easily solved to
give

{0<t<T),

oy o { re|Fpl(1 — eTaR) )
(T <),

kel Fpl(1 — eTom et
where Fp is given by Eq. (4}, and « is now k£ = {thick-
ness of the EQ material}/W. Associated with the time

varying oy is the current J = %WLorl, which generates
the Joule heat in the resistance R {12];

Up = f RJ%dt

— (KWLEQX(2)52)2(1 _ B_T/CDR)/C(). (6)

Let us find out the supplier of this energy—the battery
or the optical field? The work done by the battery is

r
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Vv = [~ Vaddt = oW Ligy(oo) = (@), (1)

oo

which is zero because, as seen from Eq. (5}, o1{o0) =
o1(0) = 0. That is, the battery does not supply net
energy at all, in agreement with the observation we have
drawn above from the microscopic model. Therefore, the
only possible supplier of the Joule energy is the optical
field, the evolution of which we will investigate now.

We note that the dc fleld F in the EOQ material varies
from Fy (for t < =Ty ) to Fo+ Fp+ Fy (for0<t < T)
and then to Fy + Fy (for T + T}, < t}, where F} = o, /e
also varies according to Eq. (5). The time-dependent
F' produces the time-dependent change of the refractive
index n:

bn = x'P(w;w,0)(F - Fp)/2n, (8)

where n and x*(w;w, 0) denote their values in the pres-
ence of Fy. With the help of the symmetric relation,
X (wiw, 0) = 4x 2 (0; —w, w), Eqgs. (5) and {8) yield, for
0<t<T,

én = —(2e0/ne)|x P 2E1 — (1 — e~V ORY . (9)

By this time-dependent 8n, the optical field undergoes a
frequency shift (chirping) [10]. When L <« CoRc/n. the
shift is simply given by

& wlrén
&t
= —260wﬁQ[X(2)J262L6*C/C0R.
necCy R

bw =

(10)

Here & in the first line has appeared because én is large
only in the EC material.

We find that (i) the optical field undergoes a redshift,
(ii) the shift approaches zero in both limits of R — oo
and R — 0, and (iii) the shift becomes maximum at
the beginning (0 < t « CyR) of the constant-intensity
portion of the optical pulse, and decays exponentially
after that.

This shift is a kind of a self-phase modulation (SPM)
process in the sense that the shift is driven by the opti-
cal field itself. However, it is totally different from the
usual SPM, which generally occurs when an optical pulse
passes through a nonlinear medium. To distinguish be-
tween the two, we hereafter call the shift of Eq. (10) the
“extra shift” or “extra redshift.” Major differences are as
follows: (a) In contrast to Eq. (10), the usual SPM is ba-
sically independent of the external circuit—it occurs, for
exampie, even when £ — oc. {b) The total energy of the
optical pulse is conserved in the usual SPM process {be-
cause the frequency shifts occur in the opposite directions
at the initial and final transients)}, whereas the extra shift
results in loss of the total energy [Eq. (11) below]. (c)
The usual SPM is approximately instantaneous {delay =
response time of nonlinear processes), whereas the extra

he

shift occurs with a considerable delay (~ CyoR)—the shift
takes place during 0 £ t < CyR in order to compensate
for Fp which is established at ¢ = 0. These differences
arise because the extra shift is a property of the coupled
system of a nonlinear EQ material and an external elec-
tric circuit, whereas the usual SPM is a property of a
nonlinear material only.

In terms of the microscopic model, the physics of the
extra shift may be understood as follows: Photons (vir-
tually) excite excitons of energy ¢, ~ [(Fp + F}), and the
excited excitons will emit photons subsequently. Here,
the energy of the excitons is decreasing as ¢ goes by be-
cause f| = oy /e is increasing according to Eq. (5). As
a result, the emitted photons have lower energies than
the (virtually) absorbed photons. Hence the redshift and
its magnitude decay exponentially with the same decay
constant as that of o.

The magnitude of the extra shift, Eq. (10), depends on
many material and structural parameters. For example,
for a (100-A well)/(100-A barrier) multiple quantum well
structure for which x = 1/2, the redshift is estimated to
be of the order of 102L MHz when I ~ 102 MW /em?,
Fy ~ 102 kV/em, T~ CyR ~ 1 ps, A = 10 meV, and L
here is measured in pm,

Our next task is to find out the energy flow. To do
this, we for the moment assume that the photon number
is conserved (this assumption will be justified soon). In
this case, the loss of the light intensity I = eyen&?/2 is
given by 61 = Ifw/u. Therefore, the loss of the total
photon energy due to the extra redshift is

T
UERS:/ |W2s1|dt
0

= W2ILk[6n(0) - 6n(T))/e. (11)

Inserting Eq. (9) and C; = €L, and comparing with Eq.
(6], we find that Ugpg = Ugr. Therefore, all the Joule en-
ergy 15 supplied by the extra redshift of the optical field.
It also shows that the photon number N is conserved, be-
cause if it were lost then Ugrg < Ug. This indicates that
the present photon-energy dissipation cannot be described
as a simple dephasing process, which is accompanied by
loss of V.

We have thus found that when an optical pulse excites
the electronic system of Fig. 1 “virtually” [in the sense
that Eq. (1) is satisfied] then the final state of the opti-
cal pulse has the same number of photons as the initial
state. However, the frequencies of photons are lowered,
which are consumed to generate the Joule heat in the
external circuit. This is in a marked contrast to the vir-
tual photoexcitation of an electron interferometer which
was discussed in [6], where it was shown that bofh the
number and frequencies of photons are conserved. Since
we can estimate the photon number N by measuring the
interference currents, the electron interferometer works
as a QND photodetector [6]. We can estimate n also
in the present case by. sav. monitoring the voltage drop
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across the resistance. Can we call it QND measurement?
The answer clearly depends on the definition of the QND
measurement. Kitagawa (13] proposed to accept it as
QND measurement in a broad sense. To perform QND
measurement in the narrow sense {i.e., both N and fre-
quencies are conserved}, one may use the scheme of Ref.
[4], in which the generated voltage modulates an electron
interference current in an electrostatic Aharonov-Bohm
interferometer.

We have thus found that when you try to get infor-
mation on photons through virtual photoexcitation of an
electronic system, the photon energy will or will not be
conserved depending on the detailed structures of the
electronic system and the external circuit (although the
circuit is not directly connected to the optical field).
These findings shed light on the theory of measurement
of photons using electronic systems.

Finally, let us comment on the case in which the exter-
nal circuit of Fig. 1 is a transmission line or something
like that, which has a complex impedance Z rather than
the pure resistance R. The extension of the present the-
ory to such a general case is straightforward—all we have
to do is to modify the last term of Eq. (3). We would
then observe, for example, that the extra shift would ex-
hibit an oscillatory behavior which is superposed on the
exponential decay. However, the main conclusions do not
change because, for example, the irrelevance of the bat-
tery in the energy consumption processes relies on the
fact that Fy does not appear explicitly in Eqs. (2) and
(3)—this fact remains true when we modify the last term
of Eq. (3). For this reason, we believe that the present
paper has revealed bare essentials of the electrical-pulse
generation by the virtual photoexcitation.

To summarize, we have considered electrical-pulse gen-
eration in the “virtual excitation” regime. The electronic
system is any electro-optic material including a quantum
well structure biased by a dc electric field, which is ap-
plied to induce large x'%'. The energy transfer is analyzed
when the electronic system is coupled to an external cir-
cuit. It is found that the photon frequency is subject to
an extra redshift in addition to the usual self-phase mod-
ulation, whereas the photon number is conserved. The
extra redshift approaches zero in both limits of zero and

1146 N

infinite impedance of the circuit. It is also shown that
an external battery, which produces the dc bias field in
the QWS, supplies no net energy, and the Joule energy
consumed in the external circuit is supplied only from
the extra redshift of the optical field. :
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