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Exciton - polariton: coherent excitation
of exciton state & electromagnetic field

Constituent equation
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Finite cavity with perfect reflecting mirrors
Finite cavity L' > QW thickness L

Uncoupled Exciton & Cavity Modes
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HAMILTONIAN

H=Tho A7 4+ TG+ A 1A,
q

quk, "3

+iZC: A-a NAgsatA qt a)

( ]ch Clchqll-l- qll)(Aqkl+ —qk],)

ct = amhv__ - 1 F(0) 1 Uﬁiz p(2)e™
vy - cv ) + I'A - T i
qk L'Jq2+k2 e et L i

w,=w,+Yq* : exciton frequency

v=c/ e, , ky =yl v

K., : dipole matrix element

F(0) : envelope function of the exciton atx=0

A : polarization index

p(z) : product of the confinement functions fore & h
A,:'k" ; and A: are Bose operators for photons & excitons

Only even TE cavity modes are considered



TRANSFORMATION FROM

FREE EXCITONS & PHOTONS
: to
UPPER & LOWER POLARITONS |

By =Y W(k.q) Aypa + X(@) A; +
kA

Y Yk, q) Alyy 2+ Z( A%,
kA

[ indicates the polariton modes

Dispersion
4o, O viQl
Q- +—2 [C* =0
TR oSVIQE-QF Tk
|Ql=,fk3+q’

LOWER POLARITON Q<vg<vIQl

UPPER POLARITON Q2vgq

POLARITON MODES IN A CLOSED CAVITY
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The anticrossing behaviour Is shown In detall
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APPROXIMATE TREATMENT:
ONLY ONE CAVITY MODE IS CONSIDERED

The A’~term is neglected. Cavity mode .k, =2 /L’
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Observation of the Coupled Exciton-Photon Mode Splitting in 2 Semiconductor
Quantum Microcavity

. C. Weisbuch,"' M. Nishioka, ™ A. Ishikawa, and Y. Arakawa
EXC iton ﬁ' equency wo ’ kO = 0)0 / v, Q2 = ( q2 + kzz )/g Research Center for Advanced Science and T:ah;:{::ﬁr Ili'n;;:;sil:;vg;f) Tokyo, 4-6-1 Meguro-ku, Tokyo 153, Japan

The spectral response of a monolithic semiconductor quantum microcavily with quantum wells as the
active medium displays mode splittings when the quantum wells and the optical cavity are in resonance.
This effect can be scen as the Rabi vacuum-field splitting of the quantum-well excitons, or more classi-

Fixed polarization

4mhy 1 L' \ cally as the normal-mode splitting of coupled oscillators, the excitons and the electromagnetic field of the
C:. = @n. - é fa F(O) -— Idzp(Z) e'kxz microcavity. An exciton ascillator strength of 4% 10! cm 2 is deduced for 76-A quantum wells.
R v (13 [T
LiQi c ~L'12 PACS numbers: 42.50.—p, 71.35.42, 73.20.Dx, 78.45.+h

2 2
Dk, =|ct, [ o/ ne,?
Approximate dispersion :
-0’0 -0 =4Dk)f  1=1, 2

(dispersion for 2 - dimensional polaritons)

Third Inilernetional Con{erence on
OPTICS OF EXCITONS (N CONFINED SYSTEMS
MONTPELLIER. , AuGueT 1383 ,

. . 4 temperature exciton-photon Rabi splitting in a semiconductor microcavity.
Polariton coefficients : oom temp exciton-p splitting in vity.

r (1+w, (0 -w?
IX‘”r (q), = ( . ) (Q < ) Institut de Micro- et Optoélectronique, Ecole Polylechnique Fédérale de Lausanne,

do, (1+Q* - 207) CH1015, Switzerland.
C. Weisbuch

R Houdré, RP. Stanley, U. Qesterle, and M. llegems.

For a resonant cavity (w =1) & normal incidence
Thomson-CSF, Laboratoire Central de Recherches, Domaine de Corbeviile,

IX (q),z . (l + o, )2 ] , - F 91404 Orsay cedex, France
o, T e =T exciton component
8w, 2 P ) -
2 Stfan‘g'fcic:ifon-photon coupling regime can be achieved in a semiconductor microcavity up to
W k 2 ( 1+ w, ) | room temperature. In this regime, the Fabry-Pérot photon mode of the cavity and the exciton
oy (q) z ) _ e = 5 (radiation ¢ omponen r) electronic mode are no longer eigenstates of the coupled system. Both states are strongly coupled

i

and vacuum field Rabi splitting occurs. Analogies with atomic physics, conditions for stromg
coupling, experimental resulls and their implications are discussed.
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FIG. 3. Reflectivity peak positions as a function of cavity de
tuning for a five-quantum-well sample at T=5 K. The thegre!
ical fit is obtained through a standard multiple-interferenc
analysis of the DBR-Fabry-Pérot-quantum-well structure.
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INFINITE CAVITY - UPPER POLARITON
(L' — o)

For fixed q, the exciton frequency @, is embedded in
the photon continuum: vg20, 2 kaquf .
Polaritons appear as Fano resonances of frequency

QP (g) and lifetime 1/TYY"(g). The polariton

spectrum Q""" (g) is continous in j and q.

frequency
s hoton (for k,=0)
;/,- p 7,
%
% i exciton
: q




UPPER POLARITON - CLASSICAL RESONANCE i 1 0-1 L A B —

The mean polariton number

< a(q)acimn'ophomn | B;(UP)+B;(UP) la(q) 0

has its maximum value for the classical resonance

20 f

>

exciton? ™ photon

frequency and a width coinciding with the classical ! 1.00
lifetime broadening. :
|l (q),,...n > is a coherent exciton state of wave vector q. 15|

/

0.99 et
alternative approach . 094 096 0.98

UPPER POLARITON - CLASSICAL RESONANCE
Finite Cavity L’ >> QW thickness L.

| W,

1.0

D (QT)y=2mq 99 is the density of states of the upper

aQUP

polariton of the branch j.

0.5

The maximum of Q)j(QUP ) for each j coincides with

the classical resonance frequency. The width of the ' ~

extrema corresponds to the classical lifetime broadening.
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CAVITY WITH LOSSES

24 PAIRS A/4 MULTILAYERS
| [ |AlAs
A CAVITY
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A semiconductor microcavity is a planar
Fabry-Pérot whose mirrors are multilayer
structures built with alternating layers of
two different refraction indexes and the
same thickness A /4, where A is the
resonance wave-length of the Fabry-Pérot.

A structure of this kind, called distributed
Bragg reflector (DBR), presents a very high
reflectivity in a given frequency interval
around the resonance.

The DBR reflection coefficient for the
electric field has a phase equal to zero,
whereas for metallic mirrors this phase is
equal to n Standing waves inside the DBR
present antinodes instead of nodes, as for a
metallic mirror, at the cavity boundaries.

Boundary conditions : 1+Iplexp[i¢p] = =.
Metal mirror : ¢=mn.
DBR mirror : ¢=0.

ry ®

g W



QUASIMODE APPROACH _
In order to include the feature of an open cavity (R < 1),

the quasimode approach is used. The cavity mode @

is coupled to the continuum of the external radiation
modes by the folowing Hamiltonian

de Viiw)alb i (0)+ b ¢ ()] + h.c. }
'The relation between V(@) and the features of the
DBR's is obtained by comparing the quasimodes
density of state with the solution of the Maxwell
equations in the limit of high reflectivity :

V) =it@)f v/ar L’

t(@) is the complex tranmission coefficient of the
DBR.

For normal incidence (¢=0), k, =2n/L’,
and considering one cavity mode only
(two polariton modes) the photon operator
in terms of polaritons reads

a= W (o)B"+W, (0,)8"

-Y, (@) B - ¥, (@,)B°

AN

CAVITY WITH LOSSES - QUASIMODE SCHEME
EMPTY CAVITY

RADIATION FIELD INSIDE & OUTSIDE
THE CAVITY ARE DISTINCT

INSIDE THE CAVITY : ONE FIELD MODE a

# #
OUTSIDE THE CAVITY : FREE FIELD b¥ (), b* ()
The two fields are coupled through
H,, = I do {V'(0)a* By +b_y@)]+h.c}

~

K : unit vector in the growth direction

DIAGONALIZATION BY THE FANO METHOD
c(w)=a(w)a +Idw {B, ()b (@) + ¥, (@)b_; (0"}

2V ()

()= 2n|V(@) +i(0 - o, - F(w))

l@)’ : Lorentzian line shape

2|V(a))|

F(@)= pj‘d' —



OPEN CAVITY
EXACT VERSUS QUASIMODE SCHEME

(1) Exact scheme: Solution of the Mawell
equations with the appropriate boundary
conditions associated with r(®) and t(o).
Determination of the optical field.

(2} Quasimode scheme: Pertinent questions
Determination of V(w)in terms of r(w)
and t(w).
Quality of the approximation,

Assuming vaidity of quasimode scheme one
determines the optical field (i.e. a(t)) inside
the cavity by a Fano diagonalization prece-
dure.

#1

DETERMINATION OF COUPLING CONSTANT V()
‘The comparison with the exact solutions of the Maxwell
equations in the limit of high reflectivity of the mirrors
(DBR) leads to :

v
4nl’
_Flo)L’

Vo) =—o)

= arg(r(w)) = p(w)

Moreover the Kramers - Kronig relations between
@(®) and #(w) in the limit of high reflectivity are
recovered in this quasimode scheme

oo niL
P(@) = _L‘ojdm'l_t(_w_)'_
2r -,

w-w

[fp(m) =295 [agr @) ]
T %

wz _ wrl



POLARITONS IN AN OPEN CAVITY.
QUASIMODE SCHEME

H, = jdm {V‘(a)) a’ [by(w)+ b_g(@)]+ h.c.}

For normal incidence (g =0), k, =2x/L’,
and considering one cavity mode only
(two polariton modes) the photon operator
in terms of polaritons reads
a'= W, (o) B" +W, (w,)B*

-Y.: (»,) B' - YL (0,)B’

Interaction between QW polaritons and the
external radiation continuum

we [do Y {v (@)B" (B + by @) + .}

+de {U (w)B’ [bi (@) + b k(w)]+hc}

V.(@)=W, @)V & U (0)=-Y, (@)V©)

Close to resonance one has |l7,. (co)l <<

V (@),

tha antiracnnmamt tmeman mmee Lo . _V_ _._ 2 j 2

TIME EVOLUTION OF EXCITON STATES

Hig, = Idﬂv {V (w)B”[b(w)+bk(m)]+hc}

i=]
A5 A’ ()= F()B'+ F(1)B’
+Idw f;(cu,r) b; (w) +Idm f_ ;(@,1) b (0)

Initial condition : free exciton & no radiation.

The emission spectrum is related to F(¢) and F(¢),
which represent the probability amplitudes of finding
a polariton in the evolved exciton state.

In the Weisskopf - Wigner approximation the Fourier
transforms take the form:

- /2
|F‘(w)| I[}/4+[0— (0, - Aw))
|Fz("’)| _ I,/2

I;/4+[0— (0, - Aw,))

Linewidths I},T;, and frequency shifts Aw,, Aw,
depend on the detuning (i.e. on L")



Complementarity of

the semiclasical and

quantum mechanical approach:

Semiclassical
Approach

Exact solution of
Maxwell equations
with a linear non-local
exciton response func-
tion.

Quantities like
reflectivity,
transmission,
absorption can

be directly obtained.

The nonradiative
exciton line width
is easily taken into
account.

Quantum
Approach

Solution of Heisenberg
equations for polariton
operators.

Some approximations

are introduced.

Direct calculation of
the luminescence
spectrum.

Knowledge of the
quantum states of the
system at any given
time.

Possibility to calculate
the statistical proper-
ties of the radiation.

Comparison between the semiclassical and full
quantum mechanical approaches for the
polariton dispersion in a microcavity with losses
as a function of the detuning.

Dashed line: closed cavity (classical and q. m)

Dotted line: semiclassical approach
Full line: quantum mechanical approach.

15

I|IIII!II11|II]ITIII1III/ll/|ﬁ

10

(4]
Il[lilllllllll_
A\

—
—— -
——— =

- — ———
P —

energy (meVv)

0 -

PR W S S T T Y S SO T

_1 5 g b
-15 -10 -5 0 5 10 15
detuning (meV)

Az

@



energy (eV)

energy (eV)

Comparison between the semiclassical and full
quantum mechanical approaches for the
polariton dispersion in a microcavity with losses
as a function of the wave vector and for different
detuning.

Dotted line: semiclassical approach

Full line: quantum mechanical approach.

1.64
LML L B By B S B ey [ T T T T T
(a)

162 |. A=-10 meV
1.6 [

- _-'/ : -4
1.58 /" """""""""" i
156 TR N S S S TR T N S S T N T |
1.64

1.62

1.6

1.58 [

1_56 R S S SRS R TR B | bl 1
0.0 0.05 0.1 0.15 0.2 0.25

PL Peaks Detuning (meV)

14

EMISSION PEAK POSITION
AS A FUNCTION OF THE DETUNING
FOR A CAVITY WITH 5 QW

solid line: cavity with losses
dotted line: closed cavity
experiment: C. Weisbuch et al. Phys.Rev.Lett. 69,3314 (1 992)
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POSITION OF THE EMISSION PEAKS AND RADIATIVE

Linewidth (meV)

LINEWIDTH AS A FUNCTION OF THE DETUNING
6 qw inside the cavity, exciton energy 1.3421 eV,
L=75A, U'=3M2, Th,-0
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EMISSION SPECTRUM

Initial state : polaritons B"j0) & B*'0)
Exciton component of a polariton: X, & X,

B, =Y Wk.q) A, , +X,(q) A]

+2 }:(k-'Q) A::.a,.n + z:(q) A::

.,

Boltzmann factors :
exp[-pho, |/N & exp|-Pho,|/N

N = exp[-fhw, | + exp[-Pha, ]
Final states : radiation states b{(®)0)

Emission spectrum

E(@)=|olb(@)B* 0 [X,[ expl~Bhen|/N

+ |(0|bl~‘(co) B*|0) i |X2|2 cxp[—ﬁha)zl/N
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Intensity (A.U.)

LUMINESCENCE

6 qw inside the cavity, exciton energy 1.3421 eV,
L=75A, L'=3M2, Ty,=4meV, T=110K
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6 qw inside the cavity, exciton energy 1.3421 eV,
L=75A, L'=3N2, T,,=4meV, T=110K
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Splitting in meV -

16
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10

Splitting in meV x PL Intensity 150.0

LUMINESCENCE: INTEGRATED INTENSITY

6 qw inside the cavity, exciton energy 1.3421 eV,

L=75A, U'=3V2, T,,=4meV, T=110K
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LUMINESCENCE: INTEGRATED INTENSITY

Integrated Intensity (A.U.)

6 qw inside the cavity,

L=75

20.0

exciton energy 1.3421 eV,

A, U=3n2, T,,=4meV, T=110K
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REMARKS

The restriction to one cavity mode only is an excellent
approximation.

The quasimode approximation is only justified in the
limit of high reflectivity of the mirrors.

The model has to be extended to include non normal
incidence and different light polarizations.

The model does not contain the nonradiative lifetime
of the exciton.

The model allows to calculate statistical properties
of the radiation field.

The model has to be extended in order to describe
PL results.
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