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We report on a detailed analysis of electronic Raman scattering results in modulation doped
single quantum wells. We illustrate thereby the great power of this technique to get a
detailed characterization of the electron density distribution and the band structure in doped
heterostructures. We report in particular on a recent observaton, for first time directly by
spectroscopy, of the spin splitting of the conduction band of GaAs due to the lack of inversion

symmetry.

1. Introduction

Modulation doped structures are of great interest
for the study of the quasi-two-dimensional electron gas
(2DEG), in both transport and optical experiments be-
cause of the high mobility achieved by separating the
electrons from the ionized donors. Among these stud-
ies, a large amount of work has been devoted to one
side modulation doped single quantum wells. This sys-
temn appears very promising for spectroscopic probes of
the integer and fractional quantum Hali effects by opti-
cal measurements under quantizing magnetic field{t -3l
On the other hand. electronic Raman scatiering is a
powerful tool to probe electronic excitations, both col-
lective and single-particle. occuring in a 2DEG. This
was first suggested by Burstein et all and has since
been extensively demonstrated®. Moreover, in the
backscattering set-up, we can change the wavevector
in the plane of the 2DEG by simply rotating the sam-
ple relative to the fixed incident light wave vector. This
provides a unique possibility to determine the disper-
sion of these excitations and to extract the subband
structure as well as the electron density in modulation
doped structurest®=']. More recently, the observation.
in different polarization configurations. of distinct spin-
density and single-particle excitations. in addition to
charge-density waves, opened the way Lo an indepen-

dent measure of both direct and cxchiange-correlation

*Invited talk.

Coulomb interactions of the electron gas(*2~14l.

In this communication, we will illustrate these pos-
sibilities through the presentation of a whole set of elec-
tronic Raman scattering results on 180 A thick GaAs
single quantum wells claded between GaAlAs barriers.
Modulation doping is obtained from a Si localized dop-
ing in the upper barrier only. This results in an asym-
metric potential profile due to the self-consistent elec-
tric field. Moreover, due to the thin spacer (100A),
the typical electron density lies above 1.0 x 10'%cm™?
but the Fermi energy remains below the bottom Ej of
the second subband. We will present Raman scattering
results on intersubband and intrasubband transitions
both with single particle and collective character on
the same sample. From their in-plane dispersion and
line-shape, we extract determinations of the electron
density, the band structure and the lifetime of the in-
volved statest® '], We will in particular report on our
recent first spectroscopic observation of the spin split-
ting of the GaAs conduction band because of the lack
of inversion sym.met.ry[m]. All Raman scattering exper-
iments are done at liquid Helium temperature (1.8 K)

and under close energy resonance with the fundamental
energy gap.

Fig. | shows electronic intersubband Raman spec-
tra in patallel (polarized spectra) and crossed (depolar-
ized spectra) polarizations respectively, for several dif-

ferent Raman in-plane wave vectors q. Due to the sym-
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Figure 1: Electronic Raman scattering spectra obtained

with a resonance laser energy of 1.64 ¢V and at pumped
liquid He temperature {1.8K). The left side of the figure
shows collective (CDW and SDW) and individual (SPE) in-
tersubband excitations of the 2DEG for a very small Raman
in-plane wavevector, while the right side exhibits the same
excitations at larger q.

metry of the valence band states in GaAs, Raman cross-
sections, due to virtual interband processes, in crossed
{respectively parallel) polarization have been shown(!5}
to be related to spin-density (respectively charge den-
sity) mechanisms. One thus observes in parallel (re-
spectively crossed) polarization collective charge den-
sity waves (CDW) and spin density waves (SDW) oc-
curing in the 2DEG. In strong resonance conditions,
one also observes, in both polarizations, a broader band
of single particle excitations (SPE), with an intensity
comparable to the collective ones, contrary to the the-
oretical prediction of complete screening. Though the
origin of this observation is not yet fully understood,
the SPE band indeed
peaks at the bare intersubband energy E; — E; of

it appears to be very useful:

the doped structure (this is only strictly true when
assuming the same parabolic dispersion for both sub-
bands). On our sample we can thereby extract an accu-
rate determination of the subband separation (49meV)
in good agreement with the estimation deduced from
fuminescencell!] (48meV). Moreover this band displays
a specific behavior as a function of q. Unlike the CDW
and SDW, which remain approximatively unchanged,
the SPE band is strongly broadened with increasing
Raman in-plane wave vector according to the density
of intersubband transitions.

This is schematized on Fig. 2 in which we show the
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Figure 2: Schematic geometrical determination of the SPE
Raman signal for three different band filling situations.

2D Fermi disk associated to the initial and final bands
respectively for three different cases: a) the second sub-
band is empty as in the sample discussed in this com-
munication, b) it is partially filled and c) the density
is the same in both subbands, a situation which ap-
plies to intrasubband transitions. The final state Fermi
disk has been shifted by —¢ to account for the Ra-
man wavevector transfer. As the Raman shift amounts
to approximately k27 - E/m" when assuming ¢ << &,
the horizontal scale of the figure can be directly trans-
formed into an energy scale. The Raman signal for each
case is then graphically deduced from the length of the
equi-energy lines inside the initial and cutside the final
Fermi disks. In case a, the SPE signal appears as a
broad band extending between two cut-off frequencies,
shifted by —hqgvr and +hguvr from the E; — E) en-
ergy respectively. The corresponding dispersion curve
is shown in Fig.3 and compared to the experimental
dispersion. The slope of the SPE dispersion reflects the
electron density in E;. However the accuracy of this de-
termination is limited due to the intrinsic broadening of
the transitions (2meV). This quantity reflects the life-
time of both initial and final states. Energy-dependent
values are needed to correctly fit the SPE lineshape at
every in-plane wavevectorl!!l,

The CDW and SDW lines are not strongly disper-
sive and, due to the large electron density, they are
1 and

3). Thus one is able to accurately determine their en-

well separated from the SPE band (see Fig.

ergies, and to deduce the electron density. Using a
RPA calculation based on self-consistently determined
wavefunctions(®13], we deduce from the CDW energy
an electron density of 1.3 x 10'?cm™2. With this value,
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Figure 3: Dispersion curve of the collective (CDW and
SDW) and irdividual (SPE} intersubband excitations of the
2DEG, deduced from Raman scattering experiments as a
function of q. The vertical lines are the width at half maxi-
mum of the SPE line and the solid lines calculated dispersion
curves.

onhe may extract from self-consistent subbands calcu-
iations the potential profile of the structure and the
subbands energies. The calculated value of the £, to
E, intersubband energy obtained by this procedure is in
very good agreement with experimental values provided
by PL and Raman measurements. Moreover, from the
experimental SPE, CDW and SDW lines, one may ex-
tract an experimental determination of the direct and
exchange-correlation Coulomb interaction in quasi-two-
dimensional electron gases and compare them to differ-

ent models of these quantities!!2=4].

Let us now turn to the analysis of the intrasubband
electronic transitions. The corresponding Raman spec-
tra are shown on Fig. 4 for several in-plane waveveciors
in both polarization configurations. As we aiready ex-
plained for the intersubband ones. SPE and collective
excitations can be observed simultaneously at strong
resonance. The low energy part of the spectra in both
polarizations is attributed to SPE band. It extends

from zero to a maximum energy +hgrr. However, con-
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Figure 4: Electronic Raman scattering spectra on intrasub-
band excitations in parallel (left-side) and crossed (right
side) polarizations for several in-plane wavevector.

Figure 5: Schematic representation of the states partici-
pating to the intrasubband Raman process (thick hatched
surface) among the occupied ones in the Fermi sea (thin
hatched).
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Figure 6: Schematic representation of the different possible intrasubband transitions and the corresponding calculated dis-
persion curves, also including the plasinon one. A comparison is made with the experimental dispersions.

trary to the intersubband case. it reflects the density
of transitions between two occupied subbands: £} and
E}. Due to the final state occupation, and because the
Raman wavevector is usually much smaller than kg, the
only initial states which can participate in the Raman
process (see Fig.2¢ and 5} are very close to the Fermi
level and their in-plane wavevector is oriented along q.
Due to this restriction, the Raman line shape is well
peaked around +hqre. Moreover. the lifetime broad-
ening is very small for these transitions (< 0.2meV) i.e.
ten times less than for intersubband transitions. This
is a further indication that this broadening indeed sig-
nificantly depends on the energy of the involved states.
Thanks to these features. the determinalion of the in-
trasubband SPE dispersion provides an accurate lest
of the 2D character of the involved states (linear dis-
persion) and an accurate determination of the electron
density. A value of 1.3 x 10%% ¢cm? is deduced from the

parallel spectra.

Moreover the Raman line shape is particularly sen-
sitive to the detail of the band structure around kPlg:l .
which was up to now assuimed parabolic and doubly

spin-degenerate. This appears in our spectra through a

splitting of the SPE band in crossed polarization. This
splitting reflects a very small, generally neglected effect
in the band structure of GaAs: the additionnal spin
splitting due to spin-orbit interaction in crystals with-
out inversion symmetry(!°. Taking into account this
splitting and the Raman selection rule, we indeed pre-
dict (see Fig. 6) the observation of a single SPE band
in parallel polarization, with a cut-off energy figrp, and
two SPE bands in crossed polarization with the same
wavevector dependence but shifted from the previous
one by respectively +AF and —~AF, where AE is the
splitting at the Fermi wavevector in the direction of §.

These predictions are in perfect qualitative agree-
ment with the experimental dispersion (see Fig. 6)
and provide the first direct measure of the spin
splitting (0.38 meV). This contrasts with the previ-
ous indirect determinations deduced from polarization
measurements{!®; in these experiments, the splitting
was assumed to be negligible with respect to level
broadening and the additional spin orbit effect was esti-
mated from the induced precession of the electron spin
in the conduction band. The same mechanism was also

involved in the recent spin-splitting determination from



Brazilian Journal of Physics, vol. 24, no. 1. March, 1994

Y0 02 0T Th ¥ Te
(k)
Figure 7: Spin-splitting calculated along [10] and {11] direc-
tions as a function of the sample parameter x/ky.

anti-weak-localization studies in magnetoconductance
experiments! 7. [n our Raman experiment, we are able
to measure the splitting because of the specific features
of Raman scattering by intra-subband SPE excitations
which we previously emphasized and because we are
studying modulation doped heterostructures. This in-
deed allows Lo obtain large doping concentrations, and
thus large splittings (AE x k}), with high mobilities at
low temperature, and thus weak line broadening of the
transitions. We compare this accurate deterimination
with models of the spin spiitting in heterostructures!'®l.
Qur experimental value is in good agreement with the
predicted one averaged over the in-plane directions,
thus providing a further support to the description of
this splitting in bulk GaAs in terms of an additional
spin-orbit coupling of the conduction band with the
higher energy anti-bonding p-states('’!. However 2D

models predict a large anisotropy of the spin splitting:

2

AE = (k'K ~ (46 — kIEZED)

which moreover strongly depends on the confinement
wavevector k2 =< k2 > Y This is illustrated on
Fig.7 where we show the dependence of the splitting
onto the ratio x/ky. The splitting continuocusly evolves
from a 3D situation for vanishing values of the ratio
towards a 2D one at large &. In the former case the
splitting moreover is proportionnal to &y while it varies
linearly with kjj in the 2D limit. in between, various sit-
uations appear with a splitting along [10] either smaller
or larger than along {11]. A systematic study as a func-
tion of &/k) and of the wavevector oricntation is there-
fore of great interest to probe the 2D models of this
effect.

The dependence on the wavevector magnitude can
be probed by Raman scattering etther on different sam-
ples with the same parameters except the electron den-

sity or. more accurately. by the application of an clec-
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Figure 8: Depolarized intrasubband Raman spectra for the
same in-plane wavevector oriented along three different di-
rections in the layer plane.

tric field onto the electron gas using a Schottky con-
tact to deplete the electron channel. The effect of the
wavevector orientation can be more easily investigated
by turning the sample with respect to the scattering
wavevector direction. This allows to select a given di-
rection to be probed in the Fermi sea as shown on Fig.
9 and 5. Some preliminary results on the same sample
are shown on Fig.8 {20]. Contrary to the predictions
illustrated on Fig.7, we observe a moderate anisotropy
which makes us supect some deficiency in the 2D exten-
sion. Further experiments on the angular and density
dependence of the splitting are in progress and should
bring some new light onto this problem.

In conclusion, we illustrated the great power of elec-
tronic Raman scattering to probe modulation doped
quantum wells and to obtain thereby novel information
about the band structure of GaAs and about many
body effects at low dimension. The work reported
in this communication has greatly benefited from the
collaboration for sample preparation and characteriza-
tion, optical experiments, theoretical analysis and dis-
cussions of B. Etienne, V. Thierry-Mieg, A. Izrael, H.
Peric. D. Richards, J. Y. Marzin and J. M. Gerard.
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Abstract

We report on a detailed analysis of dectronic Raman scattering results in
modulation doped singic quantnn wells,. We illustrate thereby the great
power of this technique to get a detailed characterization of the electron
density distribution and the band structure in doped heterostructures. We
report in particular on a recent observation, for first time directly by spec-
troscopy, of the spin splitting of the conduction band of GaAs due to the
lack of inversion symmetry.

Modulation doped structures are of great interest for the
study of the quasi-two-dimensional clectron gas (2DEG), in
both transport and optical experiments because of the high
mobility achieved by scparating the clectrons from the
ionized donors. Among these studies, a large amount of
work has been devoted to one side modulation doped single
quantum wells, This system appears very promising for
spectroscopic probes of the integer and fractional quantum
Hal! effects by optical measurements under quantizing mag-
netic field [1-3]. On the other hand, electronic Raman scat-
tering is a powerful tool to probe clectronic excitations,
both collective and single-particle, occurring in a 2DEG.
This was first suggested by Burstein et al. [4] and has since
been extensively demonstrated [5]. Moreover, in the back-
scattering set-up, we can change wavevector in the plane of
the 2DEG by simply rotating the sample relative to the
fixed incident light wave vector. This provides a unique
possibility to determine the dispersion of these excitations
and to extract the subband structure as well as the electron
density in modulation doped structures [6-11]. More
recently, the observation, in different polarization configu-
rations, of distinct spin-density and single-particle excita-
tions, in addition to charge-density waves, opened the way
to an independent measure of both direct and exchange-
correlation Coulomb interactions of the ¢lectron gas [12-
247.

In this communication, we will illustrate these pos-
sibilities through the presentation of a whole set of elec-
tronic Raman scattering results on the same sample: a 180A
thick GaAs single quantum well claded between GaAlAs

barriers. Moduiation doping is obtained from a Si localized
doping in the upper barrier only. This results in an asym-
metric potential profile due to the selfconsistent electric
field. Moreover, due to the thin spacer (100A), the typical
electron density lies above 1 x 10'2cm™? but the Fermi
energy remains below the bottom E; of the second subband.
We will present Raman scattering resuits on intersubband
and intrasubband transitions both with single particle and
collective character on the same sample. From their in-plane
dispersion and line-shape, we extract determinations of the
electron density, the band structure and the lifetime of the
involved states [9, 11]. We will in particular report on our
recent first spectroscopic observation of the spin splitting of
the GaAs conduction band because of the lack of inversion
symmetry [10]. All Raman scattering experiments are donc
at liquid Helium temperature (1.8 K} and under close energy
resonance with the fundamentai energy gap.

Figure 1 shows electronic intersubband Raman spectra in
parallel (polarized spectra) and crossed (depolarized spectra)
polarizations respectively, for several different Raman in-
plane wave vectors q. Due to the symmetry of the valence
band states in a GaAs, Raman cross-sections, due to virtual
interband processes, in crossed (respectively parallel) polar-
ization are related to spin-density (respectively charge
density) mechanisms [15]. One thus observes in parallel
(respectively crossed) polarization collective charge density
waves (CDW) and spin density waves (SDW) occurring in
the 2DEG. In strong resonance coaditions, one also
observes, in both polarizations, a broader band of single
particle excitations (SPE), with an intensity comparable to
the collective ones, contrary to the theoretical prediction of
complete screening. Though the origin of this observation is
not yet fully understood, it appears to be very useful: the
SPE band indeed peaks at the bare intersubband energy
E,—E, of the doped structure (this is only strictly true when
assuming the same parabolic dispersion for both subbands).
On our sample we can thereby extract an accurate determi-
nation of the subband separation (49 meV) in good agree-
ment with the estimation deduced from luminescence [11]

Physica Scripta T+49



504  B. Jusserand, H. Peric, D. Richards and B. Etienne

¥ ] T 4 T T T T T T
q - 0cm’ q ~ 15x10%m™
(Dw

E M
‘e CDOW SPE
2 I SPE
L0
L]
waad
z
3L 1
=z SDwW
;_.‘ SDwW
=
[ of

i 1 1 1 ) 1 1 1 1
600 500 400 300 600 500 400 300

RAMAN SHIFT (cm™

Fig. 1. Electronic Raman scattering spectra obtained with a resonance laser energy of 1.64¢V and at pumped liquid He temperature (1.8 K). The left side
of the figure shows cotlective (CDW and SDW) and individuai (SPE) intersubband excitations of the 2DEG for a very small Raman in-plane wavevector,
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(48 meV). Moreover this band displays a specific behavior as
a function of g. Unlike the CDW and SDW, which remain
approximately unchanged, the SPE band is strongly
broadened with increasing Raman in-plane wave vector
according to the density of intersubband transitions. The
cut-off frequencies are shifted by —hgve and +hgoe from
the E,~E, energy. This is shown in Fig. 2 and compared to
the experimental dispersion. The siope of the SPE disper-
sion reflects the electron density in E,. However the accu-
racy of this determination is limited due to the intrinsic
broadening of the transitions (2meV). This quantity reflects
the lifetime of both initial and final states. Energy-dependent
values are needed to correctly fit the SPE lineshape at every
in-plane wavevector [11].

The CDW and SDW lines are not strongly dispersive and
they are well separated from the CDW and SDW lines {see
Fig. 2). Thus one is able to accurately determine their ener-
gies, and to deduce the electron density. Using a RPA calcu-
lation based on self-consistently determined wavefunctons
.6, 13], we deduce from the CDW energy an electron
density of 1.3 x 10'2 cm ™2, With this value, one may extract
Tom self-consistent subbands calculations the potential
arofile of the structurc and the subbands energies. The cal-
:ulated value of the E, to E, intersubband energy obtained
oy this procedure is in very good agreement with experi-
nental values provided by PL and Raman measurements.
Moreover, from the experimental SPE, CDW and SDW
ines, one may extract an experimental determination of the
lirect and exchange-correlation Coulomb interaction in
juasi-bidimensional ¢lectron gases and compare them to
lifferent models of these quantities [12-147].

'hysica Scripta T49

(2

Let us now turn to the analysis of the intrasubband elec-
tronic transitions. The corresponding Raman spectra are
shown on Fig. 3 for several in-plane wavevectors in both
polarization configurations. As we aiready explained for the
intersubband ones, SPE and collective excitations can be
observed simultanecusly at strong resonance. The low
energy part of the spectra in both polarizations is attributed
to SPE band. It extends from zero to a maximum energy
+hque. However, contrary to the intersubband case, it
reflects the density of transitions between two occupied sub-
bands: E; and E;. Due to the final state occupation, and
because the Raman wavevector is usually much smaller
than kg, the only initial states which can participate to the
Raman process are very close to the Fermi level and their
in-plane wavevector is oriented along ¢. Due to this
restriction, and to the high quality of the samples with an
elastic broadening smaller than 0.2meV, the Raman line
shape is well peaked around +hguy and the determination
of its dispersion provides an accurate test of the 2D charac-
ter of the involved states (lincar dispersion) and an accurate
determination of the electron denmsity. A value of
1.3 x 10'?cm ™2 is deduced from the parallel spectra.

Moreover the Raman line shape is particularly sensitive
to the detail of the band structure around kpgq/l¢}. This
appears in our spectra through a splitting of the SPE band
in crossed polarization. This splitting reflects a very small,
generally neglected effect in the band structure of GaAs: the
additional spin splitting due to spin-orbit interaction in
crystals without inversion symmetry [10). Taking into
account this splitting and the Raman selection rules, we
indeed predict (see Fig. 4) the observation of a single SPE
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band in parallel polarization, with a cut-off energy hgug,
and two SPE bands in crossed polarization with the same
wavevector dependence but shifted from the previous one by
respectively +AE and — AE, where AE is the splitting at the
Fermi wavevector in the directicn of g.
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Fig. 3. Electronic Raman scatiering specira on intrasubband excitations in

paraliel (left side) and crossed (right side) polanzations for several in-plane
wavevector.
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Fig. 4. Schematic representation of the different possible intrasubband
transitions and the corresponding calculated dispersion curves, also includ-
ing the plasmon one. A comparison is made with the experimental disper-
sions.

These predictions are in perfect qualitative agreement
with the experimental dispersion (see Fig. 4) and provide a
direct measure of the spin splitting (0.4 meV). We have been
able to observe this splitting, contrary to the previous indi-
rect determinations deduced from polarization measure-
ments [16], thanks to modulation doping® This indeed
allows to obtain large doping concentrations, and thus large
splittings (AE oc k), with high mobilities, and thus weak line
broadening of the transitions. We compare this accurate
determination, and its angular variation deduced by rotat-
ing the sample with respect to the direction of ¢ [17], with
models of the spin splitting in heterostructures [18]. Our
average experimental value is in good agreement with the
predicted one, thus providing a further support to the
description of this splitting in bulk GaAs in terms of an
additional spin-orbit coupling of the conduction band with
the higher energy anti-bonding p-states [19]. However 2D
models predict a large anisotropy of the spin splitting:

AE = y(x*k} — (4r* — k})kZ k2)H/2

which moreover strongly depends on the confinement wave-
vector k2 = (k?). We observe on the contrary 2 moderate
anisotropy which let us suspect some deficiency in the 2D
extension. Further experiments on the density dependence
of the splitting are in progress and should bring some new
light onto this problem.
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INTERFACE ROUGHNESS AND CONFINED VIBRATIONS

Bemard Jusserand

CNET - Laboratoire de Bagneux
196 Avenuc Henri Ravera
92220 Bagneux, France

INTRODUCTION

The lattice dynamics of superlattices based on two different pure constituents, like for
instance GaAs/AlAs, InAs/GaSb or Si/Ge, is now very well understood and most of the
theoretical predictions have been successfully verified by Raman scattering, at least on
GaAs/AlAs structures which are available at a very high quality'.

TheopﬁcalphononbrmhesinGaAsmdAlAsarewell separated in frequency and the
optical vibrations of one material cannot propagate into the other one. As a consequence, the
optical vibrations in the GaAs/AlAs superlattices arc divided into two families whose
eigendisplacements are strongly confined either in the GaAs or in the AlAs layers; the
penetration depth into the other compound being less than one monolayer. Their frequencies
are thus very sensitive to boundary conditions. Assuming perfect in s, onc can identify
the eigenfrequencies of the modes confined in GaAs layers to those of bulk GaAs at a given
set of wavevectors ki,

__pn
k= mta M

Similar conclusions apply to the optical vibrations confined in the AlAs layers. The LO
dispersion in GaAs and AlAs being downwards, the confined phonon encrgices lie beiow the
bulk GaAs (AlAs) one and decrease with decreasing layer thicknesses. This provides a
one-to-one correspondence between the confined frequencies and the layer thicknesses.
Equation 1 allows one to define an effective thickness (n, + 1)a which is common to all the
confined vibrations in perfect layers. These predictions have been checked by different groups’
with reasonable success. However, a general tendency. is observed: the dispersion deduced
from Raman scattering on superlattices is flatter than the one obtained by neutron scattering
on the bulk constituents. In other words, the effective thickness associated to a confined mode
increases when the associated local wavevector (see Equation 1) increases.

The main approximation involved in these models is to consider atomically flat interfaces
separating the two pure constituents. In real samples, even of the best quality, the interfaces
are never flat due to the growth statistics. Such roughness, which extends overa few monolayers
around the nominal interface, can be reasonably neglected for superlattices with moderately
smal! individual layer thickness (> 50 A). In shorter period structures, however, this roughness
leads 1o quantitative departures from the predictions of the lattice dynamics of perfect samples.
This paper will be devoted to a description of Raman scattering experiments focussed on this
problem and to a quantitative analysis of the dependence of the phonon frequencics on the
spatial characteristics of the roughness, both along the growth axis and in the interface plane.
This will lead us to reconsider in detail the lattice dynamics of bulk mixed crystals and of
perfect superlattices containing layers of these alloys. The effect of interface roughness will
be finally treated before we conclude.

Light Scattering in Semiconducior Siruciures and Superiaitices
Edited by D.J. Lockwood and I.F. Young, Plenum Press, New York. 1991 1
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Experimental Results

The optical vibrations confined in GaAs and AlAs are particularly sensitive to the
interfacial imperfections because their frequencies are mainly determined from boundary
conditions at each interface. This was first demonstrated® through the variation of the confined
frequencies as a function of the growth conditions in nominally identical superlattices. We
show in Fig. 1 Raman spectra obtained in the z(x,y)z configuration on five nominally identical
?.mples grown by Molecular Beam Epitaxy (MBE) at different temperatures T, ranging from

10°C w 680°C. We know from X-ray diffraction measurements that the macroscopic
parameters of the samples are almost identical : d(GaAs)=28A and d(AlAs)}=12A and
independent of temperature. On the other hand, the intensity of the X-ray satellites decreases
significantly with increasing T,. A similar observation is made on the Raman lines associated
to the folded acoustic vibrations, which reflect the long range order along the growth axis in
a very similar way to the X-ray satellites : the frequencies of the folded acoustic lines remain
unchanged but their intensities significantly decrease. Both results suggest, in agreement with
some independent knowledge of the growth process, the existence of an increasing interfacial
roughness with increasing T,.

The effect on the optical vibrations is in a way much stronger : we observe a significant
down-shift with increasing T, of all the lines associated with optical phonons confined either
in the GaAs or the AlAs layers. In the AlAs energy range, a single line is mainly observed on
all the samples associated to the fundamental confined vibration (p=1 in Eq.1). A small line,
tentatively assigned to mode 3, is also observed on the sample grown at 510°C but disappears
at higher temperature. In the GaAs frequency range, three lines are observed on all samples,
corresponding to mode 1,3,5 according to the now well established selection rules. They all
shift towards lower frequency and moreover their relative distance strongly varies : they become
more or less equidistant at 680°C while the splitting between line 3 and 5 amounts to almost
twice the one between line 1 and line 3 at low T,. Similar shifts in the confined optical vibrations
have also been observed on superlattices during a series of successive thermal annealing stages”.
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Fig. 1. Raman spectra in the AlAs-type (a) and GaAs-type (b) frequency range for five

GaAs/AlAs superlattices with the same nominal parameters, but grown at different

temperature T,

%



Goasy 1 1 8 ® = ©
Ay
=
o
E
|
-
=
o
["a]
=
-«
b =
o
x
) . Y . 1
300 290 280 270 300 290 280 270 400 3%0

FREQUENCY SHIFT (cm™ -

Fig. 2. a)Raman spectra in the GaAs-type frequency range for three different samples with
the same composition sequence A but grown at different temperatures. b) same as
a) except that the composition sequence is B. ¢) same as a) but in the AlAs-type
frequency range. In a} and b) the.bottom (top) arrows indicate the mode frequencies
calculated assuming a perfect (segregation-type) profile.

The dependence of the optical phonon frequency on the growth conditions becomes very
strong for very short period superlattices. We show in Fig.2 recent results obtained on samples
specially designed to get detailed information on the imperfections of the profile. As shown
in the inset, the supercell of each sampie contains 4 different layers. Two different sequences
have been grown :

{AlAs)(GaAs)(AlAs),(GaAs)s sequence A
(AlAs),(GaAs)s(AlAs),(GaAs), sequence B

which are equivalent up to an inversion of the growth direction. The Raman spectra thus must
be identical when assuming a perfect realization of the structure and the observed differences
are spectroscopic signatures of departures from the nominal composition profile.

Samples are grown by MBE and the superlattice growth temperature ranges from 400 10
600°C. We first characterize the samples using X-ray diffraction and Raman scattering on
folded acoustic phonons. We do not observe any systematic change as a function of T, or of
the layer sequence. The measured periods scatter between 3.6 and 3.8 nm, in good agreement
with the 3.7 nm nominal value. Moreover, the second X-ray satellite (respectively foided
acoustic doublet) is unusually strong with respect to the firstone. This demonstrate’ the presence
of an aluminium rich peak inside the GaAs layer which corresponds to the nominal AlAs
monolayer. The ratio of satellite intensities only shows small variations from samaple to sample.

On the contrary, strong variations are observed io the Raman spectra on confined optical
vibrations. We show in Fig.2 the Raman spectra of vibrations confined in GaAs (a and b) or
AlAs (c) layers obtained on the samples grown at T,=400, 500 and 600°C. The spectra in the
GaAs energy range contain three main peaks associated respectively with the GaAs buffer
layer and the two different GaAs layers in the supercell, labelled G, and G, according to their
nominal thickness. The spectra in the AlAs energy range contain onc main peak associated
with the thicker AlAs layer labelied A,. All these layers are very thin, thus preventing the
observation of confined modes other than the fundamental one. We are also not able to resolve
in these samples the contribution of the AlAs monolayer. Let us first emphasize that the
perturbation on the optical vibrations due to a single AlAs monolayer inserted in the GaAs
well is much stronger than it is on electronic properties®. Each GaAs layer on each side behaves
almost independently, which means that the AlAs monolayer acts as an almost infinite barmier.
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The Raman spectra qualitatively differ from those which we observed’' on Ua, A L/AS/IA S
superlattices, i.c. when the aluminum is homogeneously distributed in the well instead of
forming a composition spike. This is strong evidence of our ability to grow an aluminum spike
in the monolayer range. This allows us to analyze independently the signals coming from ¢ach
GaAs layer.

In both series of samples the positions of the peaks G, Gs and A, strongly varies as a
function of T,. Morover, the GaAs peaks, but not the AlAs one, display a dramatic dependence
on the layer sequence. We indicate in Fig.2a, b the frequencies of the GaAs-type confined
modes, calculated assuming a perfect profile. The measured frequencies always lie well below
the predicted ones and the difference increases with increasing T,. The same trend is observed
on the single AlAs-type mode. Let us now focus on the difference between sequence A and
B. The effective thickness of both GaAs layers is clearly very sensitive to the thickness of the
AlAs layer which lies immediately undermeath and will be hereafter called the underlying
AlAs layer. We plotin Fig.3 the measured line frequenciesasa function of these two parameters.
One can notice in Fig.3 that this sensitivity is larger in the nominally 3 monolayer than in the
nominally 5 monolayer thick GaAs well because the frequency change for a given cffective
thickness variation is larger. Moroever, a tendency to the saturation in the underlying AlAs
thickness dependence is observed at 4 monolayers, the behavior presumably approaching a
"bulk-like" limit. On the contrary, the sensitivity to the growth temperature is strongly reduced
for small underlying AlAs thicknesses.

On the other hand, the effective thickness of the nominally 4-monolayers-thick AlAs is
the same in both sequences, i.c. after cither 3 or 5 monolayers of GaAs. We show, however,
in Fig.4 some recent Raman spectra in the AlAs energy range obtained on similar samples
grown under similar conditions but with thicker GaAs layers and an aluminum spike
comresponding to either 1 or 1/2 monolayer of AlAs. In these samples, a clear signal coming
from the spike is observed and its frequency depends of the amount of aluminum deposited.
This latt;_er k::esult suggests that the AlAs layer propertics may also depend on the underlying
GaAs thickness.
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Fig. 3. Measured frequencies of the GaAs-type fundamental vibrations plotted as a function
of the nominal thickness of the underlying AlAs layer. In the upper (lower) part, the
results correspond to a nominal GaAs thickness of 5 (3) monolayers. In both parts,
the calculated nominal frequency is represented by a horizontal line as it is
independent of the underlying AlAs thickness. The experimental resuits obtained
on samples grown at 600, 500, 450 and 400°C are represented by plusses, crosses,
open squares and circles respectively. The full lines are a guide to the eye.
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Fig. 4. Raman spectra in the AlAs-type frequency range for two different samples with the
composition sequence (AlAs)(GaAs),(Ga, ,Al,As),(GaAs) and x=0.5(a)or 1. (b)

The general shape of the spectra is not modified in other respects from sample to sample.
Even when the phonon frequencies are very different from the ones calculated using the nominal
parameters, we do not observe any significant line broadening. Moreover, line splittings (as
recently reported in Ref.2) seem to be absent in our samples. This suggests that the imperfections
in these samples are caused by "gradual interfaces” ; the in-plane statistics of the roughness
should be such that the optical phonons only see the average in-plane concentration and thus
experience an ordered, eventally gradual composition profile along the growth axis, while
the translational invariance in the layer planes is preserved. Assuming a gradual profile makes
one-dimensional models sufficient to analyze the Raman scattering results. From the data
corresponding to the AlAs energy range, the information is 100 scarce to separaic the respective
effects onto the confinement of an admixture of gallium and of a change in the composition
profile. On the contrary, the observation of three lines in the GaAs energy range makes it
possible to determine the composition file in the gallium-rich parts of the structure with
good accuracy. We will present in what follows a detailed 1D calculation of the Raman spectra
in superlattices with gradual interfaces and we will introduce, on the basis of a 3D lattice
dynamics calculation including the interface roughness, a novel microscopic criterion
governing the emergence of this behavior.

The main difficulty in performing both tasks arises from the alloy vibrational behavior.
Let us recall some experimental results on this point. The Raman spectra on Ga, ,Al,As alloys
display the well-known two-mode behavior : two optical phonon Raman lines coexist on the
whole concentration range which lie respectively in the range of the pure GaAs and AlAs
optical phonons and only slightly shift as a function of the alloy composition. Both this
two-mode behavior and the strong confinement in GaAs/AlAs superiattices qualitatively
originates from the same feature : the large energy splitting between the optical bands in GaAs
and AlAs. A virtual crystal approximation to describe these alloy vibrations is therefore
meaningless, contrary to what prevails for the electronic propertics.

Raman scattering experiments on bulk alloys provide useful but limited information on
the alloy lattice dynamics. Inserting these alloys in superlattices allow us to increase this amount
of experimental knowledge. Fig.5 displays some Raman spectra in the GaAs energy range
obtained on GaAs/GaAlAs superlattices with similar parameters except for the aluminum
concentration in the alloy layers which ranges from 100% to 5%. The frequency of the modes
confined in the GaAs layers remain almost unchanged as long as the GaAs-type LO mode of
the alloy constituents lies art sufficiently higher frequency. When it is no longer the case, the
mode slightly shifts towards higher frequency before to transform into a propagative optical
vibration with an energy in the range of overiap of the pure GaAs and GaAlAs alloy optical
energy band. This whole behavior is typical of a quantum well and the alloy layers appear to
act as very effective barriers for the phonons confined in the GaAs layers with energies above
the Raman frequency in the bulk alloy.
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Fig. 5. Ramanspectrainthe GaAs-type frequency range for four different GaAs/Ga, Al As
samples with the same parameters except for the aluminum concentration x in the
alloy layers.
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Let us now consider the case of GaAlAs/AlAs superiattices and again the LaAs-lype
optical vibrations in these structures. Fig.6 displays the _associated Raman spectra in three
samples with an aluminum concentration in the alloy ranging from 0 to 30%. The spectrum at
15% is rather similar to the one at 0%, while for higher aluminum concentration the different
lines become poorly resolved. A general shift of the spectra is observed, which maps onto the
one in the corresponding bulk alloy. Moreover, three different peaks remain observable. We
attribute these optical phonon lines in the thin alloy layer spectra 1o confined GaAs-type
vibrations, comparable to those observed in pure GaAs thin layers; the AlAs layers acting in
both cases as very effective barriers. The distance between the peaks appears Lo decrease with
increasing x, while their width increases. This experiment’ is the first experimental proof of
the dispersive character of the GaAs-type vibrations in the GaAlAs alloys. This observation,
and the barrier properties which we described in the previous paragraph, strongly suggest that
the GaAs-type opticat band in the GaAlAs alloys behaves, at least for small Al concentrations,
much like the one in 2 pure compound with effective parameters. We will present in the next
section some methods of approximation to define these effective parameters and compare the
related predictions to the experimental results on bulk or thin alloy layers. This will justify the
use of these parameters in some of the supertaitice dynamics calculations presented here.
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Fig. 6. Raman spectrain the GaAs-type frequency range for three different Ga, ,ALLAs/AlAs
samples with the same parameters except for the aluminum concentration x in the
alloy layers.
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Lattice Dynamics of GaAlAs Mixed Crystals

The vibrational properties of the GaAlAs alloy have been analyzed theoretically for a
very long time with the aim of qualitatively predict the two-mode behaviorand to quantitatively
reproduce the Raman scattering results. The favorable feature in this task is the almost identical
spring constants of the GaAs and AlAs compounds which essentially differ by the mass of the
atom III site. For the remainder of the paper we shal! assume that these forces are the same.
The first method which was successful in predicting the two-mode behavior is the Random
Element Isodisplacement method®. It can be reformulated® using an effective ordered mass on
the disordered site, which is a real quantity but depends on the energy in a rather similar way
to the "CPA mass”. We will therefore describe directly the Coherent Potential Approximation
(CPA), its properties and its predictions.

The CPA description of the alloy'®"® consists in a fictive ordered crystal which depends
only on a frequency dependent isotropic complex mass assigned to the randomly occupied
cation sites. This mass is self-consistently determined when one assumes the force constant
matrix to be independent of the site occupation and if one demands that a given random occupied
site imbedded in the CPA effective medium produces no extra scattering on the average. The
CPA crystal being an ordered one, its properties, like phonon densities of states, dispersion
curves and Raman activities, can be calculated as for pure compounds. However, some of these
notions must be carefully redefined due to the peculiar propertics of the CPA mass : itis a
complex quantity and varies as a function of the energy, which respectively ensures the CPA
crystal to include some disorder effects and to be at each energy the "best” ordered description
of the real disordered crystal. Whereas we use a 3D lattice dynamic based on the Overlap
Valence Shell Model of GaAs™ to analyze the experimental results, we prefer to illustrate the
CPA predictions on a much simpler system: the GaAlAs linear chain with only nearest neighbor
interaction. We thereby retain the main results and in particular the two-mode behavior.

We show in Fifg.? the encrgy variation of the full density of states, of some dn?rm'nal
conditional density of states and of the reat and imaginary of the CPA mass at a few different
compositions. The two-mode behavior appears in Fig.7 through the existence of two different
energy ranges above 200cm™’ where the density of states is non vanishing. The position and
width of these ranges vary only slightly as a function of x. Their respective GaAs- and
AlAs-type character can be further demonstrated using the conditional partial density of states,
calculated on the disordered site. It is only large in the lower energy (higher energy) band when
the disordered site is occupied by a gallium (aluminum) atom. The associated vibrations thus
dispiay a rather confined behavior.

The imaginary part of the CPA mass is also non-vanishing in the range of allowed energies
in the alloy, where the alloy fluctuations can casily scatter elastically any given CPA mode.Thus
its amplitude qualitatively maps onto the integrated density of states. The variation of the real
part is of greater interest for our purpose. It displays strong variation in each energy gap, so to
be successively close to the virtual crystal mass, the gallium and the aluminum one in the three
allowed cnergy bands. This behavior is in qualitative agreement with our experimental
observations that the GaAlAs well and barriers act in the GaAs-type energy range as if the
alloy coincides in this range with an effective pure compound with an effective mass close
to that of gallium. A more precise comparison can be done on the basis of the phonon dispersion
curves, Due to disorder, the ranslational invariance in the crystal is destroyed and dispersion
curves should be expected to disappear. The CPA, being an ordered ximation, allows us
to reintroduce this notion'>. However, due to the imaginary part of the CPA mass, the spectral
density of states at any value of the wavevector is no longer a set of 8-functions but a continuous
function displaying a few peaks which remain rather narrow in GaAlAs. The deduced dispersion
curve is thus a thick one, as illustrated in Fig.8 for a few compositions. The zone center
properties reproduce well the experimental results on bulk GaAlAs : the frequency decreases
with increasing x and an asymmetric line shape develops. Furthermore, using this dispersion
curve (in other words using the CPA mass on the disordered sites of the superlattice to perform
the superlattices lattice dynamics calculation), we are able’ 10 quantitatively explain the Raman
scattering results on thin GaAlAs wells presented in Part 1, which provides a new, stringent
test of the ability of the CPA to describe the mixed crystal vibrations.

The validity of the CPA for describing the barrier effect of a GaAlAs mixed crystal is
not yet well established. The energy range of interest then lies outside the allowed energy bands
and, in particular, just above the GaAs-type energy band. In this energy range, the CPA mass
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which reflects the vanishing of the corresponding
clement of the site Green function. The physical meaning of this divergence has never been
investigated, as far as we know, because it does not play any role in the analysis of the bulk
alloy properties. Using this mass in the GaAs/GaAlAs superlattice lattice dynamics, as
previously done for GaAlAs/AlAs, scems to give reasonable resuits. We show in Fig.9 the
spectral density of states at the zone center and the comresponding Raman activity for a few
superiattices comparable to the structure of Fig.5. The agrecment is reasonable due to the
following qualitative features : i) the CPA mass is real at these energies, which prevents any
disorder-induced broadening of the peaks and ii) its real part is quite different from the gallium
one which ensures a strong confinement, as long as the aluminum concentration is sufficiently
large. For very small values of x, the CPA mass decreases towards the gallium one and the

modes become less confined.

is real and usually display a divergence,
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Fig. 8. Calculated dispersion cusrves along the superlattice axis of the GaAs-type LO phonon
in bulk Ga, ,As,As mixed crystals, with x=0, x=0.15 and x=0.30. For x=0.15, the
hatched surface reflects the thickness of the dispersion curve, as explained in the
text. Open circles, closed circles and open squares correspond to experimental
frequencies on the samples of Fig.6, plotted according to Eq.1.

In a more quantitative way, the very steep variation of the effective mass predicted by
the CPA at these forbidden energies should be tested by carefully analyzing the confinement
energies in GaAs/GaAlAs superlattices. The few experimental resuits available up to now can
be ncvertheless well reproduced quantitatively on the basis of a more crude model where the
effective mass on the alloy sites is taken constant and real in the small range of interest. In
Ref.3, we finted its value to the alloy GaAs-type Raman frequency. The previous analysis brings
some theoretical support 1o this empirical approach, provided one chooses the zone-center
CPA mass as the effective one. We will show in the next section a successful illustration of
this method to calculate the confined optical vibrations in superlattices with gradual interfaces.

We are unfortunately far from treating by the CPA the "modulated alloy”, ie. a
superlattice with an aluminum concentration continuously varying along the growth axis.
Nevertheless, we can extract a lot of new knowlegdge on the alloy lattice dynamics from the
CPA, which was up to now successfully verified by experiments on alloy superlattices. An
aliernative approach to the bulk alloy lattice dynamics was not described in this part : the
supercell calculation with a random tossing of the individual site occupations. Some comparison
with the effective mass description was already published'": significant differences only take
place close to the band edges due to the effect of large, unfrequent clusters. One should notice
that these energy ranges are of great importance in the superlattice lattice dynamics. Such
supercell methods can be casily extended 10 modulated alioys, except for computational
limitations. They should thus show a significant development in the near future. We will present
in what follows a first example where mixed interfacial layers are treated.

Confined Vibrations and Interface Roughness

A review of Raman scattering results where the confined optical frequencies depend on
the growth conditions was given at the beginning of this paper. We emphasized that the shape
of the spectra strongly suggest an interpretation in terms of gradual interfaces. This can be
justified if the correlation length of the composition fluctuations in the planes perpendicular
to growth axis is much smaller than the “coherence length” of the confined phonons, which
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Spectral density of states (SDOS) of the GaAs-type LO vibrations (full line) and the
associated Raman intensity (dashed line), calculated at a vanishingly small
wavevector along the superlattice axis for three different GaAs/Ga, ,Al,As structures
with the same parameters except for the aluminum concentration x in the barrier.
We used the bulk CPA masses in the barrier alloy layer. The vertical dashed line
indicates the corresponding LO frequency in the bulk alloy with the same
composition.
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remains to be defined. Before introducing such a definition and discussing the characteristics
of samples where interface terracing shouid be observed by Raman scattering, we will first
quantitatively analyze the presently available experimental results on the basis of lattice

dynamics models including a continuously varying mass.

The simplest version of these models was introduced in Ref.3. The parameters of a lincar
chain with only nearest neighbor interactions is fitted into the dispersion along the (001)
direction of the LO phonon in pure GaAs. In a second step, the mass on the atom III site is
modified in order the reproduce the GaAs-type LO frequency in the alloy for each value of x.
For any given composition profile along the growth axis, we can then diagonalize the dynamical
matrix and determine the frequencies of the modes confined in the GaAs-rich parts of the
samples (and only these ones). Assumning a gradual profile, for instance an erf-profile, with a
varying broadening parameter d,, we are able (o fit this parameter for each spectrum. This fit
is only significant when several lines are observed as it is the case of the samples of Fig.1 in
the GaAs energy range (but not in the AlAs one). One can then check that the chosen profile
is not unreasonable and determine the variation of the parameter d, as a function of growth
conditions. This method is illustrated in Fig.10 where the predicted confined frequencies
(modes 1,3 and 5) are shown as a function of d, for two different choices of the nominal
thickness of the well (i.e. when d,=0). Each frequency decreases with increasing d,.. In order
words, the effective thickness seen by each vibration decreascs. The comparison with the
experimental frequencies is satisfactory because the frequencies of modes 1,3 and 5 can be
fitted using the same d,. Moreover, from the effective thickness scale shown on the right part
of the figure for each confined vibration, we get the following result : this thickness is no longer
constant from mode to mode as it was in the case of the abrupt profile. It increases with
increasing confinement shift. This striking result can be simply understood in a perfect
confinement picture, where one assumes that a confined vibration of energy €2 can extend in
the part of the sample where the aluminum concentration x is lower than x, such that oy o(x,)=£.

Fig.11 shows how reasonable this approximation is.

Though some very useful quantitative data onto an independently chosen profile can be
extracted from the Raman spectra, itis, however, impossible to draw the profile from this singile
information. It is, for instance, very difficult to separate the respective contribution of the two
interfaces limiting the GaAs well. In order to circumvent this difficulty, we designed samples
with the concentration sequences shown in the insets of Fig.2. In these samples with very thin
layers of GaAs and AlAs, we only observe the fundamental confined mode, which prevents
testing the composition profile as extensively as before. However, on the basis of the observed
dependence of the frequencies on the underlying layer thickness, we geta convincing evidence
of the dominant role played by the GaAs on AlAs interface roughness. Instead of an erf-profile,
we now use a "segregation profile™'® to model the vibrations, This model was developed to
explain chemical surface analysis results of the deposition of GaAs on AlAs and AlAs on GaAs
at600°C. Using these profiles, shown in Fig. 12 for both sequences A and B, we get an excellent
description of the Raman spectra on samples grown at 600°C. The predicted frequencies are
shown at the top of Fig.2. Our observation of a reduction of the roughness of the GaAs on
AlAs interface at lower growth temperature shouid stimulate the understanding of the MBE
growth process.

The previous description of the roughness in terms of gradual interfaces remains valid
as long as the spatial fluctuations are smaller than the “coherence length” of confined optical
phonons. The rest of the paper will be devoted to a definition of this quantity and to a description
of the lattice dynamics of superlattices when the gradual interface approximation fails, i.c. in
the presence of terraced interfaces.

For this purpose we need to build a supercell which is larger than the basic one, not only
along the nominal superlattice axis, but also in the layer plane. As we are intcrested in the
confined modes, which probe a single layer, we can assume without any loss of generality that
equivalent interfaces have the same in-plane statistics. We therefore retain the same periodicity
along the growth direction as in the perfect structure. Due to limitations in the available
computation time and mermory, we must use rather crude approximations to account for the
in-plane statistics, which result in the model structure shown in the inset of Fig.13. We consider



FREQUENCY {cm™}
EFFECTIVE THICKNESS (monolayers)

N L L L Jﬁ

0 1 z 3
BROADENING PARAMETER [monolayers)

Fig. 10. Frequency of modes 1,3 and 5 confined in nominally 10 (full lines) or 11 (broken
lines) monolayers thick GaAs layers with rough interfaces, calculated as a function
of the broadening parameter of the erf-profile. The opencircles indicateexperimental
frequencies deduced from the spectraof Fig.1. The effective thickness corresponding
to each confined frequency is shown on the right vertical axis.

one-dimensional fluctuations on a single side of the considered layers while the structurc
remains perfect along the third direction at this interface (it looks like corrugated cardboard)
and along both directions at the other one, which remains atomically flat, Varying the amplitude
along z and the distribution along x of the corrugation allows us to handle many different
situations.
In Fig.13, we restrict ourselves to a very simple case where the fluctuation is restricted
along z to a single interfacial monolayer and looks along x like a lateral superlattice. Two
rs then define the interface  its average aluminum content and its lateral period. This
model provides the simplest representation without any empirical parameicr of a thin layer
with a non-integer thickness. Morcover, it opens the possibility to vary the lateral terraces.
When the mass distribution in the supercell is defined, we build up’’ the force constant matrix
at a given wavevector in the Brillouin minizone from the bulk matrices at the wavevectors 1
the full Brillouin zone which are now equivalent due to the modulation.

We show in Fig.13 the predicted frequency of the fundamental vibration confined in a
GaAs layer of a thickness n,+(1-x) monolayers as a function of x for n,=2 and several different
in-plane periods a+b between 2 and 40 monolayer thickness, i.c. between 6 and 120A. a and
b are the respective numbers of adjacent Ga and Al atoms in the single interfaciai layer (sce
the inset). The average alominum content x in the interface layer then takes simple rational
values b/(a+b), ranging from 0 to 1. While a single composition x=0.5 can be considered for
a+b=2, a series of nine different ones is reproduced for a+b=10. The results display similar
trends for other nominal thicknesses, except that the absolute energy variations decrease with
increasing n,.
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Fig. 11. Aluminum concentration profiles along the superlattice axis calculated for the
structures of Fig, 10 according to an erf-profile with a broadening parameter of 0(a),
1.5(b)and 2.4 (c) monolayers. For each profile, the three arrows correspond to modes
1,3 and 5 confined in the gallium-rich parts of the samples. Their length indicates
the effective thickness associated with their frequency. Their vertical position
indicates the composition of the bulk alloy whose GaAs-type LO frequency
coincides with their frequency.
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Fig. 12. Aluminum concentration profiles along the superlattices axis calculated for the
sequences A and B of Fig. 2 according to the segregation model of Ref.16.



Let us consider the points on the lowest curve of Fig.13. They correspend to Al
concentrations 0.1, 0.25, 0.5, 0.75 and 0.9 and the in-plane atomic distribution in the interface
layer is such that isolated Ga or Al atoms are separated by a distance comparable to the one in
a 1D random alloy of the same composition. These points give us an estimate of the effect of
an intermixed layer with short range (alloy-like) disorder. Between x=0.5 and x=1., the
frequency of the confined vibrations remains remarkably close to that obtained with exactly
two monolayers. Only one Al atom on each fourth site (x=0.25) almost completely pushes
away the vibration from the interfacial layer. This results is in good agreement with the
predictions of the 1D model with gradual interfaces.

AVERAGE GaAs THICKNESS {(ml}

7

FREQUENCY {em™

AVERAGE Al CONCENTRATION x

Fig. 13. Frequencies of the fundamental GaAs-type LO vibration calculated for the
{GaAs), ,(AlAs),,, model superlattice shown in the inset, as a function of the average
aluminum concentration x in the in-plane modulated interface atomic layer. Different
periods of the in-plane modulation are considered : 2 (open square), 4 (open circles),
10 (open triangles) and 40 (cross) monolayers. The corresponding average thickness
g;x) of the GaAs layers is indicated in the upper scale. The full lines are a guide to

eye.

We can also look in Fig.13 for the variation of the fundamental frequencies as a function
of the size of the terraces for a given average concentration. Consider the case where x=0.5
and vary a=b from 1 to 20. The frequency then slightly shifts towards higher values while the
eigendisplacement is weakly modified. This result is illustrated in Fig.14 where the amplitude
of the eigendisplacement along z on each site in the supercell is shown for a+b=2 and a+b=10.
In both cases the eigendisplacement pattern remains very similar to the one in a perfect
5-monolayers-thick GaAs, while the gallium atoms in the interfacial layer are almost at rest.
Neither lateral localization nor line splitting is therefore predicted up to this high value of the
terrace size. This result is consistent with the absence of any reported observation of such
splitting. However it is surprising b'y comparison with the behavior of electrons confined to a
GaAs layer with rough interfaces'™. Well defined electronic levels, associated to the lowest
quantized levels in each thickness, were indeed predicted to appear when the terrace extension
exceeds to following dimension :
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where m, and m,, are the effective mass along z in the bulk constituent (which govemns the
confinement in quantum wells with infinite barriers) and the onc along the layer plane in the
superiattice; d and Ad are the nominal thickness and its fluctuation and p is the index of the
quantized level. This expression originates in the comparison between the additional
confinement energies due to either the reduction of the layer thickness of the lateral localization
in the thicker parts. Assuming an isotropic mass, i.¢. starting from a cubic crystal and assuming
that the confinement does not significantly modify the masscs, this length scale does not depend
on the actual value of the mass but increases with increasing nominal layer thickness and with
decreasing defect amplitude. This model therefore depends on the goemetry of the problem.
A naive application of this criterion to the confined vibration which we analyzed previousty
would let us predict the emergence of lateral localization for very small terraces (respectively
3 and 9 monolayers for n,=2 and 5) in complete disagreement with the predictions of our
calculation.

We attribute this disagreement to the long range Coulomb forces which strongly affect
the dispersive propertics of optical phonons around zone center'®, We show in Fig.15 the
dispersion of the GaAs-type optical phonons with displacement mainly oriented along z,
calculated at a fixed finite wavevector along z, k,=0.01 in reduced units, and an in-plane
wavevector k, varying between 0 and 0.3. The dispersion curve of the fundamental mode is
rapidly varying close to zone center due to the increasing associated macroscopic polarization.
As a result of this large anisotropy, the lateral localization does not appear even in presence
of very large terraces. On the contrary, this macroscopic polarization remains very small for
the other odd confined modes and is vanishing for the even ones. As a consequence, their
in-plane dispersion curves arc smooth close to zone center. We thus predict that the
corresponding confined modes should be much more sensitive to interface roughness.
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Fig. 14. Amplitude of the eigendisplacements along z corresponding 10 the fundamental
GaAs-type LO vibrations, shown for the cation sites the supercell of
a(GaAs); 5/(AlAs), s superlattice with two different in-planc modulations : a+b=2

(a) and a+b=10 (b).
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Fig. 15. Dispersion curves in the layer plane of the higher-frequency GaAs-type optical
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vibrations calculated for a (GaAs),/(AlAs), superiattice with perfect interfaces.
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Amplitude of the eigendisplacements along z corresponding to the second GaAs-type
LO vibrations, shown on the cation sites in the supercell of a (GaAs), /(AlAs), ,
superlattice with two different in plane modulations : a+b=2 (a) and a+b=10 (b and
¢). In the latter case, two different eigenmodes are displayed, as explained in the
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We show in Fig.16 some eigendisplacements in the supercell calculated for a corrugated
structure with n,=5 and n,=3 and corresponding to the higher even mode (p=2 in Eq.1). We
obtain a clear evidence in this case of a mode splitting due 10 lateral terraces, when they reach
a large enough extension. In Fig.16a, we show the eigendisplacement obtained assuming a
small in-plane period of 2 monolayers. There is almost no modulation along the x direction,
the displacement is hardly distinguishable from the one in the perfect n;=5 GaAs layer. In
particular, the displacement of the Ga atom at the center of this perfect well vanishes by
symmetry and remains negligible in the locally 6 monolayer thick parts of the rough well. In
good agreement with a critical size A=4 deduced from Eq. 2, opposite conclusions apply to the
sample with larger terraces : two different eigenmodes merge from the p=2 mode of the perfect
GaAs layer and exhibit a single node in the vicinity of the center of the layer. The lowest
frequency component of the doublet is partially localized in the narrow parts of the GaAs layer
and the highest one, more clearly, in the wide parts. A good signature of this difference is again
obtained from the displacement of the Ga atom at the center of the narrow parts. Its displacement
is vanishingly small for the lowest mode but becomes significant in the wide parts for the
highest frequency vibration. The node is now shifted from the gallium side to the neighboring
arsenic one.

Similar behavior can be evidenced for the highest index (s>2) confined vibrations, with
the qualitative tendency of a decrease in the critical terrace size with an increasing value of s.
On the other hand, this critical size for a given value of s increases with increasing nominal
thickness n,. For instance, mode 2 is split in the sample of Fig.16b,c but becomes delocalized
when n, is increased from 5 (A=4) to 10 (A=12), the terrace size remaining unchanged. All
these variations reflect the change in the perturbative potential and thus in the value of A.

CONCLUSION

The presence of GaAlAs mixed crystal layers in the GaAs/AlAs superlattices is very
difficult and may be impossible to avoid. This makes the lattice dynamics of these structures
very difficult to describe. We have attempted to review in this paper the present understanding
of this problem. We also emphasized the considerable amount of new information on the lattice
dynamics of bulk alloys one can get from their intentional incorporation in superlattices.
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CONFINEMENT AND DI!SORDER EFFECTS ON PHONONS
{N SEMICONDUCTOR MICROSTRUCTURES
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INTRODUCTION

The lattice dynamics of superlattices is now very well understood and most of the
theoretical predictions have been quantitatively verified by Raman scattering, at least on
GaAs/AlAs structures. This system is particularly interesting for several reasons:

- samples are currently available at a very high and controlled quality,

- phonon dispersion curves in the bulk constituents GaAs and AlAs are known,

- almost perfect lattice matching is achieved,

- GaAlAs alloy lattice dynamics is well described by reasonably simple models.

All theses conditions aliowed a high degree of sophistication in the comparison between
experiments and theory for GaAs/AlAs superlattices’. We will review these studies in part
1, and emphasize the relation between the GaAs and AlAs optical mode frequency and the
interface roughness. In part 2, we will consider a derived system: Ga, Al As/Ga, Al As
alloy superlattices and we will show how to inserta bulk compound in a superlfattice atlows
to extract much more information on its lattice dynamics than previously available. Finally
in part 3, we will quote some experimental results on other systems. We will stress that the
addition of strain make the quantitative interpretation much more difficult and review some

recent progress in this direction.
I: LATTICE DYNAMICS OF GaAs/AlAs SUPERLATTICES

The optical phonon branches in GaAs and AlAs are well separated in frequency and
the optical vibrations of one material cannot propagate into the other one. As a consequence,
the optical vibrations in the GaAs/AlAs superlattices are divided into two families whose
eigendisplacements are strongly confined either in the GaAs or in the AlAs layers; the
penetration depth into the other compound being less than one monolayer. Their frequencies
are thus very sensitive to boundary conditions. Assuming perfect interfaces, one can identify
: the eigenfrequencies of the modes confined in GaAs layers to those of bulk GaAs at a given
set of wavevectors K, :
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Similar conclusions apply 1o the optical vibrations confined in the AlAs layers. The LO
dispersion in GaAs and AlAs being downwards, the confined phonon energies lie below the
bulk GaAs (AlAs) one and decrease with decreasing layer thicknesses. This provides a
one-to-one correspondence between the confined frequencies and the layer thicknesses.
Equation 1 allows one to define an effective thickness (n, + 1)a which is common to all the
confined vibrations in perfect layers. These predictions have been checked by different
groups” with reasonable success.

The main approximation involved in these models is o consider atomically flat
interfaces separating the two pure constituents. In real samples, even of the best quality, the
interfaces are never flat due to the growth statistics. Such roughness, which extends overa
few monolayers around the nominal interface, can be reasonably neglected for superlattices
with moderately small individual layer thickness (> S0 A). In shorter period structures,
however, this roughness leads to quantitative departures from the predictions of the lattice
dynamics of perfect samples. This part will be devoted to a description of Raman scattering
experiments focussed on this problem and to a guantitative analysis of the dependence of
the phonon frequencies on the spatial characteristics of the roughness, both along the growth
axis and in the interface plane. We will use a simplified description of the lattice dynamics
of bulk mixed crysials and of perfect superlattices containing layers of these alloys, which

will be justified in part 2.
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Fig.1: a) Raman spectra in the GaAs-type frequency range for five GaAs/AlAs
superlattices with the same nominal parameters, but grownat different temperature
T.. b) Frequency of modes 1,3 and 5 confined in nominally 10 (full lines) or 11
(broken lines) monolayers thick GaAs layers with rough interfaces, calculated as
a function of the broadening parameter of the erf-profile. The open circles indicate -
experimental frequencies deduced from the spectra of a). The effective thickness
corresponding to each confined frequency is shown on the right vertical axis.
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The optical vibrations confined in GaAs and AlAs are particularly sensitive to the
interfacial imperfections because their frequencies are mainly determined from boundary
conditions at each interface. This was first demonstrated® through the variation of the
confined frequencies as a function of the growth conditions in nominally identical
superlattices. We show in Fig. 1a Raman spectra obtained in the z(x,y)z configuration on
five nominally identical samples grown by Molecular Beam Epitaxy (MBE) at different
temperatures T, ranging from 510°C to 680°C. We know from X-ray diffraction
measurements that the macroscopic parameters of the samples are almost identical :
d(GaAs)=28A and d(AlAs)=12A and independent of temperature. Other structural
characterizations moreover suggest, in agreement with some independent knowledge of the
growth process, the existence of an increasing interfacial roughness with increasing T,.

The effect on the optical vibrations is strong: we observe a significant down-shift with
increasing T, of all the lines associated with optical phonons confined either in the GaAs or
the AlAs layers. For instance, in the GaAs frequency range, three lines are observed on all
samples, corresponding to mode 1,3,5 according to the now well established selection rules.
They all shift towards lower frequency and morcover their relative distance strongly varies:
they become more or less equidistant at 680°C white the splitting between line 3 and 5
amounts to almost twice the one between line | and line 3 at low T,, Similar shifts in the
confined optical vibrations have also been observed on superlattices during a series of
successive thermal annealing stages®.

Plotting together a large number of results, using relation 1, a general tendency is
observed: the GaAs dispersion deduced from Raman scattering on real superlattices is flatter
than the one obtained by neutron scattering on the bulk constituents. In other words, the
effective thickness associated to a confined mode increases when the associated local
wavevector (see Equation 1) increases. This departure increases when increasing the growth
temperature. For AlAs, the situation is even worse. Despite the smaller amount of reliable
experimental results, it clearly appears that the confined frequencies usually lie outside the
very flat bulk dispersion curve and that no effective thickness can be even defined’.

The importance of these departures can be also traced on Fig.2. In Fig.2a, we show
our experimental determinations of the GaAs-type mode | frequencies as a function of the
nominal GaAs thickness for different growth temperatures®. In Fig.2b, we show the measured
AlAs-type mode | and mode 3 as a function of the nominal thickness for a given growth
temperature’. In both cases, we indicate by dashed lines the calculated frequencies in absence
of imperfections. We used a input parameters the bulk dispersion curves measured for GaAs
and ab initio calculated for AlAs®. They always lie significantly above the experimental
results. In Fig.2a, the improved agreement with experimental results as T, decreases is very
clear. In Fig.2b, the strong disagreement in the case of AlAs modes is evident: contrary to
what applies for GaAs, it is never possible to make coincide experiment and theory by taking
a smaller "effective thickness", that is by shifting horizontally the experimental points.

However, apant from these shifts, the general shape of the spectra is not strongly
modified from sample to sample. Even when the phonon frequencies are very different from
the ones calculated using the nominal parameters, we do not observe any significant line
broadening. Moreover, line splittings (as reported in Ref.2) seem to be absent in our samples.
_ This suggests that the imperfections in these samples are caused by "gradual interfaces” ;

the in-plane statistics of the roughness should be such that the optical phoenons only see the
average in-plane concentration and thus experience an ordered, eventually gradual
composition profile along the growth axis, while the translational invariance in the layer
- planes is preserved. Assuming a gradual profile makes one-dimensional models sufficient
to analyze the Raman scattering results. From the data corresponding to the GaAs and AlAs
energy range, we will determine the composition profile in the gallium-rich and
aluminium-rich parts of the structure with good accuracy. We will present in what follows
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a detailed 1D calculation of the Raman spectra in superlattices with gradual interfaces. We
will finally introduce, on the basis of a 3D lattice dynamics calculation including the interface
roughness, a microscopic criterion governing the emergence of this behavior.
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Fig.2: a) Variation of the GaAs-type confined mode | measured as a function of the layer
thickness in samples grown at different temperatures compared to the predicted
variations assuming, respectively, a nominal profile (dashed lines) and a one with
segregation at 600°C (full lincs). b) same as a) for the AlAs-type confined modes
1 and 3 on samples grown at 600°C,

The main difficulty arises from the alloy vibrational behavior. Let us recall some
experimental results on this point. The Raman spectra on Ga, Al As alloys display the
well-known two-mode behavior : two optical phonon Raman lines coexist on the whole
concentration range which lie respectively in the range of the pure GaAs and AlAs optical
phonons and only slightly shift as a function of the alloy composition. Both this two-mode
behavior and the strong confinement in GaAs/AlAs supertattices qualitatively originates
from the same feature : the large energy splitting between the optical bands in GaAs and
AlAs. A vinal crystal approximation to describe these alloy vibrations is therefore
meaningless, contrary to what prevails for the electronic properties. The vibrational
properties of the GaAlAs alloy have been analyzed theoretically for a very long time with
the aim of qualitatively predict the two-mode behavior and to quantitatively reproduce the
Raman scattering results. The favorable feature in this task is the almost identical spring
constants of the GaAs and AlAs compounds which essentially differ by the mass of the atom
[11 site. For the remainder of the paper we shall assume that these forces are the same. The
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first method which was successful in predicting the two-mode behavior is}tge Random
Element Isodisplacement (REI) method®. Coherent Potential Approximation™ ™ was later
extensively used to model the lattice dynamics of alloys. Both methods involve an effective
ordered mass on the disordered site, which is either real (REI) or compiex (CPA) but depends
on the energy in a rather similar way. In part II, we will describe the Coherent Potential
Approximation (CPA), its properties and its predictions. Let us now focus on the feature of
greatest interest for our purpose. The real part of the effective mass displays strong vanation
in each energy gap, so to be successively close to the virtual crystal mass, the gallium and
the aluminum one in the three allowed energy bands. The alloy thus coincides in the
GaAs-type (resp. AlAs-type) optical phonon range with an effective pure compound with
an effective mass close to that of gallium(resp. aluminium).

The simplest version of these models was introduced in Ref.3. The parameters of a
linear chain with only nearest neighbor interactions is first fitted into the dispersion along
the (001) direction of the LO phonon in pure GaAs. In a second step, the mass on the atom
11i site is modified in order the reproduce the zone center GaAs-type LO frequency in the
alloy for each value of x. For any given composition profile along the growth axis, we can
then build up the dynamical matrix using the mass associated to each local composition. By
diagonalization, we then determine the frequencies of the modes confined in the GaAs-rich
parts of the samples (and only these ones). We then follow again the same method fqr
AlAs-type modes. One can thereby check that the chosen profile is not unreasonable. This
method is illustrated in Fig.lb where the GaAs-type confined frequencies (modes 1,3 and
5), calculated assuming an erf-profile, are shown as a function of d, for two different choices
of the nominal thickness of the well (i.e. when d,=0). Each frequency decreases with
increasing d,. In other words, the effective thickness seen by each vibration decreases. The
comparison with the experimental frequencies is satisfactory because the frequencies of
modes 1,3 and 5 can be fitted using the same d,. Moreover, from the effective thickness
scale shown on the right part of the figure for each confined vibration, we get the following
result: this thickness is no longer constant from mode to mode as it was in the case of the
abrupt profile. It increases with increasing confinement shift.

Let us now model the experimental results of Fig.2. Instead of an erf-profile, we now
use a "segregation profile”’® to modet the vibrations. This model was independently
developed to explain chemical surface analysis results of the deposition of GaAs on AlAs
and AlAs on GaAs at 600°C. Using these profiles, shown in the inserts of Fig.2 for GaAs
and AlAslayers respectively, we getanexcellentdescription of the Raman spectraon samples
grown at 600°C. The predicted frequencies are shown by thick lines on the figures. They
well reproduce the experimental results. Qualitatively, the dominant effect is the change in
the confinement thickness for GaAs-type modes, which do not penetrate in atloy layers even
with only 20% of Al. On the contrary alloying effects dominate the AlAs modes because of
their very flat dispersion. However, our observation of a strong reduction of the roughness
of the GaAs on AlAs interface at lower growth temperature is not reproduced with the
segregation model. It is likely to be related to kinetic effects and shouid stimulate new efforts
in understanding of the MBE growth process.

The previous description of the roughness in terms of gradual interfaces remains valid
as long as the spatial fluctuations are smaller than the “coherence length” of confined optical
phonons. We will now attempt to build up a definition of this quantity and to describe the
lattice dynamics of superiattices when the gradual interface approximation fails, i.e. in the
presence of terraced interfaces. For this purpose we need to build a supercell which is larger
than the basic one, not only along the nominal superiattice axis, but also in the layer plane.
As shown in the inset of Fig.3, we consider one-dimensional fluctuations on a single interface
while the structure remains perfect along the third direction at this interface (it looks like
corrugated cardboard) and along both directions at the other one, which remains atomicaily
flat. Varying the amplitude along z and the distribution along x of the corrugation allows us
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to handle many different situations. In Fig.3, the rough interface only extends along z over
a single monolayer and looks along x like a lateral superlattice. Two parameters then define
the interface : its average aluminum content and its lateral period. This model provides the
simplest representation without any empirical parameter of a thin layer with a non-integer
thickness. Moreover, it opens the possibility to vary the lateral terraces.

AVERAGE GaAs THICKNESS (ml)
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Fig.3: Frequencies of the fundamental GaAs-type LO vibration calculated for the
(GaAs), (AlAs),,, model superlattice shown in the inset, as a function of the
average aluminum concentration x in the in-plane modulated interface atomic
layer. Different periods of the in-plane modulation are considered : 2 (open
square), 4 (open circles), 10 (open triangles) and 40 (cross) monolayers. The
comresponding average thickness (3-x) of the GaAs layers is indicated in the upper
scale. The full lines are a guide to the eye.

We show in Fig.3 the predicted frequency of the fundamental vibration confined in a
GaAs layer of a thickness n,++( 1 -x) monolayers as a function of x for n;=2 and several different
in-plane periods a+b between 2 and 40 monolayer thickness, i.e. between 6 and 120A. a and
b are the respective numbers of adjacent Ga and Al atoms in the single interfacial layer (see
the inset). The average aluminum content x in the interface layer then takes simple rational
values b/(a+b), ranging from 0 to 1. While a single composition x=0.5 can be considered
for a+b=2, a series of nine different ones is reproduced for a+b=10. The results display
similar wends for other nominal thicknesses, except that the absolute energy variations
decrease with increasing n,. Let us consider the points on the lowest curve of Fig.3. They
correspond 1o Al concentrations 0.1, 0.25, 0.5, 0.75 and 0.9 and the in-plane atomic
distribution in the interface layer is such that isolated Ga or Al atoms are separated by a
distance comparable to the one in a 1D random atloy of the same composition. These points
give us an estimate of the effect of an intermixed layer with short range (alloy-like) disorder.
Between x=0.5 and x=1., the frequency of the confined vibrations remains remarkably close
to that obtained with exactly two monolayers. Only one Al atom on each fourth site (x=0.25)
almost completely pushes away the vibration from the interfacial layer. This results is in
good agreement with the predictions of the 1D model with gradual interfaces.
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When increasing the size of the terraces a=b from } to 20 for a given average
concentration x=0.5, the frequency slightly shifts towards higher values while the
eigendisplacement is weakly modified. This result is illustrated for n,=5 in Fig.4 where the
amplitude of the eigendisplacement along z on each site in the supercell is shown for a+b=2
(4a) and a+b=10 (4b). In both cases the eigendisplacement pattern remains very similar to
the one in a perfect 5-monolayers-thick GaAs, while the gallium atoms in the interfacial
layer are almost at rest. Neither lateral localization nor line splitting is therefore predicted
up to this high value of the terrace size. This result is consistent with the absence of any
reported observation of such splitting. However it is surprising by comparison with the
behavior of electrons confined to a GaAs layer with rough interfaces'’. A naive application
of the eiectronic criterion'* to the confined vibration which we analyzed previously would
let us predict the emergence of lateral localization for very small terraces (respectively 3
and 9 monolayers for n;=2 and 5) in complete disagreement with the predictions of our
calculation. We attribute this disagreement to the long range Coulomb forces which strongly
affect the properties of optical phonons around zone center'”. This results into a large
anisotropy of mode 1 dispersion and the lateral localization does not appear even in presence
of very large terraces. On the contrary, this macroscopic polarization remains very small for
the other odd confined modes and is vanishing for the even ones. As a consequence, their
in-plane dispersion curves are smooth close 10 zone center. We thus predict that the
corresponding confined modes should be much more sensitive to interface roughness.

asb=12
w=287.8cm™

@ a+b=l

w=293 1cm™

@ a+b=10 —‘

w288.6cm™ w=28T4cm!

Fig.4: Amplitude of the eigendisplacements on the cation sites in the supercell of a
(GaAs)s J/(AlAs), s superlaitice with two different in-plane modulations. a) and b)
correspond to the fundamental GaAs-type mode when a+b=2 and a+b=10
respectively. c) and d) correspond to the second GaAs-type mode when a+b=2
and a+b=10respectively. Inthe latter case, iwo different eigenmodes are displayed,

as explained in the text.
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We show in Fig.4 some eigendisplacements in the supercell calculated for the same
structure and corresponding to the higher even mode (p=2 in Eq.1). We obtain a clear
evidence in this case of a mode splitting due to lateral terraces, when they reach a large
enough extension. In Fig.4c, (in-plane period of 2 monolayers), the displacement is hardly
distinguishable from the one in the perfect n,=5 GaAs layer. In good agreement with the
estimated critical size, opposite conclusions apply to the sample with larger terraces : two
different eigenmodes merge from the p=2 mode of the perfect GaAs layer (Fig.4d). The
lowest frequency component of the doublet is partially localized in the narrow parts of the
GaAs layer and the highest one, more clearly, in the wide parts. Similar behavior can be
evidenced for the highest index (s>2) confined vibrations, with the qualitative tendency of
a decrease in the critical terrace size with an increasing value of s.

To summarize, Raman scatiering spectraon GaAs/AlAs superlattices are quantitatively
reproduced assuming gradual interfaces in good agreement with the resuits of other structural
characterizations. They seems to be not sensitive to the, also existing, large terraces. We
presented in the previous section some explanations, which partially agree with the
experiments. We also develop this point because of its relevance to 1D structures. We would
like 1o emphasize that long range Coulomb forces make difficult the description of phonons
in wires or boxes, the longitudinal transverse character being nolonger well defined whatever
the wavevector direction. This unfortunately prevents the use of the simple models which
were 50 successful in superlattices.

II: LATTICE DYNAMICS OF GaAlAs ALLOYS REVISITED

Raman scattering experiments on bulk alloys provided useful information on the alloy
lattice dynamics but limited 1o zone center properties. The validity of lattice dynamics modeli
such the CPA, could be also checked at zone center only. Let us recall that the CPA®
consists in a fictive ordered crystal which depends only on a frequency dependent isotropic
complex mass assigned to the randomly occupied cation sites. This mass is self-consistently
determined when one assumes the force constant matrix to be independent of the site
occupation and if one demands that a given random occupied site imbedded in the CPA
effective medium produces no extra scattering on the average. The CPA crystal being an
ordered one, its propertics, like phonon densities of states, dispersion curves and Raman
activities, can be calculated as for pure compounds. However, due to the imaginary part of
the CPA mass, the spectral density of states at any value of the wavevector is no longer a
set of 8-functions but a continuous function displaying a few peaks which remain rather
narow in GaAlAs. The deduced dispersion curve is thus a thick one, as illustrated in Fig.5a
for a few compositions. The zone center properties reproduce well the experimental results
on bulk GaAlAs : the frequency decreases with increasing x and an asymmetric line shape
develops. Furthermore, using this dispersion curve (in other words using the CPA mass on
the disordered sites of the superlattice to perform the superlattices lattice dynamics
calculation}, we are able 10 calculate the Raman scattering spectra on Ga, Al As/Ga, AL As
superlattices. Inserting alloys in superlattices allowed us to relax this strong constraint in
the experimental knowledge and to accuraiely test the CPA lattice dynamics in bulk GaAiAs.

Fig.5bdisplays the Raman spectra' in the GaAs energy range in three Ga, Al As/AlAs
superlattices with an aluminum concentration in the alloy ranging from 0 to 30%. The
spectrum at 15% is rather similar to the one at 0%, while for higher aluminum concentration
the different lines become poorly resolved. A general shift of the spectra is observed, which
maps onto the one in the corresponding bulk ailoy. Moreover, three different peaks remain
observable. We attribute these optical phonon lines in the thin alloy layer spectra to confined
GaAs-type vibrations, comparable to those observed in pure GaAs thin layers; the AlAs
layers acting in both cases as very effective barriers. The distance between the peaks appears
to decrease with increasing x, while their width increases. This experiment is the first
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experimental proof of the dispersive character of the GaAs-type vibrations in the GaAlAs
alloys. Moreover, we plot on Fig.5a the position of the Raman lines according to equation
I. The agreement is quite reasonable and the CPA dispersion curves well supported by these

new experimental results.
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Fig.5:  a) Calculated dispersion curves along the superlattice axis of the GaAs-type LO
phonon in bulk Ga,,As,As mixed crystals, with x=0, x=0.15 and x=0.30. For
x=0.15, the hatched surface reflects the thickness of the dispersion curve, as
explained in the text. Open circles, closed circles and open squares correspond to
experimental frequencies on the samples of Fig.b, plotied according to Eq.1.

b) Raman spectra in the GaAs-type frequency range for three different
Ga, Al ,As/AlAs samples with the same parameters except for the aluminum
concentration x in the alloy layers.

Inserting GaAlAs alloys in superlattices moreover allows to probe the dynamical
propertics in the phonon gaps'’. Fig.6¢ displays the Raman spectra in the GaAs energy range
on GaAs/AlAs superiattices with a GaAlAs monolayer inserted at the center of the GaAs
layer. The parameters are identical except for the Al concentration in the additional barrier.
Changing x drives the GaAs confincd modes transmission through this barrier (and therefore
their frequencies) according to the imaginary dispersion curve in the alloy inside the gap
between both optical branches. In Fig.6a, we compare the experimental data with the
predictions based on the CPA. The agreement is reasonable in the limited range which we
probed. Let us emphasize that the continuous varion of the perturbed frequencies results of
a continuous variation of the dynamical response function between a negative value (x=1)
and a positive one (x=0). For a critical concentration, the average displacement of the atomic
plane vanishes which corresponds to the well known divergence of the CPA mass (sce

Fig.6b).
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Fig.6:  a) Calculated and measured frequencies of the GaAs-type confined modes as a
function of the aluminium concentration x in the alloy monolayer b)
correspondence with the effective mass in this layer ¢) Raman spectra in the
GaAs-type frequency range for three different superlattices with the same
parameters except for the aluminum concentration x in the alloy monolayer.

To summarize, the small amount of experiments which we performed on
Ga, Al As/Ga, ,Al, As superiattices well support the CPA and therefore our description of
the imperfect superlattices. This was also demonstrated recently on the basis of different
averaging schemes'® or of supercell calculations'. More systematic experiments on alloys

should be nevertheless very useful.

III: OTHER SYSTEMS

As compared to the GaAs/AlAs, the understanding of superlattices based on the other
couples of compounds is rather limited. This is because the respective effects of interface
broadening and strain are difficult 1o separate: to extract information onto the composition
profiles, one needs an accurate knowledge of the dispersion curves of the bulk constituants
in the same strain configuration. This is not available, neither experimentally nor
theoretically. Moreover, lattice dynamics of alloys with large diffcrences in bonding lengths
is usually poorly understood because of topological disorder. Let us illustrate these points
?gla/ tw% %‘)fferent systems of technological importance: InAs/GaAs (3a/a=7%) and Si/Ge

a=4%).

InAs/GaAs superlattices have been extensively studied in the past few years and the
large In segregation in this system is now well documented”. By Raman scattering, we
obtained some evidence of additional peaks in the optical frequency range as compared to
the average alloy”, as illustrated on Fig.7a. Due to the symmetric strain in GaAs and InAs

on InP, both zone center LO come closer together. Assuming a rigid shift of the dispersion

X



curves results in a strong overlap configuration, in rough agreement with the experiments.
However a quantitative disagreement is obtained as shown on Fig.7b, due maybe to some
deformation of the dispersion curves under strain and very likely to the In segregation. We
do not anempt to quantify this alloying effect because of the well-known topological disorder
in InGaAs. Theoretical efforts to calculate the dispersion curves in real bulk and strained
modulated alloys would nevertheless very useful.
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Fig.7: a) Raman spectra in the optical frequency range for a Gag ,;1n, ;3As buik alloy (top
spectrum) and for a (InAs)(GaAs), superlattice in two different experimental
configurations (center and bottom spectra) b) experimental frequencies plotted
according to relation 1 and compared to the LO dispersion curves of the
free-standing bulk constituents (dashed lines) and rigidly shifted due to strain
(thick lines)

Such efforts are presently under progress for the Si/Ge system, which has been
extensively studied experimentally‘*. The situation indeed looks better: strain coexists with
interface broadening and superstructures but topological disorder can be reasonably
neglected. This makes supercell calculation possible though limited to very small period
structures. Semi-quantitative agreement was reported” with inclusion of interface roughness
but using empirical lattice dynamics without strain. Recent developments® in ab initio lattice
dynamics of strained Ge and Si should allow a satisfactory description of the experimental

results and some quantitative test of the interface roughness models.
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3. Raman Spectroscopy of Vibrations in Superlattices

Bernard Jusserand and Manuel Cardona

‘With 58 Figures
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J. Martorell, M. J. de Galba: Tirant o Blanch (N. Spindeler,
Valéncia, 1490)

3.1 Introduction

As already discussed in Vols. 1 and II of this series [3.1,2], light scattering
spectroscopy of crystals is subject to rather stringent selection rules which arise
from the conservation of wavevector k : k hasto be conserved modulo a vector of
the reciprocal lattice or simply conserved if we confine ourselves to the reduced
Brillouin zone (BZ). The magnitudes of the wavevectors of the incident and
scattered radiation, k, and k, (2nn, ,/4; , where the ns are refractive indices and
the s wavelengths) are very small compared to that of a general vector in the BZ
(~n/a,, Where g, is the lattice constant = 5 A). Hence, in order to conscrve k the
elementary excitation created or annihilated (here a phonon) must have a wave-
vector of magnitude close to zero, i.e., near the center of the Brillouin zone
(I-point). Thus, of the many existing excitations, for all ks within the reduced BZ
(see Fig. 3.1 for phonons in GaAs) we can only investigate by means of
(first order) light scattering the excitations for k=0. The same restriction
applies to most other optical spectroscopies : simple absorption and reflection
(or ellipsometry) and non-linear spectroscopies such as hyper-Raman and four-
wave mixing (CARS) [3.3] but not to inelastic neutron scattering [3.4]. The
wavelength of thermal neutronsis on the order of 5 A. Therefore, all pointsin the
reduced BZ can be swept by simply changing the angle between the incident and
the scattered beam and the crystal orientation. As is well known, the phonon
dispersion relations of many crystals have been mapped in this manner [3.5].
Nevertheless, and in spite of the reduced amount of information it yields, light
scattering spectroscopy is used frequently as it offers a number of advantages
with respect to neutron spectroscopy:

i) The linewidth resolution and the accuracy in the frequency determination
are one to two orders of magnitude better than in neutron spectroscopy.
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Fig. 3.1. Dispersion relations of phonons in GaAs measured at rcom temperature with
neutron spectroscopy { points). The lines represent a theoretical fit. D. Strauch and B. Dorner,
private communication

i1} Only microscopic amounts of material are needed for light scattering, as
opposed to large crystals (several cm®) required for neutron spectroscopy. In
fact, Raman microprobes using microscope optics have récently become
commercially available [3.6]. The laser spot can be focused to ~1 pm and its
penetration depth in a semiconducting sample is ~ 1000 A. Hence, the
technique is most suitable for the investigation of semiconductor micro-
structures.

iii) Light scattering spectrometers are extremely simple, inexpensive, and
ecologically safe when compared with a neutron reactor spectrometer. They
are a one-worker instrument and they are fast, especially when used with a
multichannei detector [3.7, 8]. Not only spatial resolution but also time
resolution (pico- and nanosecond) becomes possible [3.9]. Thus, they can be
used for the characterization of semiconducting materials under industrial
production conditions.

Several reviews of the applications of Raman spectroscopy to the investiga-
tion and characterization of bulk semiconducting materials have appeared
{3.10-12]. Optical phonon branches are usually very flat at k=0 (quadratic
dispersion). Hence, no dispersion is seen in Raman scattering in bulk crystals and
the phonon frequency for k=0 is obtained even if k differs somewhat from zero.
For acoustic phonons, however, (Brillouin scattering) the dispersion relations
are linear (see Fig. 3.1) and this linear dependence of @ on k (i.e., the speed of
sound) can be measured in Brillouin spectroscopy [3.10, 13].

The severe restriction imposed upon optical spectroscopies by k-conserva-
tion is a direct consequence of the existence of a lattice of translations as
symmetry elements. Thus, the thought arises that one may be able to circumvent
that restriction by removing, in whoie or in part, the translational symmetry
operations. Several possibilities of doing so arise:
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i) Making the materials amorphous or microcrystalline

ii) Introducing impurities or defects (e.g., mixed crystals such as Al Ga, __As)

iii) Artificially fabricating a superlattice (e.g. (AlAs),(GaAs),). Such artificial
crystals have a much larger lattice constant along the direction of growth
than the corresponding single crystais: most of the bulk translation vectors
cease to be symmetry operations. These subjects will be considered in detail
in the present chapter.

iv) Observing second order (two phonon) spectra: one phonon destroys or
lowers the translational invariance while the other scatters in the medium
distorted by the first.

Exampies of the lifting of selection rules in the cases (i) and (iv) have been given
in [3.10, 34). In these cases, broad bands which correspond to densities of
phonon states weighted by a smoothly varying tramsition probability (matrix
element), are observed. We illustrate this in Fig. 3.2 which compares the Raman
and infrared spectra of amorphous silicon (a —Si) with spectral densities of
phonons obtained both theoretically for a —5i and ¢—Si, and by neutron
scattering for a —Si [3.15]. These spectra show four bands: TA,LA,LO, TO, as
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g Fig. 3.2. Vibrational spectra of amorphous silicon (a-Si) as
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expected from the dispersion relations of c—Si (roughly similar to Fig. 3.1 but
with the vertical scale multiplied by ~1.7).

We show in Fig. 3.3 the Raman spectra of a bulk GagaAly ,As crystal
obtained [3.16] in four scattering configurations which correspond to different
combinations of irreducible symmetry components A, (also calied I';), E(I 12
and T,(T,,), see {3.10]. The four bands of phonons mentioned above are aiso
observed in these spectra although they would be forbidden in the perfectly
ordered single crystal constituents (GaAs, AlAs). They are thus activated by the
chemical disorder of the Ga and Al atoms (disorder activated =DA, DATA,
DALA, DALO, and DATO bands). Since Ga,Al, _ ,As is a constituent material
of many superlattices, similar bands are also expected in the latter (see Fig. 15
of {3.42)).

This chapter is concerned with case (iii) above, i.¢., with the reduction of the
number of transiational invariance operations produced by the formation ofa
superlattice or multiple quantum well MQW (MQW refers to the large period
case in which the electronic states have zero dispersion along the superlat- -
tice direction z; see Chap. 4 of this volume). We discuss only superlattices made
out of diamond or zincbiende-like bulk constituents. Let us assume that
the two constituents (¢.g. GaAs, AlAs) have the same bulk lattice constants
2a, =2a, =2a and layer thicknesses d, =m a,, d, =n;a;, the new translational
period along z being d=d, +4d, (Fig. 3.4). Because of the enhancement of the



Raman Spectroscopy of Vibrations in Superiattices 55

As 5 As p AS; ASc ASG AS AS o AS Fig. 34. Sketch of a (GaaAs),, /(AlAs),,
superlattice with n, =3, n;=2. The
growth direction is assumed to be
z=[001], since this is the most commonly

x[[100] investigated case
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period along z the BZ must be folded into a smaller mini-BZ or superiattice BZ
(SBZ) in order to stay within the reduced zone scheme. If this is not done we
must, equivalently, accept non-conservation of k by reciprocal lattice vectors of
the superlattice (umkilapp processes). The usual {folded) reduced zone scheme,
illustrated in Fig. 3.5, is more comfortable. After folding, new modes appear in
the SBZ at k=0 (6 longitudinal and 12 transverse in Fig. 3.5). These modes can
now be Raman and optically (IR) active. Hence, superlattices are particularly
interesting since they can increase the number of vibrational modes accessible to
optical spectroscopies. The folding scheme is particularly useful if the phonon
dispersion relations of the two materials are similar : one can fold the dispersion
relations of one of the constituents (or the average of the two) and treat the
difference with the real superiattice by perturbation theory. This scheme works
rather well for the acoustic modes: the speeds of sound of most pairs of materials
forming superlattices are indeed rather similar and, correspondingly, so are the
TA and LA dispersion relations. We shall see that the main effect of the
superlattice perturbation is to open **minigaps” in the foided dispersion relations
at the center and edges of the SBZ. This treatment is similar to the nearly-free
electron model in electronic band structures. Folded acoustic modes are
discussed in Sect. 3.4.2,
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The situation concerning the optical modes is quite different. The corre-
sponding w(k) branches of bulk materials such as GaAs and AlAs are well
separated (because of the different cation masses) and rather flat (Fig. 3.1). It
thus becomes meaningiess to use “average” bands since a state with a given
frequency for one material has no counterpart of the same frequency in the
other, both bands being well separated. The corresponding vibrations in the
superlattice are then “confined” to either one material or the other, decaying
rapidly and exponentially beyond the interfaces. Obscrvations of confined
optical modes are discussed in Sect. 3.4.3. We note that folded modes were
observed a long time ago by using the system of superlattices provided by the
various polytypes of silicon carbide [3.17]. Confined acoustic modes can also be
observed for single thin slabs in vacuum (or air) and for a superlattice of slabs
using vacuum as a spacer. Such is the case of the Jongitudimal acoustic modes
(LAM) observed in folded polymer chains [3.18].

Under several simplifying assumptions the observation of folded acoustic
and confined optic modes in superlattices yields information about the
dispersion relations of the constituents. In some cases this information may not
be available from other methods because of the lack of sufficiently large single
crystals (c. g., AlAs). If independent information is available for the constituents
the results for superlattices can be used to characterize their quality, in particular
the details of the interfaces (see Sect. 3.4.4).

So far we have assumed that the bulk constituents have the same lattice
constant. This is nearly the case for the GaAs-AlAs system (mismatch 0.1%). In
many other cases the mismatch can be large (e.g. Ge —Si, 4%). Two possibilities
then arise:

i) For thin layers (i.c., small periods) the lattice constants of both constituents
remain matched at some average value determined by the substrate (pseudo-
morphic growth). The constituting layers are then under compressive or
extensive strain depending on the details of the structure.

ii) For thickerlayers(i.c., large periods) the individual layers relax their relative
strain through the creation of misfit dislocations at the interfaces.

Even in the former case, some relaxation is expected to appear when the average
superlattice parameter is not matched to that of the substrate. Above a given
total thickness, some loss of strain along the axis of the structure then occurs, as
recently reported {3.19]. Raman spectroscopy can be advantageously used to
determine the strain in the various layers (see Sect. 3.4.4).

We have so far introduced the kinematics of light scattering in superiattices.
The mechanisms leading to the scattering are also of interest since they yield
detailed information about electron-phonon interaction. The simplest and
oldest model is based on assuming bonds whose polarizability is modulated by
the phonons [3.20]. Its implications for the case of superlattices are presented in
Sect. 3.3.3. The dynamics of scattering by folded acoustic modes can be most
simply discussed on the basis of the photo-clastic (clasto-optic) constants, i.e,
the effect of strain on the refractive index (see Sect. 3.3.4). A morc precise
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microscopic treatment is, however, required when the laser or scattered
frequencies fall near strong electronic resonances such as those between confined
valence and conduction levels in MQWs. In this case one introduces explicitly the
electron-phonon interaction through deformation potential and Fréhlich
mechanisms [3.10]. This is discussed in Sect. 3.5.1. In the bulk materials these
mechanisms interfere with each other. In superlattices, however, they apply to
phonons of different symmetries and the interference disappears.

We have so far implicitly confined our discussion to superlattice phonons
which propagate along the axis of the superlattice. They are those which can lead
to scattering in the conventional backscattering configuration. It is also possible,
with some additional difficulties, to excite phonons which propagate perpendi-
cular to the superlattice axis (k, # 0). This is done by removing the substrate and
using the forward scattering configuration (sce Sect. 3.4.2 for acoustic phonons).
Right angle scattering is also possible provided that one operates with a laser
slightly below the lowest absorption edge and uses an approprately clad
superlattice, so as to transform it in an optical waveguide (see Sect. 3.4.3). Of
particular ‘interest are modes which decay exponentially (but not necessarily
rapidly) around the interfaces and propagate along x or y. These have been
labeled interface modes and are discussed in Sects. 3.2.4 and 3.4.3.

Several review articles have already been written on phonons in siiperlattices.
We mention here the recent work of Klein [3.21], that of Jusserand and Pagquet
13.22] and of Cardona {3.23]. The reader will also find a number of articles of
interest in [3.24].

Interest in artificial semiconductor superlattices was kindled by the pioneer-
ing work of Esaki and Tsu [3.25]. The reliable experimental realization of such
superlattices had to await the development of commercial molecular beam
epitaxy (MBE) equipment. Most of the superlattices used for the work described
here were grown by MBE. Some work has, however, been performed on
superlattices prepared by the chemical vapor deposition technique involving
metal-organic compounds (e. g. trimethyl gallium). A number of books, review
artictes, and conference proceedings devoted to the growth of superlattices,
MQW, and heterojunctions have appeared. The interested reader should look at
[3.26-28], other references given in these volumes, and the articles {3.29, 30]
about MBE and [3.31a, 31b] about MOCVD. We should conclude by saying
that all measurements reported here have been performed with superlattices
grown along one of the cubic axes of the bulk constituents. Measurements on
superlattices with other orientations (e.g. [111] or [110]) are highly desirable.

o€
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3.2 Lattice Dynamics of Superlattices

3.2.1 Sarvey

A number of models have been developed to describe the phonon dispersion
curves of TII-V cubic crystals [3.5]. They belong to different families such as shell
models, bond charge models, etc. In these models, a large number of unknown
parameters are introduced to fit the experimental dispersion curves. More
recently, ab initio calculations based on the local density approximation have
appeared [3.32). They provide a good description of the phonon dispersion
curves along high symmetry directions. As concerns the superlattices, a great
amount of work using approaches of various degrees of complexity has been
devoted to the derivation of the dispersion curves using only a knowledge of
those of the bulk constituents. Several problems are encountered:

— the choice of the proper lattice dynamical model for the bulk constituents,

— the transferability of the bulk model parameters to the superlattice case,
which is reasonable and straightforward for local guantities or very short
range interactions but becomes difficult for long range forces,

— numerical difficulties arising from the size of the secular equations in thecase
of thick layer superlattices.

Lattice dynamical calculations for superlattices fall into two categories. The
most general type are simple generalizations of the bulk calculations using force
parameters between atoms and dynamic effective charges taken over from the
bulk. To this category belongs the work of Kanellis(3.33), Yip and Chang [3.34],
and Richter and Strauch [3.35,35a]. These calculations yield the dispersion
relations of the superlattice for any arbitrary direction of k,i.e., for finite k., k,,
and k,.

The philosophy of the other, simpler group of calculations is based on the
fact that most experiments (backscattering) measure only the dispersion
relations for k,#0, k, =k,=0. In the usual case of k, | [001], one can calculate
the dispersion relations by using force constants between {001} planes (planar
force constants). These planar force constants can be determined for the bulk
materials either by fitting experimental dispersion relations or “ab initio™
through total energy calculations [3.32, 36]. A schematic diagram of the planar
nature of a zincblende-type superlattice grown along [001] is shown in F ig. 3.6.
One should note that such a “‘planar” scheme is equivalent to the calculation of
the vibrations of a one-dimensional chain with a basis (primitive cell) containing
2(n, +n,) atoms. For vanishing in-plane wavevectors (k,=k,=0), the longi-
tudinal and transverse vibrations of the chain are not coupled, as they have
different symmetry (see Sect. 3.3.2). Their frequencies are thus obtained from
separate secular equations, a fact which simplifies the numerical analysis of the
problem.

The most elaborate superlattice linear chain model [3.37}is based on abinitio
local density calculations of the effective interplanar forces in GaAs [3.32]. In
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Fig. 3.6, Correspondence between the three-dimensional structure along the superlattice axis
and the effective planar lincar chain in the case of a (48),(AC), structure

this work both longitudinal and transverse dispersion curves are obtained by ~
taking into account all significant interactions, including long range Coulomb
forces, through a few short range effective forces. The problem of transferability
of the bulk forces is circumvented in this description of GaAs/AlAs super-
lattices: the difference between the vibrational propertics of GaAs and AlAs is
mainly attributed to the mass difference between gallium and aluminum. Some
corrections in the Coulomb long range interactions are introduced to better
describe the longitudinal-transverse splitting of AlAs. These corrections are
obtained by introducing an additional term involving a Coulomb interaction
between effective charges in a rigid ion model and caiculating the extra charge
needed to accurately describe the splitting. This somewhat artificial correction
preserves the main advantage of the method : the modulated quantities (masses,
effective charges) are local and thus directly transferable to the dynamical matrix
of the superlattice. The only exception is the effective charge of the As interfacial
atom which is different in GaAs and AlAs and must thus be interpolated. This
model is particularly well adapted to obtaining realistic dispersion curves with a
minimum of arbitrary assumptions. Other fitting procedures which describe the
bulk dispersion curves with intermediate range .forces, different in both
compounds, indeed involve rather questionable interpolation schemes to
generate the superlattice interactions.

On the other hand, the spatial extension of the interactions define the
sensitivity of any atom in the structure to the existence of a modulation. In the
model of [3.37] a large number of atoms is involved in each dynamical matrix
and numerical diagonalization is needed to solve the problem, which becomes
rather cumbersome for thick layer superlattices. Simpler resolution methods,
independent of the thickness of the layers involved, and even providing
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analytical solutions in some cases, have been developed onthe basis of simplified
linear chain models. Such models, using a very small number of short range
parameters, fitted to bulk dispersion curves, have been introduced in the early
works on phonons in superlattices [3.38, 39]. The results, obtained by diagonali-
zation of the corresponding dynamical matrices, appear to be rather good in
spite of the rusticity of the models: ncarest neighbor interactions often suffice,
especially for longitudinal modes. Experimental constraints make the work of
theoreticians easier as Raman backscattering selection rules for (001) faces only
allow the observation of longitudinal modes (see Sect. 3.3.2). By reference to
these early calculations, most of the experimental results have been successfully
analyzed using the simplest imaginable model: a linear chain with only nearest
neighbor short range interactions. We shall refer to it in the following as the
“alternating linear chain model”. All the parameters are then directly transfer-
able from the bulk constituents to the superlattice, at ieast in the case where the
two constituents AB (e.g. GaAs) and AC (e.g. AlAs) share a common atom 4.
The more general case (4B/CD) presents several specific aspects such as “wrong
bonding” and “interface modes™ which have been recently investigated in [3.40].
As pointed out in [3.41] the most interesting feature of alternating lincar chain
models consists in the reduced range of the interactions: only very few atoms are
directly sensitive to the modulation. In the usual example of the GaAs/AlAs
structure, only the As atoms located at each interface are affected: they are
surrounded by gallium at one side and aluminum at the other. The cigen-
displacement of all the atoms, except those at the interfaces, are basically known
from bulk properties, and the solution of the dynamical problem thus reduces to
the fulfillment of macroscopic boundary conditions at those interfaces. The
method is independent of the thickness of the layers and provides, as first shown
in [3.41], an analytical dispersion relation. This allows a qualitative analysis of
the new vibrational features appearing in the superlattice, in particular the
coexistence of:

~ propagating modes for the energy ranges where allowed vibrations exist in
both bulk constituents, and

- confined modes when the vibrational amplitude is evanescent in one of
the constituents, since no propagating bulk modes are avaiiable at that
frequency.

Since its introduction, this type of calculation has been refined somewhat by
various authors to take into account, for instance, unequal nearest neighbor
interactions [3.42] and to treat the case of AB/CD structures [3.43]. Some new
mathematical methods have been introduced : Albuguerque et al. [3.44] have used
a transfer matrix technique which aliows to treat periodic structures with any
given number of different layers per unit cell or even aperiodic structures. Green
functions treatments of similar models have also been published [3.45].

The idea of taking advantage of the abrupt shape of the modulation profile
and to reduce the problem to some interface boundary conditions, which was
later applied in this context, is a usual one in the study of modulated structures
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with piecewise constant parameters. A classical example is the propagation of
electromagnetic waves in layered compounds which gives rise to interference
bands [3.46). In the Kronig-Penney model, which handles the propagation of a
free particle in a square wave potential [3.47, 48], some features appear, such as
the confinement of the particles, which are formally reproduced in the
alternating linear chain model. Moreover, the dispersion relations, obtained in
both cases from interface boundary conditions, are very similar. In the context of
lattice dynamics, the same ideas were first applied by Colvard et al. [3.49] to
describe low frequency Raman lines in the elastic approximation. These authors
made reference to an old calculation, by Rytov,of sound propagation in layered
geologic systems [3.50). Such a propagation is dominated, as in the case of
electromagnetic waves, by interferences between sound waves transmitted or
reflected at each interface between compounds of different acoustic impedances.
Section 3.2.2 will be devoted to the elastic model, as this approximation is
relevant to the analysis of numerous experimental results. We will first describe
in detail the exact solution of the wave equation and analyze the dispersion
relation in terms of band folding and gap opening..We will then compare the
results with the more general analysis by Fourier transforms which gives better
insight into the details of the eigenwaves. Section 3.2.3 will be devoted to the
alternating linear chain model. We shall derive the dispersion relation in the
simplest case and analyze the different vibrational behaviors of both dispersion
curves and eigendisplacements. In the low frequency range the predictions of the
elastic model are recovered, whereas the optical phonon range displays con-
finement effects which are best analyzed in terms of optical phonon quantum
wells. In the case of strong confinement, the results are compared with various
calculations relevant to isolated thin slabs. Some original features, such as
interface modes appearing in 4B/CD superlattices or surface modes in semi-
infinite structures will also be briefly considered.

In Sect. 3.2.4 we shall consider the lattice dynamics for wavevectors off the
superlattice axis and the connected problem of the superlattice effect on the long
range Coulomb forces and the dielectric constant, which have been negiected up
to this point. This subtle problem should be treated using three-dimensional
lattice dynamical models in a manner similar to that used for isolated layers
[3.51-53]. In spite of the scarcity of experimental results, this field has attracted
much theoretical interest in the past few years in connection with two original
observations of “slab modes” [3.54] and “interface modes™ [3.55]. The former
are confined optical phonons propagating in the layer planes whose transverse or
jongitudinal character is strongly affected by the dielectric modulation. The
latter are optical modes, weakly localized at interfaces by the same dielectric
modulation, in contrast to the “‘mechanical” interface modes previously
considered which are strongly localized at interfaces by the short range
modulation of some lattice dynamical parameter. From these two examples, the
dominant role played by the long range forces in the understanding of the in-
plane lattice dynamics clearly appears, a fact which gives rise to macroscopic
analyses which neglect the microscopic nature of the problem. We will present
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these analyses and attempt to discuss their validity to describe the real three-
dimensional lattice dynamics. Results of full three-dimensional calculations will

be presented in Sect. 3.2.5.

3.22 Elastic Properties of Superlattices

We shall first consider the modulated structure corresponding to most of the
experiments: the alternating stacking of two layers of different compounds 4
and Bdefined by their respective mass density g, and gy, clastic stiffness constant
C, and Cy (C,, is the stiffness constant relevant to the longitudinal acoustic
modes propagating along the [001] direction in cubic crystals) and souqd
velocity v, and v,. There is no reference in this model to any crystaliine order in
the bulk constituents (i.c. it aiso applies to amorphous constituents) and a
similar description is valid for longitudinal as well as transverse modes. The
analysis we present in the following has been progressively refined in several
papers [3.49, 56, 57} following improvement in the accuracy of the experimental
results on samples of increasing quality. The equation for one-dimensional
propagation of cither longitudinal or transverse elastic waves along [001] reads:

é ou| & du .
T [Q(Z) E]=$ [C(Z) E] ’ . ERY)

where o(z), C(z), u(z) are the local values at z of the density, elastic constant
(different for longitudinal and transverse modes), and atomic displacement. This
equation is also valid for propagation along [111] provided one uses the
appropriate effective Cs.

For an alternating structure of two materials 4 and B (3.1) reduces to:

*u d%u
Qa.p T‘z"!= AB "'ézz"—'s (3.2)

in each layer.

At a given frequency w, the sound waves in each layer are a linear com-
bination of two plane waves of wavevectors & ,(cw) for layer 4 and +kp(w) for
layer B[k, s(w)=w/v 4 p}. As is well known for electromagnetic waves, and in
order to take into account the reflection at each interface, we must write the
displacement field in each layer as a linear combination of a forward (+k , p)and
a backward ( —k 4 g) elastic wave of unknown amplitudes. The solution of the
problem then reduces to the determination of the four amplitudes of the four
independent planc waves appearing for a given angular frequency w.

Integrating the wave equation over an infinitesimal interval crossing any
interface lying at z, leads to the following boundary condition:

(33)

1
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which expresses the continuity of the stress at each interface and holds together
with the continuity of the atomic displacements:

uy(z;)=ug(zy) - 3.4)

Imposing these two boundary conditions at each interface, and using Bloch’s
theorem to obtain the displacement ficld in the two unit cells on either side of the
onec at the origin, leads to a 4 x4 secular determinant which provides the

dispersion relation between the frequency and the superlattice wavevector
q=k, [3.50]:

cos(gd)=cos (ﬂdi) cos (-w—di)
Uy Up

. (""”’ + 9‘”‘) sin (“’d‘) sin (“’d’) , (3.5)
2\@4V4 OBl Va Un
where d,, 5 are the thicknesses of the 4 and Blayers and d=d, +dgis the period
of the structure.
This relation has the same form as the well known Kronig-Penney dispersion

relation for electrons in a square-wave potential [3.47] which™ réads (see
Eq. (10.21) of [3.48]):

cos(gd)=cos (k d,) cos(kydy)

1 (k, kg\ . . -
_Y (k4 X8 _ 6
5 (k;+ k,.) sin (k ,d.)) sin(kpk g) (3.6)

In both relations the physical details of the problem are contained in the
coefficient of the second term which describes the nature and the amplitude of
the modulation. The rest of the equation reflects the geometry of the structure.

To better analyze the effect of this modulation on the dispersion, we write (3.5)in
the equivalent form:

cos{gd)=cos [w (d—‘1 + d—")] - (_si) sin (m ﬁ) sin (w d—’) , 3.7
v, Up 2 v, vy

where the parameter ¢ is given by:

_ 288 —Qals 18
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This parameter describes the acoustic modulation through the relative difference
between the acoustic impendances g;v; of both bulk constituents. For available
superiattices made of IV, I11-V, or [I-V1compounds, the acoustic modulation is
usually small and £2/2 ~ 10~ 2. This suggests to neglect, to a first approximation,

&
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the second term in (3.7) which is proportional to £2/2. In doing so, we only
consider the “geometrical” contribution of the modulation which creates a new
periodicity without modulating the physical quantities involved. Relation (3.7)
then reduces to:

d
cos(qd)=cos|:m(£‘1+—'i—):| or: (3.9
vy VUp
gd= tw|-=+—|+2vn, v=0, +1, +2 ... (3.10)
Uy Us

which simply corresponds to the folding of an average elastic dispersion curve as
shown in Fig. 3.7. The average sound velocity v follows from the averages of the
inverse velocities weighted with the respective thickness d,, dy

_ V4 Up - - :
V=D ra, hemdldird) (3.11)

and reflects the inmer structure of the supercell modulation. As will be
emphasized later, this velocity is not the same as that of the average bulk
compound. This velocity can be understood very simply in terms of transit time

Fig. 3.7. Schematic diagram of a folded acoustic
dispersion relation, neglecting (-—-) or taking
into account (—-) the acoustic modulation.
The wavevector along the growth direction is
represented by g. A, and B, indicate the sym-
metries found for these modes in gallium rich
GaAs/AlAs superlattices
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through the superlattice: in the absence of interface reflectivity (¢ =0), the transit
time is the sum of the transit times through each layer, hence, inverse velocities
weighted by path lengths must be added.

Within this approximation doubly degenerate modes appear at the zone
center and zone edge of the SBZ (at k =0 and =/d) with the cnergies:

)

Q,= 7 (3.12)
where vtakes even (odd) integer values at the zone center (edge). This degeneracy
will be lifted when the finite magnitude of the modulation through the second
term in (3.7) is taken into account. As well known from the theory of nearly free
electrons in a periodic potential, the splitting for weak modulation is proportio-
nal to the amplitude of the modulation.

The limiting frequencies of these gaps at the zone center and edge correspond
to eigendisplacements with equal amplitudes of the backward and forward
propagating components. Thus, these modes do not transport energy. Asshown
recently [3.57], an exact analytic expression for the corresponding splittings can
be obtained.

The splittings induced by the modulation at the zone center and.edge can be
also obtained with excellent accuracy by expanding the exact frequency w to
second order in 40Q=w—£2. The dispersion relation then reads:

dp
Ug

2

Uy

7 —cos [(w+AQ) g]=%z— sin [(w+AQ) ]sin [(w+AQ) ] . (3.13)

where n equals +1 (—1) at the zone center (edge).

Keeping only the second order terms in AQ in the left hand side of (3.13) and
the zeroth order terms in the right hand side, one obtains the shift of zone center
and zone edge frequencies given by the same expression:

v vt (1 —x)vog—av,
Q f=vu+ - — —— e | 3.14
aa, _sdsm[z (1 —a)v,+avﬁ] (3.14)

The band gap openings are therefore symmetrical relative to £ and the average
velocity of the two converging branches remains unchanged for this order of
perturbation. The magnitude of the gap 24Q,, which is comparabie for all v, is
proportional to the modulation parameter ¢ and inversely proportional to the
period d. It displays an oscillatory behavior as a function of « as illustrated in
Fig. 3.8. Note that all zone center gaps vanish for the same value of a:

Up
a= . 3.15
UA+UB ( )

The eigendisplacement fields are piecewise sinusoidal functions. In each layer 4,
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Fig. 3.8. Variation of the acoustic gaps at the lower zone center (v=2, 4) and zone edge
(v=1, 3), normalized to the corresponding average frequency, as a function of the thickness
ratio a in a GaAs/AlAs superlattice (the normalized gaps do not depend on the period) [3.60]

Fig. 3.9. Eigendisplacement for folded acoustic waves in a supercell with the two components
of the lower zone center doublet {the symmetries are those found for Ga rich GaAs/AlAs)
f3.22]

B, they are defined by the local wavevector k , » which is slightly different in layer
A and B. At the zone center, the two split modes correspond to very close local
wavevectors but their displacement fieids, represented in Fig. 3.9, display
different symmetries: one is symmetric relative to cach midlayer plane and the
other antisymmetric. In Sect. 3.4.3 we shall give further details about the
predictions of the elastic model and compare them with the results of various
experimefits, An outstanding feature is the extreme difficulty to obtain
experimental evidence of the acoustic gaps. This is due to their small magnitude
and to the fact that the backscattering wavevector usually lies beyond the range
of significant coupling between folded zone center modes.

The same type of calculations has been recently performed [3.58] for
superlattices with a period composed of three different layers. Very similar
results were obtained, as should be the case for any piecewise constant profile. In
such complex structures, a transfer matrix technique may, from the numencal
point of view, be more convenient.

In the case of periodic structures with a smooth modulation, as for instance
the erf function introduced in {3.59] to model the interdiffusion between
neighboring layers of an abrupt structure, one cannot find an analytical solution
of the elastic wave equation. Provided the modulation is not too strong, a
perturbative approach can be applied and the wave equation approximately
solved using a Fourier transform technique.

The Fourier method was first introduced by Colvard et al. [3.42] and applied
to the square profile where a comparison with the exact solution is possible.
Following [3.60] we present here a similar comparispn but without the drastic
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approximations introduced in [3.42] to obtain analytical expressions. Such
approximations give rise to less accurate predictions of the gap splittings. Let us
first decompose the periodic quantities g, C, and u, in Fourier series:

u (z)=c""Zu, e
C(2)=2C,c™
e(z)=Zg,c™",

where g =2n/d and u, is the displacement field at frequency w and wavevector g.
The wave equation then transforms into an infinite set of linear equations:

Y (@ n-s, —(g+m 9)(g+ng)C,_, Ju, ;=0 (3.16)

whose secular determinant provides the dispersion relation. Usually, there is an
infinite set of non-vanishing Fourier coefficients whose magnitude rapidly
decreases with increasing Fourier order. Thus (3.16) can be truncated. Let us first
neglect all the coefTicients but the average g, and C,. The eigenfrequencies then
reduce to:

w,=(g+vg) (Coleo)'?

which just correspond to the folding of the dispersion relation of the average
bulk compound (note that both ¢ and C must be averaged separately). This
average dispersion curve does not coincide with the one obtained for zeroth
order from the exact solution of the square profile where the inverse velocities
were averaged (3.11). As a consequence, for such square profiles, accounting for
the higher order Fourier component should not only induce a splitting between
degenerate modes but also shift the whole set of eigenfrequencies. This feature
cannot be obtained by only retaining the coupling between degenerate modes at
the SBZ center and at the edge. The coupling between u, and u_, at the zone
center or &, and u_,_, at the zone edge is of first order in the fluctuations of
the material properties, as well known from the nearly-free-electron model.
When one takes it into account, frequency gaps appear at the zone center
proportional to sin(vra) [3.42] which differs from the oscillatory factorin (3.14).
This difference, which is approximately proportional to squares of fluctuations
in the material parameters (higher order perturbation theory), is due to non-
degenerate couplings between branches of close Fourier order (n and nt1)
which may be comparable with degenerate couplings between branches of
distant Fourier order (n and —n). As concerns the square wave profile
considered in {3.42) and here, the degenerate approximation is fairly good as
illustrated on Fig. 3.10. The variation of the first and third zone center gaps is
shown as a function of a, both taking into account ecither only degenerate
couplings or a large set of couplings. In Fig. 3.11 we show for a given square
profile the variation of the dominant Fourier components of the vibrational
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Fig. 3.10. Variation of the lower (bottom) and third (rop) zone center gaps asa function of the

thickness ratio in a8 GaAs/AlAs structure of period 40 A, taking into account: (i) only the
degenerate first order coupling (——) (ii) a large set of higher order coupiings (-—-)

Fig. 3.11. Variation as a function of the wavevector ¢ from mini-Brillouin zone edge
(g/g =0.5) of the dominant Fourier components of the eigendisplacements associated with the

two lowest folded acoustic branches [3.60]

amplitudes of the lower branches as a function of the wavevector throughout the
whole SBZ. Beside the single dominant component for intermediate g values,
one clearly notices the effect of zone center and zone edge degenerate couplings.
They induce pairs of Fourier components of equal or opposite magnitude,
corresponding at the zone center to the symmetric and antisymmetric modes.
One also notices the presence of additional components with a typical magnitude

of 0.1 or less. ,

As outlined before, the Fourier transform analysié only becomes necessary
for continuously varying (but well defined) profiles. Its application has been thus
limited due to the lack of samples displaying such profiles. Moreover, the

experimental observation of gap openings and other effects of the coupling
between folded branches is extremely difficult due to their small magnitude and

to limitations in the experimental conditions. However, as we will show later, the
intensities of the folded acoustic Raman lines are much more sensitive to the
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details of the modulation and will allow us to obtain experimental confirmation
of the main results of this section. The analysis of the intensities for interdiffused
profiles [3.59] will in particular require the Fourier transform method.

3.2.3 The Alternating Linear Chain Model

We justified in Sect.3.2.1 the description of the vibrational properties of
superlattices along the [001] growth direction ustng linear chain models and
discussed some more or less complex versions that one can find in the literature.
The purpose of this subsection will not be to compare the validity of this
description, which will be done in Sect. 3.4.2 for the GaAs — AlAs system, but to
present the alternating linear chain model in its simplest version and to analyze
the vibrational behavior predicted within its framework. They will not be
qualitatively modified in more sophisticated models.

Let us consider the alternating linear chain AB/AC defined in Fig. 3.12 with
its spring constants K, , and the definition of the displaccment u{t-? and v} of
atoms A or B/C in the AB or AC layers. Following the method used in the
alternating elastic model, we will first look for the atoms which are not directly
sensitive to the modulation. Due to the ncarest neighbor range assumed for the
interactions, the interface atoms A are the only ones perturbed: they are
surrounded by B and C atoms. We can thus define the eigendisplacement at
frequency w of all atoms, except the A interface atoms, as a linear combination of
corresponding eigendisplacements of the bulk:

W= 2, Ky (1 —e Moy e im 4, K, (1 +eee e (3.17)

Uﬁ'” =1,(2K, —m, aw?)e e+, (2K, —myw?)e” tkiee

K, Ks
Y. U ol B Am........sfweB Cow oo C Bwwe Aw...
@) .

(2} oidd f2) g-iQd @) 2 42 2 @
v, e .u‘ﬂ1 e u@ vl v ug
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©

Fig. 3.12a, b, Description of the alternating linear chain model used in the text and definition
of the eigendisplacements in the supercell. The A atoms are the boundaries between alternating
chains
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if the jth cell belongs to layer AB. Similar cxpressions

arc obtained for layer AC

by replacing 1 by 2 in both expressions, 4, and a, are the lattice spacings in 4B
and AC chains. Moreover, the interface atom displacement can be deduced from
the dynamical equations of both of its neighbors and we obtain the first interface

condition by identifying both expressions:

&) ==

(3.18)

which reflects the identity of the interface atom displacement “seen” from AB

and from AC. This displacement must also satisfy the
interface atom itself:

—m @ =K, [v —uo) + K, ), —u)
and this provides the second interface condition.
stmplified by drawing the analogy to the equation
imbedded in AB (or in AC) to become:

K 0§ —uo) = K, [v5” — ) »

where the of!’ displacement is a fictitious one o

dynamical equation of the

3.19)

Equation (3.19) can be
of motion of an A atom

(3,20)

htained by extrapolating

compound AB beyond the interface. For equal spfing constants, the sct of

boundary conditions reduces to:

u=u and
o) = pf2)

at the first interface (z=0) and

2) _ 1) e
u@ =ul), e

p® =), eind

-y

and

at the other one.

In a model involving longer range force constants
applied to define each of the unknown displacements
and AC layers. For equal spring constants in botl
obtains (3.21a, b) which can actually be written for ar

The dispersion relation found by solving the 4 x

(3.21a)

(3.21b)

, the same method can be
progressively from the AB
h constituents, one again
)y atomic site in the chain.
4 secular determinant can

thus be written (k, and k, are the wavevectors for frequency w in the two bulk

matenals):

cos(gd)=cos(ny kya,)cos(ny k,a;)

—nsin(n k,aq,)sin(ny k. a;) ,

)

(3.22)
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Fig. 3.13a-c. Dispersion relations for the LO phonons of a (4B),/(AC), structure, with two
different sets of parameters: m, =70 amu, my=>50 amu, mc=25 amu (s}, or 40 amu (b),
calculated with (3.22). ¢ Three eigendisplacement sets in the supercell corresponding to the
three zone center modes labeled by the same numbers of dispersion curve (b} [3.22)

where only the factor », in this case given by:

_1—cos(ka,)cos(k;a,)
" sin(k,a,)sin(k,a;)

k

depends on the choice of the lattice dynamical model. One can find for instance
in [3.42] the dispersion relation for a chain with modulated nearest neighbor
interactions. The dispersion curves obtained with (3.22) for an alternating linear
chain with n, =n, =8 and two different choices of masses are shown in Fig. 3.13
together with some typical zone center eigendisplacements. For both cases, the
common atom A is the heaviest one in both AB and AC. This choice allows a
unified analysis of the acoustic and optic branches but prevents the emergence of
such features as interface modes, confined acoustic modes, and mixed modes
corresponding, respectively, to modes with evanescent character in both layers,
with acoustic character in one and an evanescent in the other, and with acoustic
character in one and optic in the other. These features have never been actually
observed in AB/CD systems or Si/Ge superlattices where they have been
predicted theoretically [3.40, 61]. We shall briefly describe their properties at the
end of this subsection.

One easily notices the analogy of the dispersion relation (3.22) with (3.5).One
indeed recovers (3.5) by taking the clastic limit for both AB and AC bulk
compounds. The eigendisplacement labeled 1 in Fig. 3.13 corresponds to such a
folded acoustic mode : the eigendisplacement of neighboring atoms is nearly the
same. This analogy suggests to us to rewrite (3.22) in the following form:

2sin’ [(k,a, —k;4,)/2]

sin(k,a,)sin(k,a,)

cos(gd)=cos(kd) — sin(n, k,a,)sin(n, kya;) (3.23)

“k
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with the “average” k given by:

k-:nlklal +n2k2a2 (3.24)

nya, +n,a;

and thus to separate the geometrical contribution from the physical ones. For
acoustic frequencies, we could previously show the validity of this approach
because k, =k,. For optic frequencies, k, is usually very different from k,.
The energy splitting between the optic bands of two different I1I-V compounds
is usually of the same order or cven larger than the width of the bands. Thus, the
perturbative approach is inadequate. At frequencies belonging to the optic band
of AB, k, can even be complex when these frequencies fall out of the optic branch
of AC. The corresponding displacements are then confined in the 4B layers.

Two different behaviors actually appear corresponding to both sets of
dispersion curves presented in Fig. 3.13. In the most frequent one, which is
relevant to the GaAs/AlAs system, the two optic bands are well separated and all
the superlattice modes constructed from these bands are confined either to the
ABorto the AC layers (Fig. 3.13a). Inthe second case, which corresponds to the
InAs/GaSb system and, with some approximation, to the GaAs/Ga, -xALAs
system, the two optic bands partially overiap and some opti¢ medes display a
confined character while some others propagate (Fig. 3.13b). Whereas the latter
case must be treated exactly by solving (3.22), the former (strong confinement
behavior) is suitable for an approximation “orthogonal” to the one used for
elastic properties. One can treat the confined vibrations as perfectly confined, by
making the imaginary part of the complex wavevector in the barrier (i.¢. the layer
where the mode is vanishing) infinitely large. One obtains, after some algebra
[3.62]: |

n ‘
= ————— S . : -
k, @3 Da, m 1SmsSn; (3.25)

The modes are then simply standing waves of the XAB... ABX finite chain
where the Xs are infinitely heavy atoms. This approximation appears to be
extremely good when one compares the results with the numerical solution of
(3.22). A similar comparison, illustrated in Fig. 3.14, has been performed in
[3.63] using the results of Molinari’s model [3.64]. Some small disagreement can
be noticed for large values of m: the corresponding modes being less perfectly
confined when calculated with (3.22). Evenif for thege m values the penetration
depth becomes clearly larger than one interatompic distance, the perfect
confinement approximation still provides an excellent estimate of the mode
frequencies.

The idea of treating the optic phonons in G: s/AlAs superlattices as
perfectly confined is actually rather old and gave r:Ic:A to numerous theoretical
considerations in connection with the so-called slab modes. Already in [3.65] the
confined frequencies were analyzed by analogy with the properties of a particle
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confined to a small box or a vibrating string with clamped ends, i.e., with the
following relation:

k=2—m, m=1,213,.. (3.26)
d,

where d, is the thickness of the layer (size of the box or string). This relation has
been used in several works [3.66a, b} and constitutes a reasonable approximation
to the results of soiving (3.22). However, it becomes questionable for small layer
thicknesses where the difference between d and (n, + 1)a [i.¢. between (3.25) and
(3.26)] is no longer small, as pointed out in [3.62]. In this case, the Microscopic
details of the thin vibrating layer and of the interface conditions have to be taken
into account. The same conclusion was drawn for isolated thin GaAs layers by
Kanelliset al. {3.53]. These authors treat in detail the lattice dynamics of isolated
slabs using a rigid ion model with second neighbor short range forces and
Coulomb long range forces evaluated by using a two-dimensional version of
Ewaid’s summation method. They demonstrated that the optical modes of
vanishing in-plane wavevector can almost be described as “small box modes”.
Some discrepancies, however, appear due to boundary conditions. In the
isolated layer case, free displacement of the surface atoms has to be imposed
instead of clamped neighboring atoms, as done for superlattices. This boundary
condition also forces the transformation of some bulk modes into true
microscopic surface modes, for which the displacement is maximum near the
surface. These modes decay within a few lattice constants from the surface.
Let us now return to the alternating linear chain model in the case of
overlapping optical bands. The corresponding dispersion curves are shown in
Fig. 3.13b together with the displacement patterns of a confined and a
propagating optic mode (Fig. 3.13c). The band ordering in this case is very
similar to the one encountered in the study of electronic properties of
superlattices, as already pointed out in [3.67]: in a finite energy range the modes
are confined to potential wells and above the top of the potential barrier they
become propagative. Thus, the notion of an “optic-phonon quantum well™ is

e
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Fig. 3.15. Variation as a function of the well
thickness n, of the highest aliowed frequency
bands calculated using an (A B), /(AC), alter-
nate linear chain. The bulk effective param-
cters are fitted to describe the GaAs-type
optic modes in a GaAs/GaAlAs structure.
From [3.67]

introduced. In Fig. 3.15 we show the upper optic mode frequencies of a typical
alternating linear chain as a function of the well thickness n, for a fixed value of
the barrier thickness n,. The effect of confinement increases with decreasing », ,
a fact which is well known for electronic states, inducing a shift of the optical
modes towards lower frequency. A single confined mode (n=1) persists,
whatever the width and the depth of the weli, whereas the others progressively
couple together across the barriers as their frequencies approach the top of the
barrier, and become propagative beyond. Their dispersion curves then display
minigaps and minibands. At the frequency w,, pairs of upper and lower band
extrema cross without interacting since they are of different symmetries
(different parity). For instance, the zone center modes are alternately symmetric
(m even) and antisymmetric (m odd) relative to each midlayer plane.

As mentioned earlier, interface modes never appear in the AB/AC linear
chain. On the other hand, they have been predicted for the 4B/CD sequence
[3.40] in the special case of InAs/GaSb structures. This pair of compounds is
favorable to the emergence of such modes since one can demonstrate that they
casily appear when the two optic bands strongly overiap. If such conditions are
verified, the interface vibration which corresponds to a “‘wrong bond”, to be
specific a GaAs bond in GaSb/InAs structures, is fairly similar to both the
gallium locai mode in InAs and an arsenic local mode in GaSb. It thus becomes a
common local mode and can be strongly localized at the interface. Another type
of localized mode, namely a surface mode appearing in semi-infinite structures,
has been described within different simple theories and, in particular, within the
alternating diatomic linear chain model [3.68]. Surface modes are predicted in
the gaps of the dispersion relations of bulk constituents of the infinite
superlattice. Whereas the surface optic modes are localized near the surface in a
manner similar to that of the interface modes near interfaces, low frequency
surface modes corresponding to acoustic minigaps lie very close to the band
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edges and are weakly bound to the surface. The propagation properties of such
surface elastic waves in the layer plane have been extensively studied using
continuous three-dimensional models [3.68] which give evidence of the layering
effect on the various types of surface acoustic waves.

Except in the last paragraph, we have only considered vibrations propagat-
ing along the superlattice axis because they are the only ones involved in almost
all of the published experimental results and also because they are by far the
easiest to model. One-dimensional models are indeed unable to account for
propagation perpendicular to the superlattice axis. Three-dimensional lattice
dynamics is thus unavoidable if one wants to tackle the problem of in-plane
superlattice vibrations. Three-dimensional microscopic calculation -have
been performed rather recently for small period superlattices of GaAs —AlAs
[3.35]. The few experimental results involving in-plane vibrations have been
analyzed using macroscopic treatments of the layering effect on the electro-
magnetic ficld associated with the polar optical vibrations. They will be the topic
of the next subsection.

3.2.4 The Effect of Layering on the Macroscopic Field:
Interface Modes

In polar crystals, the zone center longitudinal-transverse (LLO —TO) splitting is
well known to arise from the association of a macroscopic electric field with the
zone center LO mode [3.69]). Whereas a correct treatment, taking into account
the polaritonic effect, yields zone center properties consistent with symmetry
considerations (see Fig. 2.10 of [3.10]), the retardation effect in the long range
Coulomb forces for finite & is generally neglected, however, an approximation
which leads to a good description of the optic dispersion curves down to very
small finite values of k, (k> 2n/A, where A is the reststrahlen wavelength in the
medium). This was illustrated for superlattices in the carly work of Tsu and Jha
[3.38] who calculated the polaritonic effect on vibrations along the growth axis
of a GaAs/AlAs structure. Since the experimental results are mainly obtained by
Raman backscattering, which involves phonons with a large wavevector as
compared with those in the region of strong polaritonic interaction, further
theoretical work in this field has systematically neglected the retardation effect.
Calculations involving retardation have been recently presented in [3.70] for the
case of free carrier plasmons which s susceptible to generalization to polar
phonons [3.70a].

The first reference to the dielectric modulation in superlattices and its effects
on Raman spectra was made by Merlinet al. [3.71] to explain the emergence near
resonance of an additional peak between TO and LO modes. They assigned this
peak to an optical mode of an *‘effective medium™ propagating in the piane of the
layers, activated in Raman backscattering by an unidentified relaxation of the
selection rules. To describe the frequency of the mode, they derived the
anisotropic superiattice dielectric constant from those of the bulk constituents
by imposing interface continuity conditions for the electric field (continuity of
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E,, E,)) and displaccment (continuity of ¢E,). The axial and in-plane components
of the dielectric constant of the *“effective medium” then read:

_geldi+d) 3.27
'———fadl"'sldz ="' )7, 3.27)

_&d+ed,
Exy= dl+d—_2 ={&) .

Within this model the zeros of ¢, and the poles of ¢, , correspond, respectively, to
longitudinal and transverse modes propagating along the superlattice axis; these
are basically the confined modes discussed in Sect. 3.2.3. Their frequencies

coincide with the bulk values. This is a specific feature of the macroscopic
approaches which neglect dispersion. Thus, their vali ity becomes questionable
for small layer thicknesses. Additional propagating modes appear when:

d{ed=d,&, +d,e,=0
d<3_1> =dl/8l +d2/82=0 .

(3.28)

These obviously correspond to LO and TO modes of an -effective avefage
medium, propagating in the layer plane.

The corresponding frequencies lie between the TQ and LO bulk frequencies.
For d, =d,, these two solutions become degenerate and satisfy the following

equation:

£ =—E (3.29)
which is the standard equation for modes localized at the interface between semi-
infinite materials in the absence of retardation [3.71].

Merlin et al. [3.71] assigned an additional peak obscrved in the Raman
spectra of GaAs — GaAlAs superlattices to a solution of (3.28) and described the
corresponding mode as the long wavelength limit of bulk optic modes
propagating in the plane of the superlattice layers. They also noticed the
connection with modes localized at and propagating along the interface between
semi-infinite media. This point of view has been shown to be basically correct
[3.55].

As mentioned before, the bulk optic modes in GaAs/AlAs superlattices are
strongly confined in one type of layer and their frequencies can be described
using a single layer model. In the macroscopic approach, where the dispersion is
neglected, the small differences due to details at the interface [e.g., (3.25)]
disappear. With this caveat, it is justified to use a single-slab clectrostatic model
[3.72) to analyze the bulk-confined optic modes whereas the more sophisticated
models dealing with the complete layered diclectric medium {3.73] allow analysis
of the interface modes. We follow the simple treatment given in [3.21} to describe
the basic features of these models.
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We proceed with the detailed mathematical treatment of the dielectric model
which leads to interface and confined modes. In this model, the properties of the
bulk materials 1 and 2 are solely represented by the frequency-dependent
dielectric constant:

F —
g 2(w)=¢12 ﬁ% > (3.30)

where, in principle, @, and wy may be made to depend on the wave vector k so
as to represent the dispersion of the longitudinal [£; 2 (wy , k) =0] and transverse
e, 2 (wr, k) = 0o] frequencies. We shall neglect this dependence unless otherwise
specified.

In the absence of retardation, the electric field (displacement) in each medium
can be represented as the sum of a curl-free and a solenoidal part [3.21}, i.e.,
derived from a scalar ¢ and a vector potential V:

E= —V¢+%VxV. (3.31)
This field must fulfill the equation:
eV-E=0 (332

which is automatically satisfied by the solenoidal part (V x V). If the term in the
scalar potential ¢ is not to vanish it must fulfill Poisson’s equation:

Vigp=0, (3.33)

which is also automatically satisfied for e(w)=0. According to (3.30) this
condition leads to longitudinal modes which can only have non-vanishing fields
in one of the two media since, in general, w;, #w,,. These modes are of
longitudinal character, confined either to medium 1 or 2. Another possible
solution of (3.32) is obtained for V2¢ =0. As we shall see, this leads to interface
modes which propagate along the axis of the superlattice. Concerning the sole-
noidal term V x V the continuity of the x, y-components of E and the z-com-
ponent of D requires that ¢, = co if E is not to vanish in medium 1. This leads,
according to (3.30), to transverse modes localized in medium 1. Both localized
LO and TO modes so obtained can be made to depend on the k vector defined by
(3.25, 26) simply by using k-dependent w, and wr frequencies in (3.30).

Before treating the interface modes (Vé, , =0 plus appropriate boundary
conditions), we want to discuss some particular properties of the LO modes
found through the dielectric formalism. Fourier expansion of ¢, leads to the two
families of components:

b, (x, 2)=oc**cos(qz) , (3.34a)
$,(x,2)=goe**sin(gz) , {3.34b)
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where the dependence on y has been negiected, a rather inconsequential fact. In
order to obtain localized modes we must assume that E, =0 and impose the
corresponding boundary conditions for E, and D, at the interface. For the
&, (x, z) of (3.34a) this lcads to (assuming that the origin of coordinates is at the
center of layer 1):

continuity of E, : ik¢e™**cos(gd,/2)=0, (3.35)
continuity of D, : & gpoc™*sin(gd,/2)=0, (3.36)

and similar equations for the case of (3.34b). Equation (3.36) leads to g, =0, i.e.,
to the frequencies of bulk longitudinal modes. While (3.35, 36), representing the
boundary conditions for the electric ficld, are automatically fulfilled for g, =0
and k =0, one must also keep in mind that the superlattice is a mechanical system
and thus the mechanical displacement of the atoms, &, must also be continuous
across the boundary. This mechanical displacement is proportional to the
electric polarization it generates which, in turn, is proportional to the electric
field associated with the vibration. Hence the continuity of , is equivalent to
that of E, which we have aiready imposed in (3.35); that of u, leads to an
equation similar to (3.36) but without the factor &:

gdoc™*sin(gd, /2)=0 . ' (3.37)

Except for the cases ¢ =0 or k =0 it is impossible to simultancously fulfitl (3.35)
and (3.37). For k=0 we find from (3.35)

q=g—m m=2,4,6, .. (3.38a)

1
an analogous reasoning for (3.34b) leads to, in the case of k=0:

g=gm m=135, . ' (3.38b)
1

Equations (3.38a,b) are equivalent to (3.26) which was derived for one-
dimensional models that imply k =0. Note that it is reasonable to obtain (3.26)
and not (3.25) since the dielectric model is a continuum model in which the
boundary conditions are imposed exactly at the interface.

The result of (3.38) can also be applied to the case k %0 provided & is small
compared with the gs of (3.38a,b). Such is the case which applies to phonons
excited in optical experiments provided 4, is not too large. In this case the
boundary condition in (3.35) is more stringent than that in (3.37) and the latter
can be neglected: the results obtained for k=0 remain approximately valid.
Ultimately of course, an additional weak field pattern will have to be developed
around the interface in order to strictly fulfill (3.37). For most purposes,
however, this additional field can be disregarded. For a recent discussion of the
somewhat confusing simultaneous role of mechanical and clectrostatic bound-
ary conditions see [3.73a].
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After illustrating the origin of confined modes with the electrostatic
continuum model we discuss the interface modes. They arise by replacing in
(3.34a,b) the pure imaginary values of g, ie., by making for ¢ the ansatz:

&1 2= pocrre e, (3.39)

where the origin is chosen to be at an interface. The potential of (3.39) fulfills
Laplace’s equation (3.33) provided ¥ =Q. For a simpie interface between semi-
infinite media 1 (left) and 2 (right) the sign in front of Q in (3.39) must be chosen
so as to avoid unphysical divergences for z— —co (medium 1) and z— + 0
(medium 2). The boundary condition for D, then leads to (3.29). In the case of a
single interface between semi-infinite media it is easy to modify (3.29)so as to
include retardation [3.74).

For a periodic array of interfaces, such as that found in a superlattice, linear
combinations of both types of solutions in (3.39) are acceptable. We impose
electrostatic boundary conditions at each interface and use Bloch’s theorem in
order to relate the potential ¢, in stab 0 to that in an equivalent slab (n). For this
purpose we reintroduce 2 wavevector component ¢ along z and write:

Bo(x, 2)=o(x, 2)e!™ . (3.40)

As shown in [3.73] this procedure leads to the secular equation:

cos(gd) =cosh (kd,) cosh (kd;) +% [fal—ﬁ" ] sinh (kd, ) sinh (kd,) (3.41)

£

[note that (2.20, 21) are equivalent to (3.41)] where ¢ is the axial superlattice
wavevector. [Note also the similarity with other equations derived so far, e.g.
(3.6, 22)]. The numerical solutions of (3.41) have been studied in detail in [3.73]
and compared with experimental results for GaAs/AlAs superlattices in [3.55].
The resuits are illustrated in Fig. 3.16. For each value of k and g, four different
frequencies are obtained which form two different energy bands in the range of
the optical modes of each constituent. Their frequencies lie between the TO and
LO bulk frequencies.

Some limiting cases of (3.41) can be further treated analytically. Let us first
consider the limit of vanishing superlattice wavevector . The dispersion relation
then reduces to the two bands '

kd, kd.
tanh{ = Jcoth | =%
g{w) ( 2 ) ( 2 )

- g-(-a-’—) = (3.42)
tanh (ﬁ) coth (ﬂ) .

2 2
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Fig. 3.16. Allowed frequency bands cor-
responding] to the electrostatic interface
modes in /AlAs structures with two
different ratios. The plusses and
minusses inglicate the parity of the corre-
sponding ejectrostatic potential relative
to the center of the GaAs layers. The
hatched represent the axial disper-
sion (vs. ¢) for a given value of the in-
planc wa or k. From [3.55]

For interface bands corresponding both to comppund 1 and compound 2,
the two solutions of (3.42) lead to the limiting dashed lines of Fig. 3.16 which
evidently coalesce for d, =d, . In the latter case the intgrface frequencies are then
obtained by solving:

£ (w)= —5(w)

which is again equivalent to the secular equation for the interface between semi-
infinite media (3.29).

In this limit (g =0, k —0), the superlattice interface modes can be understood
in terms of an interaction between equidistant single interface modes, which
leads to the formation of collective modes symmetric and antisymmetric with
respect to the bisector plane of an individual layer. When d,=4,, both
components appear to be degenerate, as is the cage for zone-center folded
acoustic modes for some values of . Similarly, the symmetric mode belongs
either to the upper or the lower branch depending of the reiative magnitude of 4,
and d,.

The limit for vanishing in-plane wavevector k of the g =0 dispersion relation
coincides with the early result of Meriin et al. [3.71]. In this limit, both solutions
only coalesce if both thicknesses are equal. Otherwise, we obtain two frequencies
corresponding to (3.28). These modes are then a limiting case of the interface
solutions but display a special behavior: the decay length around the interface
becomes infinite. These modes are thus not really localized at the interfaces cven
if their dependence on the dielectric properties of both bulk constituents isa
consequence of their “interfacial character”. Note also that for k—co (3.41)

R
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leads to &, (w) = —&, (w) regardiess of the values of d, and 4, i.e., the condition
for interface modes of a semi-infinite slab: for an infinite wavelength along the
slab, and infinitesimal decay length, the vibrations of one interface are
independent of those of the others. If the background dielectric constants of both
constituents are similar and the corresponding bulk frequencies very different we

obtain the approximate frequency at the zone edge (g=n/d):

ol =(w'n.2)2';(f91.1.z)2 . (3.43)

The electrostatic analysis just given has a broad range of applicability. It can
be easily generalized to other longitudinal excitations such as plasmons which
have been recently observed by Raman backscattering in infinite and finite
layered structures [3.75]). To apply this theory to the optic phonons of real
superlattices one must examine the validity of the approximations involved.

As concerns bulk modes, the clectrostatic approximation predicts, for
k €nm/d,, modes near the LO frequency of the bulk which, accordingly to
(3.35, 36), are mainly polarized with the field perpendicular to the layer plane
(E,» E.). Likewise, one finds transverse-like modes for E parallel to etther x or y.
This fact explains the results of Zucker et al. [3.54]. ‘

For interface modes, the validity is more questionable: the calculated
dispersion of interface modes overlaps with allowed bulk modes. This overlap
does not take place in the non-dispersive macroscopic model where the optic
band is assumed to be perfectly flat. Moreover, the mechanical boundary
conditions have not been included [3.73a). Thus, there is a need for a microscopic
treatment of the superlattice vibrations of the type to be discussed in the next
subsection [3.35]. Such caiculations are only easy to perform for small period
superlattices due to the large dimension of the secular equation for larger
periods. Work performed for larger period superlattices with simplified lattice
dynamical modes, even if not perfectly realistic from the quantitative point of
view, should certainly bring new insight to the understanding of the vibrational
properties of polar superlattices.

In the case of isolated slabs, microscopic calculations have been performed
by several groups. We present here some details relevant to superlattices. The
calculations by Kanellis et al. for GaAs slabs [3.53) are unfortunately restricted
to axial modes. Thus, we must consider older publications devoted to thin slabs
of NaCl structure such as those of Tong and Maradudin [3.51] or Jones and
Fuchs 13.52). The latter authors, in particular, analyze the in-plane dispersion
curves in order to identify the two Fuchs-Kliever surface modes [3.72]. In
Fig. 3.17 the predictions of Fuchs and Kliever for the in-planc dispersion
together with the nondispersive bulk TO and LO modes arc illustrated.
Although axial dispersion is precluded by the model, the general trends of the
surface modes are rather similar to those of interface modes in superlattices.
Depending on the zone center curvature and the width of the real optic bands,
these surface modes should or should not cross the whole set of bulk-like
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Fig. 3.17. Schematic representation of the in-piane dispersion of the bulk LO and TO modes

and of both surface modes as predicted for an isolated slab in the clectrostatic approximation.
From {3.72)

confined modes before reaching a forbidden energy range. For instance, in the
NaCl case, the LO band is very broad and decreases with &, so that no real upper
surface mode appears. In the overlap range, couplings between surface and bulk
modes of the same parity take place so that some bulk modes display partial
surface-like character. Similar conclusions should hold for GaAs/AlAs super-
lattices where interface modes and bulk quantized ones lie in the same energy
range. Due to the axial dispersion of the interface modes, theif ¢rossing with the
quantized bulk modes will depend on k and the whole dispersion pattern should
be very complex [3.76]. The interpretation of some experimental results [3.55] in
terms of interface modes and wavevector relaxation will be discussed in Sect. 3.4.

Finally, the presence of a free surface for semi-infinite superlattices, already
considered from the mechanical point of view, also imposes special boundary
conditions on the electric fields, giving rise to surface electrostatic modes of the
whole superlattice. These modes have been observed recentiy by Electron Energy
Loss Spectroscopy (EELS) {3.77]. To analyze their frequencies, the authors of
[3.77) introduce an original formulation of the dispersion relation of interface
and surface modes which, in particular, allows the study of non-periodic
stackings of layers.

3.2.5 Full Three-Dimensional Microscopic Calculations for Superlattices
a) Symmetry Considerations

We start this subsection with some considerations of the symmetry propertics of
zinc-blende-type superlattices (e.g. (GaAs),, —(AlAs),,) grown along [001]. We
first note that the primitive cell of the superlattice is composed of #, (1) primitive
cells of constituent 1 (2). Two space groups are possible for such superlattices
depending on whether n, -+n, is even or odd. In even case the translation
lattice of the superlattice is primitive tetragonal, with space group Pdm2(D3,in
Schonfliess notation) while in the odd case it is y centered tetragonal, with
space group Idm2 (D$,) [3.78]. The point group is ih both cases dm2 (D,,). We
give here for future reference, the character table of this group [3.79):
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E C 25, 2C 26,
A4 1 1 1 1 1 X4
4, 1 1 1 =1 -1 (F—)n
B, 1 1 -1 1 -1 x-y (3.44)
B, 1 1 -1 -1 1 Xy, z
E 2 =2 0 0 0 Xz, yZ;, X, ¥

where C, and C; represent two-fold rotations, the former about [001], the latter
about either [100] or [010). The symmetry clements 24, are the two (100) and
{010) reflection planes, while 2S, are improper fourfold rotations about [001].
The last column in (3.44) gives the simplest combinations of the coordinates
which belong to the corresponding representation: they are useful for figuring
out optical (Raman, IR) selection rules: transverse phonons propagating along
the superlattice axis have E-symmetry, their longitudinal counterparts either 4,
or B, symmetries (3.53, 56).

We show in Fig. 3.18 the Brillouin zone of the superlattice with n, =n, =1. It
is isomorphic to that for other values of n;, n, provided n, +n, is even: one
simply has to change the I — Z length to I'X divided by n, +n,. For n, +n, odd
we must use the Brillouin zone of the body centered tetragonal lattice, which can
be found in standard textbooks [3.80].

b) Generation of the Dynamical Matrix from that of the Bulk Constituents

As we have seen, the primitive cell of the superlattice, SPC, is composed of
n, +n, = N, primitive cells (PC) of the original bulk crystals. Its volume V, is thus

{a) ky {b) k

Y

Fig. 3.18. (a) Brillouin zone (BZ) of a [001] (GaAs),(AlAs), superiattice (thick fine) inscribed
in the BZ of the bulk crystal (thin line). The special symmetry points are given outside (inside)
parentheses for the bulk (supcriattice). (b) Same as Fig. 3.18a but for a superlattice with
n, =ny =3 (BZ of body centered tetragonal latrice)
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equal to N, V;, where ¥, is the volume of the bulk PC. The folded Brillouin zone
of the superlattice (SBZ) has a volume equal to (2n)*/ N, Vy, i.¢., that of the bulk
crystal divided by N,. Hence, if we describe a bulk crystal using only the
translational symmetry of the superlattice, each band of the original BZ gives risc
to N, folded bands. They are obtained by solving the corresponding sccular
equation for the dynamical matrix of the bulk:

|o? 8,5 — D (kK| by + k) =0, (3.45)

where a, f represent cartesian components, X the two atoms of the bulk PC, b,
the N, reciprocal lattice vectors of the superlattice invoived in folding the bulk
BC, and k a vector of the SBZ. Q" can be used to generate the dynamical matrix
of the superlattice D* in the following way. We first construct a block diagonal

Q" of dimensionality N,-times that of D° (i.e., 6(n, +n,)) [3.33]:
DE(xx’; mm'k)=D3y(xK’ by + K} u - (3.46)

The matrix D® must be related to that of the bulk material in the standard
superlattice representation D* (i.¢., using instead of two atoms x, all atoms of the
SPC) through a unitary transformation since it gives the bands of the superlattice
in the SBZ. '

g-=g-2b-g-* . (3.47)

Kanellis [3.33] finds for the matrix elements of G:
G,y(xx'mm’)=}/ N, exp [id,, - r(x,5))0,p00x » (3.48)

where s labels the bulk PCs within the SPC.

Once the matrix D°® for the bulk in the superlattice representation is found
with (3.47) it becomes easy to introduce the superlattice modulation, 1Le., to
change atomic masses and interatomic force constants. The former is the easiest
to vary. This can be achieved following the prescription [3.33]

MM,
M-M:

1/2
D&, ,z-..-)_,( ) Diy(, K5 (3.49)
i.e. by by renormalizing the matrix elements of D* with the square root of the new
masses of atoms x and x’ (which now become & and x').

Kanellis has applied this technique to (GaAs), (AlAs), superlattices grown
both along [001) and {111]. The calculations were performed with an 11-param-
eter Born-von Karman rigid ion model which included first and second nearest
neighbors interaction and an effective ionic charge [3.81]. Unfortunately, in
[3.33) only results for k along [001] and no information about “interface” modes
(propagating perpendicular to [001]) is given. This information should be
obtainable within this formalism.

34
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A somewhat similar calculation has been performed for n,=n,=1 and
n, =n,=2)in [3.82]. In this work a rigid ion model with central forces up to third
peighbors was used (four force constants). Starting values for these force
constants were taken from the bulk. They were then adjusted and modulated so
as to fit observed values in these superlattices. Calculations were also only

performed for k=0 along [001].

¢) Ofif-Axis Propagation

The most complete three-dimensional calculations have been performed for
[GaAs],, [AlAs],, superlattices by Richter and Strauch {3.35, 35a]. They in-
clude calculations for n, =n, =1, 2, 3, 4, 5 and also for (n,, n,)=(10, 6), (6, 10},
(5,4),1,7, (2, 6),and (3, 5). The thesis in [3.35] contains not only the dispersion
relations for some of these superlattices for k along and perpendicular to [001]
but also a large amount of information concerning eigenvectors, in particular
comparison with interface modes (optical phonons) and with partly confined
acoustic modes which also propagate perpendicular to [001) (related to the Lamb
modes and Love modes of single slabs [3.83]). The authors of [3.35] chose as a
lattice dynamical model the Valence-Overlap Sheil Model (VOSM) [3.84] with
10 parameters fitted to neutron data for GaAs. The same model wasused for the
force constants involving Al instead of Ga (i.e., only the masses were changed).

Figure 3.19 shows the results obtained by Richter and Strauch for n, =n, =1,
2, 3, 4 along various high symmetry directions of the SBZ (Fig. 3.18) parallel and
perpendicular to the growth axis. A number of interesting trends can be
recognized in these figures. For k along [001] (I Z line) one sees the confined
modes predicted by (3.25). Examples for a n, =n, =5 superlattice can be seen in
Fig. 3.20. Figure 3.20b shows clearly the correctness of (3.25) and the inaccuracy
of (3.26): The Ga atoms immediately outside the interface stand still while the As
atoms at the interface move.

in Fig. 3.21 we show some of the corresponding cigenvectors calculated in
[3.35] for modes propagating along [100] (i.e. k,#0). In the optical region we
find the characteristics of the interface modes discussed in Sect. 3.2.4 (both
components of the displacement u, and u, are given). Note, however, that the
origin of the exponential decay for the AlAs-like modes is shifted from the
interface to the nearest Al atoms, no doubt an effect of the mechanical boundary
conditions. Only the antisymmetric (B,-like for k,—0) interface modes are
shown. Note also that the acoustic-like Love and Lamb modes are pre-
dominantely localized in the GaAs.

The interface optical modes can also be recognized in Fig. 3.19 for k vec-
tors perpendicular to [001], ¢.g., along the I'X and I'M directions (see modes
labeled “I™"). The dispersion relations along these directions are indeed remind-
ful of those calculated for the interface modes with the electrostatic model for
g=k_ =0(Fig. 3.16) and d, =d,. Contrary to the predictions of the electrostatic
model, however, the odd and even J modes are slightly split for k, ,—0. We also
note that the dependence on the direction of k for k—0, associated with the
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Fig. 3.19. Dispersion relations of phonons in (GaAs),, (AlAs,)) superlattice for my=n,
=1, 2, 3, 4 calculated by Richter and Strauch ([3.35] and private communication). *J"”
indicates interface modes propagating paraliel to the layer planes. For n, =n, =4 we show the
angular dispersion ("...T") of interface modes for k=~0
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Fig. 3.21. Eigenvectors for modes propagating along [100] in a (GaAs),(AlAs), superlattice
grown along [001]. The optical modes are AlAs-like interface modes while the acoustical ones
correspond to Love and Lamb modes of a siab. For the optical modes the signs of the
displacements of cations and anions have been reversed. From [3.35]

appearance of interface modes, is clearly observable for the first confined LO
and TO modes (m =1 in (3.25)). For m even no such dependence occurs while for
m odd > 1 the calculated dependence is small. This also agrees qualitatively with
the electrostatic model: for g=k, 2 n/d and k, small the frequencies of the
interface modes tend to the LO and TO frequencies found for k=0 and
g=k, #0.

Another interesting observation that can be made in Fig. 3.19 is the variation
of the LO —TO splitting for k| [001]—~0 (I"Z direction near k=0) with n; =n,.
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Fig. 3.22. LO-TO splitting of the GaAs- and AlAs-like modes of (GaAs), (AlAs),,
superlattice vs. 2/n, +n,. From the calculations of [3.35]
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As shown in Fig. 3.22 this splitting becomes smaller for GaAs and larger for
AlAs as the period of the superlattice decreases. This striking effect secms to
have been qualitatively confirmed by experiments [3.82]. It is related to the fact
that the LO — TO splitting of buik AlAs increases with increasing k while that of
GaAs decreases (the LO and TO bands actually cross with increasing k,, sce
Fig. 3.1), a difference which is simply duc to the fact that the mass of Al is much
smaller than that of Ga: At the X point for the LO modes only Ga moves while
at I both Ga and As move. Thus, the effect of replacing Ga by Alis larger at X
than at L.

31.2.6 Conclusions

In this section we have presented the different approaches which have been used
to describe the lattice dynamics of superlattices: elastic, linear chain, electro-
static models, and full three-dimensional calculations. These approaches
provide a rather good description of the axial vibrations in periodically layered
polar structures. The primary result is the coexistence of propagating modes
(mainly acoustic) and modes strongly confined in one type of layers (mainly
optic). Although a complete three-dimensional description is only available for
small period superlattices, an approximate macroscopic description of the large
period case has been developed to explain the limited experimental information
which exists about out-of-axis superlattice vibrations. The concepts of interface
optical modes and Lamb and Love acoustical modes have been introduced.

3.3 The Light Scattering Activity of Superlattice Vibrations

3.3.1 Experimental Methods

The usual methods to study lattice vibrations involve one of three types of
spectroscopies:

— far-infrared spectroscopy (reflectivity, transmission)
— inelastic neutron scattering
— light scattering (Brillouin or Raman spectroscopy)

Actually, almost all experimental results available for superlattices have been
obtained by means of light scattering. Before describing the mechanisms
involved in the case of superlattices, we shall briefly compare the different
techniques mentioned above.

Far-infrared spectroscopy has been little used to study vibrations of I1I-V
compounds since the development of high power visible lasers for Raman
spectroscopy [3.84a). Besides technical difficulties and only a moderate
frequency resolution, another drawback of this technique is the limited
possibility to vary the experimental conditions. For instance, the incident
frequency is fixed for each vibration probed. In contrast, visible light scattering is
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a non-linear process involving one (or more) phonons and two photons. One can
thus vary the incident photon frequency and probe the variation of the scattering
efficiency. This gives information on electron-phonon interaction {3.10].
Nevertheless, because far-infrared spectroscopy and light scattering involve
different selection rules, they can provide complementary information.
However, for the non-centrosymmetric III-V compounds and their superlattices
all vibrations at the BZ center are Raman active for some poiarization
configurations and far-infrared spectroscopy may seem superfluous. Due to
limitations in the available polarization configurations and sample orientations,
however, some Raman active modes cannot be observed. For instance,
GaAs/AlAs samples have only been available till recently for {001] oriented
substrates. Backscattering experiments on [001] faces are not semsitive to
transverse vibrations. Therefore, studies in the far-infrared wouid be very use-
ful [3.84a). The infrared reflectance work of [3.85] was performed for
GaAs/Aly 35 Gag ¢s As superlattices of rather large period. It was interpreted on
the basis of effective medium theory and yielded no microscopic information on
superlattice vibrations.

As concerns neutron scattering, its main advantage lies in the neutron
wavelength, which is on the order of a few A instead of a few pm as for photons.
As a conseguence, with neutrons one can probe the whole Brillonir zone of
crystals with lattice constants of a few A, while, as discussed in Sect. 3.1, photons
can only probe near the zone center. The application of inelastic neutron
scattering is, however, limited by the very small magnitude of the scattering cross
sections and neutron fluxes available. Large samples are therefore needed, a fact
which hinders the application of neutron scattering to epitaxial layers and
superlattices. Also, the frequency resoiution of ncutron scattering is never better
than a few cm ™!, i.e., worse than for light scattering and clearly inadequate for
the study of superlattice vibrations. Moreover, as we will show in Sect. 3.4, the
superlattice mini-zone may be very small {comparabie with a typical photon
wavevector). For all these reasons, and also for its relative experimental
simplicity, light scattering has been and remains the preferred technique to probe
superlattice vibrations.

3.3.2 Some General Properties of Light Scattering

In the classical description of the light scattering process, the incident light at
frequency w and the lattice vibrations at frequency £2 cannot efficiently interact
directly: their interaction takes place through the electronic susceptibility [3.10].
In the adiabatic or quasi-static approximation, the electronic susceptibility is
moduiated at the frequency Q by the atomic displacements. The radiation,
emitted by the electronic polarization induced by the incident light, is also
modulated by the phonon and contains oscillating components at frequencies w,
+ 0. In a light scattering experiment, the frequency shift between incident and
scattered light provides the phonon frequencies, whereas their relative intensities
are related to the scattering efficiency. This quantity reflects two multiplicative
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contributions: the average squared amplitude (actually the matrix element) of
the atomic displacements and the squared magnitude of the derivative of the
electronic susceptibility relative to the phonon displacement. In the case of
thermal vibrations, the first contribution ts proportional to n(w) for anti-Stokes
(o,=w;+ ) and to n(w)+1 for Stokes scattering (w,=w,~£2), where n{w) is
the Bose-Einstein population factor at energy @ and temperature T. The analysis
of the second contribution, involving the so~called Raman susceptibility, will be
the main topic of this section. We shall leave resonance effects, i.¢., the strong
enhancement in Raman susceptibility in the neighborhood of electronic
interband energy gaps, for Sect. 3.5.

In crystalline solids, the analysis of the Raman activity is usually done in two
steps. One first derives by symmetry considerations the non-vanishing indepen-
dent components of the Raman tensor. No reference is made to the microscopic
details of the mechanism involved. In the second step one calculates the Raman
activity in the framework of a model for the modulated susceptibility. Before
developing the case of superlattices of zincblende-type bulk compounds, we
must recall the selection ruie, mentioned in Sect. 3.1, which expresses the
wavevector conservation during the scattering process:

k,=ktq, (3.50)

where k,, k,, and g are wavevectors inside the sample of the scattered and
incident light and the phonon involved, respectively and —(+)appliesto Stokes
(anti-Stokes) scattering. The vectors of (3.50) are confined to the first (mini)-
Brillouin zone (SBZ).

Due to the very large value of the photon frequency of visible light ( ~20.000
cm™") as compared to that of a typical phonon (~200 cm™?), the difference
between k, and k, is often neglected, and one obtains:

k;=2—:j"—’;k.=2——?' , (3.51)

where n, (n,) is the refractive index of the sample at the incident 4; (or scattered A,)
wavelength: n,=n,=n. Decpending on the experimental configuration, the
magnitude of the allowed phonon wavevector lies between ~0 (forward
scattering) and 47n/4, (backscattering). Its maximum value is much smaller (by a
factor of 100) than the typical Brillouin zonc extension of a bulk III-V
compound and one usually considers that light scattering experiments probe
only zone center excitations. Raman selection rules are thus determined using the
zone center (I") symmetry. Taking into account the finite value of g will relax
some selection rules: forbidden lines become allowed and their intensity
increases when g moves away from zone center. This feature is important for the
acoustic modes: at the zone center they correspond to a rigid displacement of the
whole crystal which evidently induces no Raman scattering (translational
invariance). To treat this g-dependent scattering process in the vicinity of ¢=0,
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one introduces a new term in the modulated susceptibility which describes the
effect of the strain on the susceptibility (8y/de). The resuiting phenomenon is
called Brillouin scattering. This term actually does not give rise to a ¢-dependent
scattering intensity since the Bose population factor diverges for w—01like g~*.
Taking also into account the proportionality of the phonon amplitude to ¢~ 12
and that of the strain to g, we find a scattering efficiency independent of q.

Another case of g-dependent processes is encountered for the LO component
of [R-active phonons near resonance: intra-band Frohlich terms, which give a
vanishing contribution at the zone center, become large (see Sect. 3.5and [3.10)).

To determine the dipole (g-independent) allowed modes at the zone center,
one must find the irreducible representation of the crystal point group to which
they belong, as well as those of the components of the susceptibility tensor which
is usually assumed to be symmetric (see, however, Sect. 3.5.3b). A mode will be
allowed if its representation coincides with one of those of the susceptibility
tensor [3.10]). For zincblende-type crystals (point group T,) the representation
which expresses the total symmetry of the atomic displacements Iy can be
decomposed into irreducible components as:

=T, (3.52)

where 7, corresponds to the triply degenerate zone center acoustic and optic
modes, respectively [3.10]. The corresponding representation of the symmetric
susceptibility tensor reads:

[=A,+E+T, (3.53)

and contains T;. The zone center optic mode is thus allowed (note that A4,
corresponds to the trace of the tensor, E to the diagonal components less the
trace and T to the off-diagonal components). The related scattering efficiency is
then proportional to:

e, Ry, e, (3.54)

where ¢, and ¢; are the polarization vectors of the scattered and incident light. Ry,
is the Raman tensor associated with the vibration proportional to 7, com-
ponents (off-diagonal) of the susceptibility tensor. It is easy to show that for the
backscattering configuration on a [001] face of a T, crystal the longitudinal
optical mode is allowed. This mode distinguishes itself from the transverse one
because of the concomitant field which slightiy alters the allowed Raman tensor.
This alteration is determined by the Faust-Henry coefficient of zincblende

materials [3.10, p. 58].
Let us now consider superlattices grown along the [001] axis. The super-

periodicity induces (see Sect. 3.2.5a)

1) a lowering of the crystai symmetry from cubic (T, to tetragonal (D,,4).
2) an expansion of the primitive cell from 2 to 2(n, +n,) atoms.

X
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The lowering of the symmetry comes from two different features: the
superperiodicity in the axial direction, which then becomes inequivalent to the
two orthogonal ones, and the elastic deformation of the constituent compounds
which appears in order to accommodate any lattice mismatch between them. The
latter effect is often neglected (a good approximation for (GaAs),, —(AlAs),,).
Some experimental results on strained systems will be presented in Sect. 3.4.4.
While the point group of (001) oriented superlattices is always D, (tetragonal),
their space group depends on the details of the structure (3.78). For instance,
AB/AC structures are simple tetragonal or body centered tetragonal depending
on the relative parity of n, and n, . For 4B/C superlattices where Cis a group IV
clement (Ge, Si), the situation should be even more complex since n, can be half-
integer, a fact which induces a doubling of the superiattice unit cell.

The representations of the mechanical vibrations at I” are (see character tabie
(3.44) and [Ref. 3.10, p. 50] for the method to derive these representations):

[y=2(B; + E)+(n,+n,—1) (4, + B, + 2E) , (3.55)
including the k =0 acoustic phonons. Those of the susceptibility tensor (3.44):
I;=2A,+B,+B,+E. : (3.56)

Thus all modes are again Raman active. In (3.55) we have divided the
mechanical representations into two sets. The first one corresponds to cubic
representations at I" which are split by the tetragonal distortion. The second one
contains modes which come from out-of-zone-center points in the cubic
Brillouin zone folded to the zone center, due to the increase in the size of the
primitive cell. The emergence of a Raman active 4, representation is a specific
consequence of this increase. The intensity of all modes activated by supercell
formation vanishes with vanishing amplitude of the modulation. In the
backscattering configuration along the (001) direction; the £ modes (transverse)
are forbidden whereas the 4, and B, modes (longitudinal) are aliowed in z(x, x)Z
and z(x, y)7 configurations, respectively. The E and B, modes thus follow the
same selection rules as the cubic modes from which they arise, while the 4, modes
appear in a cubic Raman inactive configuration (remember, however, that in this
configuration LO modes become Raman active near resonance duc to intra-
band Frihlich interaction).

Before discussing the microscopic models used to describe the modulated
susceptibility, we shall reconsider the symmetry of the superlattice cigenmodes as
predicted from the one-dimensional models described in Sect. 3.2. In the AB/AC
case, zone center eigenmodes correspond to symmetric or antisymmetnic
displacement amplitudes of the rigid layer planes (relative to each midlayer
plane). The symmetric amplitudes correspond to the B, modes and the
antisymmetric to the 4, modes, a fact which seems surprising since the A4,
representation is totally symmetric. The displacement amplitudes, however, are
lengths of vectors whose direction is antisymmetric.
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333 The Bond Polarizability Model

One of the most popular models to calculate the polarizability and its derivatives
with respect to the atomic dispiacement is the so-called bond-polarizability
model, due originally to Wolkenstein [3.20], which describes the polarizability of
the whole crystal as the sum of the independent contributions of each bond. One
then obtains a local description of these quantities. Such models have been
extensively used for group IV [3.86] and III-V bulk crystals [3.87], various
layered crystals {3.88-90] and introduced for GaAs/AlAs superlattices by
Barker et al. [3.39]. Its predictions were considered in more detail and compared
with experiments in [3.91]. In a bond-related set of axes, the polarizability tensor
simply reads:

0 o 0], (3.57)
0 0 a

where the bond direction has been taken to be the x axis. The rest of the
calculation is simply a transformation of all tensors related to each bond in the
unit cell to crystal-related axes. While differentiating the crystal polarizability
tensor relative to the atomic displacements, one has to take into account (i) the
variation of the individual bond polarizabilities and (ii) the variation of the bond
orientation which makes itself felt through the coordinate transformation. One
usually assumes that the bond polarizability (3.57) only depends on bond
iengths. In zinc-blende-type superlattices the differential polarizability tensor
only involves the following parameters of each of the constituent bonds:

w =2 % 2.
3 dl, 101/5
a.,=-lj—3 &, ) _IDLI/B % (3.58)
a,,=—2—3 ddi?:o.l—lo]s/i ®, where:
ag=% (a) +2a,) 3.59)

w0 =% (a" —a,)

and [, is the bond length.
For a bulk crystal and the zone center LO modes propagation along [001],
one obtains [3.86]:

0 «a, O
dyc2le,, 0 0} du, (3.60)
o o0 0
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which, when replaced into (3.54) reproduces the well-known selection rules
[3.10). éu is the bond vector variation : its magnitude is the same for ail bonds in
the crystal in the case of this phonon.

For AB/AC superlattices, two different bonds appear and Ay is obtained
through a summation over all the bonds in the supercell:

A, A, 0
dy=|A, Az O where: (3.61)
0 0 A,
-1 na—1
Axa.::=a;1:,.=z z (ui'”_u?-i—,l)'l'af;.zz Zo (ugz’"'uﬁ-’l)
i==n, i=
-1
Ay,=ad) ¥ @ +ull), =201 (3.62)
i=—ny .
w-1
+a@ S G20

The indices 1, 2 specify whether the bond belongs to compound-1°or to 2. If this
manner one recovers the previously derived selection rules as A, vanishes for
symmetric modes (B;) and A, for antisymmetric ones (4,). The activity 4, of
the 4, modes can be considerably simplified and reads:

A (As) =21} o)) (3.63)

where u, is the displacement of the interface atom. This result can be understood
by noticing that the A, representation is not compatible with a zone center
representation of phonons in the bulk materials. In a model where the cubic
symmetry is locally preserved almost everywhere, contributions to the Raman
activity of these modes can only come from the non-cubic regions, namely the
interfaces, and is proportional to the local polarizability modulation.

In contrast, the A_(S) terms are nonzero even for a non-modulated
polarizability. As we pointed out previously, due to the large optic frequency
modulation, the superlattice optic modes are not well described in terms of
folding. As a consequence, the successive confined modes, and not only the first
one, have significant intensities. They decrease with increasing order m,
independently of the modulation of their interaction with radiation. For large
layer thicknesses it is easy to show that their intensity decreases with mode order
m (m odd) like m~2. We illustrate these features in Fig. 3.23. The intensity
variation of the upper optic modes confined to AB for the alternate linear chain
also used in Fig. 3.15 is shown as a function of the AB layer thickness. The bond
polarizability has been assumed to be unmodulated (the same in 4B as in AC).
These parameters are not well known for 11I-V bulk compounds, especially in
the visible where resonances occur, and one can only expect to obtain a
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qualitative description when using that assumption, as will be illustrated in
Sect. 3.2.4. Moreover, this model completely fails in reproducing the light
scattering intensities of the acoustic modes. It predicts very weak folded acoustic
lines due to the weak deviation of the folded modes from those of the bulk, which
also reduces the intensity of the acoustic Raman lines (the true Brillouin line
excepted).

Actually a large modulation of the bond polarizability may allow to
reproduce the typical folded acoustic intensity as suggested in [3.39). We have
already mentioned that a macroscopic description of the scattering efficiencies
by folded acoustic modes becomes possible by using the derivatives of the
susceptibility with respect to the strain, i.e., the so-called photoelastic constants.
These photoeiastic constants can, in principle, be related to the differential bond
polarizabilities a,,, a,,, and «,, [3.86, 92]. However, in semiconductors it is not
possible to describe both the Raman tensor and the photoelastic constants with
the same bond polarizabilities [3.86], the problem being the existence of
electronic resonances in the visible region {note that such a description is possible
for insulators such as diamond [3.93]). Hence, we decouple the photoelastic
constants from the bond polarizabilities and give below the treatment of the
scattering efficiencies for folded acoustic modes on the basis of photoelastic
constants.

We should mention at this point a bond polarizability calculation that
appeared recently [3.94] which includes the effect of disorder in the Ga, _ Al
layers.
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3.3.4 The Photoelastic Model

The polarizability modulation per SPC [3.42,95] due to the photoelastic
coupling associated with an acoustic mode reads:

4
Ay={ N(z)e}(2)dz (3.64)
[+)

where ef(z) =d(uf(z))/dz is the strain reiated to the mode of wavevector g in
branch i and I1(z) is the reievant profile of the photoelastic coefficient along the
superlattice axis z. For longitudinal modes propagating along [001], i in (3.64)
represents the xz or yz cartesian components and thus 7 (z) 1s related to the p;,
component of the photoelastic tensor p through:

4rll(z)= _':T P12 > (3.65)

where & should be the dielectric constant of the laser or scattered frequency
(assumed to be the same). The values of p,, and its spectral distribution have
been determined for many diamond and zincblende-type semiconductors below
the absorption edge [3.96]. In this region I7(z) is real. Actuatly most measure-
ments for superlattices are performed in the region where at least one of the bulk
constituents absorbs and thus the corresponding ¢ and p,, become compiex. In
this region little information is available for p,, [3.97]. Hence, at the present time,
the information about the photoelastic tensor p of the bulk constituents required
to interpret the intensities of scattering by folded acoustic modes is not available.
Even if this information were available the effects of the superlattice on the
electronic properties would considerably modify it. For a discussion see
Sect. 3.5.4 and [3.10].

In spite of this lack of precise information about the tensor p it is possible to
obtain expressions for the efficiency for scattering through folded acoustic
modes using the components of p in both media as parameters.

I is useful to discuss this problem with the Fourier formalism of Sect. 322
[3.42] which can be applied not only to the case of the sharp interfaces but also to
diffuse ones of arbitrary one-dimensional profile. We expand the quantities I1(z)
and uf(z) in Fourier series:

I(z)=Y P,e™"

u?(z)=euz 2 uf.,,c""’ . (3-66)
One then obtains:
ax=3 P_uf.(ng+q), (3.67)

where we have omitted the common multiplicative factors of (3.65) in IT(2).
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The scattering efficiency for each mode is proportional to |4 x*. The
eigendisplacements 1#(z) have already been determined by solving the wave
equation (see Sect. 3.2.2) and different approaches have been used to describe the
photoelastic profile. The simplest one, performed by Babiker et al. [3.98] crudely
assumes an unmodulated photoelastic coefficient P,. These authors take into
account the acoustic modulation obtained from a Green’s function treatment of
the wave equation. The resulting efficiencies are simply proportional to |P,l* and
can be compared without any knowledge of the photoelastic properties. As we
pointed out before, the acoustic modulation in the GaAs/AlAs system is smali,
and correspondingly, these authors predict very small intensities which are
strongly decreasing with increasing folding order. They arise, in this model,
exclusively from the coupling of the folded modes with the Brillouin mode of the
bulk. The predictions of this model for the intensity variation of the line +1 and
+2 as a function of the relative thickness « of the two layers constituting the
superceli are illustrated in Fig. 3.24. The model of [3.98] also includes the effect
of optical absorption, which induces some uncertainty in the wavevector of the
phonons involved and thus some broadening of the corresponding Raman lines.
Due to this broadening, and to the very small magnitude of the folded lines as
compared to the Brillouin line, strong coupling between the different com-
ponents takes place, giving rise to complex line shapes. All these features have
not yet been observed because on all the available systems, the contribution of
the photoelastic modulation appears to be dominant.

This contribution was first introduced by Klein et al. [3.95] in a complemen-
tary model in which any effect of the acoustic modulation is neglected. The
folded eigendisplacements are then plane waves propagating at the average
velocity of the superlattice, a correct approximation far from zone center and
edge. The calculated intensities only depend on the non-zero Fourier compo-
nents of IT(z). In the usual case of the periodic stacking of abrupt layers of two
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Fig. 324. Variation, as a function of the thickness ratio a=d,/(d, +4d,) in a GaAs/AlAs
structure, of the room temperature intensity of the four lowest folded branches at g/g=0.06
(g is the Jength of the first reciprocal lattice vector of superiattice), calculated neglecting the
photoelastic modulation, as done in [3.98), The line labelling was introduced in Fig. 3.7
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Fig. 3.25. Same as Fig. 3.24 but neglecting Fig. 3.26. Same as Fig. 3.24 but taking into

the acoustic modulation, and considering account both acoustic and photoelastic mo-

only the photoelastic one, as done in [3.95] dulations and assuming P{AlAs)/P(GaAs)
=0.1. From [3.60]
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Fig. 3.27. Calculated variations of the intensity of the two lowest folded (v= + 1) branches at
room temperature as a function of the thickness ratioa and of the wavevector ¢ normalized to
g. calculated assuming P(AlAs)/P(GaAs)=0.1. From [3.60]

different bulk compounds, all these components are simply obtained from the
Fourier components of the compositional profile, multiplied by the difference
between the (compiex) photoelastic constants of the bulk constituents. Again
one can compare the relative intensities “without any knowledge of the
photoelastic parameters. The results of the model are illustrated in Fig. 3.25 for
the same phonons as Fig. 3.24. In the present approximation, the intensities of
lines +n are equal and almost independent of wavevector. These two features are
the main deficiencies of a model which otherwise provides a good qualitative
description of the experimental results.

In [3.60] a numerical calculation of the intensity of the folded lines, taking
into account both acoustic and photoelastic modulations was performed. Witha
reasonably large set of Fourier components, one can determine the scattered
intensities to a good approximation. We show in Fig. 3.26 the results for the
same phonons as Figs. 3.24, 25 obtained under this assumption for a wavevector

A
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g typical of those involved in a backscattering experiment. As a matter of fact,
the intensities of lines +n and —n are now different and this difference strongly
depends on the scattering wavevector. This effect can be understood from the
results shown in Fig. 3.27. For an intermediate wavevector, the intensities of
lines +rand —n are similar and reflect the nth Fourier component of the profile.
At the zone center, due to the strong mixing of the two modes, one is allowed and
the other forbidden. For a typical backscattering wavevector, the intensity
difference reflects the progressive softening of the zone center selection rules.
Furthermore, due to the couplings between the “Brillouin™ acoustic and the
folded branches the calculation becomes sensitive to the relative magnitude of
the photoelastic coefficients of the bulk constituents. The line intensities are then
the result of the interference between the acoustic and the photoelastic
modulations. Such models can be easily applied to any periodic profile with a
piecewise constant modulation. In the case of a smooth modulation, however, a
detailed knowiedge of the photoelastic profile is needed: a linear approximation
to the dependence of the photoelastic coefficient on the composition is often
inadequate [3.99].

We mention that an attempt to incorporate in the intensity model
superlattice effects on the optical properties, i.c., to take into account the
modulation of the complex refractive index along the z axis, has been-recently
presented by He et al. [3.100].

3.3.5 Condlusions

We have presented in this section two types of models introduced to describe the
light scattering activity of superlattice vibrations. The bond polarizability model
refers to the local deformation of bonds induced by the (optic) vibrations while
the photoelastic one involves the macroscopic strain associated with the folded
acoustic modes. Although the two models may be quantitatively related to each
other, this connection leads to an inaccurate description of Raman and Brillouin
scattering in the corresponding bulk materials. In the first model, the amplitudes
of the B, optic-like modes ensuing from the cell multiplication are strongly
modulated and their scattering intensity is significant, even in the absence of
modulation of their coupling with radiation. On the other hand, the acoustic
modulation being extremely smail, the observation of the folded lines requires
the modulation of the photoelastic process.

We must emphasize that these models are only useful far from electronic
resonances, which will be considered in Sect. 3.5.

%R,
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3.4 Selected Light Scattering Results for Vibrations
in Superlattices

3.4.1 Introduction and Historical Aspects

The trends in experimental work on phonons in superlattices have been
influenced by the evolution of the type of available structures and their
crystalline quality. Until recently, the dominant systems were based on GaAs
and AlAs bulk compounds. In the late 1970s, following the ideas of Esaki and
Tsu [3.25], structures including a very few molecular layers of pure GaAs or
AlAs as superperiod were considered. Due to the immaturity of the Molecular
Beam Epitaxy (MBE) technique, these samples did not clearly exhibit the
expected properties, including those concerning phonons [3.101], and were often
found to be very close to random Ga, ., Al As alloys. Consequently, the
emergence of the concept of multi-quantum-wells, and the exploding interest in
the remarkable electronic properties of these structures [3.102}], less demanding
on growth quality, slowed down the interest on real superlattice effects and the
experimental work on phonons. One must mention some resonant Raman
scattering investigations from this period, mainly devoted to_elucidation, of
confinement effects on electronic states [3.103] or some controversial reports on
additional lines in the optical phonon range [3.71, 104]. One fundamental result
was obtained by Colvard et al. [3.49]: the first observation by light scattering of
folded acoustic phonons, a result that one can consider as a milestone of the
experimental work we describe in this section.

Since 1983, increasing interest has been devoted to the vibrations of
superlattices, leading to a rather detailed understanding of these properties, at
least for propagation along the growth axis. Again, the main stages concern
results on GaAs/GaAlAs structures but new systems appeared involving other
1I-V, [I-VI compounds, Si and Ge, and more recently, amorphous semicon-
ductors. Even if these systems display a new additional feature, i.e., they involve
layers strained because of lattice constant mismatch, their vibrational properties
are not qualitatively different from those of the GaAs/GaAlAs system. Light
scattering studies of strain effects have thus found their main interest in sample
characterization. Among these systems, that based on bulk Si and Ge and their
alloys has attracted the most attention and some interesting results have been
obtained in both the acoustic and optic phonon ranges. Related resuits have also
been reported for the folded acoustic modes of systems based on the periodic
stacking of amorphous semiconducting layers. In the following we will illustrate
all these results in three subsections. As already emphasized, the folded acoustic
and the optic vibrations display very different properties and will be considered
separately in Sects. 3.4.2,3. Section 3.4.4 will focus on the results related to
material characterization, mainly including strain and interdiffusion effects.

o
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3.4.2 Experimental Results for Folded Acoustic Phonons

As we mentioned in the introduction, the first clear evidence from light scattering
of a superlattice effect on vibrations was reported in 1980 by Colvardet al. [3.49].
These authors observed (see Fig.3.28) a doublet around 60 cm™! for a
superlattice consisting of alternating 13.6 A GaAs and 11.4 A AlAs layers and
attributed it to the lower near-zone-center folded longitudinal acoustic doublet.
Before them, Narayanamurti et al. [3.105] had reported the observation of a dip
in the acoustic transmission spectrum through a superlattice and attributed it to
the lowest zone edge gap opening due to the superperiodicity. Recently, acoustic
transmission has again attracted some interest [3.106, 107] and provided some
results complementary to light scattering.

Following this first observation, obtained under resonance conditions (laser
line close to strong electronic absorption), many reports have been devoted to
these lines in:

- GaAs/AlAs and GaAs/Ga, _ Al As structures [3.41, 42, 56, 59, 60, 65, 78,
82, 95, 100, 108-119] ’

~ other III-V compounds: GaSb/AlSb [3.120-123], InGaAs/InP [3.124],
InAs/GaSb [3.124], InGaAs/GaAs [3.124, 125]

- II-VI compounds: CdTe/CdMnTe [3.126, 127] -

~  Si/Ge and Si/Si,Ge, -, layers [3.128-131]

— amorphous semiconductors:
a—Si: H/a.SiN, :H [3.57, 132-133], a.Si:H/a.Ge:H [3.134].

Thus, these modes have been observed for a wide variety of systems, with
periods ranging from 10 A [3.111, 112] to 500 A (for instance, in [3.100}).
Several doublets are often recorded even out of resonance (17 doublets are
identified in [3.130]). In Fig. 3.29, we present a few Raman spectra of folded
acoustic phonons obtained for several typical superlattices. Recently, folded
acoustic lines have been investigated in samples whose period is composed of
more than two different layers [3.58, 60], large and complex supercells [3.135},
built up according to Fibonacci sequences [3.136] and even on aperiodic

! 1 ! 1

(1}
1A} 300K
) w, = 1959V
BY Z(XX)Z

Fig. 3.28. First reported observation of a folded
. ! acoustic doubict in a GaAs/AlAs superlattice [3.49]
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structures [3.137, 138], a topic which will be considered in Chap. 5 of this book.
One must also note that the folded acoustic modes are similar to those observed
for SiC polytypes [3.17] and for graphite intercalated compounds [3.139] as a
consequence of the periodic introduction of dopants in these crystals. Though
less extensively studied experimentally, these systems exhibit essentially the same

features as those described in this section.

Among these numerous reports, some only mention the observation of
folded lines or roughly compare their frequencies with the period of the sample.
Nevertheless, two particular topics have attracted increasing attention in the

past few years:

doublet splittings

measured intensities.

G

39

the quantitative understanding of the line frequencics, and in particular, the

the stringent Raman selection rules and the quantitative description of the

lines on: (/) a CdTe/CdMnTe
(3) a GaAs/AlAs superlattice
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These topics will be considered in the two following sections. The line profiles
have attracted less attention {3.116), the main resuit being that they are extremely
narrow, usually narrower than the resolution of classical Raman set-ups. A
detailed investigation of these profiles has been undertaken recently using a
Brillouin-Raman coupled apparatus [3.140].

a) The Raman Frequencies of Folded Phonon Branches

In [3.49] the folded LA line frequencies were already successfully analyzed by
using the elastic model. The parameters onc needs for this comparison are bulk
properties such as densities and sound velocities, and the structural parameters
of the superlattice. There are limitationsto checking the validity of a modet of the
GaAs/AlAs structures. The first is the lack of knowledge of the sound velocities
of AlAs [3.140a), the second the uncertainties in the determination of the
superlattice parameters. As explained in Sect. 3.2, the acoustic dispersion curves
are obtained first by folding an average dispersion curve and then by opening
energy gaps at the zone center and boundaries. As long as the acoustic
modulation is small, an assumption, which appears to be valid in all systems
considered so far, the average frequency of a given near-zone-center doublet

reads [see (3.11, 12)]:
nfa t—a\7? dy
2,=v E (;;4-?) M G—-—a- R v=0,1,2,... (3.68)

and does not depend on the wavevector.

Again due to the relatively small difference between v, and vy, this quantity
essentially varies as 1/d, nearly independently of a. Such variation has been
checked by different groups [3.95, 141] by using values of the period estimated
from the growth conditions or, even better, values determined by x-ray
diffraction [3.142]. This method provides an excellent determination of d from
the distance between superiattice satellites which accompany the bulk reflexes.
Morcover, taking into account the actual value of  in the samples provides a
moderately accurate determination of the sound velocity in bulk AlAs which is
found to be ~ 5.7 x 10° cmy/s (for longitudinal waves). This value corresponds to
almost the same elastic constants as in GaAs: therefore, the acoustic modulation
must essentially come from the density modulation.

From the determination of the doublet splittings one expects complementary
information and more insight on the physics of the problem. These quantities are
indeed proportional to the relevant modulation. The approximate relation for
the splitting 49, (3.14) was obtained in Sect. 3.2. It shows that the gaps depend
strongly on the details of the supercell structure, i.e., in the simplest case, on the
ratio «. The experimental results are in apparent disagreement with these
features. The doublet splitting seems to be independent of sample details and
doublet order. It amounts to about 5 cm ™! for the usual Raman backscattering
experiments performed at 5145 A, a much larger value than predicted from the
elastic model at k=0 using the sample parameters deduced from the average
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frequency measurements. As mentioned in [3.49, 109] and studied in detail in
[3.110], this result can be understood by taking into account the finite
wavevector of the phonon involved in the light scattering process. This quantity
isusually neglected in Raman studies of bulk materials because it is much smaller
than the size of the Brillouin zone. Also, optic branches are often weakly
dispersive around the zone center. Nevertheless, Brillouin scattering experi-
ments are well known to be sensitive to this parameter since the frequency of the
true acoustic branch is linear near k=0 [3.13].

A similar effect has to be taken into account for superlattices. Due to the
weak modulation, the wavevector range of interaction between a pair of
converging acoustic folded branchesis very small, and these “optic” modes, with
quadratic dispersion at the zone center, rapidly transform into “acoustic™-like
modes in the sense that their dispersion becomes linear. From a comparison
between both modulation and dispersion contributions to the doublet splittings,
one concludes that the second one is dominant in usual backscattering
conditions on GaAs/AlAs structures for periods larger than 20 A, i.e., foralmost
all available samples. This unusual feature in Raman scattering has both
negative and positive consequences on the amount of information to be deduced
from the line frequencies. On the negative side, Raman backscattering is nearly
unabie to probe the physical nature of the modulation and iS also only weakly
sensitive to the inner structure of the supercell, though being an excellent probe
of its periodicity. On the positive side, as emphasized in [3.110], Raman
backscattering does provide dispersion curves as neutron scattering does for
bulk compounds. By varying the incident wavelength, one can change the k.
since it is inversely proportional to A when neglecting the refractive index
variation. This will change the doublet splitting without changing its average
frequency. Such dispersion measurements have been performed by several
groups on the GaAs/AlAs [3.95, 100, 110], GaSb/AlSb [3.121-123], §i/Ge
[3.129], and on amorphous structures [3.132]. They are able to provide large
portions of the dispersion curves. Representative results are shown in Fig. 3.30.

Different ways of circumventing the difficulty involved in probing very close
to the zone center by Raman backscattering and to obtain information on the
gaps have been presented. The most natural one is to extrapolate to the zone
center the frequencies obtained at various wavelengths. As already pointed out
in {3.95] and apparent in Fig. 3.30, this extrapolation provides no evidence for
a zone center gap in the GaAs/AlAs system. For a.5i:H/a.SiN, :H, evidence of
a zone center gap has been obtained [3.133] thanks to the lower refractive index
of these compounds, which allows one to get closer to the zone center. The
second way is based on the possibility of adjusting both the period and the
incident wavelength in order to probe the region close to the SBZ edge. This
method has been first successfully applied by Briigger et al. to Si/Ge [3.129]. In
this system, thanks to the large average sound velocity, the lowest zone edge
doublet is accessible to a Raman set-up (at ~5 cm™!), which is not the case for
the GaAs/AlAs system (~2.5 cm™?). The agreement between measured and
calculated splittings near the zone edge is good, as illustrated in Fig. 3.31. More
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recently, similar ideas have been applied to GaAs/AlAs large period superlattice
[3.100] using a Brillouin-Raman apparatus which allows recording of Raman
spectra down to 1 cm ™ [3.140) and also to amorphous structures [3.132] usinga
Brillouin (Fabry-Pérot) spectrometer.

The first reported attempt to obtain information on the { olded acoustic mode
coupling actually involved a forward scattering configuration [3.56]. This
configuration allows one to probe the dispersion curves very close to the zone
center and is thus perfectly adapted to this problem. Serious technical
difficulties, related to the opacity of the involved compounds to usual ion laser
frequencies have, however, restricted its application. In order to collect the
scattered light on the other side of the sample, one must first remove the opaque
substrate from a small arca of the sample by using selective etching. Moreover,
the parameters of the superlattices must be chosen so that they become
sufficiently transparent. Figure 3.32 shows both forward and backward Raman
spectra obtained in this way for one of the two different samples considered in
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[3.56). In forward scattering, a single line lying between the two components of
the backscattering doublet is observed. This line is attributed to the A4,
component of this doublet, the B, component being Raman forbidden by parity.
Due to this selection rule,this method appears to be unable-to give a'pure
experimental evidence of a zone center gap. Nevertheless, from the splitting
between the forward scattering line and the center of the backscattering doublet,
the authors obtained an estimate of the gap in both samples, again in correct
agreement with the predictions of the elastic model. Considerable attention is
paid in [3.56] to the dependence of the acoustic gaps on structural parameters.
The strong oscillatory behavior of these quantities as a function of the ratio a is
supported by the few available experimental results. Moreover, new insight is
obtained on the selection rules, a topic to be treated in the next subsection. Very
recently, similar experiments were reported {3.57} for amorphous structures.
They are easier in this case because the substrate is transparent; the results
illustrated in Fig. 3.32 are also in good agreement with the elastic model.

To summarize, a departure from the alternating elastic model has not been
evidenced in most studies devoted to LA folded line frequencies.Only recently
{3.123] some evidence for departure from the elastic continuum model (and
better agreement with the alternating linear chain model) has been obtained for
GaSb/AISb superlattices. This effect should be easier to observe for TA modes.
The bulk TA dispersion curves are known to be flat over a large region of the
Brillouin zone (Fig. 3.1). Whereas these modes are forbidden in a backscattering
experiment on a [001] surface, they have been observed as weak structures
[3.95, 118] thanks either to departures from the ideal backscattering configura-
tion or to defect-induced scattering. Similarly, some observation of zone edge
disorder activated folded LA and TA modes has been reported and compared
with the case of bulk disordered systems [3.143]. Recently, He et al. [3.100]
extracted part of the folded TA dispersion curves from these structures, but
without reaching sufficiently high energies to obtain evidence of sublinearities.
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On the other hand, from the smali amount of experiments on structures with
other surface orientations j3.144], no reliable information on folded TA modes
has been extracted to our knowledge.

It is interesting to note that, for vanishing in-plane wavevectors, folded TA
and LA modes are decoupled since they have different symmetries. Thus, their
respective dispersion curves cross. In contrast, new “internal” acoustic gaps
appear for finite in-plane wavevectors which are out of the scope of light
scattering experiments but have been observed by phonon spectroscopy using
superconducting diodes [3.106, 107].

As concerns the opening of zone center and edges gaps, no real departure
from the alternating elastic model has been observed till now. Due to the small
ampiitude of the acoustic modulation between the constituents of presently
available systems, the folded frequencies are essentially sensitive to the
periodicity, and unfortunately, not so much to the physical details of the
problem. The few studies of this point have demonstrated the existence of
acoustic gaps in rough agreement with the elastic model, but have been unable to
provide accurate quantitative information on their magnitudes. Structures with
larger acoustic modulation wouid be of interest to further investigate this
problem.

b) The Intensities and Selection Rules of Folded Acoustic Modes

In contrast to their frequencies, whose main features have been understood from
the beginning, the selection rules of lines which correspond to folded acoustic
modes have generated some controversy. There is indeed a clear disagreement
between the predicted selection rules for zone center Raman modes and the
backscattering results. Both components of the folded doublets are systemati-
cally observed in parallel z(x, x)Z configuration and not in the perpendicular
z(x, y)Z one, whereas the zone center selection rules predict the observation of
one line (A4,) in parallel and the other (B,) in perpendicular configuration. One
thus has to explain why both lines are observed in the parallel (polarized)
configuration but not in the perpendicular (depolarized) one. It has been
suggested in [3.49] that the vanishing intensity in the latter case could be
attributed to the macroscopic nature of the photoelastic process involved which
introduces additional (cylindrical) symmetry: a strain along the z-axis produces
a change in x,, and x,, but not in g,,.

The observation of the alleged B, modes in parallel configuration was
attributed to resonance conditions in the early publications [3.49]. Its relation to
the finite value of the scattering wavevector involved was recognized later.
Conclusive proof of this fact was obtained in [3.56], the forward scattering
spectra displaying a single component corresponding to the 4, mode (see
Fig. 3.32) and in [3.60], where the increasing relaxation of the zone center
selection rules with increasing superlattice period was demonstrated.

Beyond the determination of the nature of the light scattering process, the
quantitative description of the intensities has attracted a great deal of attention.

Aoo



106 B. Jusserand and M. Cardona

The modulation which underlies the observation of the folded acoustic modes
can cither appear in the elastic or in the photoelastic properties. In other words, it
can be an intrinsic property of the object one looks at or a property of the method
one uses to look at it. As we briefly analyzed in Sect. 3.2, this appears explicitly in
the Fourier-transformed expression of the scattered intensities:

IA)) P_.u:..(na+q)r - (3.69)

first introduced in [3.95].
The u-terms in (3.69) reflect the mechanical modulation and the P’'s the

photoelastic one. Babiker et al. [3.98) studied the predictions of such a model as a
function of various sample parameters but neglected the photoelastic modula-
tion. They considered, in particular, the case of the GaAs/GaAlAs structure but
did not attempt to compare their calculations with experimental results. Colvard
et al. [3.65) on the other hand, in view of the small amplitude of this acoustic
modulation in the GaAs/AlAs systems as deduced from the folded line
frequencies, made the complementary approximation of neglecting the mechani-
cal modulation and investigated the effects issuing from the photoelastic
modulation. They pointed out two features well suited to experimental proof: (i)
the relative intensity of the folded lines and the true acoustic line and (ii) the
vanishing intensity of the even index lines, for equal thickness of both
constituting layers. Whereas feature (i) has not been considered till recently,
feature (ii) was successfully checked by those authors, As illustrated in Fig. 3.33
the second doublet disappears in a sample consisting of the periodic stacking of
85 A of GaAs and 88 A of GaAlAs as long as the experiment is performed
sufficiently far from electronic resonances. However, as can be seen in Fig. 3.24,
such a vanishing intensity is predicted in the mechanical model even when
neglecting the photoelastic modulation, as in [3.98]. The corresponding

0 10 20 X 40 50

RAMAN SIGNAL (arb. u.)

1]
[=]

G471A

FREQUENCY

Fig. 3.33. Low frequency Raman
spectra of a GaAs/GaAlAs super-
e { latuce with nearly cqual layer
thicknesses (B5/88 A) obtained
out of resonance (lower trace) and
close to resonance (upper frace)

[3.95]

5145A

FREQUENCY SHIFT(cm™

Ao



Raman Spectroscopy of Vibrations in Superlattices 107

thickness ratio « does not equal 0.5 in this case but the value at which the acoustic
gaps vanish [see (3.14)}):

a=—"8 (3.70)
IJA +Un

Since & amounts to 0.55 for GaAs/AlAs structures, the observation of a
vanishing intensity around 0.5 is not a conclusive proof of the photoelastic
mechanism. Nevertheless, we feel that the photoelastic modulation must
dominate the physics of the problem: the small acoustic modulation could not
induce the strong (compared to the optic modes) scattering observed for folded
modes.

In order to obtain more conclusive evidence, a quantitative comparison of
the predicted and measured line intensities is of interest. Besides the comparison
between different folded orders, another feature was shown to be sensitive to the
details of the process [3.60], namely the asymmetry of the lower doublet. As seen
in Figs. 3.24—26, the asymmetry in the relative intensity of both components of
the first doublet vanishes when neglecting the acoustic (mechanical) modula-
tion. If the mechanical modulation is included, the asymmetry reverses upon
switching on of a strong photoelastic modulation. The absence of asymmetry
when neglecting the acoustic modulation is easy to understand as both
components are related to the same Fourier coefficient of the photoelastic
profile. Colvard et al. emphasized that their model was valid away from zone
boundaries. They claimed that this assumption was correctly fulfilled in the
usual backscattering conditions, where the mode frequencies are indeed insen-
sitive to the opening of gaps. As demonstrated in detail in [3.60], asymmetries are
actually often observed by backscattering on GaAs/AlAs structures. they
depend strongly on the sample parameters and can be quantitatively explained
by taking into account both modulations. The predictions one obtains in this
framework were illustrated in Fig. 3.27 through the intensity of both lower
folded branches (v= —1 and + 1 modes) as a function of « and the wavevector ¢.
At the SBZ center one recovers the parity selection rules, a single line (A,) being
active, while as ¢ moves aways from the SBZ center, a continuous softening of
the selection rules takes place. Figure 3.34 compares two series of experimental
results and the predictions of the photoelastic model for different amplitudes of
the photoelastic modulation. One finds the following qualitative results:

- the sign of the asymmetry supports the dominant role played by the
photoelastic modulation

- the decrease in the amplitude of the variation of the asymmetry with « when
increasing the sample period d reflects the softening of the zone center
selection rules as the corresponding wavevector, normalized to the size of the
Brillouin zone, moves away from zone center.

These asymmetries are not very sensitive to the exact value of the photoelastic
modulation: a quantitative estimate is made in [3.60] (for Pyja,/Pgaas~0.1). As
concerns the relative intensity of the different doublets, some comparisons have
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Fig. 3.34. Variation as a function of the thickness ratio a of the asymmetry of the lowest folded
acoustic doublet measured on two series of GaAs/AlAs superiattices with two different fixed

periods. The experimental results are compared with the predictions of the photoelastic model
for different values of the photoelastic ratio (AlAs to GaAs) from —1 to 2 (see [3.60]). The
experimental data correspond to ratio = —0.2

been made for GaAs/AlAs or Si/Ge,Si, ... systems [3.131] which further support
the dominance of the photoelastic mechanism for both types of structures. The
relative intensities are not very sensitive to the exact value of the photoelastic
ratio. They are, however, sensitive to the detail of the compositional profile
[3.59].

A rather good method to obtain information about these properties is to
compare the folded line intensities to the true acoustic one (Brillouin), as
suggested in [3.65]. The very low frequency of the latter has, however, hindered
such measurements. Even if on the Si/Ge system measurements with Raman
spectrometers have detected these lines [3.128, 131], no attention has yet been
focussed on this particular point. On the other hand, He et al. [3.100] have
recently carefully analyzed the scattering intensities, including the Brillouin
scattering, for GaAs/AlAs structures, with their Brillouin-Raman coupled set-
up. They used a theoretical model which included the acoustic and photoelastic
modulations and also the modulation of the optical properties of the samples.
They thereby calculated the ratio Pyya,/Pg.as Which depends on the incident
wavelength. The value they found in the blue, 0.43, is in some disagreement with
the one obtained in [3.60].

To summarize, a reasonable description has been obtained of the intensities
of the acoustic lines on the basis of the coupled acoustic and photoelastic (and
possible optical) modulation model. One must emphasize that the observation of
the acoustic modes on superlattices is mainly due, like for the Brillouin effect of
bulk crystals, to photoelastic modulation, and displays a close analogy to the
observation of satellites in the x-ray diffraction patterns of superlattices. In the
latter case, a competition takes place between a “sample modulation™, namely
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the one of the lattice parameter along the growth axis, and a “coupling
modulation”, the one of the atomic scattering factors. On the nearly-lattice-
matched superlattices (GaAs/AlAs) the latter is dominant and the intensity
patterns and their variation with sample parameters are similar to the ones
obtained in Raman scattering [3.145]. On the other hand, for strained-layers
superlattices, the lattice parameter modulation becomes dominant and the
diffraction patterns may look very different [3.146]. Such a situation has,
unfortunately, never been encountered for phonons.

The limits of validity of the photoelastic model have been clearly indicated by
Klein [3.99]. They lic in the dispersive character of the (compiex) photoelastic
tensor of the bulk constituents. Even if a good knowledge of these bulk
properties exists, which is not often the case, is it justifiable to extrapolate them
to structures displaying very different electronic properties and to large unfolded
g's? Such a question emphasizes how careful one has to be when trying to
interpret the intensities of folded acoustic modes as a function of incident

wavelength.

3.4.3 Experimental Resuits on Optic Phonons
a) Introduction and Historical Aspects

In the analysis of the superlattice effects on the sample symmetry, we pointed out
the two main consequences of the superperiodicity: (1) the modification of the
zone center cubic modes and (2) the folding of cubic out-of-zone-center modes to
the zone center. In our analysis of the experimental result in the acoustic range,
we mainly focussed on the second aspect. When discussing the resuits in the
frequency range of the bulk optic modes, one has to consider both features. The
zone center optic modes are indeed easy to observe in cubic crystals, contrary to
the acoustic ones, and they remain qualitatively unchanged in superlattices.
Therefore, the observation of such modes in multilayer systems has often been
possible, sometimes with a small shift in their frequencies, without giving any
evidence of a superlattice effect. In the following we shall mainly discuss
experimental work which carefully demonstrates, by means of the dependence
on layer thicknesses, phonon confinement effects. Such results have been
obtained mainly for GaAs/AlAs structures, where (i) the competing effects of
strain are negligible and (ii) the bulk frequencies are resonably well known.
The oldest light scattering study to be found in the literature on superiattices
[3.101} already discussed the dependence of the LO frequencies of GaAs and
AlAs on the layer thicknesses in samples containing a few monolayers per
period. Such studies have been repeated and extended by several groups [3.66b,
82, 112, 147-148}.

Particularly convincing evidence of the confinement of optic phonons is
obtained when new additional modes are observed in the optic phonon
frequency range, due to the primitive cell multiplication. Such additional lines
have also been observed mainly for the GaAs/AlAs system. While new lines were
recorded in resonant conditions [3.71, 104] and attributed either to confinement
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or anisotropy effects, the first off-resonance observation [3.41] and guanu-
tative demonstration [3.67] of this effect, was performed in 1983 on
GaAs/Ga, _ Al As samples. Somewhat similar structures have actually been
previously observed at resonance [3.108] but without detailed assignment.
Several subsequent studies have been devoted to these features mainly for pure
GaAs/AlAs superlattices [3.42, 62-66a, 111, 149). Recently, observations of
confined modes have been reported for two different 1I-VI superlattices
- containing, respectively, CdTe and ZnTe [3.150] and CdTe and CdMnTe
[3.127], and also for GaSb/AISb systems {3.122, 123]. The observation of these
additional optic modes is difficult, as compared to the folded acoustic ones,
because of the low dispersion of the optic phonon branches. They must be
resolved from the close, more intense main optic line. Since the properties of
GaAs/Ga, _ Al As and GaAs/AlAs structures present some important differ-
ences due to the overlapping or nop-overlapping character of the optic phonon
branches involved, we shall describe them separately in the two following
subsections. In both cases, a good description of the frequencies is obtained by
using the alternating linear chain model, and the zone center Raman selection
rules are fulfilled. '

A third subsection will be devoted to experimental results which stand out of
the common framework of the work described so far, pamely, scateéring
involving a non-vanishing in-plane wavevector. This condition was first
intentionally obtained by Zucker ct al. {3.54] using right angle scattering on a
specially designed structure. Interesting selection rules were thereby observed.

A definitive understanding of the additional lines observed at resonances
[3.71} and a detailed study of their line shape and dependence on sample
parameters was obtained by Sood et al. [3.55]. These lines attributed to interface
modes can be observed near resonance, according to these authors, due to some
unspecified relaxation of the wavevector conservation. Similar results have been
reported for GaAs/Ga, . AL As [3.151-153], CdTe/CdMnTe [3.127] and
CdTe/ZnTe {3.150] structures. Related results for GaAs/Ga, - Al As structures
have been obtained as well by Lambin ct al. using high resolution electron encIgy
loss spectroscopy [3.77). An important feature in optic vibrations propagating
off-axis is the role played by long range Coulomb forces.

b) The Optic Vibrations in GaAs/Ga, _ ,Al,As Superlattices

Figure 3.35 shows Raman spectra obtained in the frequency range of the GaAs
LO mode for various GaAs/GaAlAs superlattices [3.67, 154). The spectra are
shown as two series. The first one corresponds to samples with all parameters
fixed except the thickness of the GaAs layer. In the second one, the only varying
parameter is the Al concentration in the Ga,_,Al As layer. These spectra
display four lines in the frequency range of the LO phonon of bulk GaAs, more
precisely, at frequencies smaller or nearly equal to it. The upper line, whose shift
from the bulk LO frequency is only noticeable for GaAs layer thicknesses smaller
than 30 A, always dominates the spectra. When the GaAs layer thickness is
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Fig. 3.35. Raman spectra in the GaAs optic modes frequency range obtained for two series of
GaAs/Ga, _, Al, As superlattice with a single varying structural parameter : (/) the Al concen-
tration x, [3.154}; (2) the number of GaAs monolayer in cach period n, [3.67]

reduced, the lines labeled 1, 3, 5 shift towards lower frequency, whereas the line
labeled P is almost unchanged. When the Al concentration is reduced, line P
strongly shifts towards higher frequency whereas the other lines are pushed only
slightly in the same direction. This behavior is rather similar to that of quantum
levels in an electronic quantum well. The confined frequencies depend strongly
on the well thickness and only slightly on its depth, at least as long as they are
sufficiently below the top of the well. As pointed out in Sect. 3.2, such phonon
quantum wells appear for partly non-overlapping optic phonon branches of the
two bulk constituents, a feature approximately displayed by the pure GaAs band
and the GaAs-type band of Ga,_,Al,As. However, contrary to the case of
acoustic phonons, whose frequencies in the alloy can be well described by using
the virtual crystal approximation, the optic phonons in these alloys display a
qualitatively different behavior from that of pure compounds. Ga, - ,Al,Asisa
prototype of two-mode-behavior [3.155]: over the whole concentration range,
two different optic bands coexist. Their frequencies vary only slightly with x,
each of them lying in the vicinity of the optic band of one of the constituting pure
compounds. Moreover, their relative intensity qualitatively reflects the concen-
tration of the corresponding compound. They have thus been identified as
GaAs-type and AlAs-type optic bands of Ga, . ,Al,As. This identification has
been further supported by CPA calculations of the alloy lattice dynamics [3.156]
which demonstrated that the local density of states at frequencies inside, say, the
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GaAs-type band is large on the Ga —As bonds of the alloy. Moreover, these
calculations provide *‘thick” (broadened) dispersion curves [3.157], an extension
of the usual notion of sharp cigenstates in perfectly ordered crystals 1o
moderately disordered systems. Since Ga, -, Al As is indeed a weakly disordered
systern [3.158], these “thick” dispersion curves display only small broadenings,
in good agreement with the results of light scattering. In [3.67] the following
approximate description of the Raman spectra in the GaAs-type cncrgy range of
GaAs/Ga, - Al As superlattices (with x=0.3) is thus introduced. In order to
apply the simple alternating linear chain model described in Sect. 3.2.3, the
authors fit both the pure GaAs and the GaAs-type LO dispersion curves in
Ga, _,Al,As with linear chain models. In both cases, ““effective masses™ must be
introduced and the free parameters are chosen so that the effective masses of As
as well as the spring constants are the same in both compounds. This description
greatly simplifies the dynamical properties of the alloy: the AlAs-type band is
neglected as well as disorder in the GaAs-type band of the alloy. Better
descriptions, which use, for instance, the CPA technique for superlattices, arc
beyond the present computational capabilities of most workers. On the other
hand, replacing in the calculation the alloy layer by an ordered chain of the same
average composition, as suggested by Worlock [3.1 59), is not very useful. Even if
the zone center frequencies of, for example, the Gag s Al, sAs alloy and GaAlAs,
compound are nearly the same, their dispersion curves should be rather different.
Using this rough model provides, however, a reasonable description of the
experimental results. A comprehensive comparison is not easy because the
frequencies depend on three different sample parameters: both layer thicknesses
and the aluminium concentration x. As concerns the confined modes, their
frequency strongly depends on the GaAs well thickness, slightly on its depth
which is related to x, and very weakly on the barrier thickness. Among the bulk
parameters introduced in the fit, three of them have a significant effect on the
confined frequencies: both zone center LO modes, which are well known, and
the curvature of the GaAs LO dispersion curve, which is extracted from the bulk
neutron scattering data [3.160]. As we shall emphasize in the case of pure
GaAs/AlAs superlattices, this feature is not known very well (recent and more
accurate measurements for GaAs are shown in Fig. 3.1): it has been suggested
that Raman scattering on superlattices may provide a rather good method to
determine the bulk dispersion curves.

As concerns the selection rules and line intensities off-resonance, a good
description is obtained using zone center Raman selection rules and the bond
polarizability modet. Contrary to the folded acoustic case, the finite value of the
superlattice wavevector involved is insignificant. Confined optic modes arc
indeed not sensitive to the periodicity of the system but rather to the thickness of
the individual layer in which they are confined. Since their penetration depth in
the barriers is generally less than one monolayer, this statement is valid even for
very small thicknesses. As for electronic multiguantum wells, the corresponding
spectra are a superposition of the contribution of each quantum well and reflect
the periodicity of the sample only through the superposition of these contribu-
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tions. In terms of frequency, the dispersion curves for k || - are very flat and thus
the results are independent of scattering wavevector.

The Raman selection rules predict the observation of the B, modesin z(x, y)=
and the 4, modes in z(x, x)z configuration. One should observe in z(x, y)=
configuration only odd parity modes, i.e., those belonging to the B, representa-
tion. The origin of the non-observation of the 4, modes off-resonance has
already been suggested in Sect. 3.2.3 within the framework of the bond
polarizability model: the 4, modes are forbidden for the exact cubic symmetry.
Their activation, in a local description, comes only from the non-cubic sites in the
structure, i.¢., from the interface atoms. In usual superlattices, such atoms are
not so frequent and their displacement is very small for confined modes. On the
other hand, their activity is proportional to the polarizability modulation,
contrary to that of the B, modes. The Raman activity of the latter can be
described semi-quantitatively on the basis of the bond polarizability model. It is
large when the contributions of the different bonds interfere constructively. This
is the case in particular when a local wavevector is small, i.e., when the frequency
of the modes is close to the zone center bulk frequency in a given layer. This
explains why mode 1 is always intense due to the contribution of the well layers,
and the other modes when they are close to the top of the barrier due to the
contribution of the barrier layers (see Fig. 3.23), a fact which agrees with
experimental cbservations. From an analysis of these intensities, one could
estimate the relative magnitude of «,, in both constituents. However, the
description of an alloy as a pure effective compound is more questionable for
eigendisplacements than for eigenenergies. These relative intensities have been
experimentally shown to be strongly dependent on the incident wavelength,
especially near resonance with electronic transitions, a fact that reveals the rough
nature of the model.

c) The Optic Vibrations of GaAs/AlAs Structures

The optic phonons of these structures are similar in many ways to those of the
GaAs/Ga, _ Al As structures. From the lattice-dynamical point of view, they
are simpler but also poorer in unusual features since the optic phonons are all
confined, either to the GaAs or to the AlAs layers. Due to the large difference
between the Ga and Al atomic masses there is nc overlap between the optic
phonon bands of the two compounds. On the other hand, this system is very
interesting as it involves two pure compounds and thus, can be described without
the drastic approximations introduced for the Ga, _ Al As alloy.

Due to the large energy separation between the optical bands of GaAs and
AlAs, the properties of the modes confined in, let us say, the GaAs layers, are
almost independent of the details of the AlAs layers, including the dynamical
properties of bulk AlAs. This has stimulated several groups to perform
quantitative comparisons between calculated and measured frequencies [3.39,
42, 59, 62-66b, 101, 111-113, 147-149]. The common aim was to check the
validity of the model for the GaAs modes, the bulk properties of this compound
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observation of all possible confined modes both in the GaAs and AlAs energy
range. For instance, they report the observation in a (GaAs)g/(AlAs)g structure,
of eight GaAs and eight AlAs optic modes. These observations are rather
impressive and they differ qualitatively from all previous reports. In the AlAs
enecrgy range, the spectra are usually weak, and higher order confined modes are
thus difficult to resolve.

Let us now return to the analysis of the confined frequencies. Whereas some
authors [3.39, 66b, 101, 111, 112, 147, 148] compared the measured frequencies
with those calculated by using the alternating chain formalism as a function of
the corresponding layer thickness, following the same approach as used for
GaAs/GaAlAs structures, some others [3.42, 62—-66a, 149, 150} took advantage
of the strong confinement to introduce a direct comparison between the
measured frequencies and the dispersion relation of the corresponding bulk
compound. This method has the advantage of providing a comprehensive
comparison between results depending on two parameters (the line index and the
layer thickness) with a single curve (the bulk dispersion curve). The idea
underlying this method was suggested in {3.65]: one can assign to each confined
mode in a layer of given thickness an effective bulk wavevector depending
on these two parameters. By analogy with a vibrating string, the effective
wavevector was first taken to be that of (3.26) where m=1, 2, 3, is- the line
index and d the layer thickness. Sood et al. [3.66a] plotted their experimental
results obtained for three different samples and involving several confined
modes together with the bulk neutron scattering results and empha-
sized some discrepancies. Molinary et al. [3.64], in a comment to [3.66a],
demonstrated that calculated confined frequencies displayed a somewhat similar
discrepancy with the bulk reference dispersion curve and attributed this
discrepancy to superlattice effects. Finally, Jusserand et al. in another comment
to the same paper [3.62], demonstrated that this discrepancy was more likely a
boundary conditions effect than a superlattice effect. They derived from the
alternating linear chain dispersion relation an approximate relation valid for
strong confinement. It reduces to the definition of the effective bulk wavevector
given in (3.25) which differs from (3.26). This difference originates from the
microscopic nature of the problem and becotnes important only for small layer
thicknesses. It can be easily understood by considering that interfacial As atomns
(separated by the period d) are not fixed but, instead, the first Al atoms in the
barrier (distance between Al atoms both sides of the GaAs layer d + ). Using this
more accurate expression reduces the discrepancy pointed out in [3.66], whereas
more recent results [3.149] plotted vs ¢ using (3.25) do not give any evidence of a
discrepancy with bulk dispersion relations, as illustrated in Fig. 3.37.

The basic question which remains open is whether Raman scattering on thin
layer superlattices can be used reliably to determine the dispersion relations of
the phonons of the bulk constituents. Raman scattering does indeed provide a
better frequency accuracy, but the validity of (3.25) for the determination of the
equivalent wavevector is not always evident. The sensitivity of g to the interface
quality may also be a serious probiem. On the other hand, this method remains
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unique for compounds which are not available in large volume. For instance, the
recent results on AlAs (see Fig. 3.37) should generate some new interest in the
lattice dynamics of this frequently used and poorly known compound.

Very recent work [3.35a] shows that caiculated and measured frequencies of
GaAs/AlAs superlattices oriented along [100] and [012] can also be mapped on
the corresponding bulk dispersion relations with (3.25). In these superlattices,
however, longitudinal and transverse modes are mixed, a fact which leads to
interesting effects (m odd-even mixing) in the eigenvectors.

d) Experimental Results Involving Out-of-Axis Vibrations

The singie reported experiment which involves hight propagation out of the
superlattice axis [3.54] is illustrated in Fig. 3.38. The difficulty in obtaining these
scattering conditions is due to the small thickness of the epitaxial layers (~ 1 pm),
and the large refractive index which makes oblique incidence outside the sample
nearly normal to that inside. The authors of [3.54] thus performed a right-angle
scattering experiment, the incident light focussed as usual on the (001) surface of
the sample and the scattered light being collected through the side (edge). This
collection is possibie with good efficiency thanks to two circumstances: (i) the
incident wavelength is just at the band edge so that the structure is transparent to
the scattered light and (i) two cladding layers of Al Ga,_,As enclose the
superlattice, which forms a waveguide for the scattered light. Near-resonant
conditions are thus also involved in this experiment.

The spectra obtained in different polarization configurations are shown in
Fig. 3.38 for a GaAs/GaAlAs sample with d, =d, > 100 A. For such thicknesses,
confinement cffects on the optic phonon frequencies are not expected. They
mainly emphasize the observation of puzzling selection rules given the local
cubic symmetry: an LO (TO) line is observed in a configuration where a TO(LO)

i



Raman Spectroscopy of Vibrations in Superlattices ur

Fig. 3.38. Raman spectra of a GaAs/GaAlAs superlat-
tice in the frequency range of optical phonons of GaAs
obtained for different polarizations in the right angle
scattering configuration illustrated in the inset together
with the structure of the sample [3.54). The superlattice
is clad with GaAlAs so as to act as a waveguide for the
scattered radiation
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mode is Raman allowed. In these experiments, the wavevector of the phonon
emitted in the scattering process is indeed oriented along y (the dispersion along
2, and thus the corresponding wavevector component can be neglected). In the
z(y, x)z configuration,which allows the observation of a mode of eigendisplace-
ment along u,, it thus seems that a TO line should be observed, while in the
z(x, z)y configuration, which allows the observation of a mode of eigendisplace-
ment along u,, one might expect an LO line. The experimental results are just the
opposite. This can be understood as due to the confinement of the vibrations.
One must therefore take into account the axial local wavevector associated with
the confined modes (3.25). As long as the in-plane wavevector component is
smaller than the effective axial one (3.25) fixed by the layer thickness, the latter
dominates and fixes the longitudinal or transverse character of the modes and an
apparent, but understandabie, breaking of the selection rules takes place.
The second series of experimental results concerning out-of-axis vibrations is
of a different nature since the in-plane wavevector is not created purposely in a
controlled manner, but appears due to some relaxation of the selection rules.
Such relaxation is often observed near resonance and its origin is generally
assigned to impurity assisted scattering processes (see Sect. 3.5). Such an effect
has been first invoked by Merlin ct al. [3.7] to explain the emergence near
resonance of a new line between the TO and LO components of both the GaAs-
type and the AlAs-type modes in a 14 A AlAs superlattice (see Fig. 3.39). To
explain this feature, they introduced the electrostatic anisotropic effective
medium model (Sect. 3.2) and attributed these new modes to additional roots
and poles in the effective dielectric constants (3.28). Merlinet al. [3.71] described,
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‘ Fig.3.39. Raman spectra of a GaAs/AlAs superlatuice

tiney, a0y} obtained out of resonance (upper frace) and at
300K resonance (lower trace) [3.71). The lines E(LO,) and
[E(LO,) which appear at resonance arc believed 10 be
due to interface modes. [3.55)
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the corresponding vibrations as “bulk " confined modes propagating in thelayer
plane. Similar structures have indeed been later observed and re-interpreted in
(3.55]. Their interpretation was based on the following observations:

- theAlAsandGaAsmodesbothdisphyaresonanthehaviornearelecﬁoﬂic
transitions strongly confined to the GaAs layers,

- thcynppearasbroadbandsspnudombetweentthOandLOmodnsand
display asymmetric lineshapes depending on the relative thickness of both
GaAs and AlAs constituting layers.

A common feature of these observations and of the expression of the
additional solutions introduced by Merlin et al. [3.71] is that the parameters of
both layers are involved. These additional structures should thus be assigned to
interface modes and not to bulk confined ones.

On the basis of the electrostatic model for layered structures we described in
Sect. 3.2, Sood et al. [3.55] explained the lineshapes of the bands and their
dependencconthelayerthicknessratio.'lhisismoreclearlysecninlhc AlAs
region, where the confined modes are less intense, as illustrated in Fig. 3.40. The
asymmetric line shape is attributed to the different symmetry of the two interface
modes existing in this frequency range (see Fig. 3.16). The antisymmetric
component, which appears at iower or higher frequency depending on the
relative thicknesses, is indeed not active via intra-band Frohlich interaction
(Sect. 3.5.1) which dominates the scattering process near resonance. The same
analysisintheGaAs-typefrequncymgeisnotascleax,thespecuabeing
dominated by the confined modes.

One must point out two main hypotheses of this description:

- the axial and in-plane selection rules mustbothbestronglyreluedfonhue
modes, and not for bulk confined ones

Ty
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Fig. 3.40. Raman spectra in the frequency
range of the optical phonons of bulk AlAs
obtained at resopance in the z(x,x)Z con-
figuration for three GaAs/AlAs structures
with different iayer thickness ratios [3.55]
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- there is no effect of coupiing between the two families of modes although they
are degenerate and some share the same symmetry (see Fig. 3.19).

Thus, some questions remain open in this novel ficld. Interface modes have
been recently observed on other superlattice such as CdTe/ZnTe [3.160], diluted
magnetic structures [3.127] and GaAs/Ga, _,Al_As [3.153]. Moreover, a
magnetic field enhancement of the resonant Raman spectra on confined LO
modes and an even stronger one on interface modes has been recently reported
[3.151]. Also, an enhancement with decreasing laser power density has been
observed [3.152]. These results seem to support the role played by the in-plane
wavevector relaxation in these observations. Nevertheless, the need for a
microscopic description of these features remains, even if a qualitative
description is obtained using the electrostatic approximation [3.73a).

3.4.4 Light Scattering in Superlattices: Application to Sample Characterization .
a) Introduction

In the former subsections we discussed the information that one can extract from
light scattering experiments concerning the lattice dynamics of superlattices. As
the main features are now reasonably established for the well characterized
GaAs —AlAs system, it is interesting to look at the information that one can
obtain from light scattering spectra on the structural parameters of superlattices:

— the dispersion curves of the constituting bulk compounds
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_ the thickness of the constituting layers or, more generally, the size and
structure of the supercell

_ the modifications of these properties due to strain when the two constituents
are not lattice matched.

We have already considered the first point when extracting the AlAs sound
velocity from the average frequency of folded acoustic doublets and when
comparing the bulk optic dispersion curves with the frequencies of the modes
confined to GaAs and AlAs. These methods are very useful for finding
information about compounds which are difficult to produce as large samples.
We already emphasized the sensitivity of these determinations 1o the accuracy in
the structural parameters and to imperfections in the compositional profile. Here
we shall consider the structural information one can extract from the Raman
scattering spectra of superlattices and compare it with that obtained by the more
usual x-ray diffraction method.

So far we have neglected the difference in lattice parameters between the two
constituent cubic bulk compounds and also between them and the substrate.
This approximation was justified for GaAs/AlAs structures grown on a GaAs
substrate since the relative difference of the lattice parameters of GaAs and AlAs
is less than 1%, . We will analyze, in a second subsection, the effect.of strain on the
vibrations of the superlattice.

b) Structural Characterization Using the Vibrations of 2 Superlattice

The usual method to determine the structural parameters of superlattices is x-ray
diffraction [3.145]). From the distance between the satellites which appear
around the diffraction peaks of the average compound, an easy accurate and
direct determination of the period of the sampie is obtained. In perfectly lattice-
matched structures, no more structural information can be deduced from these
positions and the observation of these satellites originates only from the
modulation of the atomic structure factor. Using an inverse Fourier transform,
one can then deduce the structure profile from the satellite intensities with an
accuracy depending on the number of observed satellites. Real superlattices are
actually divided into nearly lattice-matched (mismatch < 1%) ones and strained
ones. In the former case, the previous analysis remains valid [3.161]. Moreover,
the diffraction peak of the substrate is now slightly separated from the one for the
average compound, a fact which enables us to determine its composition.
Thanks to this additiona! feature, the thicknesses d, and d, of a simple
GaAs/AlAs structure can be deduced by considering only the satellite positions.
For strained layer superlattices, two modulations are involved and the x-ray
diffraction patterns look very different [3.146]. A numerical fit of the positions
and intensities is needed in this case.

The superlattice vibrations provide two probes of different nature, which
potentially make light scattering an interesting tool to characterize the structural
properties. The folded acoustic modes which propagate along the axis are mainly
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sensitive to the long range order. They thus provide information on the
periodicity of the system and on the inner structure of the supercell. in a way
rather similar to the x-ray satellites. Assuming perfect acoustic matching, the
period of the sample can be easily deduced from the average doubiet frequency.
Taking into account the small acoustic mismatch displayed by presently existing
superlattices makes this measurement less direct. In the experimentally derived
guantity vd, the average sound velocity v (3.11) actually depends slightly on the
details of the structure. Nevertheless, a good estimate of the period is obtained
from this rapid and easy measurement. Brugger et al. used this method for Si/Ge
structures [3.128) with an additional refinement. From the doublet splitting and
the knowledge of the phonon wavevector, one can derive the superlattice
velocity v and thus determine the period d with a better accuracy. Moreover,
from the value of v, a rough estimate of the thickness ratio in a simple structure
can be obtained. On the other hand, the determination of this ratio from the gap
openings, which strongly depend on its value, is not accurate due to their small
magnitude.

Thanks to the large modulation of the photoelastic coefficient, the line
intensities are strongly sensitive to the thickness ratio, as we showed previously,
and more generally to the inner structure of the supercell. This feature has been
investigated in two different contexts: (i) the analysis of samples containing more
than two layers by period and (ii) the characterization of interdiffusion profiles.

As concerns the first point, such complex samples have been first con-
sidered by Nakayama et al. {3.58]. They pointed out that for several
GaAs/Ga, s Al s As/AlAs structures the folded mode frequencies were strongly
dependent on the period but not on the relative thicknesses of the three layers,
whereas the relative intensities were strongly affected by the thickness ratio (see
Fig. 3.41). This feature has been analyzed quantitatively in [3.60]. As illustrated
in Fig. 3.42 for a (GaAs),,(AlAs),,(GaAs),, (AlAs),, peried, the calculated
spectra only reproduce the line intensities when the details of the supercell are
taken into account. A similar problem has recently attracted interest in
connection with the Fibonacci superlattice [3.135-138], (sec Chap. 5 of this
volume). Raman intensities have indeed been demonstrated to be very sensitive
to the long range quasiperiodic order in these systems.

Raman scattering studies of superlattices with smeared out interfaces were
first reported in {3.65). A decrease of the intensity of the lower acoustic doublet
was observed when the superlattice was annealed at 850 K for an increasing
length of time ; the frequencies of the lines remained unchanged. This result was
assigned to the diffusion of the interfaces which induces a decrease in the non-
zero Fourier components of the profile. A similar effect was observed later [3.59]
on analogous samples grown by MBE at different substrate temperatures. A
simple quantitative analysis of the intensities was performed. By using an erf-
function profile involving a free interface broadening parameter, on¢ can
describe the variation of the average intensity of both the first and second folded
doublets by using the same broadening parameter. Some insight on the quality of
the samples was thereby obtained for the first time using Raman scattering and

Me



122 B. Jusserand and M. Cardona

'

’ {3) (10.0.10}
o
s
-
[
7] o) {510.5)
&
sl N
{c} (8.10.2)
I Il
0 50 100

RAMAN SHIFT (cm™)

Fig. 3.41. Low frequency Raman spectra ob-
tained for GaAs/GaAlAs/AlAs samples with
equal periods and different individual layers
thicknesses (n1,n2, n3 in monolayers) [3.58}
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Fig. 3.42. Low frequency Raman spectra (3)
obtained for a (GaAs),, /(AlAs), [(GaAs),,/
(AlAs),, sample [3.60] compared with cal-
culated spectra which either take into ac-

count the detail of the structure (1) or con-
sider a (GaAs), 4, /(AlAs),, .., simplified
cell (2)

the study was later extended to superlattices grown by organometallic vapor
phase cpitaxy (OMVPE) [3.114]. This analysis has been recently applied to
annealed structures and correlated with the predictions of the diffusion theory
and with x-ray measurements for the same samples [3.119). However, as pointed
out by Klein [3.99], the photoelastic model is easy to apply when the photoelastic
coefficient varies linearly with x. In continuously varying GaAs/Ga, . ;AL As
structures, this description is questionable as the usual incident energies lie
between the frequency gaps of GaAs and AlAs and resonant features in the
photoelastic profiles are expected.

To summarize, Raman scattering spectra of folded acoustic lines provide
information similar to x-ray diffractometry. However, as the measurcd quan-
tities are less directly connected to the structure parameters, lower accuracy ¢an
be expected. No real systematic comparison has been reported so far, and
Raman scattering is certainly very useful when x-ray diffraction is not available
or difficult to set up (for instance in the casc of in situ characterization in high
vacuum chambers).
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Raman scattering also provides a second type of probe of the sample
parameters through the confined optic vibrations. Contrary to the folded
acoustic modes, they are sensitive to the local properties of the structure and give
information on the potential well in which they are confined. This can be applied
to determine individual layer thicknesses in superlattices and thus compiete or
check the data extracted from the folded acoustic lines. This has also been shown
to be powerful for probing the shape of the interfaces [3.59]. Figure 3.43 shows
the Raman spectra of phonons confined to the 25 A thick GaAs layers of the
same series of MBE sample used for folded acoustic intensity measurements. In
all samples, three LO confined modes are observed whose intensity and width
change only slightly from sample to sample. Their peaks shift towards lower
frequencies, a fact which is assigned to the effective shrinkage of the layer
thickness due to interface broadening. Because of the non-abrupt profile, the
thickness seen by a confined mode depends on its frequency. As a2 consequence,
the Raman spectra cannot be reproduced using the alternating linear chain
model except for samples grown at low substrate temperature. A crude
quantitative model has been introduced on the basis of an alternating linear
chain with continuously varying effective parameters [3.59].

Using the erf-function profile allows the authors to fit the three confined
mode positions with the same interface broadening parameter; the values
obtained for this parameter are ciose 1o those deduced from the folded acoustic
line intensities. While this method requires the knowledge of the corresponding
bulk dispersion curve, the authors introduce 2 semi-quantitative test of the
interface profile which only makes reference to the nearly parabolic shape of the
dispersion curves involved. Under this assumption, the relative frequency
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separation between the confined modes directly reflects the shape of the well. For
a rectangular (or parabolic) profile, the successive confined frequencies follow a
quadratic (linear) progression. From the comparison of the line separation, an
estimate of the profile abruptness is obtained. A similar analysis was not possible
in the AlAs-type frequency range as only one confined mode was observed.
From the recent Raman determination of the bulk dispersion curve [3.149], an
analysis of the AlAs layer shape could be undertaken on the basis of the shift of
this single confined frequency. As in the case of folded acoustic line intensities, a
similar analysis has been applied to superlattices grown by OMVPE under
different conditions {3.114] and recently, to anneaied superlattices [3.119, 162].

¢) Strained Layer Superlattices

Thus far, we have neglected the difference between the lattice parameters of the
superlattice bulk constituents and that of the substrate. When “pseudomorphic
growth” is achieved, the substrate, which is very thick compared to the epitaxial
layer, imposes its lattice parameter in the directions perpendicular to the growth
axis. The epitaxial layers then suffer a tetragonal elastic deformation. When the
substrate is identical to one of the superlattice constituents (e.g. GaAs in
GaAs/AlAs structures), the strain is localized in the other comstituent (this'can
be changed by using a buffer layer between substrate and superlattice). These
deformations accumulate elastic energy in the sample. Above a critical thick-
ness, whose magnitude is not well understood, misfit dislocations appear which
relax the strain in the layers. In superlattices two different critical thicknesses
must be considered: the first one is related to the relaxation of the individual
layers, one relative to the other, and the second one is related to the relaxation of
the superiattice considered as a whole, relative to the substrate.

The strain due to lattice mismatch is invariant under the point group of the
superlattice (D, for a [001]}-grown superlattice). Hence, some shift of the LO
and TO modes is expected without any additional splitting. Some change in the
acoustic velocities is also predicted. This, together with the small lattice
mismatch in the usual systems, explains why so little work has been devoted to
this problem, only in the following structures:

- GaSb/AlSD [3.120-123], GaAs/InGaAs [3.154,163]

- Si/Si,_.Ge, [3.164, 165]

— some II-VIcompounds: ZnTe/ZnSe [3.166], ZnTe/ZnS [3.167], CdTe/ZnTe
[3.150], ZnSe/ZnS,Se, -, [3.19]

— ZnSe on GaAs [3.168], ZnTe on GaAs {3.19].

In all these studies of superiattices except [3.150}, the effect of strain is
investigated on the LO line confined in layers whose thickness is too large or
whose crystalline quality is too poor to induce a significant confinement effect.
Raman scattering can then be used as a probe of the local strain exactly as for the
global strain in a thick layer [3.169]. This interesting feature appears thanks to
the local character of the Raman probe. Depending on the substrate, Raman
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shifts can be observed either for both compounds in opposite directions or
restricted to the single strained one. The former case is illustrated in Fig. 3.44in
Si/Sig s Geg s structures grown on a Sig 73 Geg 25 buffer layer. The optic mode of
the Si layers is shifted towards lower frequency whereas the three different modes
of the alloy are shifted in the opposite direction. In the case of GaSb/AlSb
structure grown on AlSb buffer layers, a Raman shift is only observed on the
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Fig. 3.45. Theoretical (—) and ex-
perimental values of the strain-induced
shift of the GaSb-type LO frequency in
GaSb/AISb superiattices shown as a
function the strain-induced change in
lattice parameter of the GaSb layers
along the superlattice axis. From [3.120]
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GaSb LO line and can be quantitatively assigned to the elastic deformation (see
Fig. 3.45). The strain has striking consequences in GaAsfln, __Ga,As
structures. As reported in [3.163), a single GaAs-like LO line is observed in this
system, contrary to the prediction, based on unstrained data, of a GaAs-like
band ordering very similar to that of GaAs/Ga, _,Al, As. However, due to the
strain, which almost exactly compensates the alloying cffect, there is no
modulation of the GaAs-like optic phonon frequency in this system [3.154].

Recently, Menéndez et al. {3.150] reported the observation at resonance of
several confined modes in the highly strained CdTe —ZnTe system. They extract
information on strain from a quantitative analysis of the confined frequencies
with the alternating linear chain model and look for the corresponding shift of
bulk optical branches. It would be interesting to investigate by these methods the
strain-induced change in the shape of the optic dispersion curves or in the value
of the sound velocity obtained from the zone folded frequencies in strained layer
superlattices. We should also mention that Olego et al. [3.19] have been recently
able to determine strain profiles. vs. depth in superlattices and in single epitaxial
layers by measuring Raman spectra for different laser wavelengths (i.e.,
penetration depths). The strain has been shown to decrease from the interface to
the substrate to the outermost free surface.

In order to quantify the effects of strain on the optical -phonons of a
zincblende-type bulk material, a dimensionless fourth rank tensor R, (in
contracted index notation) is defined [3.170]. The relative frequency shifts are
obtained by contracting this tensor once with the strain and twice with the
direction of the vibration under consideration. This tensor has, for the T, point
group, three independent components K,,, K;,, and K, which are sometimes
replaced by three parameters p, g, r with the dimensions of a frequency squared
[3.171]:

p=R,0*, q=K,0?, r=K,o*. (3.71)

These parameters are usually determined by means of Raman and IR
measurements on samples subjected to uniaxial [3.170] or hydrostatic stress
[3.169]. Results for zincblende-type materials are listed in Table 3.1. It is thus
customary to split the strain into hydrostatic and uniaxial components. The
effect of the hydrostatic component is described by the Griineisen parameter y
related to K, ; through

3 .

(3.72)

The other two independent components of K,;, K, —X;, and K,,, described the
effects of a pure shear (traceless strain tensor) along [100] and {111], respectively.
For lattice matched adjacent layers A, B perpendicular to [001] with different
bulk lattice constants one find [3.165] for the “singlet” vibration along [001]:

do, Ku Ku
*'-‘—;—-—T 5,,+T (Exx+£”} , (3.73)
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Table 3.1. Coefficients which determine the hydrostatic shift (K,, +2£,;) and the shear
splittings (Ky, — K, ;, K,,) of diamond- and zincblende-type bulk semiconductors. In the cases
where the coefficients for LO and TO phonons are given as equal, no sufficient experimental
information is available to determine the separate vajues.

Ry +2K,; K,-k, R

LO TO LO TO LO TO
Sis-t ~5.5 ~5.5 0.48 0.48 061  —0.61
Ge? —-6.7 -6.7 0.46 0.46 —0.87 -0.87
AlSh® —6.0 -5.2 0.97 0.55 —-034 —07
GaP*¢ -6.5 —57 1.03 0.60 —0.50 —0.58
GaAs™* —74 -8.3 0.70 0.30 —-0.53 -0.88
GaSbhe ~1.3 —8.0 0.22 022 -1.08 -1.08
Inp*t -74 -8.6 1.20 0.69 —-018 -047
InAsi —~6.4 -73 0.57 057 = —-076 -0.76
InSb -7.0 ~8.5 - - - -
ZnS* -6.0 -6.6 - - - -
ZnSers —54 -84 1.24 1.24 -043 —-043
ZnTe* - -72  ~102 - - - -

[3.169]. * M. Chandrasekhar, J.B. Renucci, M. Cardona: Phys. Rev. B17, 1623 (1978).
[3.173]. * 1 Balslev: Phys. Stat. Sol. B61, 207 (1974). -

[3.170). * K. Aoki, E. Anastassakis, M. Cardona: Phys. Rev. B30, 681 (1984).

F. Cerdeira, C.J. Buchenauer, F.H. Pollak, M. Cardona: Phys. Rev. BS, 580 (1972).
[3.172].

r®wm & n »

where ¢,, and e,,=¢,, are the components of the strain tensor related, for
medium 4, to the lattice mismatch e=(a, —a,)/{a) through
=Byy= —E&; E:z= _IZSIZl(Su '*‘Su)]f: ] (3‘74)

Exx

where §,, (>0)and §,, (<0) are the elastic compliance constants of 4. We have
assumed medium B to be unstrained, i.e¢., to be much thicker than 4 or to equal
the substrate and match its lattice constant. Generalizations to other situations,
¢.g. 4 and B disconnected from the substrate, are straightforward (see Appen-
dix 3.A).
The “*doublet” vibration (perpendicular to [001]) shifts by an amount:
4w, K, K

- ust]
= £+ > (&,,+¢&;,) . (3.75)

We should note that, in principle, the parameters K, ; are somewhat different for
the LO and TO components of the optical phonons. Accurate determination of
both sets of independent parameters, however, have only been recently per-
formed for GaAs [3.170], InP [3.172], and AlSb {3.173]. This problem does not
arise in the group IV materials (Ge, Si) since they have no LO —TO splittings.

We should report, in closing this section, that strained layer heterojunctions
(InGaAs —GaAs — AlGaAs) have been successfully used to fabricate lasers
which operate CW at room temperature (8250 A) [3.174). Effects of strain due to
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lattice mismatch on optical phonons have also been observed for single epitaxial
layers, the most conspicuous case being that of silicon on sapphire (S80S) [3.175).
7nSe on GaAs [3.168] and gray tin on InSb [3.176] have also been investigated.

3.5 Resonant Scattering

The electronic states of superlattices fall into two categories: Those with energies
within the potential wells have wavefunctions confined to those wells with
exponential decay into the barriers [3.177-180). For sufficiently large barriers
there is no interaction between wells and these states do not show any dispersion
(band formation) along k.. In this case, one speaks of multiple quantum wells
(MQW). This concept is valid for states which correspond to those near the
Jlowest band edges of the bulk material of the well (note that the well of the
conduction band may be in material 4 while that of the valence band is in
material B in the so-called type II superlattices). States of the well which lie
above the barrier top are propagating states since they always find other statesin
the barrier to which to couple. Nevertheless, this coupling can be small, and
resonant (nearly confined) states can result. For small period superlatticgs (»,
=n, < 8) all states disperse appreciably along k.. For large well thicknesses the
towest (highest) conduction (valence) states do not appreciably disperse and one
has a MQW. The energies and wavefunctions of these states are the same as fora
single quantum wel} [3.181] except for the enhanced degeneracy.

The light scattering mechanism discussed in Sect. 3.3.3 ignores the depen-
dence of the Raman tensor on laser frequency w;, although it could be easily
assumed that the & , of (3.57) and its derivatives depend on w,. Even than, the
resonance phenomena in which either ho, or hw, are equal to the encrgy hw, of
strong electronic inter-band transition (c.g., between valence and conduction
states confined to the same material) would not be appropriately described:
resonance phenomena appear both for w;=w, and for w,=w, (incoming and
outgoing resonances, respectively). The theory of Sect. 3.3.3 implies that w; ~w,
and thus leads to only one resonance frequency for each w,. The assumptions of
this “quasi-static” or «adiabatic” theory are justified whenever the phonon
frequency w, satisfies:

wo <€lw, —w; +ilY , (3.76)

where [ is the Lorentzian broadening of w,. Condition (3.76) usually holds at
room temperature. At lower temperatures, however, it does not hold for optical
phonons at the lowest w,s since [, becomes very small.

Resonance Raman scattering is rather rich in phenomenology even for bulk
materials {3.10]. The theoretical interpretation is performed usually within the
framework of the uncorrelated electron-hole approximation. Experimental
results, however, sometimes reflect Coulomb interaction between these particles,
i.c., the so-called excitonic effects [3.182].
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3.5.1 Resonance Effects in the Bulk Constituents of Silicon
and Zincblende-Type Superlattices

a) Resonant Electronic Transitions

The details of the electronic transitions which produce resonance in the Raman
scattering by phonons in Si and GaAs-type materials is discussed in Sect. 2.2.4 fT.
of [3.10]. Here we shall recall some general features and recent developments
useful to the discussion of superlattices. The bulk resonances which have been
mainly investigated occur at the so-called Eq, Eo+ 4o, E; . and E, + 4, gaps (see
Fig. 2.37 of [3.10]). These gaps, transition energies, or critical points all have
counterparts in superlattices. The E, gap, the lowest direct gap at the I' (k=0)
point of the bulk BZ, takes place between p-like valence states (mainly anionic)
and s-like conduction states (mainly cationic). The p-states are spin-orbit split by
an amount 4,, a fact which gives rise to the E,+ 4, gap. The strong E, and
E, + 4, transitions are also spin-orbit partners. They take place along the four
equivalent (111 directions between the split top valence bands and the lowest
conduction band [Ref. 3.10; Fig. 2.37). The standard Feynman diagram of
resonant scattering by one phonon is shown in Fig. 3.46. One usually distin-
guishes between two-band and three-band terms in the scattering amplitude. In
the former the phonon connects electronic states belonging to the same band
(c=c' or p=p' in Fig. 3.46) while in the latter the phonon couples states
belonging to different bands. Two-band terms are usually more strongly reso-
nant than the three-band ones since the former have two energy denominators
resonating at nearly the same frequency, while the latter only have one.
Expressions for the scattering efficiencies near the By, Eg+4o, E; and
E, + 4, gaps {also called critical points) are given in [3.10]. They contain two-
and three-band terms and are based on the quasi-static approximation. Theycan
be presented either in terms of analytic expressions for the combined densities of
states at critical points [(2.194) of [3.10]] or, equivalently, of the dielectric
function and its derivatives with respect to @ [(2.195,201) of [3.10]]). These
expressions can be easily transformed into others which do not require
fulfiliment of (3.76) [Ref. 3.1; Sect.2.3.2]; see also [3.183, 184]). This is
accomplished by replacing in the two-band terms the derivatives of y(w,) by the

ta) Wo

Fig. 3.46a,b. Feyman diagrams of resonant Raman scattering by one phonon (-—-) in
semiconductors. The thin lines represent photons, the thick ones electrons and holes. The
phonon is shown to couple to either the conduction (a) or the valence states (holes) (b)

A2k
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finite difference ratios [y(w;) — x(w,)}/w, and the three-band terms y(w,) by the
average of y(w,) and y(w,).

The expressions (2.194, 195) of [3.10] are based on the three-dimensional
parabolic expansion of the E, and E, + 4, critical points. That for the E; and
E,+ 4, critical points [(2.201 of [3.10]), is based on a two-dimensional
expansion of the energy differences between conduction and valence bands vs. k:
this difference is constant along the [111] direction over a large region of the BZ.
Hence, the longitudinal mass can be assumed to be infinite, and a cylindrically
symmetric (i.e., two-dimensional) situation results. The equations so obtained
for the E, and E, + 4, critical points can be easily transformed for application to
the case of MQW [3.103].

We close this subsection by pointing out that the expressions mentioned
apply to phonons at k=0 i.e., they lead to scattering efficiencies independent of
k. This is the so-called (dipole) allowed scattering. In the case of LO phonons,
“forbidden™ scattering of amplitude proportional to k, is induced by the
electrostatic field which accompanies such phonons (Fréhlich mechanism, see
Sect. 3.5.1¢c).

b) Deformation Potential Electron-Phonon Interaction

The matrix clement of the electron-phonon Hamiltonian between electronic
states is usually written in terms of coupling constants called deformation
potentials (in eV, representing matrix elements per unit dimensionless phonon
deformation; see for instance [Ref. 3.10; Eqs. (2.187, 199))).

Resonant scattering at the E, and E,+ 4, gaps is determined by a single
deformation potential called d, (~ 4+ 30eV for most materials treated here
[3.185]). It is easy to see by using standard character tables for the T, group of

el Y T Y

les R & 2 (A%)

Fig. 3.47. Resonance measured for deforma-
tion potential (DP) scattering by phonons in
GaAs in the allowed ¢, || [100], ¢, } [010] confi-
guration, and forbidden scattering (F) ob-
tained for ¢, | ¢, | [100). From [3.183]. The solid
s | and dashed curves are fits obtained with the
102 L I I theory of [3-186]
147 148 149 150 15
hw; (ev)
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zincblende [3.80] that the Raman phonon of I 5 (7,) symmetry couples neither
with the I'y conduction band nor with the split-off valence band I5. Thus, the
Ey+ 4, gap only exhibits weakly resonant three-band terms related to the
coupling of the I'; valence band with its split-off mate Iy (see structure at
~1.8 eV for GaAs in {Ref. 3.10; Fig, 2.8]). Two-band terms occur at the E, gap
since the corresponding valence band (I ;) couples with itself via the I'; phonon.
Thus, very strong resonances result, as shown in Fig. 3.47. The resonance at
Eg+4,, determined by three-band terms, has a strength proportional to
(d,/4,)*. It should be much stronger for InP (4,~0.1 V) [3.187] than for GaSb
(dp,=0.8¢V) [3.188].

The orbital wavefunctions of I, states have p-like symmetry and thus vary
under the operations of the T, point group like the coordinates x, y, z. We
represent them by X, Y, Z. The wavefunctions of the spin-split [; and /5 states
can be labeled in angular momentum notation:

C 3) 1 - . G 3)
2, 2 )=—= (X+iDT; =, =)=
AP ? ]? 2 3 f
- - = — i "Z ; o
(2’ 2) I/E (X+1Y)l+\/; I (2 2)
11 1 i 1 (1 N\

5 X-i}

(x-im-ﬁ z|
6 2

% X—i¥)T+

SENE

1

V3

3.77

z|

>

The matrix elements of the electron-phonon Hamiltonian H,, for Stokes
scattering can be easily obtained by using the relationship (in atomic units

[Ref. 3.10; Eq. 2.187)):

(XHE Yy =2 (

1/2 12
o ) (ng+ 117 (3.78)

2wouN

where HZ, represents the Hamiltonian for a phonon polarized along 2z, u the
reduced mass of the primitive cell (PC), a, the lattice constant N the member of
PCs, and ng the Bose-Einstein factor. Other non-vanishing matrix elements of
H,, can be obtained from (3.78) through circular permutation.

The E, and E, + 4, resonances are determined by two deformation poten-
tials, dj o and dj, [3.183, 184). The former determines the three-band terms
which couple the spin-orbit split valence states while the latter determine the two-
band terms; the three-band terms usually dominate ¢ven at resonance
[3.183, 184]. The E,, E, + 4, resonances should be important in superlattices
containing Ge, InSb, InAs, and GaSb since they occur in the region of standard
ion lasers (2-3 eV). (For energies of these gaps see [3.96]). However, we shall not
discuss these resonances any further since only one detailed report concerning
them has appeared [3.189].
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¢) Friulich Interaction

The deformation potential is assumed to be independent of the k of the phonon
and thus can be considered to be Jocal in real space. In polar materials longi-
tudinal phonons are accompanied by electric fields which contribute a long range
(k-dependent) term HY,, to the so-<called Frohlich Hamiltonian [Ref. 3.10;
Eq. (2.212)], proportional to [k| . The three-band terms arising from Hy, result
in a small renormalization of the allowed Raman tensor [Ref. 3.10; Sect. 2.1.12]
of [3.10]). The two-band terms, however, lead to a forbidden contribution
[Ref. 3.10; Sect. 2.2.8} whose Raman tensor is usually diagonal and its scattering
efficiency proportional to |k[?. Expressions for this tensor asa function of band
parameters are given in [3.10] for the adiabatic case. This restriction has been
lifted in [3.190] and [3.191] for three- and two-dimensional critical points,
respectively. The latter results can be adapted to an in-plane propagation in
MQWs. The results are the same as those of [3.103].

The forbidden scattering discussed above is usually small because of its
proportionality to |k[?, which is basically zero for forward scattering and rather
small for backscattering |k| =4mn/A,. It can, nevertheless, become dominant at
resonance. An enhancement mechanism, based on an additional interaction with
charged impurities which increases the effective k|, has been suggested [3.192].
This mechanism generates incoherent phonons with varying (but small) ks. The
generation of incoherent phonons has been experimentally demonstrated
(3.193]. A particularly reliable signature of the impurity-induced process is the
fact that the outgoing resonance becomes dominant, while in the k-induced
process structures of the same strength are seen both at the incoming and

outgoing resonances [3.194].

d) Interference Between Frohlich and Deformation Potential Scattering

The Raman tensors for Frohlich, Rg, and deformation potential scattering, Ry,
have the forms:

1 010
Re=az| 1 |. Rp=ap[1 0 0 (3.79)
1 00 0

for LO phonons propagating along z. It is easy to see that (3.79) leads to
scattering for ¢, ||e,|| [110] which is different to that for ¢ e} (170] as a result of
the interference of the complex quantities g and ap near resonance. The
scattering efficiencies are proportional to lap +agl* and |ap —ag? in the former
and latter case, respectively. Such interference effects have been observed at
E,+4, [3.187,188, 193] and at E,, E, +4, [3.194). Similar effects have been
reported at E,, E, + 4, for MQWs [3.189].

it
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3.52 Resonance Scattering by Phonons in Superlattices

The E, absorption of buik zincblende materials transforms into a series of
discrete lines when the material forms a quantum well (or MQW). The electronic
states become localized to the wells and in the lowest conduction band at I' a
ladder with indices /=1, 2,3 ..., whose envelope wavefunctions are similar to the
envelopes of the phonons of (3.34, 38), results. The top valence band develops
into two such series: that of the heavy holes (HH) and that of the light holes
(LH). In an “allowed™ optical absorption process between such valence and
conduction levels, / must be conserved : two such series develop, corresponding
to the heavy and light hole ladders for A/=0. The absorption spectrum for
uncorrelated electrons should thus be two such series of step functions.
Excitonic effects actually sharpen up the leading edge of the step functions
into series of peaks. Figure 3.48 shows the peaks of the heavy hole ladder of
GaAs/Aly ,Gag gAs quantum wells. The light hole ladder is not seen, except
possibly a shoulder on the high energy side of the n= 1 peak for L, =140 A. Both
ladders can be clearly observed in [3.196] for Gag 4;Ing s3AS/Al 451ng 5, AS
MQWs, Each one of these absorption peaks is expected to lead to resonances in
the Raman scattering cross section.

Such resonances were first observed in [3.103] for the heavy hole ladders
associated with the E, edge of GaAs/Ga, . Al As superlattices and MQWs with
x=0.1 and 0.25. We show these observation in Fig. 3.49 for two MQWs (a, b)
and two superlattices with subband widths é,. The solid curves in these figures
represent fits using a theory which assumes uncorrelated electrons, the dashed
curves the corresponding absorption spectra. No attempt was made in this work
to determine the polarization selection rules. The fit (solid line) to the resonance
profile S(w;) was obtained with the approximate expression:

Sl chyfw;) - w)f (3.80)

z= lo(mA

=204
Fig. 3.48. Absorption spectra of
GaAs/Aly ;Gag yAs quantum wells
of three different widths d,. From
. . . [3.195]
1515 1550 1600 1650 1700
Energy [ev]
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10 [ (0} i JONT DENSITY-OF-STATES Fig.3.49. Resonant Raman scattering by LO
08 phonons for two MQWs (a.b) and two
superlattices (c.d) of GaAs/Al Ga, _ As.
x=0.25 for {a,b,d), x=0.1 for (c). The well
widths d, are 100 (a}, 52 (b), 39 (c). and
35 A (d). The lines are theoretical fits (see
text) [3.103]
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which is justified, according to [3.103], very close to resonance, with y(w)
obtained from the two-dimensional expressions for uncorrelated electrons
((2.178) of [3.10]) in the case of the MQWs (a, b) and with a generalized three-
dimensional expression for the true superlattices (c, d). The theory represents the
data rather well. Similar measurements involving the Eq+ 4, localized levels
associated with the E, + 4, gap are presented in [3.104] together with evidence
forl,=2—l =2andl,=3—-{=3 transitions at the E, gap. These measurements
were performed at room temperature.

Similar measurements, but performed at T=2 K, were reported in [3.197].
These temperatures allow the resolution of the incoming and outgoing
components of the resonance (Fig. 3.50) associated with the /=/=/,=1,2,3
levels of the E, gap of GaAsin GaAs/Aly 5, Gag 13As MQWs. For /=1 only the
incoming resonance associated to the heavy hole (HH) ladder is seen: the
outgoing one is swamped by the luminescence of the /=1 light hole transition.
For n=2, both incoming and outgoing HH resonances are seen. In the region of
w, between 1.75 and 1.85 eV, both {=2 LH and /=3 HH incoming and outgoing
resonances are observed. In [3.198] a slightly different MQW allows the
observation of the /=1 incoming and outgoing HH resonances and the LH
outgoing one. Interesting in all these measurements is the fact that the incoming
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3 T ) T —_ ! ! T Fig. 3.80. Resonant profile for
| =3 Raman scatiering by GaAs-
E 125 CONDUCTION BAND like LO phonons in an
LH {[ P — ll :%} HH (Gms)u(Alo.z'rGao,nAs)‘n
1s2 = MQW. The arrows indicate
2r VALENCE BAND 1  theexciton energies calculated

for the corresponding single
quantum wells [3.197]
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resonances are somewhat weaker ( ~ one-half) than the outgoing ones. In {3.197]
this is attributed to a three-band scattering mechanism, with the phonon
coupling two different /-subbands (/=2 and 3 for the /=2 resonances of
Fig. 3.50): the non-resonant denominator of the three-band process s smaller in
this case for the outgoing than for the incoming resonance. This explanation is
supported by the fact that sometimes a stronger incoming resonance is found
[3.199] a fact that follows from the above model if the non-resonant state lies
below the resonant one. In [3.199) resonances related to the lowest gap of the
barrier (unconfined) are seen: not only for the LO phonons of the GaAs well but
for the Ga-like and Al-like phonons of the alloy barrier.

An alternative explanation of the usually encountered dominance of
outgoing resonances is given in [3.198). It follows naturally and in a general way
from the impurity enhanced Frohlich mechanism [3.192]: for the outgoing
resonance the other two energy denominators lie in the continuum of electronic
excitations, a fact which introduces divergences in the k-space integrations. This
does not happen for the incoming resonances. A fit with this model to the /=2
HH resonances is shown in Fig. 3.51. This mechanism has the advantage of its
generality while that based on three-band models depends strongly on the details
of the electronic structure. Three-band terms may become dominant under
certain circumstances, especially when the separation between the two gaps
involved equals the phonon frequency. In this case both the energy denomina-
tor may vanish (or nearly vanish) and double resonances occur {3.200, 200a]
(Sect. 3.5.3b).

Resonances have also been observed for CdTe/CdMnTe MQWs [3.201]:
incoming and outgoing (stronger) resonances appear for the /=1, HH transition
while for /=1, LH transition the ratio of incoming/outgoing strengths may be
reversed. In this case the MQWs strain enhances the HH —LH separation.

The scattering intensity at the peak of the /=1 and /=2 resonance has been
measured vs. temperature in [3.202). These measurements yield information on

7%



1956 B. Jusserand and M. Cardona

T Fig. 3.51. Raman scatiering resonance
| 104A Gaas/1254 with I=2 for a GaAs-Al,,Gag 15As
Gagrs AlgasAs MQW dispiaying the asymmetry between
72 T22K the incoming (smaller) and outgoing
- z(x.x)3 components. The points are experimental
=t ) data, the line a theoretical fit based on the
R impurity enhanced Frohlich mechanism
= g [3.198]
""_J .
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Fig. 3.52. (a) Period of the MQW of [3.203]. (b) Electronic structure of the well in real space.
(c) Resonance scattering profile for the LO phonons of a GaAs well. {(d) As in (c), for the
GaAs-like LO phonons of the barrier to the right. The solid vertical bars indicate calculated
positions of the /, ¢ /, = 1 transitions and the accompanying number the corresponding /,. The
dashed lines show the position of the related outgoing resonances with /, in brackets
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the temperature dependence of the homogeneous linewidth of the corresponding
excitons and its origin.

A particularly astute resonance experiment has been reported in [3.203]. The
authors use a MQW consisting of asymmetric quantum wells composed of an
AlAs barrier on the ieft, a 500 A GaAs well, and a Be-doped Al ;;Gag ¢, AS
barrier (modulation doping) on the right (Fig. 3.52). The 500 A GaAs localizes
the heterojunction on the right, because the Be-doping produces a triangular well
which localizes the electrons very close to the interface. This configuration lifts
the A/=0 selection rule since the valence and conduction wavefunctions are not
localized in the same region and the enveiope functions of different /. and /, are
not orthogonal. In this manner one sees ouwtgoing resonances from /,=1 to /,
between 5 and 11 (sce Fig. 3.52). These experiments can be used to map out
details of the envelope functions of the confined states,

Most of the Raman work discussed so far was performed for MQWs with
nearly k_-independent electronic states (exception : Fig. 3.49c,d). A simple test of
this condition can be made by measuring the ratio of the scattering intensities of
the barner modes to those of the well modes. Such a test has been applied 10
(GaAs),/(AlAs), superlattices in [3.204]: this ratio increases from about 0.1 for
nz10 to 0.9 for n=2. For n=1, 2 both the GaAs- and AlAs-like phonons
resonate at the E,-like gap of the superlattices at ~2.15 eV [3.205]), Fig.-3.53. A
weaker resonance related either to a folded or an indirect gap appears at 1.92 eV
for n=1. Unfortunately, these resonances have only been measured at room
temperature: strong luminescence makes low temperature observation hard.
Similar results have been reported in [3.206] for a (GaAs),/(AlAs), super-
lattice.

The only report of resonances at the E, and E, + 4, gaps of superlattices has
appeared in [3.189] for GaSb/AISb samples. An increase in the E, gaps of bulk

LO{GaAs)

4104 Fig. 3.53. Resonance of the Raman scatter-
ing of GaAs- and AlAs-like LO phononsin
{GaAs),(AlAs), superlattices. LO, repre-

L0 (AlAs)

Raman Signal (counts /200 s}
o

102} 10°  sents an additional peak above the main
LO (GaAs) which becomes strong at the

0 F - 102 low frequency resonance (its strength has
* been divided by 10 in the plot). The origin

LO; (GaAs) of this peak is not clear. It may be a phonon

A 1 1 1 10 away from k=0
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Photon Energy hw (ev)
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GaSbis observed, possibly related to partial confinement of the electronic states.
Calculations of this confinement effect, however, indicate that it is much smaller
than the observed one.

3.5.3 Scattering Mechanisms for the E,-gap Related Transitions
of Superlattices

a) LO-Phonons: Deformation Potential vs Frohlick Interaction

In bulk zincblende-type material the Raman phonons have I, symmetry.
Consequently, the dipole-allowed Raman tensors have only off-diagonal com-
ponents referred to the cubic axes. For backscattering at a [001] face the LO-
phonons (I;3) have the Raman tensor of (3.60). These phonons generate in the
D, , group of the [001]-grown superiattice phonons of symmetries 4, and B,
(Sect. 3.3.2). Those of symmetry 4, correspond to (3.34a, 38a) while those of B,
symmetry are represented by (3.34b, 38b). The latter have a Raman tensor of the
same form as the bulk (3.60), while the former have an allowed diagonal Raman
tensor [diagonal components of (3.61)]. The diagonal tensor is forbidden in the
bulk, thus it is expected to be small off-resonance. A dipole-forbidden diagonal
tensor also appears in the bulk at resonance [3.10]: it &5 -induced by the
electrostatic Frohlich interaction. The allowed tensor of the bulk is usually
described by the deformation potential interaction. New deformation potentials,
forbidden in the bulk, must thus be induced by the superlattice potentials: they
are, however, expected to be small except for very small period superiattices. This
fact has already been illustrated in Sect. 3.3.3 in connection with the bond
polarizability model.

The confined B, modes are related to bulk modes through (3.38b) or, more
accurately, (3.25) with m odd, the 4,-modes likewise through (3.25) for m even.
The B, modes should scatter viaa deformation potential but it is easy to sec that
they cannot lead to two-band terms: the matrix element for the coupling of an
electronic state with itself must vanish since the product of the electronic state
with itself has 4, symmetry. 4, phonons thus lead to two-band terms which
should be strong (even dominant!) near resonances. They should appear in
parallel scattering configurations while the B, phonons appear either in crossed
polarizations parallel to the x and y axes or in parallel polarizations parallel to
{110] (or [170], see Sect.3.5.1).

If n, and n, are not too small one can break up the matrix element of the shori-
range clectron-phonon interaction (bulk deformation potential} into matrix
elements of H,, over the bulk PCs and a matrix element of the envelope functions
(two electron states, one phonon). This is appropriate to B, phonons. At the E,
gaps the phonons must then connect the (3, +£3) valence bands with their @ +H
counterparts (see (3.77), the quantization axis is z). In this manner three-band
terms involving the HH or ¢, £%), LH G, +1), and conduction bands result. If
the HH and LH splitting equals the phonon frequency, strong double resonance
obtains [3.200].

2
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A, symmetry forbidden scattering results in the bulk from the k-dependent
Fréhlich interaction. In a superiattice of intermediate period (n,, n, between 5
and 50) the periodicity fixes the value of k,. Thus, for not too large values ofk, ,,
the matrix element of the electron-phonon interaction becomes k-independent
and can also be represented by a deformation potential. The resulting Raman
resonances, for m even, are supposed to be very strong (two-band terms). In fact,
although they should only appear for parallel incident and scattered polariza-
tions, they can even mask the B, peaks (m odd) which should be observed in
crossed (x, y) polarizations [3.65, 200a]. Because of the separation of B, and A,
modes, the interference effects discussed in Sect. 3.51d do not take place. Asn,
increases, however, 4, and B, modes begin to overlap within their linewidths and
interferences should again reappear [3.206a].

We have, so far, discussed the k-conserving Frohlich-like A4, scattering. It
implies, for backscattering, coupling to phonons with &,  =0. As in the case of
the bulk (Sect. 3.5.1c), impurity scattering may enhance these processes and
allow coupling to phonons with &, ,#0 £3.200a). This can be inferred from the
fact that the outgoing resonance becomes stronger than the incoming one (see
Fig. 3.54). Another Frahlich-related mechanism, which appearseven atk, ,=0,
should exist in superlattices. In this case, in the bulk the contributions of electron
and hole diagrams (Fig. 3.46a,b) cancel because of the opposite~charges of
electrons and hoies. In MQWs the phonons may be strongly confined while the
electrons (holes) may penetrate different amounts into the barrier, depending on
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Fig. 3.54. Observed scattered intensity, measured with respect to that of the Raman phonon of
Si, versus incident laser frequency for the m=2 and m=4 phonons of a (GaAsk(AlAs),
superlattice. The inset shows scattering diagrarns for deformation potential (DP) and Frahlich
(F) clectron-phonon interaction. The three steps indicated correspond to deformation
potential (three-band) and Frahlich (two-band) terms. For the F-case, a similar diagram with
step 2 in the HH1 miniband, has to be subtracted. The resonant gap is w,: the outgoing
resonance dominates [3.66a}
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the masses and barrier heights. Thus, the matrix clements of Hf, do not cancel
exactly, leading to “allowed” non-impurity-induced scattering for k, ,=0.

For superlattices of intermediate period, the confined modes resonate only
with transitions between overlapping confined electronic states. The interface
modes, however, extend to both sides of the interfaces and thus resonate with
electronic transitions confined to either side [3.55].

b) Double Resonances

Several examples of double resonances in the scattering by LO phonons in
quantum wells have been reported by the Bell group [3.200, 207, 208]. Similar
effects have been observed in bulk GaAs samples under unaxial stress
[3.209, 210]: the stress-induced splitting of the I'y valence bands equals, in these
cases, the scattering phonon frequency.

The work of [3.208) was performed for a (GaAs),, single quantum well with
Gag Al 4 As as a barrier, for which the /=1 HH —/=1 LH splitting Eyy— £y,
equals the LO phonon encrgy hw,. As mentioned above, those two states are
then coupled by the LO phonon via the deformation potential [see (3.77, 78)]:

3 31,213 1 _dy 1 12 .
<2’ 2 Hep i, -§>—; (Zwoy.N) (’l+1)”2 : (3.81)

and likewise for the coupling between ¢, —3) and 3, 1). The ¢, -9 LH
electron states can be excited to the conduction band by using a circularly
polarized photon of (+)-polarization (J,= +1), while the excited conduction
state can return to the (2, $) hole by emitting a (—)-polarized (J,= —1) photon
(these polarizations are given with respect to fixed axes and not to the direction
of propagation). Hence, the double resonant process should only occur for
(+)-polarized incident and (—)-polarized scattered photons. A polarization
ratio P: :

I+, =)= I(+. +) G.82)

P=
I(+, =)Y+I(+.,+)

equal to 0.79 is found, instead of the expected P=1. The discrepancy is explained
in [3.208] as due to loss of polarization in the virtual intermediate exciton state.
In this work detailed scatiered intensity measurements were performed in six
different linear and circular polarization configurations. From the results, the
authors derive information about exciton population and dephasing lifetimes.

In [3.200, 207] double resonances induced by the Frohlich interaction are
reported. They arise from coupling by the LO phonon between an /!=1HHand
an /=3 HH state. The optical transitions involve the /. =1 state and thus the
incoming one violates the 4/ =0selection rule. This violation is interpreted by the
authors as due to the mixing of /, =3 with /, =1 by the excitonic interaction. The
polarization selection rules for this process are opposite to those for deformation
potential coupling, as corresponds to the 4, nature of the phonons involved : the
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(+, +) process is dominant. One finds for the corresponding polarization ratio:

I+, ) =K+, )

P_I(+,+)+I{+,+)

(3.83)

P=0.885, thus confirming the hypothesis of a Fréhlich interaction mechanism.
The difference between this value of P and the expected P=1 is attnbuted to
lifetime processes in the intermediate excitonic excitation (dephasing time 1, and
scattering time between the two excitonic states t,).

We should mention, in closing, an interesting recent observation [3.211}] of
doubly resonant Raman scattering in QWs in which one of the resonant states is
the /, = 1 continuum strongly modified by electron-phonon interaction. A very
large number of peaks (at least 27) in the scattered intensity vs. w; are observed
and assigned to various combinations of GaAs-like, AlAs-like and interface
phonons. A requirement for these observations, which have not yet been
completely theoretically analyzed, is the use of a very perfect quantum well:
n, =9 and also n, =8 were used. :

c) Photoelastic Mechanism

It has been well documented that the photoelastic mechanism is responsible for
the Brillouin scattering in the bulk materials of interest here [Ref. 3.10;
Sect. 2.3.4], [3.212). In this case the phonon frequency w, is very small and (3.76)
is usually well satisfied even for w,=w,. For very sharp excitonic transitions at
low T, however, polariton scattering may become important (Chap. 7 of Light
Scattering in Solids III). By performing experiments for various scattering con-
figurations it is actually possible to extract the three independent photoelastic
constants p,,, p;1. and p,,, (Sect. 3.3.4) at least in the region of transparency
[3.212, 213). Most of the available experimental data [3.96] for p,; apply to this
region; some of them have been measured by Brillouin techniques and some by
optical methods with the sample under static stress. Unfortunately, the latter
measurements are usually confined to p;, —p,, and p,, and do not give
information on p,, and p,, separately: backscattering measurements for LA
phonons (and their folded partners) in superlattices require the knowledge of p;,
(Sect. 3.3.4). .

We show in Fig. 3.55 the values of p,, —p, , obtained with Brillouin and static
piezo-birefringence techniques below the E;, gap of ZnSe. The agreement
between different methods is excellent. The theoretical fitting lines emphasize the
strong resonant dispersion of these coefficients (and, correspondingly, the
scattering efficiencies) at E,. The separate values of p,,, p,,;, and p,, obtained
from Brillouin data are shown in Fig. 3.56. Note that p,, crosses zero before the
resonance at E,, while p,, and p,, do not (but p,, —p,, does, Fig. 3.55), a fact
common to most large gap materials of the family [3.215].

The data of Figs. 3.55 and 3.56 apply to the region below E,. Photoelastic
data above E, are rare. Not too precise results can be obtained by the piezo-
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Fig. 3.55. Dispersion of the photoelastic coefficients py; —pz of ZnSe at room temperature as
measured by Brillouin scattering (OOO) and by piczo-birefringence technigues (09®). The
lines represent theoretical fits with expressions similar to those in [3.10]. Note the strong
resonance at the E, edge which is preceeded by an anti-resonance (zero) [3.212]
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reflectance technique [3.216]. Kramers-Kronig analysis of piezo-reflectance
data, or fits with theoretical expressions, can be used to obtain the related
imaginary parts of p;,. Data for GaAs, with details of the Ey, Eq+ 4q, E;, and E,
+ 4, resonances, are shown in Fig. 4 of [3.217] for the imaginary parts of p;; - the
real parts should be obtainable through Kramers-Kronig transformation.
Accurate data for p,, below E, can be calcuiated from the p,, —p,, results of
[3.96] and those for p;; +2p12 given in Fig. 13 of [3.215]. These data, however,

{2y
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have not been used for the interpretation of light scattering in superiattices (the
corresponding data for AlAs are not available}!

The data just discussed are usually fitted with expressions similar to those in
Sect. 2.2.12 of [3.10]. Near E, and E, + 4, three deformation potentials (e, b, d}
determine the resonant behavior [Ref. 3.10; Egs. (2.255-257)] while four
deformation potentials are nceded to determine the behavior at E; and E, + 4, .
The photoelastic constants can be used near resonance for folded acoustic
phonons provided their frequency fulfills (3.76), i.e., in the whole resonant range
provided w, < I,. Otherwise (2.255-259) of {3.10] must be converted into those
for finite e, (with incoming and outgoing resonances) by using the prescription
given in Sect. 3.5.1. These split resonances have yet to be observed for folded
acoustic modes. On the whole, little quantitative work on resonant scattering by
folded acoustic modes has been performed (see [3.123] for qualitative work on
GaSb/AISb superlattices).

d) Effects of Electric Fields on the Resonant Raman Scattering

The diclectric response and other optical properties of superlattices and MQWs
are known to be affected by strong electric fields [3.218, 219]. These effects also
appear in Raman scattering. Longitudinal fields distort the sinusoidal confined
electronic wavefunctions as they lift the two-fold rotation axes in the super-
lattice planes: violation of the A/=0 selection rule results. In particular,
Al= +1 transitions are enhanced while those for 47=0 decrease in strength.
Theoretical and experimental investigations of these effects in resonant Raman
scattering can be found in [3.220, 221].

3.5.4 Resonant Scattering by Two Phonons

Resonant scattering by two and more phonons has been intensively studied for
the bulk constituents of semiconductor superiattices [3.10). One usually observes
overtones of the LO phonons near I'. They are induced by the Fréhlich
mechanism, since the k of each phonon involved does not have to vanish (only
the total sum does) these processes are dipole allowed. One also observes density
of two phonon states and related effects, usually induced by deformation
potential interaction. They are represented by Raman tensors of all possible
symmetries: I,5, I};, and I, (or, equivalently, T, E, 4,) in the zincblende
structure.

Scattering by two phonons is also encountered in superlattices and QWs,
especially near resonant conditions. Work for GaAs/Ga, _ Al As systems has
been published in [3.222-224]. Strong resonances appear in ¢, | e, scattering
configurations and thus can be safely attributed to Frohlich processes.

We show in Fig. 3.57 Raman spectra obtained for a (GaAs), /(AlAs),; MQW
including two confined LO (GaAs-like) and mixed GaAs- and AlAs-like
interface phonons. The resonant profile has a weak incoming (at the /=1 gap,
labeled ,) and a dominant outgoing peak: such behavior is standard in two-
phonon scattering [3.187]. More complicated combinations of interface modes,
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ﬁ"'”‘""""””""‘ Fig- 3.57. Second order Raman spectra of a
wn 2410V Fig- 357 | (GaAs)(AlAs);, MQW at 10 K. The peaks in the
triangular insets are assigned to two GaAs-like
confined phonons labeled by their ms. Combina-
tions of GaAs- and AlAs-like interface phonons
are also observed
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Fig. 3.58. Profile of the resonances by two confined phonons of Fig. 3.57. The resonating
clectronic transition is indicated by w, . The main peak corresponds to the outgoing resonance,
as is usual in the case of higher order Raman scattering

involving up to four phonons, were observed in [3.223] for a (GaAs),/(AlAs),
sample. Resonance profiles of the two-phonon peaks are shown in Fig. 3.58.
Recently, triply resonant scattering by two phonons has been reported [3.200a].

3.5.5 Conclusions

We have discussed the resonant scattering mechanisms of the bulk constituents
of semiconductor superiattices and shown how they can be carried over to the
latter. Frohlich interaction is dominant for LO-phonons at resonance, a fact
which usually leads to a dominance in the outgoing peak of the resonance
profile. Confined phonons of odd m resonate through a deformation potential
while those of even m do it through a Frohlich interaction. Interface phonons
extend to both sites of the heterojunction and thus resonate at the gaps of both
constituents. In some cases double resonances are observed.

While the photoelastic mechanism seems to be mainly responsible for
scattering by acoustic phonons, it must be modified to take into account
resonance phenomena: real and imaginary parts of the photoelastic constants
(and also the finite phonon frequency) must be included. Scattering by two or
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more phonons, usually induced by the Frohlich mechanism, can also be observed
near resonance. It leads to dominant outgoing peaks in the resonance profiles
and, under the proper conditions, to triple resonances [3.200a].

3.A Appendix

Strains in a pseudomorphic superlattice with a total thickness D, of material 1
and D, of material 2.

If the superlattice is attached pseudomorphically to a substrate of “infinite”
thickness of material 1, we must take D, = 0. We consider the general case of
cubic materials with different elastic stiffness constants c, ;1 and ¢;; 5 and growth
along either [100] or [111] for which the strains in the superlattice plane ¢, ,
and ¢, , are isotropic. Generalization to non-isotropic £, (such as for [110]
growth) is straightforward. By imposing the condition of pseudomorphism

4 =“2< a‘)""l =z, —¢,, (3.A.1)

and the condition of equal and opposite planar forces in materials 1 and 2 we
obtain:

0,D,
= D, +Q,D, ( )

Ql 1 3
-_______L Al
£ 2 5. D, . 2‘d ( )

where Q, , are functions of the elastic compliance constants of each material.
For the [100) superlattice case we have:

2
Q=c 4¢;,— 2(c1a) (3.A4)

€11

The in-plane strain in each layer is given by
T (B.A.5)

For the [111] case we obtain

(€11 +2¢,,—2¢,, )
€1y +2¢3+4¢,,

3

o _2en+20,-2¢,)
= Cl1+2¢,+4c,,

2
Q== l:"-'u +2¢y, FCan—
(B.AL6)

£ .
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