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via Celoria 16, 20133 Milano, Italy

R. J. Horowicz
Departamento de Fisica, Pontificia Universidade Catolica de Rio de Janeiro
Marques S. Vicente 225, Rio de Janeiro, Brasil

Abstract — We consider a vertical cavity surface emitting semiconductor laser
which operates with two frequency-degenerate doughnut modes, and combinations
thereof. We identify a small region in the parameter space, where there is bistability
between the two doughnut states, and another domain in which the TEM;o mode,
and all the configuration obtained from it by rotation around the laser axis, are
stable. The degeneracy by rotation can be eliminated by considering a pump region
of square section; in this case there is bistability between two stationary states, in
which the two intensity peaks are located along the diagonals of the square. In all
the rest of the parameter space the system exhibits dynamical oscillations.



1 Introduction

The field of Transverse Nonlinear Optics (see e. g. [1- 3] and references quoted therein),
which studies the spontaneous formation and transformation of spatiotemporal patterns
in optical systems, showed in the last decade an impressive development linked to the
issues of fundamental interest raised by these investigations. However, up to now the
effort to exploit these results in the direction of practical applications remained limited.
For example, the possibility of controlling a one-dimensional array of spatial solitons [4]
by appropriate use of spatial modulation has been numerically demonstrated [5]. The
dynamics of switching between spatial solitons has also been investigated {6]. The use
of a laser, operating in a regime of spatial multistability [7] as a decision element in
an optical associative memory has been described [8,9]. The control of transverse-wave
interactions in nonlinear passive optical systems with 2D feedback [10] and the realization
of an optical design kit for nonlinear spatial dynamics [11] have been shown theoretically
and experimentally.

A recent paper [12] reports theoretical and experimental results which demonstrate
the possibility of low energy switching in a bistable laser operating with two doughnut
modes. Most interesting is a numerical simulation with a two-level model for values of
parameters compatible with the case of surface-emitting lasers [13-16}; the results indicate
the possibility of obtaining the tranmsition from one to the other doughnut state by a
switching energy on the order of some femtojoules [12]. However these simulations did not
include an important ingredient, namely the linewidth factor [17,18] which constitutes the
main element of difference between semiconductor lasers and the two-level model. Because
the formation of transverse structures in lasers is very sensifive to the phase effects, it
may be anticipated that the inclusion of the linewidth factor is necessary in order to
obtain a correct understanding of the behaviour of spatially multistable semiconductor
lasers. Actually, the importance of this factor in the generation of transverse modulation
instability has been already evidenced in the case of broad-area semiconductor lasers [19].

The aim of this paper is just to analyze in details the effects which arise from the
linewidth factor. Precisely, we consider a surface-emitting semiconductor laser (SEL)
in such conditions that it operates only with two frequency-degenerate doughnut modes
(the possibility of emission of doughnut-shaped fields in SEL has been experimentally
demonstrated [14-16]) or, equivalently, with the two modes TEM;o and TEMy, , and
combinations thereof (two-peak solutions). We perform an analytical study of the sta-
tionary states and of their stability, and simulate numerically the behaviour of the system
in those ranges of parameters for which no stable stationary solution exists. We consider
both the standard case of cylindrically symmetric and that of square-shaped active region.

In Sec. 2 we introduce the model and compare it with that for a two-level system.
The stability of the doughnut and two-peak solutions is studied in Sec. 3 in the case of
cylindrical symmetry. In Sec. 4 the effects of a square configuration are analyzed. The
concluding Sec. 5 summarizes and discusses the main results of the paper.



2 Description of the model

We consider a cylindrical cavity SEL of length L and diameter d (Fig. 1). The crystal
contains a thin active region of width L, < L. We will consider both the case of circular
(Fig. 2a) and square (Fig. 2b) transverse section of the active region: d4 will denote the
diameter of the circle and /4 the length of the side of the square. The reflectivity at the
two facets of the crystal is R.

If the structure of the laser is weakly index-guided, the electric field is very nearly
linearly polarized [20] and the propagation equation can be cast in the scalar form

2 1 2
g€ _ o*P 1)
gt ege? Ot?
where pq, €p and ¢ are the magnetic permeability, the dielectric constant and the velocity
of light in free space, respectively, and e{r) is the background dielectric constant in the
medium. Because of the geometry of the system we adopt cylindrical coordinates (p, p, z):
z is the direction of propagation of light and the Laplacian is
& 8t 18 1 8%
ba, V=il o 2
022 0r?  rOr 120t

In order to study the modes of the cavity we can make reference to the results relative
to graded-index fibers. It is well-known that the modes of a fiber, whose index profile
can be approximated by a power law, are very similar in shape to the Gauss-Laguerre
modes of a resonator with spherical mirrors [21]. This result becomes exact in the case of
parabolic profile of the refractive index. We will then assume that the dielectric constant
€(r) varies according to the law

V2 £ - }.Lof(‘.r‘)

Vi =V

e(r) = €(0) (1 - ;—Z) : (3)

with A > d.
Correspondingly the transverse profile of the refractive index n(r) is
p
() = n(O)1 - T (4)

where n(0) = ¢\/uo€(0) is the refractive index on the laser axis. In the limit A >> d one
has n(d/2) ~ n(0): the laser is weakly index-guided.

The above model is rather idealized because it describes a medium whose refractive index
decreases parabolically from n(0) and eventually becomes negative for » > h. Never-
theless, in the region of physical interest + < d/2, Egs. (3) and (4) make sense. The
advantage of this crude model is that it allows for a simple description of the cavity
modes as Gauss-Laguerre modes. It must be noted that more realistic models [20] lead
to solutions that, under appropriate conditions, can be approximated very well by Gauss-
Laguerre functions, even if they must be expressed in terms of Bessel functions.

In the slowly varying envelope and paraxial approximations we write

£ = Ee ' Lo = [E(r,go,z,t)eik"’ + B(r,cp,z,t)e'ik“] e ot 4 cc. (5)
P =Poe ™ +ce. = {PE(T'NPs z,t)e’® + PB(",‘P,Zaf)C_ik“] e " +c.c. (6)
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where E and B represent the forward and backward electric field, respectively, and ko =
won(0)/c is the wave vector of a wave of frequency wo propagating in a homogeneous

medium with refractive index n(0).
The electric field £ and the induced polarization P, are linked by the relation

Po = eox(N)&o , (7)

which implies
PE B EOX(N)E PB = EQX(N)B . (8)

If we assume linear gain, the susceptibility x{(¥) is defined as [22]

n(r)c

x(N) = - (a+1) a(N — No) (9)

&

where a is the linewidth enhancement factor [17], N is the carrier density, No is the
transparency value and a is the phenomenological gain coefficient (Ng = 3-10% em™, a =

3.10-'% cm? for GaAlAs/GaAs systems {13]).
Taking into account Eqs. (5-9), we obtain the following propagation equations for the

slowly varying envelopes E and B

1 ,  kir? 9F 1 r’\ 8E a 72 i
5 (VLQ X E+az+v 1_h2 t_2”1_h2(1_1a)(N_NO)E (10)

1 kir? 0B 1 r’\ 8B a r? .
o ) (o) s o

where v = ¢/n(0).

2.1 Eigenmodes of the cavity

The eigenmodes of the cavity are the solutions of the equations obtained from Eqs. (10)

and (11) by setting a = 0 and 8E/0t = dB/Ot = 0. Restricting our analysis to the
forward field we have (2,2 SE
, ke _ . OFE

(V’L — —EQ—) E = —2ikg 52 (12)

which, by defining the normalized radial coordinate

r 12h
p—;{;, Wo = k—(}, (13)

1’ 2 2 _ . Q_E_
(4‘0l —p)E——lhaZ, (14)

where V2 is the transverse Laplacian in the (p, ) variables.
We now introduce the Gauss-Laguerre modes defined as

becomes

_ 2 2 2 __i,,_ i { 2y —p? ilp
Apilpye) =y = (20")" [(p+”)!} L)\(20%)e™” &%, (15)
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where p = 0,1,2...,1 =0,£1,+2... and Lg' are the generalized Laguerre polynomials.
The functions A,; are the eigenmodes of a resonator with spherical mirrors in the limit
z < zo, where z; is the Rayleigh length [23]. They form a complete set in the plane (p, ),
obey the orthonormality relation

2x o0
./(.) d‘p_[) dop A, ps 0)Api(pyp) = bpprbipr (16)
and are solutions of the equation
1
(392 = #*) Apu = —(2p+ 11l + Dty (17)

Comparing Eq. (17) with Eq. (14) it is evident that the latter admits solutions of the
form

E(p,p,2) = Api(p, 0, 2) = Apulp,p)e CPHIFIE, (18)
The functions A4,,(p,¢,z) are the eigenmodes of a cavity containing a medium with
parabolic index profile. They are very similar to the Gauss-Laguerre modes of a resonator
with spherical mirrors [23]. The main differences are
i) The beam waist wo of the modes A, is independent from z.
i1} The role of the Rayleigh length here is played by the parameter A

,

o (19)
2

It can be easily checked that the functions A, (p, ¢, —2z) are the solutions of the equation

for the backward field B.

The eigenfrequency of the mode with longitudinal index m and transverse indices p and

lis

h =

v v

Asin the case of a resonator with spherical mirrors the modes gather in degenerate families
of index g = 2p + || consisting of ¢ + 1 modes. The frequency separation is

v

for longitudinal modes and
Awr = % (22)

for transverse modes. In the case of weakly index-guided lasers L ~ d <« h the ratio
Awr/Awp = L/hn is much smaller than 1, and the eigenfrequencies spectrum is similar
to that of a quasi-planar resonator.

Hereafter we will choose the frequency of the fundamental Gaussian mode with fixed
longitudinal index 7 as reference frequency

Wo = Wmoo (23)

Finally, it is worth noting that, if the region occupied by the modes is comparable with
the size of the laser one has, for a weakly index guided structure,

wy K h ’ (24)
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and therefore, using Eq. {13),
koh > 1. (25)

We observe that the last condition, which will be used in the following to simplify the
dynamical equation, is necessary to justify the slowly varying envelope approximation. In
fact, such an approximation requires that the exponential factor in Eq. (18) varies much
more slowly than exp(ikqz).

2.2 Dynamical equations

Let us come back to the equations which include the effects of the active region. After
the transformations introduced in the previous section we have from Eqgs. (10) and (11)

1/l 2) oE 1 20°\ 0E a 2p? .
= (4VL ) B+ 2l 2 (1o ) T = G- Rl -V - NE, (26)
171 n 2) 0B 1 20\ 0B a 2p° )
= (\4VL p | B — -yl (1 wh) B2 1 koh(l —ia)(N — No)B . (27)

We observe that, because of condition (25), the terms 2p*/koh can be neglected with
respect to 1. Then to be consistent with our approximations the appropriate equations
for E and B in the slowly varying envelope approximation are

ilrz_z) 8E 10E _a. . \N_

ih (4“ ) E+ g, T o = att TV - M)k (28)
L(lgn _p\p_0B 10B e, .

ih (4VL WP)B_ 5z Twat p(1—ia)(N = No)B . (29)

The set of dynamical equations is completed by the rate equation for the carrier density
N
N 2 y

?g = qcIV ——;—av%(N—NO)—{-DV N (30)
where I is the injected current, g. is the electron charge, V is the active volume, 7, is
the recombination time and D is the diffusion coefficient. In this equation av represent
the gain coefficient per unit of time while €(0)1€|%/2hws is the photon density, and we
assume that the dielectric constant in the medium is constant and equal to €(0).
Eq. (30) is complicated because of the presence of the diffusion term. However, the
main effect of a sizable diffusion is to wash out the grating effects which arise from the
standing wave structure of the electric field. Therefore, it is reasonable to neglect the
diffusion term and simultaneously assume that N exhibits no grating structure [22). In

this approximation the dynamics of N is ruled by the simpler equation

oN _ I N _ O R4 BN -
= 7w~ @ TR+ BOW = No), (31)

where T is the confinement factor which represents the fraction of mode energy confined

in the active region of volume V.
By introducing the scaled quantities

_ quNU alNg (I )

. 2
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— — N/Nyg-1
e(O)r,avI’E 5 - e(O)T,a.vl"B 5 - /No

ﬁwo ! N th ’ B I/Io -1

the dynamical equations describing the laser become

— 8E 1 R
i(lvf —pz)E+8—f+“a =g(l—ia)DE,

ih \4 8 8t
1 /1_, ,\— OB 18B . FE
— (=g _ -4+ = =g(l—-ia)DB,
a3V =) TGt e )
oD 1 (= [E|? + |BJ?)
5t 1 [D (H 2 XV
where xv is the characteristic function of the active region
( ) = 1 inV
Xvip 2] = 0 outside V

(32)

(33)

(34)

(35)

At this point we expand the slowly varying envelopes E and B in terms of the eigenmodes

Ay of the cavity
E = Z!A‘P‘(P: CP,Z) epl(z,t)
> Ap(p, oy —2) bulz,t) .

]
I

The mode amplitudes e, and b, are solutions of the equations

ey 10en N - T
2 = - +g(1—1a)/0 dcpfo dpp A(z)DE
8bpl _ labpl . 2w 00 e i PE
"8z T vt *9(1_‘“)fo d”"/; dep Ay(=2)D B

and they obey the boundary conditions

epi(0,t) = VR bu(0,)
bu(L,t) =" VR eu(L,t)e™

where ol
Wmpl — Wmoo
6 = T et T 2 l .
pl /2L h (2p+ 1)

(36)

(37)

(38)

(39)

(40)
(41)

(42)

We observe that for GaAlAs/GaAs systems the gain per unit of length is g ~ 10° cm™?,
while typical values for the length of the active region L4 and the reflectivity R in a
vertical cavity SEL are L4 >~ 107° cm and R = 0.99 [16]. Moreover, for a weakly index-
guided laser, L < h and, taking into account Eq. (42), one has §,; < 1 for all the modes
belonging to families of order ¢ = 2p + |I| not too high. Therefore we can assume the

uniform field limit

gl < 1, [In R} < 1,
gL 4 8 )
= A’ apt = |1anR| of order unity

7
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where 2C and a,; are the pump parameter and the cavity detuning parameter for mode
p, 1, respectively.

Following the same steps as in [24] with slight changes due to the fact that here we are
considering a Fabry-Perot cavity instead of a ring resonator, we define the new modal
amplitudes

wu(z,t) = exp [% (—E— - 1) InR— 1526,,;] epi(2,t) (45)

Yu(z,t) = exp [——— In R +1—6p;] boi(z,t) (46)
which obey the periodic boundary conditions

‘PP‘(Oat) = ¢p‘(03t) (47)
ep(L,t) = Yu(L,t) (48)

and in the limit of Eqs. (43-44) are nearly uniform along z and nearly equal to each other
in the active region. We then introduce the averaged quantities

1 pt 1 rL
fult) = [ depul(z,t) = 5 [ detu(z,t) (49)
) Y L —
D{p,p,t) = E./;) dZD(P:‘P’Zat) (50)
and we set in the dynamical equations the averages of products equal to the products of

the averages (again, due to the quasi uniformity of pu, Yu and D). The final equations
are

df, . . = oo .
Yol - (1 e +2C(1 —ia) [ dtp/o dop AyDF (51)
8D
= - —v [D(L+ [F]?) - xv] (52)
-
where
P"Pa ZAPI (435 fpf ) (53)
- pl
1 |lnR|
_ k= 54
I e L 2 (54)

As shown in the Appendix, these equations are completely equivalent to the equations for
a detuned two-level Class-B laser, where the role of the linewidth enhancement factor «
is played by the atomic detuning. Therefore, all the results of the next sections apply to
such kind of lasers, too.

It is worth noting that the cavity detuning parameters a,; depend on the transverse indices
p and [ only via the combination 2p + || and

ap = aoi(2p + 1)) - (55)



2.3 The family q=1

In the following we will restrict our analysis to the case in which only the two degenerate
modes with p = 0 and ! = +1 belonging to family g = 1 are active. This situation can
be simply realized experimentally by a) putting a small absorbing dot on the laser axis
to suppress the modes with { = 0 and b) arranging that the size of the active region is on
the order of some beam waists to keep the laser below the activation threshold of higher
order modes. Actually, in our numerical simulations we always checked the validity of
this assumption by including in the dynamical equations also the modes p = 0,1 = +2;
p=1,1=421and p=0,1= 3. In all cases we verified that the intensities of such modes
were at least two orders of magnitudes smaller than the intensities of the modes of family
g=1.

If the only relevant modes are those belonging to family ¢ = 1, the slowly varying
envelope of the electric field F can be written as

F(P, ¥ T) = Al(p, ‘P)fl(f) + A?(P& ‘P)f2(T) (56)
with
2 2
Ar(p,p) = W-Aa 7 e (57)
Aopp) = —= pe? e (58)

or equivalently
F(p,p,2) = Bi(p,9)g1(7) + Ba(p,#)g2(7) (59)
with

[2 .

Bi(p,p) = 4/~ 207" cosyp (60)
[2

By(p,p) = ;2pe"’2 sin . (61)

The functions A, and A; represent the two doughnut modes with opposite helicity but
equal intensity distribution in the transverse plane (Fig. 3). The functions B, and B,
(TEM,o and TEMg, modes) are linear combinations of the previous ones and show two
intensity peaks on the z and the y axis, respectively (Figs. 4a,b). By choosing the reference
frequency as wy = w1 + ka the equations for the modal amplitudes can be cast in the
form

4o oy )[f - 20/”:1 d A"FD] = 1,2 (62)
dr - 1o ' 0 o PP A t= 1,4

dg' . . . 2 [= +] - .

- = —(1 —ia) [g, - 20/0 dip ; dpp B,FD] 1=1,2. (63)



3 Cylindrical active region

We consider first the case in which the active region has a perfect cylindrical symmetry
and the function xy depends only on the radial coordinate p

1 p < /2
XV(P)—{ 0 o> P/2 (64)

where % = da/wo is the normalized diameter of a circular section of the active region.
Two kinds of stationary solutions exist, the doughnut solution

F= A i=1 or 1=2 (65)

and the two-peak solutions
F* = B,g® + Bygl . (66)
The coeficients ¢;* and g3' are assumed to be real, so that Eq. (66) represents a TEM;o
mode rotated by an angle § = tan~"(g{*/g3') (see Fig. 5c). Due to the cylindrical symmetry
of the system any value of § is allowed.
The threshold value 2C,u, for the pump parameter is identical for both kinds of solu-
tions and it explicitly reads

Wine = [1 —e /(1 + v/2)|" . (67)

In the limit of active region much larger than the area occupied by the beam (i — oc)
one has 2C, — 1.

3.1 Stability of the doughnut solution

The linear stability analysis of the stationary solutions can be considerably simplified in
the limit |F|? < 1, valid for a laser operating near threshold.

In the case of the doughnut solution we consider, for definiteness, the solution F* =
A f and study its stability against the growth of the other doughnut mode. The char-
acteristic equation for the eigenvalue A of the linearized system is

N 4 yA+ By(1 — ia) = 0 (68)
where 3 is defined as - c
2
= -1. 6
2Cthr ( 9)

The solutions of Eq. {68) are strongly dependent on the term . We consider separately
the case a = 0 and the case a # 0.

o = 0. As mentioned in Sec. 2, this situation is not realistic for a semiconductor laser
but it describes a perfectly tuned Class-B laser, like a CO, laser. The solutions of Eq. (68)

ro =5 [r - 4] (70)

and their real parts are always less than zero. The doughnut solution is stable in a tuned
Class-B laser with cylindrical symmetry. This is a well-known result, which extends to all
kinds of lasers that can be described by the Maxwell-Bloch equations for two-level atoms.
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a# 0. In this case the eigenvalues A1 are complex numbers with

1/2

2 2
¥ 1 4,@) (4ﬁa) 443
Rer, =Ll 1+ —||(1-=) + (=) +1-—= 71)
© T2 V2 J ( v v v (
and
- B’ . 1/2
AN-T) (%)
ImAs=1+—= l—— |} +|—] - 1+— 72
T TR N ( v v 7 (72)
The instability condition Re Ay > 0 is fulfilled when
B>p=% (73)
and the frequency of the periodic solution which arises from this bifurcation is
w = 1b="1. (74)
a

Since v is always much smaller than 1 in semiconductor lasers and « ranges from 4 to
6 [17], it follows from Eq. (73) that the stability domain for the doughnut solutions in a

very narrow region just above threshold.

A remarkable feature of the above analysis is that the geometry of the laser (i.e. the
shape of the function xv) affects only the value of the lasing threshold 2Cis,, but not the
stability properties of the doughnut solution, because Eq. (68) depends only on the scaled
quantity 3. Hence, the results of this analysis can be extended to any laser geometry.

3.2 Stability of the two-peak solutions

This kind of solutions are always unstable in a perfectly tuned Class-B laser with cylin-
drical symmetry. Yet, the analysis of the previous subsection proved that the linewidth
enhancement factor a changes the stability properties of the doughnut solutions. We
expect strong effects also on the stability.of the two-peak solutions.

The linear stability analysis of the two-peak solution (66) in the limit {F|? « 1 yields

to the following characteristic equation
4 2 4
Xl+,\(7_§ﬁ) —§7ﬁ+§(1+a2)ﬂ2 =0, (75)

where, because of the cylindrical symmetry of the system, the angle § does not appear.
Again, we treat separately the case @ = 0 and the case a # 0.

a = 0. The solutions of Eq. (75) are
2 2
/\lzgﬂa /\2:'546_7 (76)
and A, is always positive above threshold, as expected.
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a # 0. In this case we have

_lé ﬂ/2__1_622‘ Yii

If @ < 1 the real part of at least one eigenvalue is positive and the solution is unstable
for every value of 8 and ~.
For a > 1 the solution is stable in the interval 8, < B < B3 with

3 7
== 8
h=3T e (78)
and 3
ﬁ3=z’7- (79)

It must be noted that the two boundaries of stability 8 = 3. and B = {33 have different
properties. At 8 = 3, the real eigenvalue A, changes its sign, leading to a steady-state
instability. On the contrary, 8 = (3 is the boundary of a Hopf bifurcation, characterized

by the frequency
wz:%vaz—l. (80)

It is worth noting that both w; and w; scales as 7 with coefficient of proportionality
depending only on a. On the contrary, the relaxation oscillations in semiconductor lasers
scale as /7 [25]. We can conclude that the dynamical frequencies w; and w, are not
connected with relaxation processes but they are a consequence of the amplitude-phase

coupling induced by the factor a.

3.3 General stability scenario

If1 < a < V2 the stability domains of the doughnut and two-peak solutions have a
common domain (8, < 8 < f:), leading to multistability among these stationary solu-
tions. Such values of o are too small for real semiconductor lasers but the correspondence
between semiconductor laser and detuned Class-B lasers suggests that multistability can

be observed, for instance, in CO; lasers.
More interesting for the purposes of the present work is the case a > v/2. In this

situation the chain of inequalities 3 < B3, < B3 holds and we can distinguish four different
regions

a) 0 < 8 < By: only the two doughnut solutions are stable; there is bistability between
them

b) B < B < B all kinds of stationary solutions are unstable and the laser reaches a
dynamical regime in which the two doughnut modes beat with the frequency wy of
the Hopf bifurcation which occurs at 8 =75

¢} B, < B < By only the two-peak solutions are stable; there is an infinite number of
stable states, one for each possible orientation of the pattern in the transverse plane

12



d) 8> B3 asin region b) all stationary solutions are unstable, but now the dynamics
1s characterized by the beating of modes TEM,; and TEM,, with the frequency w,
arising from the Hopf bifurcation at 8 = 3,

This situation is described schematically in Fig. 5. The numerical integration of the
dynamical equations fully confirmed this picture. The parameters adopted in the sim-
ulations were v = 1/30, @ = 4, 3% = 4. With such choice of the parameters we have
B = 0.00208, 8, = 0.0029, 53 = 0.025.

In regions a) and c¢) we always found the doughnut and the two-peak solutions, re-
spectively, and we verified that the orientation of the peaks in region c) depends only on
the initial conditions. The power spectra S(w/7) in region b) and d) have been obtained
with § = 0.0022 and # = 0.026, respectively. The dominant frequencies are close to
the values wi/y = 0.25 and ws/y =~ 1.94 obtained from Eqs. (74) and (80) for a = 4.
The discrepancies are within 10% and they are probably due to the nonlinear interaction
between the modes.

4 Square active region

From the viewpoint of possible applications the only interesting regions are a) and c),
where the laser emits a continuous wave. In particular, region a) is characterized by
bistability between the two doughnut configurations, while in region c) all orientations of
the two-peak patterns are equivalent.

As far as the use of the laser as an optical switching device is concerned, bistability
between two states with clearly different properties (the behaviour of the phase for dough-
nut modes) is much preferable to the multistability present in region c¢). Actually, optical
switching between doughnut modes with opposite helicity has been already observed in a
He-Ne laser (Class-A laser) [12].

Unfortunately, the stability analysis of Section 3.1 showed that the width of region a)
15 so small to make rather infeasible an experiment of switching involving doughnut modes
in a semiconductor laser. Region c) is wider, but in this case the cylindrical symmetry of
the laser leads to multistability among a continuous set of stationary states.

This problem can be overcome by considering a different geometry for the laser, namely
a square active region or a square filter [16]. In this situation we expect that only two
among all possible orientations of the two-peak structure are privileged, and precisely the
two orthogonal directions corresponding to the diagonals of the square.

In this section we will adopt cartesian coordinates z and y so that the modal functions
A, and B, take the form

2 i

Az,y) = ﬁ(m+ly)e( ) (81)
2 2

Aolz,y) = = (e—iy)e ™, (82)

ia) = (P "
2 _(x2+ 2)

By(z,y) = —2ye vl (84)
™

13



We assume that the sides of the square are parallel to the z and y axes so that the function
x 1 1s now defined as

1 2], ly| < /2
0 izl, [yl > /2

where ¥ = l4/wy is the normalized length of the side of the square.

First of all we observe that, while the doughnut solution is still a stationary solution
although the system has lost the cylindrical symmetry, for what concerns the two-peak
solutions the square symmetry removes the rotational degeneracy and only the solutions
with peaks located on the axes or on the diagonals of the square survive.

xv(z,y) = { (85)

The threshold for all these stationary solutions is the same and of course it differs
from the one obtained in the cylindrical case. We have now

2 = {erf (%) erf (-‘-”\/—.2-) - \/%e-*‘”“zp] }—1 : (86)

where erf is the error function defined in the usual way. Again 2Cu, — 1 as ¥ — oo.

4.1 Stability of the doughnut solution

As stated in Sec. 3.1 the stability properties of this kind of solution are completely inde-
pendent from the shape of the active region. The instability condition (73) is still valid,
provided the expression (86) for 2C;, is replaced in the definition of the parameter S.

4.2 Stability of the two-peak solutions

The square shape of the active region selects as stationary solutions only the ones for
which 8 = nr/4 withn = 0,1,2....

Obvious symmetry considerations suggests dividing such solutions in two classes:

n even: solutions with peaks located on the z and y axes

n odd: solutions with peaks located on the diagonals of the square.

The characteristic equation derived fram the linear stability analysis in the usual limit
|F|? < 1is

A+ A2[28(8n — 1) + 91 + AB%(Sn — 1)X(1 + ) + 298(25, — 1)}+

151+ @)(5n - 1)(35. — 1) =0, (87)
where 3 is defined as in Eq. (69) and S, is a function of ¥ such that

[ R Ho ) ()] n even
Sn(9) = { o)1) — L))/ To(@)(#) + 3L()}]  m odd (88)
where .
L(¥) = f_w dzz"e . (89)
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Fig. 6 shows the behaviour of S as a function of 9. Two features are clearly visible

i)

S, >1/3 V¢ n even (90)
<1/3 V¢ n odd

ii) Su(9) — 1/3 as Y — oo.
In this limit there is no distinction between cylindrical and square geometry and Eq. (87)
reduces to Eq. (75).

For finite values of 1 the Hurwitz criterion applied to the cubic equation (87) leads to

the following results:
a) A necessary condition for the real part of all the eigenvalues to be negative is

2|al

m < S.(¥)<1/3. (91)

Fla) =
This condition, together with item i) of the previous list, implies that the only stable
two-peak solutions are the odd ones. In Fig. 6 the dashed lines represent the function
F(a) for a = 4 and « = 6. The odd two-peak solutions are stable for values of ¢ larger
than the intersection points of those lines with the curve S, n odd.
b) If condition a) is fulfilled the odd solutions are stable for values of 3 such that

B- < B < By (92)

with

Sa(1+ 0?) +2(1 — 25,) & y/Sa*(1 + 02)? = 4a*(1 — 25.)?
Ps = (1 — 5,)%(1 + a?) '
Summarizing, in the case of a square active region, the only stable two-peak solutions
are those placed on the diagonals of the square. The laser shows bistability between two
states whose intensity configurations are orthogonal in space. This kind of bistability is

completely different from that between doughnut modes, because the doughnut modes
have the same intensity configuration and they differ only for the behaviour of the optical

(93)

bo -2

phase.

A comparison with the previous section shows that 8, < 8 < 4 < f5: the stability
domain for the two-peak solution is smaller than in the cylindrically symmetric case. An-
other difference is that now both bifurcations at 8 = #_ and 8 = (3, are Hopf bifurcations.
The frequencies w, and w_ associated with the two bifurcations are

[~2(1 - 28,)? + S3(1 + &%) & Suy/SE(1 + @) — 4a2(1 - 25,)] e

wy = 7" \/5(1—3,.)

However, 8- — B, B+ — B3, wy — wy and w_ — 0 as ¥ — oo, and in this limit we
recover exactly the same results as in the previous section.

In conclusion, we have the same stability scenario as in Fig. 5, apart from the re-
duced size of the stability domain of the two-peak solutions and the disappearance of the

rotational degeneracy for this solution.

(94)
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5 Conclusions

Our analysis shows that, most commounly, the laser considered here develops dynamical
oscillations in which the two doughnut modes, or the two TEM;; and TEMoy modes,
exchange their energy. However, we identified two distinct regions in the parameter
space, where stable stationary states exist and this feature can be utilized for applicative

purposes.
In the first of these regions there is bistability between the doughnut states, so that one

can expect a switching behaviour of the type described in [12]. However, this bistability
domain seems very small in the parameter space.

In the second region there is a stable two-peak stationary state with a TEM,, config-
uration and, similarly, all the steady states obtained from this by an arbitrary rotation
around the laser axis are stable when the system is cylindrically symmetric; an initial
random fluctuation determines the angular orientation of the state. This infinite degen-
eration of the stationary state under rotation seems detrimental for practical applications
such as, for example, switching. However we have shown that if the active region has a
square instead of a circular section, in this regime the system always approaches one of
the two stationary states, in which the two peaks are located along the two diagonals of
the square. In the future, we plan to study the switching behaviour of the laser in this
bistable configuration, and also to explore the possibility of realizing optical gate opera-

tions.
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Appendix - Comparison with two-level Class-B lasers

In this appendix we demonstrate that the dynamical equations for a semiconductor laser
(51-52) are formally identical to the equations for a two-level Class-B laser, where the
linewidth enhancement factor a is replaced by the atomic detuning A.

The equations for a two-level laser are [24]

d . 2w o0 -

% = -k [(1 + iap) for — 26'/; dsofo dpp Ay P] (95)
= A[FD-(1+iA)P) (96)
%—? = - B'(F'P + FP?) - XV] (97)

where k,v,,7| are the decay rates of the electric field, the atomic polarization and the dif-
ference of population between the two levels, respectively. A Class-B laser is characterized

by the conditions

NE€kLy, (98)
which allow for the adiabatic elimination of the atomic polarization P, so that one obtains
ﬁ—:‘ - —k [(1+iap¢)fp;—2011_:ﬁjjxdcp [ dep 43D F| (99)
%? = - [D (1 + 1|sz) —xv] ' (100)

With the substitutions
fo F P 2 ¢, A—a  (101)

,'_'“_l_Jr_Az‘__’fP‘l! /1+A2_’ H 1+A2

and the definitions
T = kt, T = "}'”/k

Egs. (99-100) become identical to Eqgs. (51-52).
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Figure captions

Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

1 Lateral view of the SEL: L is the distance between the two facets, L4 is the width
of the active region, d is the diameter of a circular section of the cylinder.

2 Transverse sections of the SEL: a) circular active region of diameter d4, b) square
active region of size [4.

3 Intensity distribution in the transverse plane for the doughnut modes A; and A;.

4 Intensity distribution in the transverse plane for the modes B, (a) and B, (b).

5 Scheme of the four domains discussed in the text: a) the two doughnuts are
stable, b) the laser shows undamped oscillations at a frequency close to wi, c)
the two-peak solutions with arbitrary orientation # are stable, d) the laser shows
undamped oscillations at a frequency close to w,.

6 Plot of the function S,(1) for odd and even values of the integer n. The asymptotic
value 1/3 and the values of the function F(a) for & = 4 and a = 6 are represented
by the dashed lines.
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