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B. Riemann claimed that the conformal structure of a Riemann surface of genus g is determined
by 3g — 3 parameters, which he proposed to name “moduli”. Following A. Grothendieck and
D. Mumford [8] we will consider “algebraic moduli”. Let us recall D. Mumford’s strengthening
of B. Riemann’s statement.

Theorem 1 (Mumford [8]) Let k be an algebraically closed field and, for g > 2,
€, (k) = { projective curves of genus g, defined over k}/ = .

Then there exists a quasi-projective coarse moduli variety C, of dimension 3g—3. i.e. a variety

C, and a natural bijection €,(k) = C,(k) where C,(k) denotes the k-valued points of C,.

Later we will give the exact definition of “natural” and of coarse moduli schemes. Let us
just remark at this point that €,(S) denotes the set of isomorphism classes of flat morphisms
f:X = S, whose fibers f~!(s) belong to €,(k), and that “natural” implies that for a family
f: X = 5 € €,(S) the induced map S(k) — C,(k) comes from a morphism of schemes
$:5 = C,.

In the spirit of B. Riemann’s result one should ask for a description of algebraic parameters
or, at least, for a description of an ample sheaf on C,. Using the notations introduced above
one finds that for each v > 0 there is some p > 0 and an invertible sheaf ..\f}’) on C,, with

F* AP = det(fuwy/s)P-
Addendum 2 (Mumford [8]) For v, u and p sufficiently large, for
a=(29-2)-v—(g—1) and B=(29-2)-v-p—(g—1)

the sheaf AP)" @ AP s ample.



In the sequel all schemes are supposed to be defined over an algebraically closed
field & of characteristic zero.

Trying to generalize Mumford’s result to higher dimensions, one first remarks that the genus
g of a projective curve X determines the Hilbert polynomial h(v) = x(w%) = (29—2)-v—(g—1)
of X. Hence, if h(T) € Q[T] is a polynomial of degree n, with A(Z) C Z, one should consider
the subset

€n(k) = {X; X projective manifold, wy ample and h(v) = x(w%) for all v}/ =
of €(k) = {X; X projective manifold, wy ample }/ .

Theorem 3 ([9], II) Keeping the above notations, there exists a coarse quasi-projective moduli
scheme Cy for €(k).

For n € N there exists some p € N and an invertible sheaf ,\,(?") on Cy such that for all
g:Y = S € &(S) and for the induced morphisms ¢ : S — C), one has

PP = det{guuil 5.
If n > Max {no; with h(no) = 0} U {1} then the sheaf M?) is ample.

Theorem 4 (Gieseker) [fdeg(h) = 2, i.e. if one considers surfaces of general type, then
one may start in 3 with

€(k) = {X; X projective normal surface with rational double points, with wy ample }/ =2 .

D. Gieseker’s result is stronger than stated here. His method implies, that one obtains an
ample sheaf of the form /\l(f,’?‘h(”) & Ay

In our talk we will only consider the moduli problems €,(k), introduced above. We will
sketch the methods which allow to proof the theorems 3 and 4 and discuss some partial results
concerning moduli of singular reduced schemes. Some of the results have analogues for higher
dimensional varieties with arbitrary polarizations, i.e. for pairs {X,H) where H is an ample
invertible sheaf on X (see (8], p.: 97). We define (X, H) = (X', H') if there exists an isomor-
phism 7 : X — X' such that H and r*H’ are numerically equivalent, and (X, H) ~ (X', H') if
there are isomorphisms 7 : X — X' and 7*H' — H.

Theorem 5 ([9], III} Let h € Q[T', T3] be a polynomial of degree n in Ty and let
k) = {(X,H); X projective manifold, H ample invertible and wx semi-ample }/ ~ .

Then there exists a coarse quasi-projective moduli scheme M, for the moduli problem My, (k) of
polarized manifolds (X, H) € (k) with

ha,8) = x(H* ®uw%) forall a,8€N.

Assume one has chosen natural numbers ¢, v, ' and v such that, for all (X, H) € My(k), one
has:



i. HY is very ample and without higher cohomology.
. € > Cl(H‘T)n + 1.
i, r = dimg( HY(X, 1)) and r' = dimp(HY( X, HY ® wY'))-

Then, for some p > 0, there exists an ample invertible sheaf ’\-(v;:t):-'v on M, with:
For(g:Y — 5,L) € My(S5) let S — M,, be the induced morphism. Then

P M) = det(g.(L7 @ wy)s)) ® det(g.L7) "

Yoery

One may replace the moduli problem 9(k) in 5 by any submoduli problem, as long as the
additional conditions are deformation invariants. If one considers in this way moduli of abelian
varieties, K-3 surfaces, Calabi-Yau manifolds or, more generally, if for all manifolds X in My (k)
one knows that w§ = Oyx, then the moduli scheme M, in 5 carries an ample sheaf A(P) with
" AP = guiTs.

Finally, building up on 5 one obtains the existence of a coarse moduli scheme for polarized
manifolds up to numerical equivalence.

Theorem 6 ([10]) Given 9 and h as in 5, there exists a coarse quasi-projective moduli
scheme P, for P, = M,/ =.

The construction of P, is done by using moduli of abelian varieties with a given finite
morphism to a fixed quasi-projective scheme. This scheme will be the moduli space M, from
theorem 5. One can give an explicite ample sheaf on Py, but its definition requires some work.

All the moduli mentioned have been constructed beforehand as analytic or algebraic spaces
(Narasimhan-Simha, Tankeev, Artin, Popp, Mumford-Fogarty, Kollar, ..., see [8], Appendix
to Chapter 5).

These notes are based on the author’s manuscript on “Quasi-Projective Moduli of Polarized
Manifolds” which hopefully will appear 1995 as a monograph. The construction of the ample
sheaves in 3, 5 and 6, much nicer than those obtained in [9} and slightly better than those of
[2], is given there.

1 Moduli schemes and Hilbert Schemes

Starting from €,(k) one defines the functor of canonically polarized manifolds with Hilbert
polynomial h by:

Ci(S)={f:Y = S; f flat and f~'(s) € €4(k), for all s € S}/ =,
where 2 stands for S-isomorphisms, and €4(r: " = S)(f: Y = S)=(pra:Y x5 5 = §').

Definition 7 (Mumford, [8]) Given the functor €,: (Schemes /k) — (Sets) a scheme Cj
will be called a coarse moduli scheme for &€, if there exists a natural transformation

0 :¢, — Hom( ,C})

satisfying:



(a) ©(Speck) : €4(k) — Hom(Speck,Cy) = Ci(k) is bijective.

(b) Given a scheme B and a natural transformation x : € — Hom( ,B), there is a
unique morphism ¢ : M, — B such that x = ¥ o O, for the natural transformation

¥ : Hom( ,M;) — Hom( , B) induced by V.

The construction of moduli schemes starts with A. Grothendieck’s Hilbert scheme Hilbﬁlf

and with the construction of the Hilbert scheme H C Hilbih, of v-canonicelly embedded mani-
folds:

Boundedness. By Matzusaka's big theorem (see [7]) there exists some 1y > 0 such that
wY% is very ample and without higher cohomology, for all X € €,(k) and for all v > v.

For { = h(r) — | one obtains an embedding ¢ : X — P! and Ox(1) = ¢*Op(1}) = w%. In
particular A'(n) = x(Ox(n)), for R(T) = h(v - T). Grothendieck constructed in [3] a scheme
Hilb!,, whose points parametrize subschemes X of P! with &'(¢) = x(Ox(p)), and a universal
family

XL, — 3 P! x Hilb!,

f\ /sz
Hilb!,
and, step by step, one replaces Hilb}, by the subscheme H whose points s € H satisfy:

1. ¢(f~'(s)) does not lie in a hyperplane.

2. f‘l(s) € Eh(k)
3. w;_.(a) = Of—l(_,)(l).

We have to verify, that those conditions really define a subscheme. This is obvious for 1). For
2) one uses that smoothness and connectedness of the fibres are open conditions, and the last
one is quite stimple to verify. In other terms, €, satsifies:

Local closedness. If f : Y — S is a flat projective morphism and if £ is an invertible
sheaf on Y then there is a locally closed subscheme T of S with:
A morphism S§' -+ S factors over T if and only if pry : ¥ xg 8" — 5 € €,(5’) and if

* —_ v
pril = WY x o5 /57

Let f : Y — H € €,(H) be the family obtained by restricting X}, -+ Hilb}, to H. The
embedding ¢ induces an isomorphism g : P(fiw} ) — P! x H and for some invertible sheaf B

on H one has fiw%,; = @"*'B. By the choice of H the universal property of X}, — Hilb!,
Y/H h h

carries over and, for ¢ : ¥ = § € &,(S) and p : P(g.wy/s) — P! x S, there is a unique
morphism S — H, such that (¢ : Y — S,p) is the pullback of (f : Y — H,p). In particular,
for 1 € PG = PGI(h{v), k), replacing ¢ by (7 x id}o g : P(fuw},y) —* P! x H, one obtains a
morphism H — H, again denoted by 7. The uniqueness implies that ¢ : PG x H — H with
a(r,h) = 7(h) is an action of PG on H.



Definition 8 PG acts properly on H if the induced morphism ¥ = o x pry : PG x H — H x H
is proper.

If one tries to show that 1 is proper by using the “Valuative Criterion for Properness” ([4],
I1, 4.7}, one has to verify that €, satisfies a third condition:

Separatedness If R is a discrete valuation ring with quotient field K and if
fi : X; = § = Spec(R) € €,(5)

are two families, then every Spec (K)-isomorphism & : (X)) — (X2)k extends to an isomor-
phism X; = X, over S.

Again, it is easy to verify the separatedness for €,. For some g : Z — S there are birational
morphisms ¢; : Z — X; with § 0 ), = ; and § induces an isomorphism

g,w;ls = fz*w;zls =~ fl'w;IfS'
However, X; is isomorphic to Spec(@,»o fiuwk, /s)-
Remark 9 For degh = 2, i.e. for moduli problems of surfaces, the three properties: Bounded-
ness, Local closedness and Separatedness hold true for the moduli functor €, in 4.
2 Geometric Invariant Theory

Most of the content of this section is due to D. Mumford, [8].

In the last chapter we obtained an action of PG = PGI(l + 1,k) or of its finite cover
G = SI{{ + 1,k) on a scheme H, via o : G x H — H. We will stick to this example, even if
most of the content of this section holds true for all linear reductive groups G.

Definition 10 A scheme M, together with a morphism = : H — M is called a good quotient
of H by G if

(a) Too =mopry
(b) Om = (7.0n)% C 704

(c) for a G invariant closed subset W of H, the image m(W) is closed. Moreover, for
two disjoint G-invariant subsets W, and W,, one has #(W;) N n(W;) = 0.

The sheaf (7,04)¢ of G-invariant functions is defined in the following way. For U C M a
function f : #7'(U) = Al is in (m.Ox)®(U) if and only if

foo=fopry:Gxa ' (U) = A
A good quotient is a categorial quotient, i.e. whenever ¢ : H — Z is a morphism with

coo=copry: G x H— Z,

3



then there is a unique morphism 8 : M — Z with e =dom.

Since we considered a proper action of G on H, we can add one more property. If GG, denotes
the G-orbit of z € H, then G, x {z} is the image of (¢ x {z} under 1. Hence the properness of
the group action implies that all orbits are closed. The property c) in 10 implies that 7~ x(x)
must consist of a single orbit. One finds that a good quotient 7 : H — M for a proper group
action is a geometric quotient:

Definition 11 A good quotient = : H — M is called a geometric quotient, if one has in
addition:

(d) for every z € H the fibre 7~ '(=(x)) is the orbit G,.

If H = Spec A is affine, then the existence of quotients is well known. In fact, D. Hilbert
has shown that A% is again an affine k-algebra and M = Spec A“ is a good quotient. Since we
assumed G to act proper, it is even a geometric quotient.

Before being able to present Mumford’s criterion for the existence of quotients of quasi-

projective schemes under an action of G = S{{({ + 1, k), we need the notation of G-linearized
invertible sheaves or, for later use, of G-linearized locally free sheaves. If £ is locally free on H
we denote by V(EV) the induced geometric vector bundle (see [4], II, Ex. 5.18).

Definition 12 A G-linearization of & is a lifting of the G-action o : G x H — H to an action
o G x V(EY) — V(&Y), given by morphisms of vector bundles

a'(g,—): V(EY) — V(EY).

The action ¢’ induces an isomorphism
¢:0"E — pryf
with certain compatibilities, and usually we will refere to ¢ instead of o’.

Example 13 If G acts linearly on PM and on H and if ¢ : H — P™ is a G-invariant embedding,
then :*Opu(1) has a G-linearization. In fact, V(Opum(1))- zero section is nothing but the
natural map @M+ k — (0,...,0) = PM.

Example 14 Let § : G — Gl(r, k) be a representation. Then G acts on H x ®"k by

g(h x v) = g(h) x &{g)(v).

We will denote the induced G-linearization by
(ﬁg : 0‘@01{ — pT‘;@OH.

If £ is an invertible sheaf with a G-linearization one can talk about the (G-invariant sections
H°(H,L). In fact,
HY(H,L) = {s: H— V(L );5 a section }

6



and s is G-invariant if s = &9 for

g=o{g.~) a'{g7,-)

I H I S vety —S5 V(L.
Following [8], but changing the notations slightly, we define:

Definition 15 Let G = S/({ + 1,k) be acting on H with finite stabilizers and let £ be a
G-linearized sheaf. Then

1. £ € H is called stable with respect to o and L if, for some N > 0, there is a section
t e H°(H,LN)Y with:

(a) H,= H — V(t) is affine, where V(t) denotes the zero locus of .
(b) t(z) # 0

(c) the induced action of G on H, is closed.

2. H(L)’ = {x € H;z stable with respect to ¢ and C}.

If the group G is acting properly, then 1), ¢) holds true automatically. It is easy to see that
Llpcys is ample. The main property of stable points is:

Theorem 16 (Mumford) There ezists a geometric quotient n : H(L)* = M and an ample
invertible sheaf \?) on M such that LP = m*X®), for some p > 0.

The proof of theorem 16 is quite simple. One constructs for the sets H, in 15, 1), the
geometric quotient M, using Hilbert’s finiteness theorem. It is a categorial quotient and the
uniqueness of such allows to glue the M, to M. It is more difficult to show that the existence
of M gives nice functorial properties for the set of stable points:

Theorem 17 (Mumford) Let G = Si{l + 1,k) act on the scheme H with finite stabilizers
and let L be a G-linearized invertible sheaf.

1. Ift: Heea = H is the natural morphism then (H(L)%)red = Heea(t*L)*.
2. If: Hy — H is a locally closed G-invariant subscheme then Ho 0 H(L)® C Ho("L)*.
3. Ifin 2) L is ample on H and if Hy is projective then Ho 0 H(L)* = Ho(*L)*.

As in [8] the theorem 17 allows to show that the question whether a given point z € H
belongs to H(L)*, or not, can be decided by studying compactifications of G,.

Corollary 18 Assume in 17 that for some x € H there exists a scheme H', an open embedding
¢: H > H'" and for some N > 0 a coherent subsheaf G of t.L" such that:

(a) The closure G, of G, in H' is projective.
(b) Gly is isomorphic to LV and G is generated by global sections.

7



(c) On G, there is an effective Cartier divisor D, with (Dy)ea = G, — G, and an

inclusion
OC.‘_x( Dr) — (g la) /torsion

which ts surjective over G .
Then x € H(L)".

Sketch of proof.
One can find a finite dimensional G-invariant subspace V of H°(H, LV ) which generates G and,

replacing N by some multiple, which contains a section tq with V(¢y) = G; — G,. Replacing
H' by the closure of H in P(V) one may assume that G = Og.(1). By 17 one obtains

Go(0g(1)) = G N H'(Oy:(1))’ € H'(Op: (1))

and

H O H'(Op (1)) C H(Ou(1)) = H(L).
Hence one may assume that H consists of one orbit G, and that H' = G.. Let ty be the
global section of Og=(1) with V(to} = G, — G.. Replacing the zero divisor D of ¢, by a finite
sum of conjugates one may assume that D is (G-invariant. Since the image of a character

Si{I+1,k) — k* is finite one may assume that ¢, is G-invariant. By definition of stability one
obtains that z € G.(Oz(1))". a

3 Weak positivity and Stability

Definition 19 Let Z be a reduced quasi-projective scheme and let G be a locally free sheaf
on Z. We call G weakly positive (over Z) if for all ample invertible sheaves H on Z and for all

a > 0 the sheal SY(G) @ H is ample.

In [9] we had to use a stronger positivity condition. In the forthcoming monograph we get
along with “weak positivity”, as defined above. However, in order to prove the positivity results
needed in the next section, one better starts with the slightly more general definition “weakly
positive over a subscheme”. Weakly positive sheaves have properties similar to those of ample
sheaves. In particular one can show:

Properties 20
I. Direct sums and tensor products of weakly positive sheaves are weakly positive.

2. A locally free sheaf G is weakly positive (over Z) if and only if the same holds true for
S#(G), for some p > 0.

3. If G is weakly positive then A*G and all locally free quotient sheaves are weakly positive.

4. If r : Z' = Z is a finite surjective morphism and if the trace map induces a splitting
of Oz = 7.0z, then a locally free sheaf G on Z is weakly positive if and only if 7*G is
weakly positive.



3. If Z is proper and G locally free on Z, then G is weakly positive over Z if and only if G is
numerically effective, i.e. for all morphisms v : C — Z from a proper non-singular curve
and for all invertible quotients @ of ¥*G one has deg(Q) > 0.

6. If Z is proper, 7 : Z' — Z finite, surjective and if G is locally free on Z, then G is weakly
positive if and only if 7°G is weakly positive.

To formulate the stability criterion we consider projective schemes G and H, containing G

and H as open dense subschemes, and a quasi-projective scheme Z, containing G x H, such
that:

1. The morphisms ¢ : GxH — Hpry : GxH — Gand pry : Gx H = H extend to
morphisms ¢ : Z — H,p,: Z - Gand p,: Z > H.

2. For U = ¢7'(H) and V = py'(H) the morphisms ¢y = ¢l and psv = py, are projective.
3. Z=UUVandGx H=UnNV,

Such a Z is easily constructed as a subscheme of G x H x H. For the last property
“G x H=UnNYV?” one needs that G acts properly.

Theorem 21 Let G = Si(I + 1,k) act properly on a reduced scheme H. Let L be an ample
invertible sheaf on H, G-linearized by ¢ : 0*L — prjL and let § : G — Si(r, k) be a represen-
tation with finite keme! Assume for some H,G and Z, as above, there is a locally free sheaf

F on Z with:

(a) There are isomorphisms yy : o, @ L — Fy = Fly and vy : piy @ L = Fv = Flv
such that ® = vy 'juav © Ywlunv is the G-linearization ds @ ¢ (see 14).
(b) F is weakly positive over Z.

Then H = H(L)*.

Addendum 22 Assume that in addition there is an ample invertible sheaf A on H, G-linearized
by ¢ : ™A = priA, and an invertible sheaf A on Z with :

(c) There are isomorphisms v : oA — Ay = Aly and v}, : pjy A — Ay = Aly such
that v 'luav 0 ¥ lunv is the G linearization ¢&'.

(d) For some a,. > 0 the sheaf A* @ det(F)~* is weakly positive over Z.
Then H = H())*.

Sketch of the proof.

One has the isomorphism vy : @" Lv — Fv or, equivalently, a morphism ey : Lv = @" Fv,
which splitts locally. Blowing up Z, if necessary, Ly extends to an invertible sheaf M on Z
and ¢y to a locally splitting inclusion e : M = @" F. if s : @ M — F denotes the induced
morphism let D be the zero divisor of det(s), hence M™ = det(F) ®@ Oz(—D). The dual of €

induces a surjection

r r—1

SEBAF=5 EB (F¥ @det F) — M7 @ det(F)" = det(F)"! ® Oz(D).

9



By 20, the sheaf on the left hand side is weakly positive and hence the sheaf det(F)~!'®@0z(D),
as well. The assumption d) implies that A™ ® Oz(D') is weakly positive, for some r' > 0 and
for some multiple D’ of D. The main observation is:

Clam23 U - D ,=UnV =GxH.

Proof.  For x € H, the fibre U, = ¢7!(z) in G x H is isomorphic to G and U, = ¢~ ()
1s a compactification of this fibre. Assume, blowing up U, if necessary, that the finite map
G — PGI{l + 1,k) extends to a proper morphism U, — P where P = P(@" k") is the usual
compactification of PG{({ + 1,k). On P one has the tautological map Op(—1) - @ O} and
the induced universal bases s' : @" Op(—1) — OF". The property a) in 26 implies that the
pullback of s’ to {7, is the same as 5|z~ Hence the pullback U -~ U, of the zero divisor P — PG
of det(s') is the same as D|g-. O

Let us collect what we know up to now. Blowing up H,G and Z, one finds an extension
X of A to H and an ample sheaf on Z of the form pjX ® Oz(A), for some divisor 4 on Z,
supported outside of G x H. One may choose A and A, such that 747! : Ay — piy ) extends to
an inclusion A — p3A. Hence for some divisor F supported in Z — V', the sheaf A @ Oz(A+ F)
1s ample. By definition of weak positivity, the same holds true for all & > 0 and for

A1+r‘-a ®OZ(A+ F+a . D’)-

If x € H is a given point, this sheaf, restricted to U, is of the form OpAA,) where A, is

a divisor, supported in U, — U,, with high multiplicities, for & 3> 0. The second projection
maps Uz, U; to G;, G, in H. A careful study of the sheaves involved allows to verify that the
assumptions of 18 hold true, for some subsheaf G of . AN, for N’ > 0. a

4 Geometric Invariant Theory on Hilbert Schemes

Let us return to the moduli functor €, (or Eh) studied in section 1 to the Hilbert scheme H
and to the universal family f: Y — H € €,(H). Recall that G = SI{{ 4+ 1,k) acts properly on
H, i.e. the morphism

Yv=oxpra:GxH—-HxH

is proper. The fibres of 3 are isomorphic to the stabilizers of the points and since G is affine,
the stabilizers are finite.

Proposition 24 If v : H - M is a geometric quotient of H by G, then M is a coarse moduli
scheme.

In fact, the property a) in the definition 7 holds true, since 7~'n(z) = G,, and property
b} follows since M is a categorial quotient. In order to apply 21 or 22 we need G-linearized
sheaves. They exist, since the action o lifts to an action ¢’ : G x ) = Y. One obtains:

Lemma 25 If for some 1 > 0 the sheaf fuwy,,y is locally free of rank r(n) > 0, then the sheaf
Ay = det(f.w;m) is G-linearized. Moreover, for the number v used to construct H, the sheaf

A(v)

oSy =P8

10



has a G-linearization ® = ¢5 ® ¢, where ¢ is a G-lincarization of B and where 15 is induced
by the trivial representation.

There is also a natural ample sheaf 4 on f:

Lemma 26 Using the notations from 25, the sheaf
A= A;(:) ® A:r(u-u).u
is ample and G-linearized on H, for p >» 0.

A is the sheaf induced by the Pliicker embedding. For u > 0 the multiplication map

r{v)
SH(fuwy ) = B* @ SHEP On) — fuwyiy

is surjective and the induced map

rivs)  r(v)

A SHEP On) — Avy @ B0

induces an embedding of H in some projective space. A is nothing but the r(v)-th power of

the right hand side.
For curves and surfaces, D. Mumford and D. Gieseker were able to show that H = H(A)".

For degh > 3, we have to look for other ample sheaves on H. This is done by the following
theorem, which builds up on results and methods, due to T. Fujita, Y. Kawamata, J. Kollar
and the author (see [2}).

Theorem 27 For g: Y — S € €,(S) (or for surfaces, in €4(S)) one has, for 5 > 0:
(a) Base change and local freeness. g.wy s is locally free of rank r(n) and it is
compatible with arbitrary base change.
(b) Weak positivity. g.wy, s is weakly positive over 5.
(¢) Weak stability. If r(v) > 0 and if n > 2, then there ezists some ¢ > 0 such that

St(g‘w;l',/s) ® det(g*w;ls)—l

is weakly positive over S.

The proof of theorem 27 is easy, if S is non-singular or if the singular locus of S is proper.
The general case, unfortunately, requires some technical constructions, which we are not able

to include in this survey.
Sketch of the proof of 5 and {. In 26 we obtained an a.mple invertible sheaf -

A= A @ A7)

on H. By 27 the sheaves ),, as determinants of weakly positive sheaves, are weakly positive
and hence A, is ample. The weak stability in 27, for v - u instead of v, implies that f...w"y/H is

11



ample, for n > 1. In particular, for n = 1, one obtains that the sheaf B is ample. Moreover, A,
is ample, whenever n > 1 and r() > 0.

We take £ = B and X = ), in 21 and 22. The sheaves F in 21 and A in 22 are given in the
following way:

The lifting of the G-action 0 : G x H — H to o' : G x Y — Y allows to glue the pullback
families Y xyg U and Y xyVover G x H =UNV toafamily g : ¥ — Z. Then F = Gty )z and
A= det(g,w;’,/z) satisfy the assumptions made in 21, b) and 22, d). We obtain that H = H(A,;)*
and 3 and 4 follow from 16 and 24. u

5 Allowing Singular Fibres

If one wants to study moduli of normal varieties X, with canonical singularities, one runs
into the problem that the starting points, the local closedness and the boundedness of the
corresponding moduli functors is not known. Assuming those two properties, the other results
mentioned up to now remain true. For non normal schemes, the only results are known for curves
and surfaces. Let us just indicate in the sequel the necessary assumptions and modifications of
the statements.

Definition 28

1. A scheme X is called Q-Gorenstein of index Ny if X is Cohen-Macaulay and if the reflexive
hull w!,?lo] = (wi°)VY is invertible.

2. A morphism f : X = S of schemes is called a family of Q-Gorenstein schemes of index
Ny, if

(a) ww;] is invertible.
(b} wg';‘l,s is flat over S, for all » > 0.

(c) w{i}sh—a(,) = w-[;ll(s), for all > 0.

If Fu(k) is a set of connected projective equidimensional Q-Gorenstein schemes X of index
No, with wF® ample and with A(v) = x(w5°"), then we define the moduli functor Fx by

Fn(S) = {g:Y — S;g family of Q-Gorenstein schemes of index N, and all f~'(s) € §n(k)}/ =.

Definition 29 A normal variety X is said to have canonical singularities if X is Q-Gorenstein

of index Np and if for some (hence all) desingularizations 7 : X’ = X one has r.w}? = wgﬁv"].

In the following discussion we will write &h(k) and &, instead of Fn(k) and Fs, if Fa(k) con-
sists of normal varieties with at most canonical singularities. Since two-dimensional canonical
singularities are rational double points, this definition is compatible with the notation in 4. For
degh > 3, if €,(k) consists of all such varieties, the local closedness and boundedness remains
an open problem. The other properties remain true, in particular 27, if one replaces g,w,’}fs by
g_wws and, if one requires for the “Weak stability” that Ny divides v. A slight modification of
the constructions indicated gives:
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Theorem 30 If €, is a locally closed and bounded moduli functor of canonically polarized
normal varieties with at most canonical singularities of indez No, then there exists a coarse
quasi-projective moduli scheme C,, for €4. Let no be a positive integer with HU(X,wE{f]) # 0 for
all X € Eh(k) and for all n > no. Then, for some p > 0, there is an invertible sheaf /\Sf) on
éh, such that forg:Y — S ¢ E:;,(.S') and for the induced morphism ¢ : S — éh one has

Lp")\f?”) = det(g,wb}s)p.

For n > Max {no, 2} the sheaf ’\1(1?} is ample.

If one tries to extend those methods to non-normal Gorenstein schemes, one has to add
more and more assumptions.

Assumptions 31 Let F(k) be a moduli problem of canonically polarized Q-Gorenstein schemes
of index Ny. Assume that:
1. §(k) is closed under general cyclic coverings, i.e.:
If X € (k) and if w[)?]"]M'N is generated by global sections, for some M, N > 0, then the
variety, obtained by taking the N - Ny-th root out of a general section of w[{("“]M‘N, belongs
again to §(k).
2. Each X € §(k) deforms to a normal variety, i.e.:

there exists an non-singular curve C and a family f: Y — C ¢ §(C), whose general fibre
is normal with at most canonical singularities and with S1(co) =~ X, for some ¢ € C.

3. Foreach f: Y = C € §(C), as in 2), the total space ¥ has at most canonical singularities.

Those assumptions, influenced by those of stable surface in [6] allow to verify the first two

properties in 27, the “Local freeness and base change” and the “weak positivity”. Using 21 for
the sheaf £ = B ® A, ., one still obtains:

Theorem 32 f §(k) is a moduli problem satisfying the assumptions made in 31 and if for
some h € Q[T the moduli problem

Ba(k) = {X € Bui h(v) = (W) for v € N}/ =

15 locally closed, bounded and separated, then there ezists a coarse quasi-projective moduli
scheme M, for §». Moreover, using the same notation for the invertible sheaves, as in 30,
the sheaf AP} @ AP) is ample on M,, forp > p > v >0, with v a multiple of Ny and with

r=h(v-Ng").
6 Projective Moduli via Algebraic Spaces

The only two examples, where the assumptions of the existence criterion 32 are known to hold
true are those of stable curves and surfaces.

Example 33 (A. Mayer and D. Mumford)
One can to compactify the moduli scheme of curves of genus g > 2 by enlarging the moduli
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problem, allowing “stable curves”. A stable curve X is a connected, reduced curve with only
ordinary double points as singularities and with an ample canonical sheaf. The latter condition
is equivalent to the following one: If an irreducible component E of X is non-singular and
isomorphic to P', then E meets the closure of X — E in at least three points. Let €(k) denote
the moduli problem of stable curves. The properties asked for in 32 are well known for this
moduli problem (see the references given in {8]) and by 32 we get another proof of the wellknown
theorem of Mumford and Knudsen on the existence of a coarse quasi-projective moduli scheme
C, for stable curves of genus g, just with a more complicated proof and with an ample sheaf,
not as nice as the ones obtained by Mumford.

The stable reduction theorem implies that the moduli problem &€,(k) is “complete” and
hence that C, is projective.

In [6] J. Kollar and N. I. Shepherd-Barron define “stable surfaces” and they verify most of
the assumptions stated in 32. Let us recall their definitions.

Definition 34

1. A reduced connected scheme (or algebraic space) Z is called semismooth if the singular
locus of Z is non-singular and locally (in the étale topology) isomorphic to the zero set
of z; - z; in A"t! (double normal crossing points) or to the zero set of z§ — 22 - 23 in A™+!
{pinch points).

2. A proper birational map § : Z - X between reduced connected schemes (or algebraic
spaces) is called a semiresolution if Z is semismooth, if for some open dense subscheme U/
of X with codimy (X — U) > 2 the restriction of § to §-'(U) is an isomorphism and if §
maps each irreducible component of Sing(Z) birationally to the closure of an irreducible
component of Sing(U).

3. A reduced connected scheme (or algebraic space) X is said to have at most semi-log-
canonical singularities, if

(a) X is Cohen-Macaulay.

X is semismooth in codimension one.

{c

)
(b) w[{y"] is locally free for some N, > 0.
)
(d)

For a semiresolution & : Z — X with exceptional divisor ¥ = }_ F; one has
6"‘w5?(°] = wg"(— Z: a; Fy),
for a; 2 —N,.

The definition of semi-log-canonical singularities makes sense, since it has been shown in
[5], 4.2, that the condition ¢) in 3) implies the existence of a semiresolution.

Example 35 (J. Kollar, N. I. Shepherd-Barron [6])
Let MMM (k) be the moduli problem of smoothable stable surfaces of index Np. By definition,
My, (k) is the set of all schemes X with:
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(a) X is a proper reduced scheme, equidimensional of dimension two.
(b) X has at most semi-log-canonical singularities.
(c) The sheaf wg?r“} is invertible and ample.

(d) For all X € MMM (k) there exists a flat morphism f : Y — C, for some irreducible
curve C, such that

i. All fibres f~!(c) are in Mo (k).
ii. For some ¢ € C the fibre f~!(¢o) is isomorphic to X.
iii. The general fibre of f is a normal surface with at most rational double points.

IMNe (k) satisfies the assumptions made in 31. In fact, by [6], 5.5, semi-log-canonical singularities

deform to semi-log-canonical singularities in a flat family f : ¥ — C, provided ‘-'-’5\/(10 is invertible
for some N > 0. The condition that wE{y"]'“ is very ample and coincides with a given polarization

is locally closed, and the smoothability is obviously a closed condition.

The boundedness had been shown by J. Kollar before and the separatedness follows from the
constructions in [6] or from the arguments used in the smooth case. The closedness of MMM (k)
under finite coverings follows by arguments similar to the ones used for canonical singularities.
The condition 2) in 31 holds true by definition and the last condition has been shown in [6], 5.1.
Hence 32 implies that there exist a coarse quasi-projective moduli scheme for stable surfaces of
index Ny with Hilbert polynomial h.

_ The way we defined D™ (k) we are missing the main point. By [6], the moduli problem
M(k) = Un, MM (k) is complete, i.e. for a given family fo : Yo = Bo € MM(B,) over a curve By
there exists a finite covering Cp of By, a projective curve C, containing Cp and an extension of
Ys xg, Co = Co to a family f’: Y’ — C. However, it was not at all clear, whether one can
bound the index of the singularities of Y” in terms of invariants of the general fibre. This was
settled recently by V. Alexeev in [1] and, without giving the exact form of his result, let us just
state as a consequence:

Theorem 36 (Alexeev, Kollir) The moduli problem TM(k) can be written as a disjoint
union of complete moduli problems of the form ML°(k). For each of those there exists a coarse
projective moduli scheme MY and an ample invertible sheaf on MM using the notation from
30, is given by MP), for some multiple v of Np and for p sufficiently large.

With a different ample sheaf, theorem 36 follows from Alexeev’s result and from 32. How-
ever, there is a more elegant way, due to J. Kollar, to handle complete moduli problems.

As sketched in [8], p. 172, it is easy to construct quotients in the category of algebraic spaces.
Let us be more precise: A k-space is a sheaf of sets on the category (Affine schemes over k)
for the étale topology. A scheme X gives rise to a k-space by taking X(U) = Hom(U, X). An
equivalence relation X, == X, in the category of (k-spaces) is given by an injection (of sheaves)
§: X1 < Xo X Xo such that § : (U) : X, (U) = Xo(U} x Xo(U) is an equivalence relation in
the category of sets. In the category (k-spaces) quotients by equivalence relations exist, and
a separated algebraic space is a k-space which is obtained as the quotient of an equivalence
relation § : X; < Xy x Xp with X; and Xj schemes, with § an closed immersion and with
pry o8 and pry o § étale. A scheme is an algebraic space and one has

(Schemes) — (Algebraic spaces) — {(k — spaces)
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as full subcategories.

Most of the properties of schemes can be extended to algebraic spaces. One can define ample
invertible sheaves on algebraic spaces and the existence of such implies that the algebraic space
is, in fact, a scheme. If H is a scheme and G a finite group acting on #, then the image of

¥ : G x H - H x H is an equivalence relation, but pr,|yGxn) is not étale if & has fixed points.
The quotient space is not necessarily an algebraic space (just a stack) but it can be represented

coarsely by an algebraic space, in the following sense:

Definition 37 Let X, and X, be schemes and let § : X; — X, x X, be a morphims such
that §(X,) is an equivalence relation. Then the quotient sheaf G of Xo by 8(X) is coarsely
represented by an algebraic space Z if there is a morphism of sheaves © : G — Z on the
category {Affine schemes) with:

I.
O(Speck) : G(Speck) = Xo(k)/8(X1{k)) — Z(k) = Hom(Speck, Z)

is bijective.

2. If B is an algebraic space and if x : G = B is a morphism of sheaves, then there is a
unique morphism ¥ : Z — B with x = ¥V 0 0.

Z is unique up to isomorphisms and we will call Z the quotient of H by G. Generalizing
earlier results of P. Deligne on quotients of schemes by finite groups, D. Mumford and J. Fogarty
showed in the second edition of [8]:

Theorem 38 Let G be an algebraic group, acting properly on the scheme H, with finite stabi-
lizers. Then the quotient of H by G exists in the category of algebraic spaces.

For normal algebraic spaces there is a partial converse, due to M. Artin (see [5]):

Proposition 39 If Z is a normal algebraic space, then there exists a scheme X and a finite
group GG, acting on X, such that Z is the quotient of X by G.

Applying 38 to a Hilbert scheme, one obtains:

Corollary 40 Let §u be a locally closed, bounded and separated moduli functor of canonically
polarized Q-Gorenstein schemes of index No. Then there exists a coarse separated algebraic
moduli space M, for ., of finite type over k.

The definition of a coarse algebraic moduli space is the same as the one for a moduli scheme
in 7, except that in the universal property b) one allows B to be an algebraic space.

J. Kollar realized, that the finite cover in 39 can be chosen such that it carries a “universal”
family.

Theorem 41 In corollary {0 M, has a finite covering X such that:
() X is a normal scheme.
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(b) A finite group G acts on X and the quotient of X by G is tsomorphic to the nor-
malization M, of M.

{c) There exists a family f 1Y - X € Sr(X) such that the morphism from X — M, is
the one induced by f.

Methods similar to those presented in sections 3 and 4 allow to prove that the sheaf
det( fuwl) ) @ det(fuwl )P

are ample on X for 8 > a and 4 > v > 0. Hence one obtains that Hh, as a quotient of a
quasi-projective scheme, is a quasi-projective scheme. If the modulj problem is complete, the

algebraic space M, is compact. In this case, M, is a projective scheme if and only if M, is
projective.

Theorem 42 (Kollar [5]) Assume that the moduli problem in 40 is complete. Let v be a
multiple of Ny chosen such that w!,frv"]" is very ample and without higher cohomology, for all
X € §u(k). Assume moreover, that for projective curves C and for f 1Y = C € Fu(C) the
sheaf f..wgf\;‘g'” is weakly positive over C. Then there is a projective coarse moduli scheme M,
for §n and the sheaf /\1(,’_’,)\,0 is ample on M,

The prove of 42 uses an ampleness criterion for invertible sheaves which is, in some way, an
analogue of the stability criterion 21. In order to deduce 36 from 42 it remains to show that
the sheaves f.wgf\;"c]."’ are weakly positive for families f : Y — C € 9(C) over curves C. One
may assume that C is non-singular. If the general fibre is normal, this is a corollary of the
positivity theorems of T. Fujita and Y. Kawamata and the quite technical machinery needed
to prove 27 can be avoided. If the general fibre is non-normal, J. Koll4r uses in [5] the specific

properties of stable surfaces, to verify the assumptions made in 42.
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