

INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

I.C.T.P., P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE

SMR.770/11

ADVANCED WORKSHOP ON ALGEBRAIC GEOMETRY

(15 - 26 August 1994)

Root systems of homogeneous varieties

F. Knop Department of Mathematics Rutgers University New Brunswick, NJ 08903 U.S.A.

Root Systems of Homogeneous Varieties*

FRIEDRICH KNOP

Department of Mathematics, Rutgers University, New Brunswick NJ 08903, USA knop@math.rutgers.edu

Let G be a complex semisimple group and let $H \subseteq G$ be the group of fixed points of an involutive automorphism of G. Then X = G/H is called a symmetric variety. In [CP], De Concini and Procesi have constructed an equivariant compactification \overline{X} which has a number of remarkable properties, some of them being:

- i) The boundary is the union of divisors D_1, \ldots, D_r .
- ii) There are exactly 2^r orbits. Their closures are the intersections $D_{i_1} \cap \ldots \cap D_{i_s}$ (even schematically). In particular, there is only one closed orbit.
- iii) In case G is of adjoint type, all orbit closures are smooth. It is called the wonderful embedding of X or a complete symmetric variety and is the foundation for most deeper results about X.

Independently, Luna and Vust developed in [LV] a general theory of equivariant compactifications of homogeneous varieties under a connected reductive group G. In particular, they realized the reason which makes symmetric varieties to behave so nicely: A Borel subgroup B has an open dense orbit in G/H. Varieties with this property are called *spherical*. Luna and Vust were able to describe all equivariant compactifications of them in terms of combinatorial data, very similar to torus embeddings which are actually a special case. They obtained in particular that every spherical embedding has only finitely many orbits (see also [Kn1] for a survey). Nevertheless, the reason for the existence of a compactification with properties i)-iii) remained mysterious.

Then Brion and Pauer established a relation with the automorphism group. They proved in [BP]: A spherical variety X = G/H possesses an equivariant compactification with exactly one closed orbit if and only if $\operatorname{Aut}^G X = N_G(H)/H$ is finite. In this case there is a unique one which dominates all others: The wonderful compactification \overline{X} . They also showed that the orbits of \overline{X} correspond to the faces of a strictly convex polyhedral cone \mathcal{Z} . Then properties i) and ii) above are equivalent to \mathcal{Z} being simplicial.

^{*}This note is essentially the introduction of my paper [Kn2]. A Postscript and a DVI file of that paper are available by anonymous ftp at daisy.math.unibas.ch (131.152.41.1) in /ftp/pub/knop.

This fact is much deeper and was proved by Brion in [Bri]. In fact he showed much more. Let Γ be the set of characters of B which are the character of a rational B-eigenfunction on X. This is a finitely generated free abelian group. Then the cone \mathcal{Z} is a subset of the real vector space $\operatorname{Hom}(\Gamma,\mathbb{R})$. Brion showed that there is a finite reflection group W_X acting on Γ such that \mathcal{Z} is one of its Weyl chambers. In case of a symmetric variety, W_X is its little Weyl group.

It remains property iii). In the same paper, Brion stated the following

Conjecture 1. If the automorphism group of X is trivial, then all orbit closures in \overline{X} are smooth.

Actually, this is only part of his conjecture: Consider the Lie algebra \mathfrak{h} of H as a point of the Graßmannian of $\mathfrak{g}=\mathrm{Lie}\,G$. Then $H=N_G(H)$ implies that H is the isotropy group of this point. Hence, the closure \widetilde{X} of its orbit is a completion of G/H, the so-called Damazure embedding. Brion showed in [Bri] that \overline{X} is the normalization of \widetilde{X} and conjectured that $\widetilde{X}=\overline{X}$ is smooth.

The main result of [Kn2] is a proof of Conjecture 1. Unlike i) and ii), where only the combinatorial structure of \mathcal{Z} matters, this is now a subtle problem of integrality. Each extremal ray of the dual cone $\mathcal{Z}^{\vee} \subseteq \Gamma \otimes \mathbb{R}$ is spanned by a unique primitive element of the lattice Γ . Let Σ be the set of these elements. Then one can show that \overline{X} is smooth if and only if Σ generates the lattice Γ as a group (in which case, it is even a basis). Hence, Conjecture 1 follows from the following result which establishes a connection between Γ , W_X and the automorphism group of X:

Theorem 2. There is a canonical inclusion $\operatorname{Hom}(\Gamma/\langle \Sigma \rangle_{\mathbb{Z}}, k^*) \hookrightarrow \operatorname{Aut}^G X$.

There is a slightly different way to see this result which is closer to the theory of symmetric varieties. It is well known that the set $\Delta = W_X \Sigma \subseteq \Gamma$ is a root system with Σ as set of simple roots. Therefore, the theorem says, that if $\operatorname{Aut}^G X$ is trivial then Γ is the root lattice of a root system and W_X is its Weyl group. Hence we got almost a generalization of the restricted root system of a symmetric variety. I say "almost" because our root system is always reduced and doesn't have multiplicities.

For simplicity, we restricted ourself so far to spherical varieties. But all concepts generalize to arbitrary G-varieties. The trick is to put everything in relation to the field $k(X)^B$ of B-invariant rational functions, which is just k in the spherical case. For example, instead of taking all of $\operatorname{Aut}^G X$ one considers only the subgroup $\mathfrak{A}(X)$ of those automorphisms which induce the identity on $k(X)^B$. Therefore, we are able to attach a root system and a Weyl group to any variety with G-action.

Let me mention that for quasi-affine varieties X there is a very simple construction of its root system. For this, consider the isotypic decomposition of its algebra of global

functions, $k[X] = \bigoplus_{\chi} R_{\chi}$, where χ runs through all dominant weights. This decomposition is usually not a gradation. To measure the deviation we define

$$\mathcal{M}' := \{ \alpha \in \mathcal{X}(B) \mid \exists \chi, \eta \in \mathcal{X}(B) : \langle R_{\chi} R_{\eta} \rangle_{k} \cap R_{\chi + \eta - \alpha} \neq 0 \}.$$

Let \mathcal{M} be the saturated monoid generated by \mathcal{M}' , i.e., the intersection of the cone spanned by \mathcal{M}' and the group generated by \mathcal{M}' .

Theorem 3. The commutative monoid \mathcal{M} is free and the set of free generators is the basis Σ of Δ_X .

The proof of Theorem 2 is very indirect. A very brief synopsis follows. For every homomorphism $a:\Gamma\to k^*$ which vanishes on Σ we want to construct an automorphism φ of X. Consider the cotangent bundle $T_X^*\to X$. This bundle contains a certain open subset T_X^0 which possesses a Galois covering \widehat{T}_X with group W_X . Thus we get

$$\widehat{T}_X \rightarrow T_X^0 \hookrightarrow T_X^* \rightarrow X.$$

We construct φ in several step by starting at \widehat{T}_X . There the whole torus $A = \operatorname{Hom}(\Gamma, k^*)$ acts in a natural way. Hence, A^{W_X} acts on T_X^0 . By embedding A^{W_X} into a connected smooth group scheme we can show that the action of a extends to T_X^* in codimension one. The crucial condition is here that a is trivial on Σ . This step is the most technical part of [Kn2]. Then it is fairly easy to show that the automorphism actually extends to all of T_X^* and can be pushed down to X.

References

- [Bri] Brion, M.: Vers une généralisation des espaces symétriques. J. Algebra 134 (1990), 115–143
- [BP] Brion, M.; Pauer, F.: Valuation des espaces homogènes sphériques. Comment. Math. Helv. 62 (1987), 265-285
- [CP] De Concini, C.; Procesi, C.: Complete symmetric varieties. In: Invariant theory, Proceedings, Montecatini. (F. Gherardelli, ed.) Lect. Notes Math. 996, Heidelberg-Berlin-New York: Springer-Verlag 1983, 1-44
- [Kn1] Knop, F.: The Luna-Vust theory of spherical embeddings. In: Algebraic groups and its Applications, Hyderabad 1989. (S. Ramanan, ed.) Madras: Manoj Prakashan 1991, 225-249
- [Kn2] Knop, F.: Automorphisms, root systems, and compactifications of homogeneous varieties. To appear in: J. AMS (1994), 25 pages
- [LV] Luna, D.; Vust, Th.: Plongements d'espaces homogènes. Comment. Math. Helv. 58 (1983), 186-245