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In the sequel the base field always will be C.

An elliptic curve is a smooth curve of genus one. Only after specifying an origin, it carries a group
structure.

Elliptic curves are classified by their modular curve, which is rational. By an elliptic modular curve
I mean a curve classifying elliptic curves with additional structure (e.g. level-structure, distinguished
torsion subgroup, distinguished torsion element).

1 Elliptic curves as double covers of the line

Here we shall consider elliptic curves E as double covers of the projective line IPy with four branch p‘OiI.ltS.
Let us describe first the affine part of such a curve E. It is defined by a quadruplet a,,a3,a3, ¢4 of distinct
points @, € C, as the Riemann surface of the square-root function

w = \/(z—al)(z —aglz —as)(z — aq).



This square-root function has two branches +w differing by their sign.

To extend the curve over o we have to pass to another coordinate 2 = 1/z. The function w then is
1 1
\/(j - (L])' et (j — (1,4) =

-w in place of w, then we can define the curve E near oo as the Riemann surface of

w' = \/(1—012")-...-(1 — aqz')

and complete £ in this way near ~ to a smooth, complete curve.
Notice, that it is inevitable, to pass from w to w' = 22
of the product space € x IP,,

coordinates (z,w) and (2, w’)

w2 \/(1 —arz) (1 —ag).

If we use w’ = 22

w. In other words: The curve E is not a subset

but of a locally trivial fibre bundle obtained from two copies of €? with
by glueing via

B w = zw

o1 r_ 1
Then E is a subset in this bundle. This bundle usually is denoted by Op (2)

Instead of two affine coordinates z and =

we could use one pair of homogeneous coordinates (A : j)
on IPy. If we transform z = XA/, then we find that the curve F ig defined by the equation

11)2 =

(/\ — al,u,)()\ - ag,u)(/\ - ag,u)(/\ - a4,u).

Notice, that in this homogeneous form, we may without problems include the case that one root, say a4
is infinity. We just replace the factor (A — aqqe)

by  alone. The resulting homogeneous equation

w? = (A= a1p)(A — app)(A — asg) - p
has the affine form (put g =1, = z)

w2

=(z - a1){z ~ a2)(z — a3),
a polynomial of degree three!

Of course, being here on a conference devoted to the study moduli, we want to understand the moduli
of the curve E. These moduli are encoded in the four points ay..

..»@4. The standard procedure would be
to quotient out the set of ordered quadruplets {a;, .-y 4) by the action of the projective group PG L(2, C).
Let us not use this standard procedure, but simplify life a little bit: W

e consider only special quadruplets
11
(@1,a2,03,a4) = (p, —p, > -=)-

p
Of course, we must make sure, that in this way we

don’t mniss any quadruplets of points. But two
quadruplets are equivalent under the group PGL(2,C) if and onl

y if they have the same cross-ratio.
(This is sometimes called the "Main Theorem of projective geometry’)
Now the cross-ratio of our special quadruplet is

1 1
1 1 p—-5 -p-:
C‘R(p,—p,—,ﬁ—) = ;l): ;)
P p Pt ~p+3

—{p _ 132

_ ~e-y)

~(p+1)?

o (pr-1)?

(Y



This function ¢ = (p?* — 1)2/(p? + 1)?) is a rational function on IP; and defines a morphism
o:P13(p:q)— (P -V : (P +¢) el

of degree four. In particular, this morphism is surjective. And this means, by proper choice of p, we get
all possible cross—ratios.

So we found: Associating to p the elliptic curve with the four branch points ip,:i:% we obtain all
possible elliptic curves. But we do get the same elliptic curves more than oncel There are two reasons
for this, an obvious cne, and a less obvious on.

The obvious reason: Obviously, each of the four points p’ € {£p, :t%} defines the same quadruplet

1 1
ip'ai_ = iP’i— 3
{ 1= o4

just in another order. As the function (z — z1)-...-(z — z4) is invariant under permutations of the branch
points z;, such a reordering gives the same elliptic curve E = £, = E,.

Let us have a closer look at these reorderings: The quadruplets +p, :t}l) are orbits of a group action
on IP;, namely of an action of the group Z; x Z;. If we denote the two generators of this group by ¢

and 7, this action is
1
gIp— —p, T:ip- —.
P

The reordering of a quadruplet is nothing but the group action in an orbit.
Now this group is very small, and its action very simple, but nevertheless very beautiful: The general
orbit has length four, but there are three special orbits

{£1}, {+£i}, {0,00}

of length two. The six points in these three orbits can be thought of as the six vertices of a regular
octahedron, inscribed in the Riemann sphere I?;. An orbit consists then just of the a pair of opposite
vertices.

If you are classically minded, you recognize the group Z; x Z; as the four group V of Felix Klein. He
studied this group as a subgroup of the full symmetry group of the octahedron (K, p.16]. V is a normal
subgroup in the full rotation group of the octahedron, which is isomorphic to the symmetric group 54.
Everybody knows the exact sequence of groups

11—V —5— 5 —1,

the morphism S4 — S5 being given by the action of 54 on the three diagonals of the octahedron, which
connect the three pairs of opposite vertices.

The nonobvious reason: Each symmetry v € 54 of the icosahedron transforms an orbit xp, ﬂ:% of V
into another such orbit, because V' is normal in S4. For example the symmetry

Pz i-2
transforms the orbit :i:p,:i:é to the orbit £z - p, ii—_l?_) with cross-ratio

2
. . 1 1. fipP-1
CREp—top D) = (EW



. 1 1
= I/CR(p, P-}_,__)
P
11
- CR(p?_pv__'l_)'
pp

The cross-ratio is different, but it is one of the six cross—ratios

1 1 1 CR
CR, ==, 1-CR, 1—- ==, ,
CR CR" 1-CHE CR-1
obtained from the original quadruplet by reordering it under permutations, which do not belong to Klein's
four group V.
S0 the action of the octahedral group 54 transforms the original quadruplet +p, :1:5l into six different
orbits of V', which all give isomorphic elliptic curves £,

Since the cross—ratio map has degree four, the four points in one V-orbit are exactly those points
p € IPy, for which the cross-ratio CR(p,—p,%,—%) is the same. The 24 points in the six V-orbits
equivalent under the octahedral group 54 then are exactly those points p € IPy, for which the V-orbit
gives the same elliptic curve. Therefore, the moduli space for elliptic curves is the quotient of Iy by the
octahedral group 5,4.

The quotient map

Vv d S
P, mod P, mod S3 P,
mod Sy

can be written down explicitly in terms of the invariants of the octahedral group [K, p.54]:

to= plpt —q¢h)
w o= PB4 laplet + 8

The quotient map by 54 is
(p:q) — (16w : 1)

or in affine form 3

_ w
Jip):= 16?1.

Ezercise: Compute the points (p : q) € Iy, for which the S4-orbit has length < 24. Apart from the
vertices of the octahedron (orbit length = 6) these are the points corresponding to mid-points of the
edges (orbit length = 12) and to the centers of the faces (orbit length = 8). They correspond to special

elliptic curves:

points } curve

vertices degenerate
mid points | Z4-symmetry
centers Zs-symmetry




Compute the j-invariants for these points.

The moduli curve [P1/S4 parametrizing isomorphism classes of elliptic curves is just another copy of
the projective line IP;. The same holds for the guotient IP;/V. This curve contains six distinct points
for each elliptic curve E (resp. one, if E is degenerate, two, if E has Zg—symmetry, or three, if F has
Z4-symmetry). The points in IP;/V also have some meaning in terms of moduli: Even, if the elliptic
curves E are isomorphic, the V-action on their quadruplet of branch points differs. As the four branch
points can be thought of as the images of the four half-periods on E (if one chooses an origine for E over
one of these branch points) this is a Zz x Zo-action on the half-periods of E. Such an action is called
a level-2-structure on the elliptic curve E. The quotient IP;/V therefore is a moduli curve parametrizing
elliptic curves with level-2-structures.

One can construct a kind of universal family of elliptic curves, parametrized by the first copy of IP1.

To do this, consider in
P1(p, q) x P1(A, )

the curve consisting of the four components

Cr + (Arp)=(p:q)
Cz + (Aip)=(-p:q)
Cs @ (A:p)=(q:p)
Cs + (A:p)=(-q:p)

There exists a double cover 7 : X — IP; x IP; branched exactly over this curve. For each (p: ¢) € IPy the
curve Ep,.) = 771 ({(p : )} x IPy) is the elliptic curve belonging to the point (p:q). So X is family of
elliptic curves containing a copy of each curve. However it contains each curve £ (if it is general) exactly
24 times. So it does not parametrize these curves effectively.

It is natural to ask, whether a quotient of X by the action of S5 on TP{(p : g) exists. This quotient
would be a universal family of elliptic curves. Now, analyzing precisely the line bundle needed to form the
double cover, one even checks that already the quotient X/V does not exist as a family of elliptic curves:
there is no universal family of elliptic curves with level-2-structure, nor of elliptic curves themselves.

Ezrercise: Prove this!

2 The group structure on elliptic curves

Everybody knows that an elliptic curve £ over € carries the structure of a compact, commutative complex
Lie group of dimension one. That is, as a complex manifold E is a group quotient C/T, where I' C C
is a lattice. However, this information is transcendental! It is usually very hard, to describe the group
structure algebraically, i.e. geometrically. The simplest way to do this is on the model of £ as a plane
cubic curve. But [ don’t know of any way to describe the group structure on E in terms of the double
cover representation studied so far.

Perhaps, since everybody knows it anyhow, I may just use this group structure without further
reasoning. So in this section, I mean by an elliptic curve E a quotient €/I'. We shall denote the group
operation by addition '+’ and the inverse of an clement x € E by —z. We only need two simple facts:

1. Involutions with fired points. The group £ admits the standard involution

it E3r— —x e F.



The origin eg € E is an isolated fixed point for i. There are three more fixed points, the non-trivial
elements ¢1,¢4,e3 € E of order two. The quotient E/i is a copy of the projective line IP;. The quotient
map obviously is of order two with four branch points eg,....,es. In this way we recover £ as a double
cover of IPy, branched over the images of the four half-periods.

In section 1 we defined a level-2-structure on £ as an action of the Klein four group V on the
four branch points, permuting them in pairs. Now, the half-periods themselves form a group, acting
on themselves in this, unique, way. So a level-2-structure is the same as an isomorphism of the group
Z3 x &, with the half-period subgroup.

Any element zg € F defines an involution

w:E>r >rg—-—z€ F.

An element z € E is a fixed point for ip, if z = 2o — z, i.e. if 2z = zg. There are, of course, four such
points z differring by half-periods. We need the converse: Given an invelution j : E — E with fired
points, then there is an zo € F with j = 1.

Proof. Let y € E be a fixed point for j. Consider the map ' : 7 -~ j(z + y) — y. Clearly

)=z +y)-y+y)~y=7ic+y)-y=z+y—-y=r1,

hence j’ is a nontrivial involution with the origin eg as fixed point. All automorphisms of E leaving eg
fixed, are induced by multiplying in € with a complex number, which in the case of ' must be —1. This
implies 3 = ¢, i.e. for all z € E:

He+y)—-y = —=x
lz+y) = ~z+y
jiz) = jllz—y)+y)
= 2y-zx
and j is the involution z — 2y — z. d

As a consequence we notice: Given two involutions ji(z) = z1 — ¢ and jo(x) = z2 — z with fixed
points, then their product
nnz))=xn-jlz))=-n+z

is a translation by the element x2 — z; € F. And the product j;j2 is the inverse translation, by z; — z2.

2. Torsion elements. For each n € IN, the n—torsion subgroup E™) C E consists of the elements with
n-z =0, which are n? in number. We met already the half-period subgroup E). Of course, this group
contains the origin, and if n is not a prime, also other improper n-torsion elements.

There is an explicit characterization of the clements of order n on E, due to Cayley [C,GH]: Assume

the curve E is given as a double cover hranched over the four points aj.as,a3 € € and ~. Form the

power series expansion
=9}
k
\/(z —a1 )z - az)(z—az) = Z(‘k:: .
k=0

Then the two points on E over the origin are n-torsion if and only if the symmetric determinant d,,

vanishes, where

€2 3 o Cmyd
€3 Cyq e Cm42 .
d, = forn=92m+ 1
n . . .
Cm+1  Cm42 - C2m

G



and

51 Cy Cr41
[oF] Cs Crm42 .
dp = } . . for n = 2m.
Crat+l Cmy2 - C2m-1

3 Poncelet Polygons

A polygon is a cyclically ordered set Lg, Li...., Ln—1 of distinct lines L; C IP;. We use the convention
L. = Lo. The vertices of this polygon are the n points P; = L; N Liyy. We assume that they are all
distinct too.

Let C, D C 1Py be smooth conics. We say that the polygon is inseribed in the conic D, if the n points
P, lie on D. We say that the polygon is circumscribed about the conic C, if the n lines L; are tangent
to this conic. A Poncelet polygon for the pair C', D of conics is a polygon simultaneously circumscribed
about C and inscribed in D.

Poncelet’s theorem: [f for two smooth conics C, D C IP; there is one Poncelet n-gon, then there
are infinitely many such n-gons.

A Poncelet n-gon is determined by any one of its lines: L; determines its two intersections Fi_1 # B
with D, and the point P; determines another tangent, namely L;;; to ('. Repeating the construction
(L, Pi) — (Lis1, Piy1) one obtains the whole polygon in this way. The Poncelet property is the fact, that
the 7 + 1-th line constructed coincides with the first one. The polygon closes, and Poncelet’s theorem
therefore often is called Poncelet’s closure theorem.

The simplest case of Poncelet’s theorem, easy to analyze, deals with two concentric circles, whose

radii satisfy
T .
7 = SIH(;).

Poncelet had difficulties with the proof of his theorem for conics, mainly for two reasons:

I. He introduced the use of points with complex coordinates into Geometry. At his time it was by
no means clear whether this is legitimate.

2. The transcendental sin-function in the formula above must be generalized to the elliptic integral.
{Recall, that the sin-function is the inverse function of the integral {dz/V1 - 22, and that generalizing
the polynomial I — z? to a polynomial of degree four leads to the elliptic integral.)

The standard proof for Poncelet’s theorem nowadays does not use elliptic integrals, but their geometric
counterparts: elliptic curves. (See e.g. {GII].)

Where is an elliptic curve in Poncelet’s situation? Let us assume that the two conics (’ and D
are in general position, i.e., that they intersect in four distinct points Ao, Ai, A2, As. As a smooth conic
is isomorphic with the projective line I’}, we have a quadruplet Ag,..., A3 on both copies C and D) of
IP;. For both quadruplets we can form the double cover of IPy, branched over this quadruplet just as in
section 1, and there are elliptic curves, even two of them.

The elliptic curve £, the covering of the conic D, naturally controls Poncelet polygons: Through each
point A C D there are two tangents L and L’ to C'. These two tangents coincide if and only if A is one
of the four points E; € C'N D. It is not so hard to show that all pairs (L, A) with

e Ae D,



e L tangent to (',
e A [ L._

form a curve £ C D x (™", and that this curve is isomorphic with the elliptic curve E. The covering
map £ — [ is given by sending a pair (L, A) to its point A € D. This covering of degree two determines
an involution ip on E with four fixed points (over the quadruplet Ag,..., A3).

What about the projection (L, A) — L onto the first factor? It sends a pair (L, A) to the tangent L
of C. In general, this tangent meets the conic D in two points A, so this projection £ — C* ~ IP; is of
degree two also. The branch points are the pairs (L, A) such that the tangent L to C meets IJ in just
one point, i.e., such that L is tangent to D too. There are exactly four double tangents £ (touching C
and D simultaneously). So also this projection of degree two determines an invelution i on E with four
fixed points.

Using these two involutions, one can describe the construction step L; — L;4+; leading to the Poncelet
polygon: Let ¢ : £ — E be the translation ipte and let 1 = i0d;;. (These are translations, inverse to
each other, cf. section 2.) Then ¢ maps a pair

(Li, Pi) v ic(Li, P;) = (Ligy, P) v ip(Liy1, P) = (Ligy, Pig1)
and ¢ maps
(Li, P) —dp(Li, Pi) = (Li, Pimy ) v ie(Li, Pisy) = (Lio1, Pic1).

So the pair (L, P;) is mapped to its successor, resp. predecessor in the polygon.

Now we can prove Poncelet’s theorem: Let ', 1) C IP; be two smooth conics meeting in four distinct
points. Define the elliptic curve £ = {{L,A)} as above with its involutions ic and ip. If there exists
one Poncelet-n-gon circumscribet about ' and inscribed in D, then there is a pair (L, A) € E with
t"(L,A) = (L, A). This means that the translation t is of order n. Then (L, AN = (L7, A') for all pairs
(L', A’) € E, which means, each pair (L', A’) can be completed to a closed Poncelet polygon

(LAY, e(L',A), o LAY, LAY = (I AN

In the next section, the last one, we shall see, that Poncelet polygons lead to explicit plane models
of a series of elliptic modular curves. Before this. we have to parametrize explicitly all pairs (C, D) of
smooth conics in general position.

C and D are in general position, if they meet in four distinct points. No three of them can be collinear,
so there is a projective transformation mapping these four points to the four distinguished points

Ag={l1:1:1) Ay =(1:1:-1)
A =(FL:=1:1) Ag=(-1:1:1)

The two conics €' and D then are transformed into two conics of the pencil of conics through these four
hase points. In homogeneous coordinates (20,21, 22) the equations of the conics in this pencil are

azh + Bz + 2%, a4 d44=0.

Of course, since C' and D are smooth, their equations are of this form with a -3 - ¥ #£ 0.
If we want to start a Poncelet polygon for two conics  and I with the pair (L, A), where

L
A

tangent line to ' in Ag
do € D,



then the first point to construct would be the point
P := second intersection of L with D.

This point P determines the conics €' and D uniquely:

As C # D, the line L cannot be tangent to D too and P # Ag. As C is non-degenerate, the point P
does not lie on any one of the three lines By joining Ag to A, 1 < & < 3. So D is the unique conic in the
pencil determined by the Ag passing through P. And C is the unique conic in the pencil tangent to the
line L joining P with Ag. In this way the pairs ', D of non—degenerate conics in our pencil correspond
bijectively to the points P € P2, not on 8y, By or B3. We call the point P the control point for the pair
C,D.

The control point P not only determines the two conics ¢’ and I, but its position on D} also decides,
whether ¢ and D are in Poncelet position. Recall that there exists a Poncelet-n—gon circumscribed
about € and inscribed into D, if and only if P is the image of some n-torsion point ¢ € F, where £ — D
is the elliptic curve over D, branched at Ag...., A3.

Cayley’s condition for this to happen can be evaluated explicitly. To do this we map the rational
curve D onto the projective line IP; parametrizing the pencil AC + uD of conics, in two steps:

Step I: Map D onto the IP) parametrizing the lines through Ag by projection. le., a point A € D is
mapped onto the line joining A with Ag, and Ag is mapped onto the tangent T4,(D) of D in Ap.

Step 2: The pencil of lines through Ag is mapped onto the pencil AC' 4+ D by sending a line B
through Ag to the uniqe conic in the pencil, which touches B at Ag.

In this way one maps

D

pencil of lines

—r —  pencil of conics
Ap — T, (1) — D
A k=123 — B — the three degenerate conics
P — T (C) — C.

The inhomogeneous coordinate p/A on the pencil of conics transforms to an affine coordinate on D
vanishing on P with pole at D. [GH] observed, that the cubic polynomial under the square root in
Cayley’s condition, with roots at A4y, A2, A3 and pole at Ay transforms into the cubic polynomial

det(ANC 4+ p D),

the discriminant of the pencil. (Indeed. the three roots of the discriminant are the parameters for the
three degenerate conics).

Assume, the control point P has coordinates P = {py : p1 : p2). Then one computes

C : (pr—p)4ipe—po)si+ipo—p)zi=0
D . (P + i 5+ ph -l =0
det(AC' + uD) = X -det(C) +

Ap - det(C) - {(po+ p1) + (p1 + p2) + (p2 + po)} +
Ap? - det(C) - {(po+ p1)(p1 4 p2) + (pr+ p2)(p2 + po) + (p2 + po)(po + p1)} +
p? - det(C) - {{po+ pr){p1 + p2)(p2 + po)}

= det(C)- ()\3 + A2 28y 4+ Apte (sf + s2) 4+ pt - (8180 — 53))



with the symmetric functions
s1:=pot+p1+ P2, S2:0=popr +mpz+ PaPo. Sz 1= popipa.

The Taylor coeflicients ¢, are, up to the common constant factor /det(('),

(a8} f— 51

1
C: = =8
2 5 2

|

C = ——5
3 2 3

! [,
c = =883 — —§
! 2 82

4 More elliptic modular curves

The four points Ao, ..., Az come with a natural Z; x Z;—action: Let the first generator = (1,0) € ZoxZo
change the sign of the coordinate r; and the second generator r = (0,1) € Z3 x Z; change the sign of
the coordinate ro. In this way the double cover E of D carries naturally a level-2-structure. We claim:
Moving D in the pencil of conics with base points Ag,..., A3, we find in this way all possible elliptic

covering curves, with all possible level-2-structures.
Proof of this claim: The curve F with its level-2-structure is uniquely determined by the cross-ratio
of the four branch points on IP; = D. So we have to show, that all possible cross—ratios arise in the

pencil. We project the conic
D rm:g + ;ﬁi’xf‘ + 7;1:3 =0, a+3d+v=0
from the point A4g onto the line 3y = 0 to find

Ay — (0:0:-2)=(0:0:1}

Az - (0 I 0)._

Ay — (0:1:1),

Ao — intersection of the tangent aap + B2 + vz =0
with the line x4 = 0

= (0:~:=1).

The cross-ratic of these four points is

~B3/y-0 oc -0

—3/y -1 |
1

L+ v/3

le(—g,oo.o,]) -
T

This crossration takes indeed all complex values, except for 1, and it takes it just once! |

10



We can reformulate this observation as follows: Let be given an elliptic curve E with a level-2-
structure, determined by an ordering eg.€1,€2,€3 of the half-periods on E. Then there is a unique
smooth conic D in our pencil, and a unique double cover £ — D sending e; to Ag for k =0,...,3.

» as in section 3 determines two conics " and . There exists a Poncelet-n—gon
for them, if and only if the point P € D is the image of some n—torsion point { € E, where F is the
double cover of D. If e.g. nis an odd prime, then £ contains n? — 1 points ¢t of order n. Since i and
—t have the same image in D, there are precisely (n?® — 1)/2 control points on D leading to a Poncelet
n—gon, inscribed into D.

Now, moving D, for each natu
points. They sweep a curve in IP,.
of) an algebraic plane curve II, C IP2. In fact, Cayl

computations of the last section, gives equations for these curv
can be evaluated with a computer, but there are also more theoretical ways to compute th

I, for the first few n [BM]. Here are some results, given in terms of the symmetric functions s, sz and

s3, and in terms of the symmetric functions

A control point P € IP

ral number n > 3 we obtain a one—parameter family of such control
It is not hard to show, that this plane curve is (a Zariski-open part
ey’s explicit formula. together with the elemetary

es in form of symmetric determinants. They
e equation of

o1 = ph+pl % 02:= pipi 4 pipd + ping, o i= pepipd
of the squares of the coordinates:

equation fo Il

82
83

3 .2
—4818283 + 55 + 483
0’% - 40’10’3
—4315333 + 16315233 + .sg + 43%5% — 163{43
s3(~4ay10903 + 03 + 8o2)

0 =1 Oy R |3

i.e. the description of the plane curve I, is the problem,

The classification of control points P € Il,,
ovel-2-structure. There are three

to classify all n-torsion points £¢ on all possible elliptic curves with a |
moduli problems combined in this question:

1. The classification of all elliptic curves with level-2-structure. This was done in section 1. The

resulting moduli curve is rational.

2. The classification of all pairs ¢ of points of order n on all elliptic curves. This is the problem
to classify isomorphism classes of pairs E.t, since the pair E,t is isomorphic with the pair F,—t
under i : £ — E. (Let us not worry too much here about the two elliptic curves with more
automorphisms.) There is a moduli curve, called Xpp(n). for this moduli problem, and one knows
precisely its genus in terms of the number n. The curve is connected and if e.g. n = p, an odd

prime then the genus of Xoo(n) equals
1 .
z(p—1){p—2).
3
3. The classification of isomorphism classes of
— elliptic curves E with

1t



— a level-2-structure and

— a point of order n.
This moduli problem is solved by a moduli curve
Xoo{n,2) := Nooln) xp, X(2).
Here the fibre product is formed with respect to the j-function maps
JiXoo(n) — Py, 7 X{(2)— 1P,

The curve Xgo(n,2) is connected for odd n. Its genus can be computed and one finds e.g. for odd
prirues p

1 o
g( XNoo(n,2)) = i(p — 3)°.

Now the plane curves I1,, defined above are birational models of the elliptic modular curves "X'go(n,Q!. It
is quite remarkable, that these modular curves have such a series of plane models, that their equations
can be given explicitly, and that all this is related to Poncelet’s theorem.
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