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AFFINE n-SPACE, C*'-ACTIONS AND RELATED PROBLEMS

HANSPETER KRAFT

Preliminary and uncomplete version (August 94)

ABSTRACT. We describe some basic unsolved problems concerning the algebraic-
geometric structure of the complex affine n-space A™ and its symmetries. They are
all related in some way to problems arising from algebraic group actions on A", We
show that some new results about unipotent group actions and in particular actions
of the additive group C* on affine n-space lead to interesting constructions and might
even produce counterexamples to some of these problems.

§1. Introduction

There is no doubt that the complex affine n-space A" (:= Ag) is the most
fundamental object in affine algebraic geometry. However, surprisingly little is
known about its algebraic-geometric properties and in particular about its symme-
try group. Following are some of the basic unsolved problems in this context. (We
will always work over the field C of complex numbers.)

¢ Characterization Problem. Find an algebraic characterization of A™.

¢ Embedding Problem. s every closed embedding A* — A" equivalent to
the standard embedding?

e Jacobian Problem. Is every polynomial morphism ¢: A" — A" of maxi-
mal rank an isomorphism?

e Cancellation Problem. Does an isomorphism ¥ x AF ~ A"** imply that
Y is isomorphic to A™?

o Automorphism Problem. Give an algebraic description of the group of
(polynomial) automorphisms of A™. E.g. is every automorphism tame?

¢ Linearization Problem. Is every automorphism of A" of finite order lin-
earizable?

¢ Fixed Point Problem. Does every reductive group action on A™ have
fixed points?

These problems are clearly not unrelated. For instance, a positive solution of the
Linearization Problem would imply a positive solution of the Cancellation Problem.
In fact, if ¥ x A* is isomorphic to an affine space AV consider the action of the
cyclic group of order 2 on AV ~ Y x AF induced by (y,z) = (¥, —2). Then Y x {0}
is the fixed point set, hence is isomorphic to AV~ in case the action is linearizable.

Another obvious remark is that all problems above can be formulated in terms
of the polynomial ring C|z;,... ,z,], considered as the algebra of regular functions
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2 HANSPETER KRAFT

on A". For instance, the Embedding Problem for the line into the plane solved by
ABHYANKAR-MOH and SUZUKI (see §2) has the following equivalent formulation:

If ¢,¢ € Cft] are two polynomials generating the polynomial ring C[t] and with
degy < degt) then the degree of 1 has to be a multiple of the degree of .

Finally, all the problems above have an obvious positive solution in dimension
n = 1. This follows immediately from the following facts:

(a) Al is the only smooth algebraic curve which is acyclic,
(b) Every non-constant morphism ¢: A — A! is a finite (ramified) covering,
(c¢) The automorphisins of Al are affine transformations.

Since the analogs of these assertions do not hold in higher dimension the situation
becomes much more complicated for n > 1.

In the next paragraph we give a short account on the present situation of the
different problems. Since our previous report [Kr89b] there was some interesting
progress in the Linearization Problem and the Fized Point Problem. Nevertheless,
the problems formulated above are still far from being solved. We are convinced
that they will finally have a negative solution, at least for large dimension. Our
recent work on unipotent group actions even suggests possible ways to construct
counterexamples. We will discuss this in the last two sections 3 and 4.

§2. Description of some basic problems for A"

Characterization Problem. This problem is solved for n = 2 due to fundamental
work of FUJITA, MIYANISHI and SUGIE (see [Su89]). One of their main results is
the following.

Theorem. LetY be an affine smooth surface. Assume thatY is factorial and that
there is a dominant morphism AN = Y for some N. Then Y is isomorphic to A?.

It 1> au o1 question wlether this also holds in higher dimension. This would
have a number of interesting consequences. In fact, it is easy to see that this char-
acterization immediately implies a positive solution of the Cancellation Problem:
If Y x A* ~ A"*¥ then Y is affine, smooth and factorial and the projection gives
a surjective morphism A"* — V.

There is also a topological characterization of A? due to RAMANUJAM [Ra71]:

An affine smooth surface which 1s contractible and simply connected at infinity is
isomorphic to A*. In particular, every normal affine surface which is homeomorphic
to A? is isomorphic to A?.

This result does not hold in dimension > 3. In fact, RAMANUJAM has also
constructed a contractible smooth affine surface R which is not isomorphic to AZ.
It follows now from H-cobordism theory that R x Al is homeomorphic to A®, but
not isomorphic to A%, because of the positive solution of the Cancellation Problem
in dimension 2.

Embedding Problem. There is a famous result about the embedding of the line
into the plane due to ABHYANKAR-MOH [AM75] and SUZUKI [Suz74).



M ;s

AFFINE n-SPACE, Ct-ACTIONS AND RELATED PROBLEMS 3

Theorem. Every closed embedding of 1Al — A? s equivalent to a coordinate
line, i.c., there is a (polynomial) automorphism ¢ of A% such that the composition
@ 0 ¢ is the map z — (z,0).

Recently, SUZUKI has given an elegant new proof of this result based on a careful
analysis of the singularity of the embedded line Al at infinity. The study of the
singularities of plane curves at infinity plays an important role in the investigation
of the Jacobian Problem in dimension 2.

Concerning generalisations of this theorem, the following general result is known:

Two closed embeddings of a smooth affine variety Z nto AN are equivalent if
N >2dimZ + 2.

This result is due to NORI (see [Sr90]) and in some special cases to JELONEK
[Je87]. In particular, the only open case for the affine line A! is the embedding into
A3.

Jacobian Problem. The really exciting new development here is an example by
SERGUEY PINCHUCK (May 1994) which shows that the real Jacobian Conjecture

is false:

There 1s a polynomial morphism o:R? - R? whose jacobian is everywhere
strictly positive but which is not an 1somorphism.

Cancellation Problem. As already mentioned above this problem is solved for
dimY = 2 using the algebraic characterization of A? given by FuJITA, SUGIE
and MIYANISHI, see [Su89]. On the other hand there is a beautiful example of
DANIELEWSKI {Da89] which shows that an obvious generalisation of the Cancella-
tion Problem does not hold, even not in dimension 2.

Theorem. Let Y, C C* (n € N} denote the smooth affine surface defined by the
equation z"y + 2% = 1.
(a) The varieties Yy X Al are all isomorphic.
(b) The varieties Y, are pairwise non-homeomorphic. More precisely, the fun-
damental group of Y, at infinity is Z/2n.

The second statement is due to FIESELER; the original result of DANIELEWSKI
was weaker. For more details and further results in this direction we refer to the
recent paper [Fi94] of FIESELER where he studies and classifies C* -actions on affine
surfaces (see also [tDK94]).

Automorphism Problem. There is an old result about the structure of the au-
tomophism group of A%. In order to describe it and for the following discussion
we have to introduce some notation. First we recall that a polynomial morphism

¢ = (P1,-- 1pn) A" = A", @; € Clzy, ... ,Zn], is an isomorphism (i.e., has a poly-
nomial inverse) if and only if it is bijective. This is also equivalent to the condition
that the ¢; generate the polynomial ring Clz1,. .. ,Zx].

We denote by G, the group all polynomial automorphism of A" and define the
two subgroups A, of affine transformation and 7, of triangular transformation in
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the following way:

An = {e =(p1,..- ,9n) € Gn | pi linear for all 1},
Tn = {(10 = (9911"- 7‘{)1’1) = gn | Pi € C[wln'-- "Ti] for all I}
Clearly, A, is the semidirect product of GL,, with the subgroup 7,, of translations.

In dimension 2 the structure of G, is given by the following theorem which goes
back to VAN DER KuLk [Ku53].

Theorem. The automorphism group Gy is the amalgamated product A, *5, J2
where By := A, N Js.

This fundamental result solves the Linearization Problem and the Fized Point Prob-
lem in dimension 2:

Every algebraic subgroup G of Gy is conjugate to a subgroup of Az or of Jo. In
particular, every reductive subgroup of Gz i3 conjugate to a subgroup of GLg.

It is known that a similar amalgamated product structure does not exist in
dimension n > 3. For instance, consider the following two automophism of A?:

olz,y,2) = (y,z,z) and 7(z,¥,2) =(z,¥,2 + :1:2).

Then ¢ € A3, 7 € J3 and o,7 ¢ Az N J3, and the composition ¢ o 7 0 ¢ maps
(z,y,2) to (z,y,z + y%). Hence ¢ 0o 7 0 0 € J3 which contradicts the fact that in
an amalgamated product A xg C every element has a decomposition of the form
a1crazcy - arcy (a; € A, ¢; € C) which is unique modulo relations of the form
ac = (ab™*)(be) (a € A, b € B, c € C). Another way to see that G3 cannot be an
amalgamated product of the form above follows from an example of BAss [Ba85].
We will discuss it in the next paragraph.

The subgroup of G, generated by A, and 7, is called the group of tame auto-
morphisms. It is an open problem whether every automorphism of G,, is tame.

Linearization Problem. This problem was originally formulated for reductive
group actions on affine space [Ka79]. (It is not difficult to see that for every non-
linearly reductive group there exists an action on affine n-space without fixed points.
See [KP85].) We refer to [Kr89b, §5] for more details and further references.

In 1989 ScHWARZ discovered the first counterexamples, namely non-linearizable
actions of the orthogonal group O; on A*' and of SL; on A7 ([Sch89], see also
[KS92]). Using these results KNOP showed that every connected reductive group
which 1s not a torus admits a faithful non-linearizable action on some affine space
A" [Kn91]. Using a different approach MasuDA, MOSER-JAUSLIN and PETRIE
produced more examples and discovered the first non-linearizable action of finite
groups, e.g., for dihedral groups of order > 12 on A* (see [MP91] and [MMP91]).

So far, all examples of non-linearizable actions have been obtained from non-
trivial G-vector bundles on representation spaces V of G by using an idea of BASS
and HABOUSH (see [Kr89a]). Since every vector bundle on V is trivial by the
famous theorem of QUILLEN and SUSLIN and hence has a affine space as its to-
tal space, the G-vector bundles provide us with interesting G-actions on affine
space. Some of these turned out to be non-linearizable. In a recent paper Ma-
SUDA, MOSER-JAUSLIN and PETRIE showed however that this approach cannot
work for commautative reductive groups [MMP94]:



- - A B -

A

A . -

AFFINE n-SPACE, Ct-ACTIONS AND RELATED PROBLEMS 5

Theorem. Let G be a commutative reductive group (i.e. a product of a torus and a
finite commutative group) and let V be a representation of G. Then every G-vector
bundle on V is trivial.

(A G-vector bundle on V is trivial if it is isomorphic to a bundle of the form
Ow =V aW 5 V where W is a G-representation.)

Fixed Point Problem. There are a number of results from topological transfor-
mation groups which can be applied to algebraic situation. E.g., for every action of
a torus on A" the fixed point set is an acyclic smooth subvariety and in particular
non-empty. One also knows that every finite cyclic group acting on A" has fixed
points (see [PR86]). For more details we refer again to the surway [Kr89b, §3].

Substantial progress was made recently by FANKHAUSER in his thesis [Fa94]. He
was able to extend some results of HSIANG and STRAUME [HS86] about compact
Lie group actions on acyclic manifolds to the algebraic setting. Among other things
he shows that there are always fived points provided the algebraic quotient A" G
has at most dimension $ or is small compared with the rank of G.

§3. C*-actions on affine n-space

We have seen above that in the last few years most of the progress concerning
the problems formulated in the introduction was made for reductive group actions.
These studies are motivated by several issues. On one hand one hopes to achieve a
better understanding of the automorphism group G, and of the algebraic-geometric
properties of the affine space A”. On the other hand the results here might serve as
a model for more general situations and in particular for the study of group actions
and quotient spaces.

It became clear that one should also consider group actions of more general
groups, i.e., of non-reductive groups and in particular unipotent groups. Some
work in this direction has been done by FAUNTLEROY [Fau85,88]. Let us give two
examples where group actions of unipotent groups appear in some general context.

Ezamples. (1) In some work of GRUNEWALD about affine cristallographic groups the
following question appears: Does every unipotent group U has an affine structure
such that left-multiplication with elements of U become affine transformation? A
necessary condition is that every unipotent group U has a faithful representation
of dimension dim U + 1.

(2) The following question is discussed by SNOW in [Sn89]. Given an algebraic
group G and a closed subgroup H C G a necessary condition for the homogeneous
space G/H to be affine is the following: For every reductive subgroup M of G
the intersection with the unipotent radical of H is trivial: M N H, = {e}. Snow
realized that this condition would also be sufficient if one could show that for every
free triangular action of a unipotent group U on A" the orbit space exists as an
affine variety. (We will see later that this is not the case in general.)

Let us now start with the simplest unipotent group, the additive group Ct of
complex numbers. Any (algebraic) action of Ct on A" or more generally on a
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variety X determines a (algebraic) vector field £ in the usual way:
§r i =dys(l) € T(X) forallze X

where ¢,: Ct — X is the orbit map t t.z and dg, its differential. For X = A"

we have
t.x —zx

£ = lim € T, A" =C".

t—=0
The vector field £, considered as a derivation of the coordinate ring O(X) is locally
nilpotent. (This is an obvious consequence of the representation theory of Ct.) It
is well known and easy to prove that for every affine variety X there is a bijection

{C*-actions on X} «— {locally nilpotent vector fields on X}

For example, the action on A? corresponding to the standard representation Ct =

{(} ;)} C GL; is given by the vector field Ia%'

Remark 1. The zero set of the vector field £ is exactly the fivzed point set of the
corresponding action of Ct: X = {2 € X | ¢, = 0}. Similarly, one sees that a
function f € O(X) is C* -invariant if and only if £f = 0.

In dimension 2 we have the following complete description of C*-action on A?
which follows immediately from the structure theorem of VAN DER KULK (see §2,
Automorphism Problem). A direct proof was given by RENTSCHLER [Re68].

Proposition. Every action of C* on A? is equivalent to an action of the form
t.(z,y) = (x,y + tf(z)) for some polynomial f(z) € Clz]. Equivalently, every
locally nilpotent vector field on A? is equivalent to one of the form f(:c)a%
Corollary. (a) The fized point set of a Ct-action on A? is smooth.

(b) A fized point free action of C* on A? is equivalent to the translation t(zry) =
(z,y +1), i.e., A? is equivariantly isomorphic to C* x Al.

This leads to the following definition.

Definition. An action of G on X is called equivariantly trivial if X is equivariantly
isomorphic to G x ¥ for some variety Y. It is called locally equivariantly trivial if
this holds locally (in Zariski-topology).

Clearly, equivariantly trivial means that the orbit space X /G exists as a variety
and that the orbit map X — X/G is a trivial G-bundle.

Remark 2. A C't-action on X is equivariantly trivial if and only if there is an
equivaniant function f: X — C*. In terms of the corresponding vector field this
means that £f = 1.

A famous theorem of ROSENLICHT states that for every action of an algebraic
group on a variety X there exists an open set I/ ¢ X which admits a geometric
quotient. (The definition of a geometric quotient is given below). For C*-actions
this is an easy consequence of the remark above:

There 15 always an open C* -stable subset W C X such that the action on W is
equivariantly trivial,
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In fact, choose a function f such that ¢ := £f #0 but £¢ = 0. Then ¢ is an invariant
and flg = 1. Hence Jg defines a trivialization on U := X, := {a € X | ¢(x) # 0}.
The proposition above can also be stated in the following way: Every Ct-action
on A? is triangularizable, i.e., every subgroup C*t C G is conjugate to a subgroup
of J,. This result does not hold in higher dimension as shown by the following
example due to Bass. This answers a question of SHAFAREVICH (see [Po87]).

Ezample 1. The vector field £ := (zz + yz)(a:a% - 2y-{%) 1s locally nilpotent and
defines an action of C* on A® which cannot be triangularized. (In fact, the fixed
point set given by {zz + y* = 0} is not of the form A' x Y since it has an isolated
singularity at zero.)

This example shows again that the automorphism group G is not an amalga-
mated product of A3 and J; since such a structure implies that every algebraic
subgroup of G3 is conjugate to one of the factors. (This was remarked by WRIGHT
who showed that an algebraic subgroup would be of bounded length [Wr].)

On the other hand SNOW showed that every free triangular action of C* on A is
equivariantly trivial, i.e., equivalent to a translation. (This result was also obtained
by PANYUSHEV.) More general, one can prove the following.

Proposition. A separated action of Ct on A3 is equivariantly trivial.

DEVENEY and FINSTON showed this under the stronger assumption that the action
is proper [DF94a]. (“Separated” and “proper” actions will be defined below.} The
proof uses essentially a fundamental result of MIYANiISHI {Mi85] which states that
a two-dimensional invariant ring of a polynomial ring under a unipotent group 1is
a polynomial ring in two variables.

Definition. An action of G on X is called separated if the set {(z,9.2) |z € X,G €
G} is closed in X x X. This means that the orbit space X/G with the induced
(strong) topology is a separated topological space. The action is called proper if
the morphism G x X — X x X, (9,2) = (g.z,z) is finite. In more topological
term ‘i -aas the follo.ng: Given sequences {;} in X and {g¢;} in G such that
lim;yoo 2; = 7 and lim; o0 gi.7; = ¥ then a subsequence of {g,;} converges to some
g€ Gandy=g.z.

We remark that a proper action of a unipotent group is separated and free, (i.e.,
all stabilizers are trivial), and that a separated action has all orbits of the same
dimension.

Conjecture. Every free action on A? is equivariantly trivial.

The proposition above and in particular the conjecture do not hold in dimension
> 4 This follows from the following example given by M. SMITH (see [Sn89}).
Another example was found by WINKELMANN [Wi90].

Ezample 2. The vector field { = .1’,"5% +y% +(1+y%) 3—‘20— determines a free triangulay
action of C* on A* which is not equivariantly trivial. More precisely, this action is
even not separated.

We have seen above that for an equivariantly trivial action the quotient m: X —
X/G exists as a trivial G-bundle. More generally, one has the following concept of
an “algebraic orbit space”.
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Definition. A geometric quotient m: X — Y is a morphism with the following prop-
erties:

(1) The fibers of = are the orbits in X;
(2) Y carries the quotient (Zariski-) topology;
(3) = is affine and Oy = (7, Ox)%.

Remark 3. If a geometric quotient 7: A™ — Y exists for the action of a unipotent
group U on A" then the following holds: (a) The action is proper (hence separated).
(b) Y is an open subset of Spec O(A" )Y, and (¢) invariant functions separate the
orbits. (This follows essentially from the factoriality of A", cf. [Fau85,88].)

We also remark that an action of Ct (or any unipotent group U/) on A™ which
is locally equivariantly trivial admits a geometric quotient 7: A" — Y, and 7 is a
principal U-bundle which locally trivial in Zariski-topology.

We now come to the next example which shows that even under strong assump-
tion, like properness, a geometric quotient need not exist. It is due to DEVENEY

anbd FINSTON [DF94b].

Ezample 3. The action of C* on A’ given by the vector field £ = r 3’; + 1_;(7’1:* +

(1-— x;y%)% 1s proper, but does not have a geometric quotient.

There remains the question if a geometric quotient of A" by the action of C*
is always affine. This would imply that a locally equivariantly trivial action of C*t
on A" is always (globally) equivariantly trivial, because every principal C*-bundle
over an affine variety is trivial. Again, there is an example which shows that this
is not the case in general. It is due to WINKELMANN [Wi90].

Ezample 4. Consider the following action of C* on A®:
t(wlyl‘?ay]ay?az) - (331,3—'21341 +t$11y21t‘r2~: + f(-‘l + 1Y — LYy ))

The corresponding vector field is £ = 3:1% + avgé—% + (14 x40 — mgyl)%. This
action has a geometric quotient 7: A°> — Y where Y is an open subset of the affine
4-dimensional quadric with a complement of codimension 2. Moreover, 7 is a (non-
trivial) principal C*-bundle.

At this point there remain two questions:

Question. (a) Given a C'-action on A” which admits a geometric quotient 7: A" —
Y, does it follow that Y is smooth? (This would imply that 7 is in fact a principal
Ct*-bundle.)
(b) Are all proper action on A* locally (or even globally) equivariantly trivial?
The examples of this section clearly show that for C*-actions on affine spaces
there are no general results concerning the existence of quotients and their structure.
If fact, i1t seems that every kind of strange behavior is possible. We will show in the
last section how one could use these exotic actions to produce negative answers to
some of the problems mentioned in the introduction.
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