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ON REDUCTIVE ALGEBRAIC SEMIGROUPS
E. B. VINBERG

An (affine) algebraic semigroup is an affine algebraic variety S with an associative
multiplication

p:Sx8§-5

which is a morphism of algebraic varieties. A zero of a semigroup § is such an
element 0 (if it exists) that 0s = s0 = 0 for any s € S.

Any (affine) algebraic group is an algebraic semigroup. An important example
of an algebraic semigroup which is not a group, is the semigroup End V' of endo-
morphism of a (finite-dimensional) vector space V. Moreover, if dimV = n, then
foranyr=1,...,n

End, V = {A € EndV :IW < r}

is an algebraic semigroup with zero (but without unit, unless r = n).

It is well-known that any algebraic group is isomorphic to a (Zarisky) closed
subgroup of the group AutV = GL(V) of automorphisms of a suitable vector
space V. A slight modification of the proof of this theorem allows us to prove that
any algebraic semigroup S is isomorphic to a closed subsemigroup of End V' for
a suitable V. Moreover, if S has a unit, one may assume that it corresponds to
the identity map of V under this isomorphism. (See [3] or [7] for details.) In this
situation, an element of S is invertible if and only if it corresponds to an element
of GL{V). It follows that the group G(S) of invertible elements (the unit group)
of S is open in S and is an algebraic group. In particular, if S is a group, it is an
algebraic group.

In what follows we assume that the base field k is algebraically closed of char-
acteristic 0 and the variety S is irreducible. An algebraic semigroup S is called
(geometrically) normal, if the variety & is normal.

For semigroups with units (monoids), we shall assume that their homomorphisms
take the unit to the unit. Note that if ¢ : 5 — S' is a dominant homomorphism of
algebraic semigroups with units, then (¢(S)) is an open subgroup in G(S') and
hence o(G(5)) = G(S').

An algebraic semigroup S with unit is called reductive, if the group G(5) is
reductive. One can show (see [7], [8] and Proposition 1 below) that (;(S) cannot
be semisimple, unless S is a group.

Reductive algebraic semigroups were studied by Putcha [2], [3] and Renner [4]-
[7]. In particular, Renner classified the reductive semigroups S satisfying the fol-
lowing conditions:

(R1) the center of G{S} is one-dimensional;
(R2) S has a zero;

Typeset by AaS-TEX



2 E. B. VINBERG

(R3) & is normal.

An example of a reductive semigroup, satisfying the conditions (R1) and (R2),
1s
S=k*Gy C End v,

where Gy C GL(V) is a connected semisimple linear group. In this example,
G(S) = k*Gg. In particular, if Go = SL{V'}, then § = End V.

Roughly speaking, Renner’s result reduces to the assertion, that such a semigroup
& is uniquely determined by G(S) and the closure of a maximal torus T of G(S),
which may be any affine embedding of T, equivariant with respect to the action of
T on itself by multiplications and to the Weyl group. Apparently, the condition
{R.1) is not really essential for Renner’s method. However, in this article we propose
another approuch to the classiication problem.

The commutative reductive semigroups were studied by Neeb [18].

Now we state the results of the article. Their proofs are given in §1 — §9.

1.Let S be a reductive semigroup and G = G(S). We define an action of G x ¢¢
on S by

(g1,92) 05 = qisgy .
The algebra k{S] is a (G x G)-invariant subalgebra of k[G].

Let 7" be a Cartan subgroup of G and B a Borel subgroup containing T. We de-
note by X the character group of T and by X, the semigroup of dominant characters
with respect to B,

It is well-known that

kGl = €P k[Gla, (1)

AEXy

where k[G]a denotes the linear space of the matrix entries of the irreducible linear
representation R(*) of  with highest weight A. The summands of (1) are minimal
{G »x G)-invariant subspaces, and the corresponding irreducible representations of
¢ x G are mutually non-isomorphic. It follows that any (G x )-invariant subspace
of k[(7] is a sum of some of k[(7]5. In particular,

kiS] = €B (G, (2)

Aex

where £ = £(5) is a subset of X, .
The multiplication
v GxG- (G

in the group ¢ defines, and is defined by, the algebra homomorphism
gt kG = EG) @ k[G],

which is called the comultiplication in the algebra k[G]. It 1s given by the following
formula; if f'-(;\) denotes the (7, 7)-th matrix entry of R(A), then

Wi =35 o RS ()
k
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Obviously, the comultiplication in k[S] is just the restriction of that in k[G).
Thus distinguishing S among all algebraic semigroups, containing G as the unit
group, reduces to indicating £. We shall say that £ defines S, and denote S = S(£).
For any A, M € X,, we denote by X(A, M} the set of the highest weights of
irreducible components of the representation R4 R(M) 1t is known that X(A, M) 3
A+ M. We have
k[G],\k[G]M = @ kG- (4)
NeX(A,M)

It follows that £{5) = £ satisfies the condition
AMefL=>XAM)CL (5)

[n particular, £ is a subsemigroup (containing 0) of X, .
We call a subsemigroup £ C X, perfect if it contains 0 and satisfies the condition

(5)-

Theorem 1. A subset £ C X, defines an algebraic semigroup, containing G as the
unit group, if and only if it is a perfect finitely generated subsemigroup, generating
the group X.

2. It we require that S be normal, a more explicit description of £(5) is available.
Let g and t be the tangent algebras of G and T, respectively. Identifying char-
acters of T with their differentials’, we put

t{Q)={het:A(h)eQ YA€ X}

so the dual space t{Q)* is identified with X® Q. Let ay, ..., an be the simple roots
of G and hy, ..., h, the corresponding dual roots. The Weyl chamber C C t(Q)" is
defined by

C={Act(Q)  Ah) =0 i=1,...,7)}.

The group G and the torus T' decompose into the almost direct products
G=2CGy, T=2Z2T,,

where Z is the connected center and Go the commutator group of &, and Ty =
T Go a Cartan subgroup of Gy. _
Let 3, go, and to denote the tangent algebras of Z, Go, and Th, respectively. Then

g=3®go, t=33%.
It 3(Q) = 3N 4(Q), t(Q) = to N HQ), then
HQ)" =3(Q)" @ %(Q), (6)
€ =3Q)" + Co,
where Co C t5(Q)" is the Weyl chamber of Gy.

1Since the addition in the group X corresponds to the multiplication in the algebra k[T},
characters of T, when considered as elements of this algebra, are denoted as exponentials.
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Theorem 2. A subset £ C Xy defines a normal algebraic semigroup, containing G
as the unit group, if and only iIf £ = X, (K, where K Is a closed convex polyhedral
cone tn t{Q)"* satisfying the conditions

(1) !{ 9 -y, ... — O,
(2} the cone K [} C generates {{Q)*. The semigroup S(£) has a zero if and only
if

(3) the cone D = K{3(Q)" is pointed;
(4) KNCo = {0}.

We emphasize that any subset £ C X, satisfying the conditions (1) and (2) of
the theorem, automatically satisfies the conditions of Theorem 1.

Remarks.1. The projection of K on ty(Q)* is a convex cone containing an interior
point of Cy and the negative simple roots. Hence it is the whole space to(Q)*.

2. Since Cp C conv{ay,...,a,}, the projection of K ((C on §(Q)* is contained in
K (and coincides with D). It is a generating convex cone in 3(Q)*.

3. We may (cand will) assume that the cone K is the greatest one among the convex
cones having the same intersection with C. This means that any hyperplane bound-
ing K bounds K (€' Under this condition, the cone K is uniquely determined by
the semigroup.

Corollary. Any normal reductive semigroup decomposes into an almost direct
product of a reductive group and a {(normal) reductive semigroup with zero.

(For non-normal semigroups this is not true.)

”An almost direct product” means a quotient of the direct product with respect
to a finite central subgroup. Note that if T is a finite central subgroup of an al-
gebraic semigroup S, then the quotient semigroup S/T turns to be an algebraic
semigroup, being suppiied with a structure of an affine algebraic variety as the
invariant-theoretic quotient S/T. (Since I' is finite, the fibers of the canonical mor-
phism § — S/T are exactly the [-orbits: see, for example, [9].) We shall say that
S is a covering semigroup of S/T.

3 Let S be a reductive semigroup with G(5) = G. Since the Borel subgroup of
(' x G has an open orbit in G, S is a sphetical (G x G)-variety and hence ontains
only finitely many (G x G7)-orbits [11]. (More immediately, this follows from their
description given below.)

Consider now the (G x Gy)-action on S. Let

A= A(S) = S//(Gg X Go) (T)

be the invariant-theoretic quotient of § with respect to this action. By definition,
A is the spectrum of the subalgebra

k[S]G"XG" C k[S],

consisting of the {(Gy x (7y)-invariant polynomial functions on §.
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Denote by Xz the subgroup of X, consisting of the characters, vanishing on to.
(These are the (highest) weights of the one-dimensional representations of G.) Then

k[A] = k[S]5°%% = €D k{Gla, (8)

AELZ

where £7 = £ Xz. The embedding k[A] C k[S] defines the canonical morphism
r:S—= A (9)

According to a general theorem of the invariant theory (see, for example, {9]), 7 is
surjective. It S is normal, A is also normal.

Since the subalgebra k[A] C k[S] is (G x G)-invariant, the action of the group
(< G on S induces its action on 4 in such a way that the morphism 7 is equivariant.
Obviously, the latter action reduces to an action of the torus

G/Go = Z/Zo,

where Zp = Z (.
Moreover, it follows from (3) that

u*k[A] C k[A] ® k[A].

Thereby A is endowed with a structure of a (commutative) algebraic sernigroup in
such a way that the morphism 7 is a semigroup homomorphism. The image of the
unit of S is a unit of A. It S has a zero, its image is a zero of A.

Definition 1. The algebraic semigroup A = A(S), together with the homomor-
phism 7 : § — A, is called the abeliza*ion of 5.

According to the theory of toric vatieties [13], the G(A)-orbits in A are in a one-
to-one correspondence with the (closed) faces of the cone D = Q4£z n such a way
that the ideal of (the closure of) an orbit is spanned by those subspaces k[A], =
k[G)y, for which x does not belong to the corresponding face. This correspondence
is monotone in the following sense: for two orbits Oy, O, corresponding to faces
Fy, F3, we have O C O, if and only if Fy C Fp. The orbit O, corresponding to a
face F, contains a {(unique) idempotent ep, defined by

I, xX€F,

0, x¢F (10)

x(er) = {

In an analogous way, the (G x G)-orbits in § are in a monotone one-to-one
correspondence with faces of the cone @42, but in general not with all of them.
The ideal of the orbit, corresponding to a face F, is spanned by those subspaces
k[G]a, for which A ¢ F. In particular, there are only finitely many (G x G)-orbits.

Denote by Z the closure of Z in S.
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Theorem 3. Let S be a reductive semigroup. Then
1) =7 (e) = Go;
2) m(Z) = A;
3) the closed (Gy x Gy)-orbits are exactly those meeting Z. Moreover, if S is
normal, then
4) m induces an isomorphism Z{Zy ~ A,
B) the closure of any {Gg x Go)-orbit is normal.

It 1otlows from 1) that
GA)=G/Go=Z/Z,

and the restriction of 7 on G is the canonical homomorphism G — G/Gj. Moreover,
T HG(A)) =G.

4. It is of special interest to distinguish the cases when the morphism = is flat.
In these cases, the fibers of r are equidimensional and, if S has a zero, the triple
(5, A, 7) can be considered as a multi-parameter contraction of the {Go x Gp)-action
on G to that on 7~ (0). We shall see that, under some restrictions, the result of this
contraction does not depend on S. The action Gy x Go on w7 (0} is special which
means that the stabilizer of any point contains a maximal unimpotent subgroup of
GD X Gg.

A canocnical (one-parameter) contraction of any action of a reductive group on
an affine variety to a special one was considered by Popov {10] (see also [11]). In
the case of the action of Gy x (Gy on (g, the result of our contraction is just the
saimne.

Definition 2. A normal reductive semigroup 5 is called flat, if the morphism = is
flat and its fibers are reduced (as schemas) and irreducible.

The morphism = is flat if and only if £[5] is a free k{A]-module {Proposition 3}).
Even in this case, the fibers of = need not be reduced : sce an example in 4.2.

According to the decomposition {6}, we represent an element of H{Q)* as a pair
(x;A), where x € 3(Q)", A € t(Q)".

Theorem 4. Let S = S(L) be a normal reuctive semigroup. In the notation of
Theorem 2, the semigroup S is flat if and only of there are such a convex polyhedral
cone D C 3(Q)" and a homomorphism 0 : Z — Ty that

8lz, = id (11)
and the cone K = K(5) has the form
K ={(x,A) € t{Q)* : x — 8" (A) € D}. (12)

For such a cone K, the conditions of Theorem 2 look as follows:
(1) (i) eD (i=1,...,n)

) the cone D) generates 3(@) ;

) the cone D is pointed;
) 8

(D)N(=Co) = {0}

(2
(3
(4
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It S has a zero, the fiber #=1(0) is an ideal of S. As an algebraic semigroup with
a {(Go x Go)-action, it depends only on Gy, provided S is flat (see 4.4). Like the
asymptotic cone of a hyperboloid, it reflects on the behaviour of Gg at infinity. We
call it the asymptotic semigroup of G and denote by AsGq. A separate paper [12]
is devoted to a more detailed investigation of it.

In general, if S is flat, all the fibers of 7 are spherical (G x Go)-varieties and (Go x
Glo)-orbits are just the intersections of (G x G)-orbits with the fibers (Proposition
5). (For a reductive group L, an irreducible L-variety X is called spherical, if the
Borel subgroup of L has an open orbit in X. In this case, L has only finitely many
orbits in X [11].)

5. Any homomorphism

@ S 55
of reductive algebraic semigroups gives rise to a homomorphism of their abeliza-
tions:

goab:A’——}A

in such a way that the diagram

is commutative.
Consider the fibered product

S=Ax4S5={(a,s) €A x5:puwla) =n(s)}.
It is a closed subsemigroup of A" x § and the cancnical projections
F:5 A $:528
are semigroup homomorphisms. There is a {(unique) homomorphism
g:5 o5
such that the diagram
s &—“‘W S
N
35

A A
Pab

'
L3

1s commutative.
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Definition 3. The homomorphism ¢ is called excellent if ¢ is an isomorphism.

Note that the semigroup S is reductive and ¢ maps isomorphically the commu-
tator group of G(S) onto that of G(S). So if the homomorphism ¢ is excellent, it
maps isomorfically the commutator group of G(S') onto that of G(S). Moreover, if
S is flat, so is S (Proposition 6).

A stanua consideration with commutative diagrams shows that the product of
excellent homomorphisms is also excellent.

For a fixed connected semisimple group (o, denote by F&5(Go) the class of all the
flat reductive semigroups, whose commutator group of the unit group is isomorphic
to GGy. It turns out that there is a distinguished semigroup § € F§(Go), which is
universal in a sense. In the statement of the following theorem, we identify the
commutator group of G(S} with Gg.

Theorem 5. There is a semigroup with zero S € FS8(G,) satisfving the following
condition:

(*) For any semigroup S € F8(Go) and any isomorphism o of the commutator
group Gé) of G(S') onto Gyg, there is an excellent homomorphism

cp:S'—hS',

. . ’ , . . N e
whose restriction to (G, coincides with @,. Moreover, if S has a zero, such a homo-
morphism is unigue.

It is clear that such a semigroup S is unique up to isomorphism. We call it the
enveloping semigroup of Go and denote by Env Gy.
In terms of Theorem 4, the semigroup S = Env Gy is described as follows:

(1) Zq is the whole center of (o;
(2) # is an isomorphism;
(3) the cone D is generated by the forms §*(a;),1=1,...,n.

For any A € to(Q)*, we shall denote 6*(A) by X

6. Now we describe the (G x G)-orbit structure of § = Env Gy,

The faces of the cone I are enumerated by the subsets of @ = {1,...,n} in such
a way that to a subset f, there corresponds the face Dy spanned (as a convex cone)
by ag, i € I. We denote by O the Z-orbit (= G(A)-orbit) in A, corresponding to
Dy.

The cone K [ C is linearly, and hence combinatorially, isomorphic to the direct
product D x Cp (so it is a simplicial cone}. The cone Cy is spanned by the funda-
mental weights wy, ..., wn of go. For J C Q let us denote by C'; its face spanned by
w;, j € J. In this notation, the faces of K (C are

Fry={(x, ) €dQ) :x-re D, AeCh}, (13)

where I, J C 2.

Let © be the Dynkin diagram of g and vy,...,v, its vertices enumerated in
accordance with the enumeration of the simple roots. For I C €, we denote by
¥ the subdiagram of X, constituted by the vertices v;,i € I. The subsets of [,
corresponding to the connected components of £y, will be called the connected
components of [,
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Definition 4. A pair (7, J) and the corresponding face Fy ; of K[ C are called
essential, if no connected component of the complement of J is entirely contained
in [.

Theorem 6. The (G x G}-orbits in § = Env(y are in a monotone one-to-one
correspondence with the essential faces of the cone K[ C.

We denote by Oy y the orbit corresponding to an (essential) face Fy y. Its ideal
is spanned by the subspaces k{G]s with A ¢ Fy ;. Clearly,

ﬂ'(O[rJ) = O]. (14)

In particular, if / = Q, then the only possibility for J is to be equal to ( as
well. This means that 7~ !{(G(A)) = G, which also follows from Theorem 3. On
the contrary, if ] = @, then J may be an arbitrary subset of £, so m=1(0) = AsGo
decomposes into 2° (G x G)-orhits.

For any /, there is the least admissible J, namely, the union of the connected
components of (2, entirely contained in I. The corresponding orbit Oy s is the unique
orbit which is closed in m~1(Or). At the same time, there is the greatest admissible
J, namely, the whole set 2. The corresponding orbit is the unique orbit which is
open in 7~ 1(0y).

7. Let us describe the stabilizers of the (G x G)-action on S.

According to general results of Putcha [1),[2] for reductive semigroups, each
(G x G)-orbit Oy ; contains an idempotent defined up to conjugacy. It can be
chosen in T' and, under this condition, it is defined up to the action of the Weyl
group. We denote such an idempotent by e; ; and will describe its stabilizer. An
interpretation of ey s is given in 7.3.

Let B be the Borel subgroup of G and b its tangent algebra. For any subset
M C £, we denote by P(M) the parabolic subgroup of (+, whose tangent algebra
is generated by b and the root vectors, corresponding to the roots —aj,i € M (so
B = P(@)). We have

P(M) = U(M)R(M), {(15)

where U(M) is the unipotent radical and R{M) a maximal reductive subgroup of
P(M). We shall assume that R(M) D T. Under this condition, R(M} is uniquely
defined. We denote by G(M) its commutator group.

Let P_(M) be the parabolic subgroup which is opposite to P{M) and U_(M}
its unipotent radical. Then

P_(M) = U_(M)R(M). (16)

We denote by § (resp. d_) the projection of P(M) (resp. P_(M)) onto R(M)
with respect to the decomposition (15) (resp. {16}).

We call two elements of §} adjacent, if such are the corresponding vertices of the
Dynkin diagram. For a subset M C § we denote by C(M) its complement and by
M? its "interior”, consisting of its elements, which are not adjacent to any elements
of C(M).

Let now Oy ; be a (G x G)-orbit in 5 = Env Gp. Put

M=Uow) (17)
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and define a torus 7y y C T by

Trr={t €T Alt) = lforA € Fy 4}. (18)
Note that Ty ; contains T(VG(C(J)) and G(C(J}) Tt s is a normal subgroup of
R(M).

Theorem 7. Under a suitable choice of the idempotent e; j € O; y (T, its sta-
bilizer H; y is the subgroup of P(M) x P_(M), consisting of the pairs (g,g_),
satisfyiy the condition

0(g) = é_(g-)(mod G(C(J))T1,4). (19)
In other words, Hy ;s is the (semidirect) product of U(M) x U_ (M}, the diagonal

in R(M) x R(M), and the group G(C(J))Tr. s x {e}.
In particular, H; s 1s reductive if and only if M = §, which means that I D J =
J¢. This is just the case when Oy 4 is closed in 7~ 4(Or.4). Another characterrization

of this case is that e; ; € Z.
On the contrary, for the orbit G o, which is open in #~1(O;), we have

J=J=Q M=I[\J =1

so Hy q is the product of U({f) x U_(I), the diagonal in R(I) x R(I), and the torus
Tr x {e}, where

Tr=Tra={20(z)"" :2€ Z,&(z) = 1(i € }. (20}

The idempotents e; ; chosen as in Theorem 7 subject the relations
€1 €Ly = LN Iadi (Vs (21)
8. The idempotents er o are just those lying in the closure of the diagonal torus
Te = {28(2)" 1z & Z}, {22)

50

GToG = | }Or0. (23)
I

Clearly, this is an open subvariety of 5.
It is easy to see that Ty =~ k™. This fact gives rise to the following theorem.

Theorem 8. The variety

S = JOra (24)
I

iz smooth and there is a geometric quotient SP*/Z which is a smooth projective
variety.

The definition of a geometric quotient see, for example, in [9].
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The variety SP*/Z inherits the (Go x Gg)-action and contains the adjoint group
Go/20 as an open orbit of this action. One can show that it is nothing else than
the "wonderful” equivariant completion of Gy/Zp constructed by DeConcini and
Procesi [14].

The subset SP* C § is not a subsemigroup, so there is no natural semigroup
structure on SP*/Z. On the other hand, the set theoretic quotient S/Z is a semigroup
but not an algebraic variety. It seems that, for classical groups Go, the semigroup
S/Z is close, if not identical, to that constructed by Neretin [15]. Neretin’s results
are not used in this work, but his ideology influenced me to a certain extent.

9. u the group Gy acts on an affine variety Xp, we can be interested in the
extension of this action to an action of the semigroup S = Env Gg on an affine
variety E containing Xp.

More generally, we can consider Go-equivariant morphisms

¢! Xo—= E,

where E is an affine variety with an action of S on it. (We assume that the unit
of § acts as the identity map.) Let us call such an S-variety E, together with the
morphism ¢, an enveloping S-variety of Xg, if for any pair (E',tp') of the same
kind, there is a unique S-equivariant morphism ¢ : E - E' such that the diagram

XOL)E
N Y
El’

is commutative. It is clear that an enveloping S-variety, if exists, 1s unique in a
natural sense.

Theorem 9. For any affine Go-vartety Xo, there exists an enveloping S-variety E.
The corresponding morphism y is an isomorphism of Xo onto a closed subvariety
of E.

We shall denote the enveloping S-variety of Xy by Env X and identify Xg with
its image in Env Xj.

For any affine S-variety F, we can consider the invariant-theoretic quotient
E//Gy. Tt inherits the action of S, which reduces to an action of the abelization
A= S//(Gg x Gg) of 5.

For E = Env Xy, we have

E//GQZAXXO//GU. (25)

Moreover, X/ Gg is embedded into E as the subvariety of fixed points of S (see
9.6).

10. The basic results of this work were obtained during my visit to Institut
des Hautes Etudes Scientifiques in August of 1993. A preliminary version of the
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research was reported at the meeeting on "Invariant ordering in geometry and
algebra” at Mathematisches Forschungsinstitut Oberwolfach in October of 1993 and
at the international meeting organized by Sondervorschungsbereiche 343 " Diskrete
Strukturen in der Mathematik” in Bielefeld in November of 1993. 1 thank all these
institutions for their hospitality. 1 also thank Yu.A Neretin for fruitful discussions.

Accomplishing this research was made possible in part by Grant MQZ000 from
the International Science Foundation.

§1. ProoF oF THEOREM 1.

1. In the subsequent proofs, we make use of the following results which are
apparently due to Khadzhiev [16], Vust [20], and Popov [10]. (See [10] for details.)

Let A be a commutative associative algebra with unit, and let a reductive group
£ act on A by automorphisms. We assume that any elements of A is contained in a
finite-dimensional R-invariant subspace and, for any such subspace V, the induced
linear representation R — GL(V) is algebraic. Let U be a maximal unipotent
subgroup of R and AY the subalgebra of U-invariant elements of A.

Consider the following properties of an algebra:

{(a) it is finitely generated,;

(b} it has no nilpotent elements;

(c) it has no zero divisors;

(d) it is normal.

Theorem. ([16],{20],[10]). Let (P) be any of the properties {a)-(d). The algebra
A has the property (P} if and only if the algebra AY has this property.

2. Let £ be a perfect subsemigroup of X, . To prove Theorem 1, we are to find
out, under which conditions the algebra

k[Gly = €D kGla (26)

Agg

is finitely generated and generates the field k().

Consider the action of G x G on k[G]. Denote by U the unipotent radical of
the Borel subgroup B of &G and by /_ the unipotent radical of the opposite Borel
subgroup B_. Then U_ x U/ is a maximal unipotent subgroup of &G x G.

For each irreducible linear representation

R : G > GL(VM)

we choose a basis in V{*) | consisting of weight vectors, the highest vector being the
first of them. Then the algebra k[G]V-*Y is spanned by the functions

58 = £,

Since the highest vector of V(*+M) is the tensor product of those of V{A) and V(M)

we have
FAEM) — GA)GIM)
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so the algebra k[G]*-*Y is isomorphic to the semigroup algebra of X.

In the same way, the algebra k[G] Q‘XU is isomorphic to the semigroup algebra
of £. It follows that the algebra k[G]y is finitely generated if and only if such is the
semigroup L.

3. Let Quot A denote the field of quotients of an algebra A.

We have )uot k[G]y = k(G) if and only if the functions of k[G]g separate points
of G, i.e. if the intersection of the kernels of the representations RMA € L is
trivial. Let us denote this intersection by G).

If Gy # {e}, then T} = G1 (T # {e}, so £ belongs to the proper subgroup

={AceX:Aln,=1}C X

To prove the converse, we need
Lemma. Let A € X, and i € Q2 be such that (A, a;) > 0. Then 2A — a; € X(A, A).

This follows from Proposition 9 below and the decomposition rule for products
of irreducible representations of SLy.

So,if A€ £ and (A, ;) > 0, then 2A — o; € £, and a; € £ — £. Moreover, if
(ai, ;) < 0, then (2A — oy, a;) > 0. It follows that the set

M ={icQ:a,€L- L}

is a union of connected components of £2.

Let now Gy = {e}. Then, for each connected component of Q, there is such
A € £ that (A, ;) > 0 for some i of this component. Hence Q =, so the group
£ — £ contains the root lattice R of g.

The quotient group X/M is naturally isomorphic to the character group of the
center of (7, and if £ — £ # X, there is such an element z # e of the center, that
A(z) = 1 for all A € £, and hence z € G,. This contradicts our assumption.

§2. ProoF oF THEOREM 2

1. Let first £ = X, [ K, where K C t(Q)* is a convex polyhedral cone satisfying
the conditions 1} and 2} of the theorem.

It is known (and easy to show) that the intersection of a lattice in Q™ with a
convex polyhedral cone is a finiteely generated semigroup. Hence the semigroup
£ = XMCNK) is finitely generated. Since the cone C'[) K generates the space
t(Q)", the semigroup £ generates the group X.

Since any N € X(A, M) has the from

N=A+M=) ko, k20,

the condition 1) of the theorem guarantees that the semigroup £ is perfect. So it
defines an algebraic semigroup S with G(5) = G.
Let now S be an algebraic semigroup with G(S) = G defined by a semigroup £.
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In view of Theorem stated in 1.1, the algebra k[S), defined by (2), is normal
if and only if such is the algebra k[S]V-*". The last algebra is isomorphic to the
semigroup algebra of £, which is normal if and enly if

£=3[)0Q42

(see, for example, [13] or [17]).

The cone Q4 £ is a convex polyhedral cone contained in the Weyl chamber . Let
Hi, ..., H, be its walls distinct from the walls of C' and H;", ..., H} the half-spaces
bounded by Hy,..., H, respectively and containing Q,£. We put

K=Ht[H}.
L=X[YK[O) =2,k

Let us prove that K 3 —ay, ..., ay,.

Suppose —a; ¢ HJ-+ for some ¢, and take an interior point A of the face
Hi (K C) of the cone K C. Multiplying A by an integer we may assume
that A € £ Then 2A — o; € X(A, A) but 2A — a; ¢ £, which is a contradiction.

A maximal ideal of the algebra k[S] defines a zero of S if and only if it is (G x G-
invariant. It such an ideal exists, it must be equal to

KSle = €D G

Aeg\{o}

s0 that

The subspace k[5]4 is really an ideal if and only if
0 ¢ X(A, M) VA Mecce\ {0} (27)

It follows from the condition 1) of the theorem that the projection of K C on
3(Q)" 1s contained in K [ C. So if the condition 3) is satisfied, 0 € X(A, M) implies
A, M € Cy; so, if the condition 4} is satisfied, A = M = 0.

Conversely, if the condition 3) is violated, there are such A, M € (£\{0})3(Q)*
that A+M = 0. If the condition 4) is violated, there exists A € (£\{0})[Co. Let m
be the dimension of the representation R*. We have det R(g) = 1 for ¢ € G, which
implies that the m-th (tensor) power of RA contains the trivial representation. It
follows that the condition (27) is violated.

2. For example, consider the case G = k* x SL,. We identify the space t{Q)
with Q7 in such a way that t,(Q)* is identified with the z-axis, 3(QQ)" with the
y-axis, the group X with Z2, and the only simple root o with {2,0). Then the Weyl
chamber C has the form

C:{(.r,y)E@z:;r:zU}.

A normal algebraic semigroup S with G(S) = (7 is define, in terms of Theorem 2,
by a convex cone K C Q? with the following properties: K 3 (—1,0) and K° meets
the right half-plane . Moreover, since only the intersection KNC is essential,
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we may assume that each side of K meets C%, so K is either the whole plane or
a half-plane distinct from —C. Since the above identification of t{Q)* with Q7 is
defined up to multiplying y by —1, we also may assume that K 5 (0, 1).

It K is the whole plane, we have £ = X, and S = G. It K is the upper half-plane,
£=ZiandS:kx5L2.

In all the other cases, K has the form

K={(z,y)€Q’:y>az} (a€Q,a>0)

(see Fig.1}, so the conditions 3) and 4) of Theorem 2 are satisfied and S is a
semigroup with zero. For the further citation, we denote this semigroup by S,.

3. Now we prove Corollary to Theorem 2.

The condition 1) of the theorem implies that if the cone K contains an interior
point of some face of Cy, it contains the whole face. So F = K[)Cy is a face
of Cy. Moreover, il a;|r # 0 and (o, e;) < 0, then aj|r # 0, too. Hence F is
spanned by the fundamental weights of some ideal of g, say, g((]l), Let ggz} be the
complementary ideal, Gg]) and GE,Q) the connected subgroups of G, whose tangent
algebras are gf,l} and g((f), respectively.

Let further Z(1) and Z(?} be such almost complementary subtori of Z, that 3(2),
the tangent algebra of Z(?) is the annihilator of K ((~K}{13(Q)"

Put

¢ =z g2 = 2GR,

Passing to a suitable covering semigroup, we may assume that
G =GN % G?,

Then
x=xWgx?,

where X(1) and X(?) are the character groups of 7' = TG and T? = TNGP,
respectively. With respect to this decomposition,

e=xPo xPN K,
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where the cone K2 = K [}3%)(Q)* satisfies the conditions 3) and 4) of the theo-
rem. It follows that

5=« 5('2)’
where 52) is an algebraic semigroup with G($®)) = G{2 defined by the semigroup

£@ = xP K>
According to the theorem, S(2) has a zero.

$3. Proor oF THEOREM 3
1. The first assertion of Theorem 3 is implied by the following known fact (8]

Proposition 1. Any reductive algebraic semigroup, whose unit group is semisim-
ple, is a group.

Indeed, the proposition implies that Go = Gy. It follows that Gy is the unique
closed {Go x Gy}-orbit in the fiber m=!(e). All other orbits in 7=!(e), if they exist,
must be higher-dimensional. But each coset gGo(g € G) is a {Gy x Gp)-orbit, and,
consequently, these orbits have the highest demention. Hence 7~ 1(e) = Gy,

For the sake of completeness, we give a proof of Proposition 1 below. It is based
on the following

Proposition 2. Let H C GL(V) be a connected semisimple algebraic linear group.
Then any irreducible linear representation of H is realized in a suitable tensor power
of V.

Proof. We have H C SL{V'}, so any irreducible linear representation of H is con-
tained in the restriction to (7 of some irreducible linear representation of SL(V).
But any irreducible linear representation of SL(V) is realized in a suitable tensor
power of V. O

Proof of Propesition 1. Let S be an algebraic semigroup, whose unit group G(S) =
(7 is semisimple, and £ the corresponding subsemigroup of X, (see the formula
{2)). Since £ generates the group X, it contains such characters Aq, ..., A, that
the representation

R=RWM) 4 ... 4 RlAm)

of the group G is faithful. By Proposition 2, any irreducible representation of G is
contained in some product of R(A) | RA=) Hence £ = Xyand S=G. O

2. Since GoZ O G, the restriction homomorphism
p 1 k[A] = k[S]%o%Ca 5 k[ 2]

is injective. We shall prove that k[Z] is integral over p(k[A}), which will imply that
the corresponding morphism

pr=mlz 2 A

is surjective.
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The algebra k[Z] C k[Z] is spanned by the characters e*|z, A € £, of Z. For
A € £,let m = dim R(Y). Then the m-th exterior power of R4} is a one-dimensional
representation of G. Its (highest) weight M € £z is such that eM|z = (e?)™|z, so
etz is integral over p(k[A]).

3. Since p(k[A]) C k[Z]%", we have a commutative diagram

———
PN (o
Z/Zs

where p is the canonical homomorphism. Moreover, since the fibers of x|z are
Just the cosets of Zy, o is a birational morphism. Since 7|y is surjective, o is
also surjective. But any surjective birational morphism onto a normal variety is an
isomorphism. This implies the fourth assertion of the theorem.

4. The (Gy x Go)-orbit of an element u € Z is Gou. Let us prove that it is
closed. Since Zu contains an idempotent, we may assume that v is an idempotent.
In this case, the morphism

Go — Gou, g+ gu,
is a semigroup homomorphism. It defines an isomorphism
Go/N = Gyu,

where N = {9 € Go : gu = u}. Hence Gou is an algebraic semigroup, whose unit
group is semisimple. In virtue of Proposition 1, this implies that Gou = Gou.

Let now O be any closed ((Go x Go)-orbit. Since 7(Z) = A, the fiber 7~ 1(x(0))
meets Z. But any fiber contains only one closed orbit. Hence O meets Z. This
proves the third assertion of the theorem.

5. Let S be normal and O be the (G x G)-orbit in S, corresponding to the
face F of the cone K [C (in the notation of Theorem 2). We know (see 1.1) that
the normality of £(O) is equivalent to the normality of k[O]Y-*V . In 1.2, we saw
that the algebra k[S]V-*Y is naturally isomorphic to the semigroup agebra of £.
Correspondingly, the algebra k[O]Y-*V is isomorphic to the semigroup algebra of

&:EﬂF:IﬂF

and hence normal (see 2.1).

54 ProoF oF THEOREM 4

1. Let S = 5(£) be a normal reductive semigroup with G(S) = G and A its
abelization.
We introduce a preorder on £ :

A2 Ay, A -Ayels
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It Ay > Ay and Ay > Ay, we shall call A; and A, equivalent and write A} ~ As.
More explicitly, A| ~ As, if Ay — Ay € My, where

My = £2( |(-L2)

is the greatest subgroup contained in £z (and in £). An element M € £ will be
called minimal, of A < M implies A ~ M. Let 9 denote the set of all minimal
elements of £. It is evident that

E:EDI-f—EZ.

Proposition 3. The following conditions are equivalent:
1} k[S5] is a Aat k[A]-module;
2) k(5] is a free k[A)-module;
3) lfM1+X1 :M2+X2 (Ml,Mzem, X],XQEEZ), then M;""Mg (and

X1~ Xxz).
4) k[S] decomposes as a vector space into the tensor product

k[S] = k[A] @ k[G]om,, (28)

where T, 1s a set of representatives of the cosets of My in SN and

kGlm, = B [Glu. (29)

Memty

In the case, when S has a zero, My = {0} and M, = M.

Proof. Obviously, 3) = 4) = 2} = 1), so we are only to prove the implication
1) = 3).

Let k[S] be a flat k[A]-module. It is easy to see that the subalgebra k[$]V-*V
(see 1.2) is a direct summand of k{S] as a k[A]-module. Consequently, it is also a
flat k[A]-module.

For a semigroup &, we denote by k& its semigroup algebra over k. We saw in
1.2 that &[S]Y-*" ~ kL. Under this isomorphism, the subalgebra k|A] corresponds
to kLz. Thus kL is a flat k£z-module. It follows that for any ideal J of £z the
natural homomorphism

kT Qip, kL kL (30)
is injective.

Let us call two pairs (A1, x1), (Az, x2) € £ x T adjacent, if A; + x1 = Az + Y2
and A; > Ay or Ay > A;. Extending this relation by transitivity, we obtain some
equivalence relation on £ x J, which we shall call the J-equivalence. The injectivity
of the homomorphism (30) means that any two pairs (A, x1), (Aq, xz} € £ x J such
that A; + x1 = A2 + x2 are J-equivalent.

Now we prove that if M, M, € M are such that M; — My € £z — £z, then
My ~ M3, which is equivalent to the condition 3} of the proposition.

Consider the ideal

J=(M - Mz +£3)[ | L2z
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Let x2 be a minimal element of 7 and x; € £z such that
My +x1 = M2+ xo.

Since M- is minimal in £ and x3 is minimal in 3, the only pairs adjacent to (M2, xz)
are (M3 + x, X2 — X}, where x € My. Tt follows that My ~ Mz, O

2. Assume now that k[S] is a flat k{A]-module, that is the morphism 7 : S — A
is flat.
We keep the notation 9 for the set of minimal elements of £.

Proposition 4. The fiber of r are reduced and irreducible if and if M is a sub-
semigroup of £.

Proof. Let eq be the idempotent of A defined by

1 for x € My,

31
0 for x € £z \ Mo (31)

x(eo} = {

It is easy to see that any neighbourhood of g contains representativees of all G(A)-
orbits in A. Since the set of points @ € A for which the fiber = 1(a) is reduced
and irreducible, is open [19] and G(A)-invatiant, we may restrict ourselves to the
investigation of the fiber 7~ (eq).

Let po denote the ideal of k[S] generated by the maximal ideal of k[A] corre-
sponding to eg. Obviously, it is spanned by the subspaces k[G]a with A € £\ and
(eX — 1)k[G]p with M € N and x € My, so the subspace (28) is complementary
to po.

" The fiber m~(eo) is reduced and irreducible” means that the quotient algebr
k[S]/po has no zero divisors. It M), My € M, but M + Mz ¢ 9, then

k[Gla,, k[GIm, € po.but  k[Gla, 46, C Do,

so the above condition is not fulilled.

Let now M be a subsemigroup. Then the algebra (k[S)/po)U-*Y is isomorphic to
the semigroup algebra of 9M/MM, and consequently has no zero divisors. According
to the theorem statedin 1.1, k[S]/po has no zero divisors as well.

Example. For the semigroup S = S,, defined in 1.5, the morphism « is always
flat and its fibers are always irreducible, but they are reduced if and only if @ € N.
The case a = % is depicted in Fig.2. The elements of £ are

represented by dots, the minimal ones being distinguished by small circle. Those
of them lying above the line y = %x correspond to nilpotent elments of the algebra
k[S]/ Lo.

3. Let us represent the above results in terms of Theorem 4.

We denote by X(Ty) (resp. X(Z)) the character group of Ty (resp. Z) and by
X4(To) the semigroup of dominant characters of Ty.

If the cone K has the form (12}, then

Mo = Xz [ YO )(-D)), (32)
M= {(0°(A),A) : A € X(Th)} + Mo, (33)
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and the conditions of Proposition 3 and 4 are satisfied.
Conversely, if these conditions are satisfied, then the projection on £(Q)" defines
a semigroup epimorphism

p: Ot — X, (To)

such that p(M;) = p(Mz) if and only if M, ~ M;. It can be extended to a group
epimorphism
p: M- M = X{Ty)

with the same property. Let
g: X(Tp} = M- M
be such a homomorphism that

We have
g(XM) = ({r(A),A)eM-MC X,

where

r: X(To) = X(7)

is a group homomorphism such that the restrictions of A and r(A) to Zo coincide
for any A € X(T5). Hence r = #*, where

QZZ-—}TQ

is a homomorphism satisfying (11).
We have
L={(x, N eX(Z)x X (Th): x—0"(N) € £z}

Hence the cone K has the form (12) with

D= K[ }3(Q) = QLz.
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Remarks, 1. The cone D and, if S has a zero, the homomorphism f are determined
uniquely by S.

2. As a set of representatives of the cosets of My in MM (see Proposition 3), we can
choose

M, = {(67(A), A) : A € X(To)}. (34)
4. The algebra k[Gp] decomposes (as a vector space) into the direct sum

kGl = €D KGol, (35)

AEX4(To)

where K[Go]s is the linear span of the matrix entries of the irreducible linear
representation R(*) of Gy with highest weight A. The multiplication in k[Go] has
the form

fa=3 p(fi9) (f €k[Golr.g € K[Golu po(f,9) € K[Gol),  (36)

where v runs over the highest weights of the irreducible components of RO R,
The comultiplication has the form

wifh =3 1 e £ (37)

k

where f,-(Jf\) denotes the (i, j)-th matrix entry of R
It S has a zero, then eg =0, My = {0} and the algebra

k[~ (0)} = k[S]/ Lo

is naturally identified as a((Gy x Gg)-mrodule with the subspace

k(Slm = €D *(Glm

Mem

On the other hand, in virtue of (33) we can identify k[{Go] with k[S}en by means of
the mapping .
frr A (S € KGola).

Thereby k[=~'(0)] is identified with k[G].
To the multiplication in k[x~!(0)], there corresponds the s-multiplication in
k[Go), defined by

frg=prsulfig) (f €KGolr g € k[Golu).

To the comultiplication in k[r~!{0)], there corresponds the comultiplication (37) in
k[Gal.

So we see that the semigroup m~1(0), together with the action of Gp x G,
depends only on Gy, provided S is a flat semigroup with zero.
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5. For a flat reductive semigroup S, the structure of {G x G)-orbits in § is tightly
connected with the structure of (G x Gp)-orbits in the fiber of the morphism 7.

Proposition 5. Let S be a flat reductive semigroup. Then any fiber 7= a)(a € A)
of the morphism = is a spherical (Gy x Gy)-variety and '

GsG [ )n~(a) = GosGo

for any . € m~{a).

Proof. For a reductive group L, an irreducible affine L-variety X is spherical if and
only if k[X] is a multiplicity free L-module [23].

Since the morphism r is flat and its fibers are reduced, all the (Go x Go)-modules
k[r~'(a)],a € A, are isomorphic. Since k[r~!(e)] = k[Gy] is multiplicity free, such
are all of them.

Thus, any fiber 7='(a) (a € A) is a spherical (G x Go)-variety and, in partic-
ular, contains only finitely many (G x Go)-orbits. Denote by Z, the stabilizer of
a in Z. Obviously,

Gs(; ﬂ n‘l(a) = Z2,GosGy

for any s € 7! (a). The group Z,, acting in 7~ !(a}, can only permute (Gg x Go)-
orbits. We have to prove that in fact it leaves each of them invariant. It will follow
from the connectedness of Z,/Z,, which is proved below.

We have X(Z/Z,) = Xz and Xz (D = £z. There is such face F of the cone D
that, for y ¢ £,

#0, x€F,
ﬂ@{:& X&F

The subgroup Z, C Z is defined by the equations
x(z) =1, xegLz[F.
Since £z F = Xz F, the subgroup of ¥, generated by £z} F, is primitive

(i.e. the quotient group is torsion-free). This means that the group Z,/Zg is
connected. O

§5. PrROOF oF THEOREM 5

1. Let S and S’ be reductive sermigroups and
p:5 58§
a homomorphism. We denote all the objects associated to S by the same letters,

as those associated to S, but equipped with a prime.
The homomorphism ¢ is excellent if and only if

kST = k[A'] @ipa k[S), (38)
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the structure of a k[A]-module on k[A'] being defined by means of the homomor-
phism
P3 + K[A] - K[A]

and the isomorphism being realized by means of the map
7 x o k[A] x k[S] = k[S].

Note that ¢}, is nothing else than the restriction of ¢* to k[A4] and T s the
identity embedding of k[A'] into k[S'].

Proposition 6. Let the semigroup S be flat and the homomorphism ¢ be excellent.
Then the semigroup S’ is also flat.
Proof. Since k[S] is a flat k[A]-module, if follows from (38) that k[S'] is a flat
k[A ]-module [21].

Let now m’ be a maximal ideal of £[A'] and m its pullback in k[A]. Then

k[S')/m K[S] = (K[A')/m') @x(a)m (k[S)/mk[S]) = k[S]/mk[S],
so k[S']/m k[S'] has no zero divisors. O
Proposition 7. Let the semigroups § and S’ be flat. The homomorphism ¢ is
excellent if and only if o= (M) is a set of representatives of the cosets of My, in m’.

Proof. In virtue of {28), the right-hand side of (38) can be represented in the form
K{A'] @xa K[S] = K[A] @ [Glom,.
So the homomorphism ¢ is excellent if and only if
KS] = KA ® KG ooy,

which is equivalent to the property stated in the proposition. O

2. For a connected semisimple group (g, we construct a reductive semigroup
5 = Env (&g as described in the introduction. Obviously, it has a zero. We are to
prove the property (*).

Let S be another reductive semigroup from the class FS{(Go} and ¢ : Gy -+ Go
an isomorphism. For simplicity of the notation, let us identify G;J with GGy by means
of this isomorphism.

Since # is an isomorphism, there is a unique homomorphism ¢ : Z' - Z such
that the diagram

z *.z
N, 0
Ty
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is commutative. Since Z(’} C Zg,
So‘z; = id.

It follows that, being combined with the identity map of Gy, ¢ gives rise to a

homomerphism G* — G. We also denote it by @,
For any A < 4(Q2)* we have

e (A) = ¢"0°(X) = 8 *(}).
Since the cone 12 C 3(Q)* is generated by &3, ..., &,, while the cone D' cC 3'(@_))'
contains 6 *(a),...,0 " (as), we obtain

e'(D)C D, ¢ (K)CK.

Hence
(L) C £y {40)
and, moreover,

P (L2) C Ly, ¢ (M= cM, (41)

where , r
M, = {{#7(A),A) - A € X(Ty)}

It follows from (40) that, for any A € £,
#" (K{Gla) = k[G 'l a) C K[S']

This means that ¢ is extended to a homomorphism $° — 5. We still denote it by
(p.

According to Proposition 7, the property (41) implies that the homomorphism
p 15 exellent.

Conversely, if the semigroup §" has a zero, any excellent homomorphism e : S -
S, which is the identity map on C:"D = (G, must satisfy the condition ¢*(90) = m'.
This condition is equivalent to commutativity of the diagram (39) and hence defines
¥ uniquely.

§6. Proor or THEOREM 6

1. We need some known facts from the representation theory. For convenience
of the reader, we give their proofs (cf. [22]).

Yor any I C @2 and A € X, we use the following notation:
I1; — the linear span of {a; : ¢ € I} in t{Q)*,
G'r — the connected (reductive) algebraic subgroup of G, whose tangent
algebra is spanned by t and the root subspaces, corresponding to the roots
lying in Iy,
R(IA) — the irreducible linear representation of Gy with highest weight A,
VI(M — the subspace of VA spanned by the weight subspaces, corresponding
to the weights lying in A + I1;.

Evidently, V") is G/-invariant.
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Proposition 8. The representation of Gy in VI(A) is irreducible {and hence iso-
morphic to RE,M).

Proof. Every weight M of R is {uniquely) represented in the form

M:A—Zkiai (k.'EZ+).

We have M € A+ Iy if and only if k; = O for j ¢ I. Soif M € A +1I; and
j ¢ I, then M + a; is not a weight of R(A) 1t follows that every highest vector for
Gr in VI(A) is a highest vector for G. Consequently, such a vector is unique up to
proportionality. U

Let now B : G = GL(V) be a (not necessarily irreducible) lincar representation
of G and A € t{Q)" be such that any weight M of R is represented in the form

M=A-) kiai (k€Zy)

Denote by V; the subspace of V spanned by the weight subspaces corresponding to
the weights lying in A 4 II;.

Proposition 9. The representation of Gy in Vp is isomorphic to Y, ma R_(,A) where
A runs over X4 (A +T1;) and mp derote the multiplicity of RA) in R,

Proof. In the same way, as in the pceceding proof, we can see that any highest
vector for (77 in V7 is a highest vector for G. (1

Proposition 10. For A, M € X, and
N=A+M-Y ka;€Xy (ki €Zy)
i€l
the multiplicity of R™) in R RM) s equal to that of R’ in RE,A)RSM).

Proof. Apply Proposition 9 to R = RMW RM) taking A = A+ M. note that in this
case the representation of Gy in V} is isomorphic to R([A)RS.M). O

2. Let Gy be a connected semisimple group and § = Env Gy.
Any prime (G x G)-invariant ideal p of £[5] has the form

p= PG, (42)

A€T

where 7 is such an ideal of the semigroup £ that its complement £\ J is a subsemi-
group. In its turn, any such ideal J of £ has the form

J=g£\F (43)

where F' is a (closed) face of Q€= K C [13].
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Conversely, let J be an ideal of £ of the form (43). Assume that the subspace p
defined by (42) is an ideal of k[S]. Then

(k[S]/p)P-*Y ~ k(£\ 7),

and, in virtue of Theorem A, k[S]/p has no zero divisors, i.e. p is a prime ideal.
3. Let us now find out, for which faces F of K [ C the subspace p defined by
(42) is an ideal of £[S], that is

AeLMeT= XA MY CT. f44)

Let F = Fy ; in the notation of the introduction.
Assume that a connected component I of the complement C(J) of J is entirely

contained in [. Let
n
a = Zm;a; = Zl,'u,'
ief i=1

be the highest root of G;. We have m; > 0 for { € T, while

>0 foriel,
lic <0 forielJ,
=0 forigi|JJ;

moreover, there is such i € [ that [; > 0. So
A= Zl;wi e Co\Cy,
ied
A=A N e (K[]O)\F
Take such integer k > 0 that kA € X. Then
kA 7.

Consider the representation R**) of . Its restriction to (Gj,Gj) is the irre-
ducible representation with highest weight ka. It is self-dual, which implies that its
square contains the trivial representation. Hence

{kA)\2 (2k(A—a))
(R¥™)? 5 RL

and, by Proposition 10,
(RUA2 5 R(2k(A=a))

However B
2k(A - a) = 2k(X, - ) Liw;) € F,
J€J

” 2%(A—a) g7
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Consequently, p is not an ideal of k[S].
4. Conversely, let no connected component of C{J} be entirely contained in [I.
Let
A={(x,A) €L, M=(vpu el

Then any N € X{A, M) has the form
N=(x+1vv),

where

n
v=A+p— koi  (ki>0).

i=1

We have either ¢ — it & Dy, or u ¢ C;. In the first case
X+ —v=(x—A)+ (- B+ kiai ¢ Dy,
i=1

so N € J. The same result is obtained if k, > 0 for some s ¢ /.
Let now g @ Cjy, 50 A+ pu ¢ Cj as well, and

v=A+p~ Zkga; (k, > 0) (45)
ier
Suppose v & Cy and let
F={el k >0}

If j is adjacent to some i € I, then it follows from (45) that »(h;) > 0 and hence
J € J. But then our assumption about [ and J implies that I'cJ So

vih) = (A+ p)(h,) for s¢J
which makes it impossible for  to belong to Cj.

§7. PrROOF oF THEOREM 7

1. Let S be a reductive semigroup with G(S} = G, defined by a subsemigroup
£ C X4 Forany A € £, the representation R(A) of G is extended to a representation
of 5, which will be denote in the same way. The sum of all these representations will
be denoted by R. Obviously, R is a faithful (infinite-dimensional) representation of
S.

For any s € S, 'R(s) can be represented as the set {R(A)(s) : A € £}, where
RM(s) € End VM),

Proposirion 11. A set {AY) : A € £}, where AN € End V(M) belongs to R(S)
if and only if for any A, M, N € £ and any G-equivariant linear map

p: Vit gy M)y (46)
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the diagram
vigvM) ¥ . (N

A[AJ®A(MP1 lA(N) (47)

Vi guM) ¥ . (V)
is commutative.

Proof. The maps (46) contain all the information about the decomposition rule of
the tensor products of the G-modules V(A A € £, and thereby about the multiphi-
cation law of the matrix entries of the representations R(A) A € £. The commuta-
tivity of the diagrams (47) means that the matrix entries of A()’s are multiplied
in the same way as the matrix entries of the representations R(A). O

Remark. One can easily get a finite-dimensional faithful representation of S. Namely,}j]
if Ay, ..., A, generate the semigroup £, then R = R 4. .4 B(Am) jssuch a repre-
sentation. Moreover, R(S) is a closed subsemigroup of End V(#1) x...x End V(4m).
However, to describe R(S) explicitly is a difficult task.

2. Let now Gy be a connected semisimple group, $ = Env Gy, and A the
abelization of 5.

The characters &; = #*a;(i = 1,.. .,n) of Z, considered as elements of the
algebra k[A] C k[S], will be denoted by ;. We have
k{A] = k[ﬂ-la R | Tr!’.l]!
so A = k" and the homomorphism 7 : § — A4 is given by

m(s) = (mi(s), ..., m(s)).

For any [ C Q, let e; be the corresponding idempotent of A, defined by

1, 1€,
ey =4 48
mier) {0, il (“48)
We will describe the subsemigroup
Sp=mn"Ye)C S (49)
in terms of the representation R.
For A € X (Ty), let
R™M Gy o GLIVN) (50)

be the irreducible representation of Gy with highest weight A.
Any A = (x,A) € £ is represented in the form

A=+ ke ) (b eZy). (51)

The space of the representation R(%) can be identified with V(3 and, if we put

RO = gAA) (52)
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then
R = ([ xR,

In particular, for s € 5;

R¥N(s), if x~— A€ Dy
(M(s) = ’ ' 53
R™(s) { 0, otherwise. (53)
It follows .iat _

R= @ & (54)

AEX4(To)

is a faithful representation of Sy. .
Proposition 11 together with (53) implies the following description of R(S).

Proposition 12. A set {AP) ;X € X,(To)}, where A € End V()| belongs to
R(Sr) if and only if for any A, p, v € X4 (Ty)} and any Go-equivariant linear map

o Vi@ vH - v, (55)

one has.

Ao, if ved+u+I;,

0, otherwise.

po (AN @ AlM) :{ (56)
(Here T1; denotes the linear span of {a; : i € I} in t(Q)*.)
3. For I C Qand A € X,(Ty) let ij denote the subspace of V*) spanned by

the weight subspaces, corresponding to the weights lying in the plane A + I, and
'P;A) the (unique} Ty-equivariant projection on VI('\).
Let now [, .J C £ constitute an essential pair.

Lemma l. it A € X+(To) and A - EiEI kia; €Cy (ki € Z+), then

1) AeCy;
2) ki =0forigJe.

{See the notation in 0.6 and 0.7.)

Proof. Let I' = {i € I : k; # 0}. Suppose iy € 1"\ J°. Let m be such an element
of C(J) that a;,(hm) < 0, and M the connected component of C(J) containing m.
Since I' 7 M, we may assume that m ¢ I'. Then

(A - Zk,-a.-)(hm) = Mhm) ~ Zkiai(hm) >0,

which is a contradiction. Hence I' C J°, and for any m € C(J)
Mhm) = (A=Y kio)(hm) = 0,

soAeCy. O
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Define for any A € X4 (Ty)

pIJ

(») :
() _ { Pinge il XeCy, (57)

0, otherwise,

and prove that the set {’PP}} satisfies the condition of Proposition 12,

Consider any non-trivial Go-equivariant linear map (55). Note that 'P}A_}. ®P§f‘ J). 1S
either 0, or, if A, 4 € Cj, the Ty-equivariant projection of V(*) ® V{#) on the sum of
the weight subspaces, corresponding to the weights, lying in the plane A4+u+11; nJe-

It v & A+ p + Iy, then R*} has no weights in the plane A + g + Il;, so

po(PLyOPI)) =0
Let now 1 € A+ u + I1;. Under this condition, we have to prove that
A v
po (PLIOPM) =P op, (58)

It A+ p ¢ Cy, then by Lemma 1 v ¢ C; and both sides of (58) vanish.

It A+ p € Cy,but v ¢ Cy, then v ¢ A+ p+Irn e and hence R") has no
weights in this plane. It this case, both sides of (58) still vanish.

Finally, if A, p,v € Cy, then by Lemma 1 v € A+ u+ 11, je, 50

v+ = A+ p+ 1.

It follows that N
Fe (p[n.fo ®p}‘[")u=) = ’p}uf%p °F

which is just the equality (58) in this case.
Thus, there is such an idempotent ey 5 € 57 that

Riers) = {P)}. (59)

The definition of P} implies that e; ; € Oy ;.
4. In this subsection we prove that ey 5 € T. This also can be considered as an
independent proof of the existence of an element e; ; € Sy satisfying (59).

Lemma 2.. Let A be an indecomposable root system and Il its base (whose el-
ements will be called simple roots). For any o ¢ 11 there exists a positive linear
combination of simple roots whose scalar products with all of them but « are neg-
ative.

Proof. Let Ily,...,Il, be the indecomposable components of T \ {a} and o; the
root of II; which is adjacent to . Proceeding by induction on rk §, we may assume
that for each i, there exists a positive linear combination 8; of the roots of I,
whose scalar products with ali of them but a; are negative. The sum 25:1 3+ ca
meets the requirement for sufficiently large positive ¢. O
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Lemma 3. For any essential pair (I, J), there exists such an element h € (Q) that

~ _ 01 Ie I‘
a:(h) = { 0 >0, ié¢l, (60)
0, e J,
R 61

[0, ielnJe,
ai(h)*{c,'<0, i¢INJ°. (62)

Prooj. For any positive rational a;(i ¢ I) and b; {(j ¢ J) there exists a unique
h € t{(Q) satisfying (60) and (61). We have to show that a; and b; can be chosen
in such a way that (62) be also satisfied.

For any connected component M of C(J) chose m € M \ I and, making use of
Lemma 2, take a positive linear combination ks of the corresponding dual roots
satisfying the condition a;(har) < 0 for all i € M\ {m}. The sum ho = 3 5 hpt

satisfies the conditions )
0, i€ d,

(ho) = 63

st =1, o e 69
0, T

O“'(h”)_{d.<o, icI\J°. (64)

Since &, +a; are expressed in terms of &; +w; in the same way as a; are expressed
in terms of w;, any h € t(Q) satisfying (61), automatically satisfies the conditions

0, ieJ®,
0 iR} = 65
(@ + ai){h) {d,-<0, eI\ Je. (65)
Since
ai(k) = (a; + ai}(h) — Gi(h),
(65) and (60) implies {62), provided a; are sufficiently large. O

Proposition 13. It k € t(Q) satisfies the conditions of Lemma 3, then

lim expth =erJ. {66)

t—=—o0

Proof. We shall prove (66), if we prove that all the eigenvalues of dR(h) are non-
negative and

KerdR(h) = ImR(er ). (67)
Let A € £ has the form (51). Then all the weights of R(*) has the form
M= kai+ (A4 =D ko (ki li20) (68)

and it follows from (60)-{62) that M (k) > 0. Moreover, M(R) = 0 if and only if
1) ki =0forig
2y Ae Oy,
N L=0forigINJe
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This gives (67). O

5. Now we find the stabilizer of ¢; ; in GxG. Obviously, gier y95 " = er 1(g1, 92 S |
) if and only if

R(A)(Ql)"’%n R™M(gy)™! = 'vaH Jrinq (69) +— o

for any A = (x,A) € XM\ Frs.

Denote by U}'HJ, the Ty-invariant complementary subspace of VI(?])J" in VA,
The condition (69) is equivalent to the following three ones:

(S1} V}(?-])J, is invariant under R(A)(g,);

(52) U}?W}J“ is invariant under R(*)(gs);

(S3) if we identify in the natural way the spaces V,(%}J, and V{'\)/U}';‘-])Jo, then

their endomorphisms, induced by R(*)(g;) and R{A}{g,) respectively, coin-
cide.

The condition (S1) is satisfied if and only if g; € P(M), where M = HIAPALY
C{J). The kernel of the representation of P(M)} in V,{Y,. is U(M)G(C(J))T1.s
(see the notation in 0.7).

In an analogous way, the condition (S2) is satisfied if and only if g2 € P (M). The
kernel of the representation of P_ in VI(%)JQ = V("}/UI('HJO, is U_{(M)G(C(J))Tr 4.

This gives Theorem 7.

6. The formul= (21} follows from the formula

pﬁjpﬁJZPﬁanz (MlxMECﬂu /\EI+(TU))

and the obvious fact, that the interior of J; [J3 is J{ 3.

§8. PROOF OF THEOREM &

1. Define a character &; of the torvs Ty by
&i(z0(z)7") = ai(2) = ai(8(2)). {70)

Obviously, the group X(T5) is freely generated by &, ..., &,. The algebra k[To] is
spanned by the restrictions to Ty of the weights of the representations R(*) A € £.
Since any such weight is represented in the form (68) and

(A+X)(20(z)"") =1 (A€ X4(To),z € 2},

we obtain . ) )
k[Te] = kle®, ... e%] (71)

It follows that the semigroup T is isomorphic to ™. It contains 2" idempotents,
enumerated by the subsets of {2 = {1,...,n}. To a subset I C €, there corresponds
an idempotent &; € Tp C T with the following properties:

1, ie1l,

mi(er) = ailé) = { 0, i¢l,
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M) =P (A€ X4(To))

(see the notation in §7). Comparing this with results of 7.3, we obtain

ér =ern.
It follows that
GTaG = 57, (72)
It is easy to see that
T = Z X Tg.

2. The following proposition describes "the big cell” of 5.

Proposition 14. The map
@ U_xZxTe xU =S, (u-,z,tu)—>u_zty,

is an open embedding. Its image is contained in SP* and contains representatives
of all (G x G)-orbits in ST,

Proof. Two last assertions follow from (72). To prove the first one, we have only to
check that  is dominant and injective, because every injective dominant morphism
of normal irreducible algebraic varieties is an open embedding.
Since ZTy = T and the big cell
BC(G)=U_TU

is dense in G, ¢ is dominant.
To prove the injectivity, one has to show that

u_ztierqu=trerg (u_ €U_u€lU,z€ 2 11,1 €T} (73)

implies
. =u=z=c¢, (74}

One can rewrite (73) as follows:
(tz_lu_tg)zteflgu = €50, (75)

where t = tltg_] € Tw. According to Theorem 7 the stabilizer of ey q in G x G is
the semidirect product of U(I) x U_(I), the diagonal in R(I) x R(7), and the torus
T1 x {e}. Note that Ty C T. Therefore (75) implies that

u_,u € R, (t7'u_ty)ztu € Ty,

which, in its turn, implies {74). O
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Corollary. The variety SP* is smooth.

The affine chart U_ZTpU will be called the big cell of $* and denoted by
BC(SPr).

3. Studying SP*/Z can be reduced to the case, when G is simply connected.
Namely,}et Gl be the simply connected covering group of Go and S = Env Gy. Let
G = G(S) and Z be the connected center of G. Then § = §/T, where T is a finite
central subgroup of G, (contained in Z) It is easy to see that SP" = SPr/™ It
there exists a geometrical quotient 57*/Z = X, it can be considered as a geometric
quotient SP*/Z via the commutative diagram

sPr Ly e
N
X

In what follows we assume that Gy is simply connected.
4. Let wy,...,wn be the fundamental weights of go. Put

Vi = V)| RE) 2 pwd(= p@wd) g0 = glanw)
{see the notation in 7.2 and 1.2) and
V=vlg..evt) Rp=RrYD ... 4 RM.
Put further

End V® = (End v®)\ {0},
End V = End V) x ... x End V™.
It i1s clear that )
SP" = R™Y(End V). (76)

Proposition 15. The representation R maps isomorphically the variety SP* onto
a closed subvariety of End V.

The first step in proving the proposition is studying the representation of the
big cell.
In each of the spaces V(1) ... V(") we choose a basis as in 1.2 and put
End" V) = {4 € End V1 : ay; # 0},

where (ay) is the matrix of .4 in the chosen basis, and

End” V = End” V) x .. x End" v,



ON REDUCTIVE ALGEBRAIC SEMIGROUPS 35

Proposition 16. BC(SP") = R~!(End (V).

In other words, the complement of BC(SP") in S is the union of the divisors
defined by the equations .
s8 =0 (i=1,...,n). (17)

As we shall see, these divisors are prime.

Proof. Since BC(SP*) is an affine variety, its complement in S is a divisors, say, D.
A straightforward verification shows that 60}(s) # 0 for s € BC(S®"). This means
that D contains all the divisor (77).

On the other hand, we have

BC(SP)( )G = BC(G).

It is well-known that the complement of BC(G) in G is the union of n prime divisors
defined in G by the equations (77) (the center components of the highest weights
do not matter here). Consequently, G is the union of the closures of these divisors
and, may be, some divisor, which does not meet &.

Obviously, any prime divisor beyond G is {G x G)-invariant and hence the closure
of a (G x G)-orbit. Since a pair of the form (£, J) is not essential for J # (1, the
only (G x G)-orbits of codimension 1 are Oy g, where [ = Q — {i}. But they all are
represented in BC(SP"). Hence the divisors (77) are prime and exhaust D. U

Proposition 17. The representation R maps isomorphically the variety BC(SP")
onto a closed subvariety of End’ V.

Proof. In algebraic terms, the assertion means that the algebra k[BC(57")] is gener-
ated by the matrix entries of R}, ..., R(") and the function CISER LI 1405 It
In virtue of Proposition 186,

k[BC(SP")} = k[SI[(6") L, ..., (61D~

Since the algebra k[S] is generated by the matrix entries of RM, ... R and
the functions my,..., 7, (see 7.2), we have only to check, that the latter func-
tions can be expressed as polynomials in the matrix entries of RMW ..., R{" and

(g1 (stmh-L
For any i, the square of the representation R contains the representation

R(Zu‘.ﬁ.,?w.—a.) — ﬂfR(QdJ,—&.,Qw.'—a,) — ﬂ_iR('zw.—a.)

(see Proposition 10). In particular, the function ;6(2%:~#u2¢:=a:) can be expressed

as a sum of products of matrix entries of R}, On the other hand, if 2w; —a: =
Zj kiwj (k; € Z4), then

§i20 =1 2ua—e) H(g(j))k;_

i

Hence m; can be represented in the desired form. O
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Proof of Proposition 15. Since SP* = G-BC(S™") -G, it follows from Proposition 16
and 17 that R maps isomorphically SP* onto a closed subvariety of R(G) -End V-
R{G). We will prove that

R(G) End" V- R(G) = End V, (78)

which will imply the proposition.

It we identify in the canonical way End V) with V) @ (V)"  the matrix
entry aj; as a linear form on End V() is identified with some non-zero element u €
VO @ V) Since the representation R¢M™ RU) of G x G is irreducible, the (G x G)-
orbit of u spans the space V{* © V(). This means that for any A € End V),
there exist such g1,g2 € G that '

(A, (RU(g1) ® RP(g2))u) = (R (g1} AR (g2) 71, w) # 0.
Thus i . ’
R(G)-End V% . R(G) = End V(¥ (79)
For any set (A;,..., A,) € End V, let
M) = {(g,92) €G x G: R (g)) AR (gs)"" € End V)},

It is clear that M%) is open in G x G and it follows from (79) that M{} is not
empty. Hence [ MU) &£ @& which means that

(A1,...,Au) € R(G) -End" V- R(G). D

5. For z € Z, we have _
R¥(2) = ai(2)€,

where £ denotes the identity operator. It follows that the action of Z on SFF is
induced via the representation R by the action of (k*)" on End V, defined by

(tlr i ‘rtn) ° (-Ala ] l‘Aﬂ) = (tlAlv - -;tnAn)-
The latter action has the standard geometric quotient
p:End V = P(End V1) x ... x P(End V")),

where P(U) denotes the projective space, associated with the vector space U. The
restriction of p to R{SP") defines a geometric quotient of SP°, which is a closed sub-
variety of P(End V(")) x...x P(End V(")) and hence a projective variety. Moreover,
since R(SPY) is a smooth variety, such is p(R(SP")). Thus, Theorem 8 is proved.
6. For a centerless connected semisimple group H, the wonderful (H x H)-

eqquivariant embedding of H, constructed by DeConcini and Procesi [14], can be
characterized by the following properties:

1) it 1s complete;

2) it is simple, i.e. contains only one closed orbit;

3) it is toroidal, i.e. the closed orbit is not contained in the closure of the

complement of the big cell in H.
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The embedding Ad{Go) = Go/Zo C SF*/Z is (Go X Go)-equivariant and projec-
tive. It follows from Proposition 14 that SP*/Z decomposes into 2" orbits, ordered
as the subsets of Q, so only one of them is closed. It is not contained in the-
closure of the complerment of the big cell in Go/Zg, because this complement lies
beyond BC(SP"), while all the orbits meet BC{SP"). Thus SP*/Z coincides with the
wonderful embedding of Ad(Gaq).

§9 ProoF oF THEOREM 9

1. Let G be a connected reductive group, and let us use the notation of 0.1 for
objects, associated to G,

Let G act on an affine variety X. For each A € X4, denote by k[X]a the isotypic

component of the G-module k[X], corresponding to the irreducible representation,
dual to RA). Then
kX1 = €D kX]a (80)

AcXy

and one can choose such a basis {¢ip} of k[X]a, that

pinloz) = Y £V (9)ein(z) (9 €C,zEX). (81)

2

The space k[X]a need not be finite-dimensional, but it is known (see, for example,
[9]) that it is a finitely generated module over k[X]C = k[X]o.
Obviously,
KXakiXlmc € KXy (82)
NeX(AM)

Considering the products of the highest vectors, we see that, if X is irreducible, the
set
£(X) = {A € Xy 1 k[X]a # 0} (83)

is a subsemigroup of X .

2. Let now S be an algebraic semigroup with G(S) = G, defined by a {perfect)
subsemigroup £ C X,. The G-action on X is extended to an S-action if and only
if £(X) C £, the extension being given by the formulas (81), in which g € G 1s
replaced by s € S.

In the general case, the subspace

k[X]e = @ k[XIa

Aeg
is a subalgebra of k[ X]. If it is finitely generated, we can consider the variety
F = Spec k{X]¢. (84)
The semigroup S acts in a naatural way on £, and the morphism

p: X = K



38 E. B. VINBERG

defined by the embedding k[X]g C k[X], is G-equivariant.
Moreover, it is easy to see that for each affine S-variety E' and (G-equivariant
morphism
p X F

there is a unique S-equivariant morphism ¥ : £ — E' such that the diagram

X 24 F
N WY
E'l

18 commutative,
3. If the commutator group Gy of G acts on an affine variety X, then the
formula
(zlag) < (ZZs I') = (2122392‘.)
defines an action of Z x Gy on Z x X; and thereby an action of G = (Z x Go)/Zo

on
X = (Z X Xo)/Z(),

where Zy = Z (G is assumed to be embedded in Z x Gy by means of the map
Zg (zo,z{,'l).
The formula
e(z) = (e, r) mod 7

defines a (fy-equivariant closed embedding ¢ : Xy — X. Obviously, X = Ze(Xo).
Let now X' be an affine G-varietyand ¢ : X = X' a Gy-equivariant morphism.
Then there is a unique Gg-equivariant morphism ¢; X — X such that the diagram

XOL}X
AN G
Xi'

1s commutative. It is defined by
¥(zp(z)) = ¢ (2).

4. The combination of the preceding constructions permits us to obtain in a
canonical way an affine S-variety E, starting from an affine Gg-variety Xy, pro-
vided the algebra k[X]g is finitely generated, Moreover, there is a canonical Go-

equivariant morphism
p:Xo F
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and, for any afline S-variety E' and Gp-equivariant morphism (,o' : Xo = E, there
is a unique S-equivariant morphism ¢ : E — E such that the diagram

Xog —2 3 E
PN Y
Ef

is commutative,
The first part of Theorem 9 will follow, of we prove that in the case S = Env Go
the algebra k[X]p is always finitely generated. We will prove a more general result.

Proposition 18. If the semigroup S is flat, then the algebra k[X]s is finitely
generated.

Proof. We make use of the theorem stated in 1.1. Since
E[Xo]Y k[XolY C K[Xo}S,

the subspace

GB k(X620

AEE4(To)

is a subalgebra, isomorphic to k[Xg]V. Since every A € £ is uniquely represented
in the form
A=x+(0"AA) (x €Lz, A€ Xy (To))

and

P kX = &[4],

XELz

we obtain

k(XY ~ k{A] @ k[Xo)Y.

It follows that the alg~bra k[X]%, and hence the algebra k[X]g, is finitely gener-
ated. O

5. The second part of Theorem 9 is also valid in a more general situation.

Proposition 19. If the semigroup S is normal, then the morphism ¢ : Xo = £ Is
a closed embedding.

Proof. In algebraic terms, the assertion means that the corresponding algebra ho-
momorphism ‘
(p‘ : k[E} = k[XIg —+ k[Xo]

is surjective. It is clear that

e k{ Xy, 2) = k[ Xo]a,
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80 we are to prove that, for any A € £(X), there exists such x € 3{Q)* that
(X, A) € £. Actually, we shall prove this for any A € X4 (Th).

In the notation of Theorem 2, there is such yo € 3(Q)* that {x0,A) € K (see
Remark 1 to the theorem). Then

(Xo,/\) +DCK.

Since tho wone D generates 3(Q)" (see Remark 2 to the theorem), we can find such
X € xo+ D that (x,A) € X. Then (x,A) e £ O

Remark. 1 guess that the proposition is true for any S.
6. For any S, we have in the preceding notation

kIE] = k[X]s = (k[Z] ® k[Xo])2
and hence
KIE]S® = (2] @ k[Xo] ™) = k{22 @ k[Xo]% = k(4] ® k[Xo]%,
or, in geometric terms,
EfGo= A x (XofGy). (85)
It S contains a zero, then (27) holds and hence

FEly = P KE

Ae£y{o)
is an ideal of E. The quotient algebra k[E)/k[FE,] is naturally isomorphic to
k[E}U = k[E}G = k[XD}GU.

This defines a closed embedding of X, /Gy into £, which is a section of the decom-
position (85). Its image is nothing else than the set of fixed points of S.

§10. AN EXAMPLE

We denote by L,, the semigroup of all the matrices of order m.

It is easy to see that
Env SLQ = Lz.

However, Env SL3 is more complicated than Lj. It can be described in terms of its
faithful linear representation

RY+ R® 1 4y

(see the notation in 8.4 and 7.2).

The restriction of R to the group SLj is its tautological representation, while
the restriction of R(?} is the dual one or, wich is the same, the extertor square of
RV S, if

RV(g) = A1, R™(g) = A, (g€ SLa),
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& =R -

ON REDUCTIVE ALGEBRAIC SEMIGROUPS

then

AlAT = A;rAQ = E,

A% Ay = Ay,

where AZA denotes the matrix constituted by the algebraic ccomplements of the

entries of A.

AZAy = A,

The ccnter Z of G(Env SL3) is repr;esented by quadruples

(ME,AE NN A

It follows from (87)-(89) that any quadruple

(A11A23t13t2) € Env SL3

satisfies the relations

A]A:-,_.r = ATAQ = {111 E,

/'\2141 =it Ag,

APAy = tp Ay

One can show that these relations define Env SLj.
The orbital decomposition of Env SLj is given by the following table.

(1,2} #0  #0
{1y #0 0

(2} 0 40

J
{1,2}
{1,2}

{1}

{1,2}
{2}

{1.2}
{1}
{2}

l'k A]

3

(A1, A2 € k%)

rk Ag
3

dim Oy 5
10
9
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