

INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS LC.T.P., P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE CENTRATOM TRIESTE

SMR.770/10

ADVANCED WORKSHOP ON ALGEBRAIC GEOMETRY (15 - 26 August 1994)

On the path model of representations

P. Littelmann

Mathematisches Institut Universität Basel Rheinsprung 21 CH-4051 Basel Switzerland

On the path model of representations

Peter Littelmann *

Mathematisches Institut der Universität Basel, Switzerland IRMA, Université de Strasbourg, France

The aim of this note is to present an elementary construction that can be viewed as a generalization of the Young tableaux into the setting of symmetrizable Kac-Moody algebras. Details can be found in [7,8], for the relation to the standard monomial theory see [5,6], and for the relation to quantum groups see [1,3,6].

Denote by X the weight lattice of a symmetrizable Kac-Moody algebra $\mathfrak g$ and set $X_{\mathbb Q}:=X\otimes \mathbb Z$. As a replacement for the Young tableaux we consider the set Π of all piecewise linear paths $\pi:[0,1]\to X_{\mathbb Q}$ such that $\pi(0)=0$ and $\pi(1)\in X$. For each simple root α we introduce operators e_{α} and f_{α} on $\Pi\cup\{0\}$, which roughly speaking just replace some parts of a path by its image with respect to a reflection at some affine hyperplane. It turns out that the set of paths B_{π} obtained by applying the operators e_{α} and f_{α} to a path π has some remarkable properties that are closely related to the representation theory of the Kac-Moody algebra $\mathfrak g$.

The root operators

We write [0,1] for the set $\{t \in \mathbb{Q} \mid 0 \le t \le 1\}$. Denote by Π the set of all piecewise linear paths $\pi: [0,1] \to X_{\mathbb{Q}}$ such that $\pi(0) = 0$ and $\pi(1) \in X$. We consider two paths π_1, π_2 as identical if there exists a piecewise linear, nondecreasing, surjective, continuous map $\phi: [0,1] \to [0,1]$ such that $\pi_1 = \pi_2 \circ \phi$. Let $\mathbb{Z}\Pi$ be the free \mathbb{Z} -module with basis Π . For each simple root α we define linear operators e_{α} and f_{α} (the root operators) on $\mathbb{Z}\Pi$.

Let $\pi, \pi_1, \pi_2 \in \Pi$ be paths. For a simple root α let $s_{\alpha}(\pi)$ be the path given by $s_{\alpha}(\pi)(t) := s_{\alpha}(\pi(t))$. By $\pi := \pi_1 * \pi_2$ we mean the concatenation of the paths, i.e. π is the path defined by

$$\pi(t) := \begin{cases} \pi_1(2t), & \text{if } 0 \le t \le 1/2; \\ \pi_1(1) + \pi_2(2t - 1), & \text{if } 1/2 \le t \le 1. \end{cases}$$

Fix a simple root α and let α^{\vee} be its coroot. To define the operator e_{α} we cut a path $\pi \in \Pi$ into several parts according to the behavior of the function

$$h_{\alpha}: [0,1] \to \mathbb{Q}, \quad t \mapsto \langle \pi(t), \alpha^{\vee} \rangle.$$

Let $m_{\alpha} := \min\{h_{\alpha}(t) \mid t \in [0,1]\}$ be the minimal value attained by h_{α} .

If $m_{\alpha} \leq -1$, then fix $t_1 \in [0, 1]$ minimal such that $h_{\alpha}(t_1) = m_{\alpha}$ and let $t_0 \in [0, t_1]$ be maximal such that $h_{\alpha}(t) \geq m_{\alpha} + 1$ for $t \in [0, t_0]$.

Choose $t_0 = s_0 < s_1 < \ldots < s_r = t_1$ such that either

- (1) $h_{\alpha}(s_{t-1}) = h_{\alpha}(s_t)$ and $h_{\alpha}(t) \ge h_{\alpha}(s_{t-1})$ for $t \in [s_{t-1}, s_t]$;
- (2) or h_{α} is strictly decreasing on $[s_{t-1}, s_i]$ and $h_{\alpha}(t) \geq h_{\alpha}(s_{t-1})$ for $t \leq s_{t-1}$.

1

^{*} Supported by the Schweizerischer Nationalfonds.

Set $s_{-1} := 0$ and $s_{r+1} := 1$, and denote by π_i the path defined by

$$\pi_i(t) := \pi((s_{i-1} + t(s_i - s_{i-1})) - \pi(s_{i-1}), \quad i = 0, \dots, r+1.$$

It is clear that $\pi = \pi_0 * \pi_1 * \ldots * \pi_{r+1}$

Definition [8] If $m_{\alpha} \leq -1$, then set $c_{\alpha}\pi := \pi_0 * \eta_1 * \eta_2 * \dots * \eta_r * \pi_{r+1}$, where $\eta_i = \pi_i$ if the function h_{α} behaves on $[s_{i-1}, s_i]$ as in (1), and $\eta_i = s_{\alpha}(\pi_i)$ if the function h_{α} behaves on $[s_{i-1}, s_i]$ as in (2). If $m_{\alpha} > -1$, then we set $e_{\alpha}\pi := 0$.

The definition of the operator f_{α} is similar. Let $t_0 \in [0,1]$ be maximal such that $h_{\alpha}(t_0) = m_{\alpha}$. If $h_{\alpha}(1) - m_{\alpha} \ge 1$, then fix $t_1 \in [t_0,1]$ minimal such that $h_{\alpha}(t) \ge m_{\alpha} + 1$ for $t \in [t_1,1]$. Choose $t_0 = s_0 < s_1 < \ldots < s_r = t_1$ such that either

- (1) $h_{\alpha}(s_i) = h_{\alpha}(s_{i-1})$ and $h_{\alpha}(t) \ge h_{\alpha}(s_{i-1})$ for $t \in [s_{i-1}, s_i]$;
- (2) or h_{α} is strictly increasing on $[s_{i-1}, s_i]$ and $h_{\alpha}(t) \geq h_{\alpha}(s_i)$ for $t \geq s_i$.

Set $s_{-1} := 0$ and $s_{r+1} := 1$, and denote by π , the path defined by

$$\pi_i(t) := \pi((s_{i-1} + t(s_i - s_{i-1})) - \pi(s_{i-1}), \quad i = 0, \dots, r+1.$$

It is clear that $\pi = \pi_0 * \pi_1 * \ldots * \pi_{r+1}$.

Definition [8] If $h_{\alpha}(1) - 1 \ge 1$, the set $f_{\alpha}\pi := \pi_0 * \eta_1 * \eta_2 * \dots * \eta_r * \pi_{r+1}$, where $\eta_i = \pi_i$ if the function h_{α} behaves on $[s_{i-1}, s_i]$ as in (1), and $\eta_i = s_{\alpha}(\pi_i)$ if the function h_{α} behaves on $[s_{i-1}, s_i]$ as in (2). If $h_{\alpha}(1) - m_{\alpha} < 1$, then we set $f_{\alpha}\pi := 0$.

Example Suppose $\mathfrak{g} = \mathfrak{sl}_3$ and β is the highest root. The eight paths obtained from $\pi_{\beta}: t \mapsto t\beta$ by applying the operators f_{α}, e_{α} are the paths $\pi_{\gamma}(t) := t\gamma$, where γ is an arbitrary root, and for α simple one gets two paths in addition:

Some simple properties

Denote by A the subalgebra of $\operatorname{End}_{\mathbb{Z}}\mathbb{Z}\Pi$ generated by the root operators and let $m_{\alpha} := \min\{h_{\alpha}(t) \mid t \in [0,1]\}$ be the minimal value attained by the function h_{α} for $\pi \in \Pi$ and a fixed simple root α .

Lemma [8] a) If $e_{\alpha}\pi \neq 0$, then $e_{\alpha}\pi(1) = \pi(1) + \alpha$ and $f_{\alpha}e_{\alpha}\pi = \pi$, and if $f_{\alpha}\pi \neq 0$, then $f_{\alpha}\pi(1) = \pi(1) - \alpha$ and $e_{\alpha}f_{\alpha}\pi = \pi$.

- b) $e_{\alpha}^{n}\pi=0$ if and only if $n>|m_{\alpha}|$, and $f_{\alpha}^{n}\pi=0$ if and only if $n>\langle\pi(1),\alpha^{\vee}\rangle-m_{\alpha}$.
- c) For $\pi \in \Pi$ let n_1, n_2 be maximal such that $e_{\alpha}^{n_1} \pi \neq 0$ and $f_{\alpha}^{n_2} \pi \neq 0$. Then $\langle \pi(1), \alpha^{\vee} \rangle = n_2 n_1$.
- d) The A-module $A\pi \subset \mathbb{Z}\Pi$ generated by π has as basis the set of all paths $\eta \in \Pi$ contained in $A\pi$.

These results show a certain resemblance with standard results in the representation theory of the Lie algebra \$1₂. Since the root operators are locally nilpotent, the operators

$$x_{\alpha} := \sum_{i \geq 1} e_{\alpha}^{i} f_{\alpha}^{i-1}, \quad y_{\alpha} := \sum_{i \geq 1} f_{\alpha}^{i} e_{\alpha}^{i-1}, \quad h_{\alpha} := \sum_{i \geq 1} (e_{\alpha}^{i} f_{\alpha}^{i} - f_{\alpha}^{i} e_{\alpha}^{i})$$

make sense. The following proposition follows easily:

Proposition [8] If π is an element of Π , then $h_{\alpha}\pi = (\pi(1), \alpha^{\vee})\pi$. Further.

$$[x_{\alpha}, y_{\alpha}] = h_{\alpha}, \quad [h_{\alpha}, x_{\alpha}] = 2x_{\alpha}, \quad [h_{\alpha}, y_{\alpha}] = -2y_{\alpha},$$

so the elements x_{α}, y_{α} and h_{α} span a Lie subalgebra of EndzZ Π isomorphic to $\mathfrak{sl}_2(\mathbb{Z})$.

The x_{α} respectively y_{α} do not satisfy the Serre relations, but the h_{α} commute. Let \mathfrak{h} be the subalgebra of End_ZZ Π spanned by the h_{α} . So if we define for $\pi \in \Pi$ the "character" of the the \mathcal{A} -module $M_{\pi} := \mathcal{A}\pi$ as

$$\operatorname{Char} M_{\pi} := \sum_{\eta \in M_{\pi}} e^{\eta(1)}$$

the sum over the endpoints of all paths in M_{π} , then this can also be viewed as the (usual) character of M_{π} as an \mathfrak{h} -module.

The main results

Let \mathcal{A} be the algebra in End_ZZ Π generated by the root operators c_{α} and f_{α} and denote by Π^+ the set of paths π such that the image is contained in the dominant Weyl chamber. For $\pi \in \Pi^+$ let M_{π} be the \mathcal{A} -module $\mathcal{A}\pi$. Clearly the set B_{π} of paths contained in M_{π} is a basis for M_{π} . We show that the \mathcal{A} -module structure of M_{π} is invariant under those deformations of π which stay inside the dominant Weyl chamber and fix the starting point and the endpoint of the path:

Isomorphism Theorem [8] For $\pi, \pi' \in \Pi^+$ the A-modules M_{π} and $M_{\pi'}$ are isomorphic if and only if $\pi(1) = \pi'(1)$.

In particular, the isomorphism theorem shows that we get always the same "character" for M_{π} . The character can be calculated using Weyl's character formula. Let $\rho \in X$ be such that $(\rho, \alpha^{\vee}) = 1$ for all simple roots.

Character formula [8] For $\pi \in \Pi^+$ let Char M_{π} be the character $\sum_{\eta \in B_{\pi}} e^{\eta(1)}$ of the A-module M_{π} . Then:

$$\sum_{\sigma \in W} \operatorname{sgn}(\sigma) e^{\sigma(\rho)} \operatorname{Char} M_{\pi} = \sum_{\sigma \in W} \operatorname{sgn}(\sigma) e^{\sigma(\rho + \lambda)}.$$

In particular, Char M_{π} is equal to the character of the irreducible, integrable \mathfrak{g} -module V_{λ} of highest weight $\lambda := \pi(1)$.

To define an analogue of a tensor product for \mathcal{A} -modules, let for $\pi, \eta \in \Pi^+$ the concatenation $M_{\pi} * M_{\eta}$ of two modules be just the span of all concatenations of path $\pi' * \eta'$, where $\pi' \in B_{\pi}$ and $\eta' \in B_{\eta}$.

Tensor product rule [8] For $\pi_1, \pi_2 \in \Pi^+$ one has

$$-M_{\pi_1}*M_{\pi_2}=\bigoplus_{\pi}M_{\pi},$$

where π runs over all paths in Π^+ of the form $\pi = \pi_1 * \eta$ for some $\eta \in B_{\pi_2}$.

By the character formula we get immediately the following Littlewood-Richardson type decomposition rule:

Decomposition formula [8] If $\pi_1, \pi_2 \in \Pi^+$ are such that $\lambda = \pi_1(1)$ and $\mu = \pi_2(1)$, then the tensor product $V_{\lambda} \otimes V_n$ of irreducible \mathfrak{q} -modules decomposes into the direct sum

$$V_{\lambda}\otimes V_{\mu}\simeq\bigoplus_{\pi}V_{\pi(1)}.$$

where π runs over all paths in Π^+ of the form $\pi = \pi_1 * \eta$ for some $\eta \in B_{\pi_2}$.

For an appropriate choice of π_2 this rule is for $\mathfrak{g} = \mathfrak{gl}_n$ the Littlewood-Richardson rule. It should be interesting to find a direct correspondence to Lusztig's decomposition formula [9].

For a Levi subalgebra $\mathfrak l$ of $\mathfrak g$ let $\mathcal A_{\mathfrak l}$ be the subalgebra generated by those e_{α}, f_{α} such that α is a simple root of $\mathfrak l$. Denote by $\Pi_{\mathfrak l}^+$ the set of paths contained in the dominant Weyl chamber of the root system of $\mathfrak l$, and for $\eta \in \Pi_{\mathfrak l}^+$ denote by N_{η} the $\mathcal A_{\mathfrak l}$ -module generated by η .

Restriction rule [8] The A-module M_{π} , $\pi \in \Pi^+$, decomposes as A_t -module into the direct sum $M_{\pi} = \bigoplus_{\eta} N_{\eta}$, where η runs over all paths in B_{π} contained in Π_{τ}^+ .

By the character formula we get for $\lambda = \pi(1)$: V_{λ} decomposes as 1-module into the direct sum $\bigoplus_{\eta} U_{\eta(1)}$ of simple 4-modules, where η runs over all paths in B_{π} contained in Π_1^+ .

Another connection between the \mathcal{A} -modules M_{π} and the \mathfrak{g} -module $V_{\pi(1)}$ is given as follows: Let $\mathcal{G}(\pi)$ be the oriented, colored graph having as points the elements of the basis B_{π} , and we put an arrow $\pi_1 \xrightarrow{\alpha} \pi_2$ with color α if and only if $f_{\alpha}(\pi_1) = \pi_2$. Joseph [1], Lakshmibai [6] and Kashiwara [3] have proved (independently):

The Crystal Graph For $\pi = \pi_{\lambda}$ the graph $\mathcal{G}(\pi_{\lambda})$ is isomorphic to the crystal graph of the representation V_{λ} of the q-analogue $U_{q}(\mathfrak{g})$ of the enveloping algebra of \mathfrak{g} .

For a simple root α set:

$$\tilde{s}_{\alpha}(\pi) := \begin{cases} f_{\alpha}^{n} \pi; & \text{if } n := (\pi(1), \alpha^{\vee}) \ge 0, \\ e_{\alpha}^{-n} \pi; & \text{if } n := (\pi(1), \alpha^{\vee}) < 0, \end{cases}$$

Note that $\hat{s}_{\alpha}^2 = 1$ and $\hat{s}_{\alpha}(\pi)(1) = s_{\alpha}(\pi(1))$ for the ususal simple reflection s_{α} in the Weyl group. In fact:

Weyl group action [8] The map $s_{\alpha} \mapsto \hat{s}_{\alpha}$ on the simple reflections extends to a representation map $W \to \operatorname{End}_{\mathbb{Z}}\mathbb{Z}\Pi$ of the Weyl group of \mathfrak{g} such that $w(\pi)(1) = w(\pi(1))$ for $\pi \in \Pi$ and $w \in W$.

The Lakshmibai-Seshadri paths

We give now a description of the basis of the A-module $A\pi_{\lambda}$, where λ is a dominant weight and π_{λ} is the path $t \mapsto t\lambda$ that connects the origin with λ by a straight line. In the following let V_{λ} be the irreducible highest weight nodule of \mathfrak{g} of highest weight λ .

In $X_{\mathbb{Q}}$ let $\mathcal{C}(\lambda)$ be the convex hull of the orbit $W \cdot \lambda$. We consider pairs of sequences representing a path in $X_{\mathbb{Q}}$:

Let W_{λ} be the stabilizer of λ , and let "\leq" be the Bruhat order on W/W_{λ} . Suppose

- $\underline{\tau}: \tau_1 > \tau_2 > \ldots > \tau_r$ is a sequence of linearly ordered cosets in W/W_{λ} and
- \underline{a} : $a_0 := 0 < a_1 < \ldots < a_r := 1$ is a sequence of rational numbers.

We call the pair $\pi=(\underline{\tau},\underline{a})$ a rational W-path of shape λ . We identify π with the path $\pi:[0,1]\to X_{\mathbb{Q}}$ given by

$$\pi(t) := \sum_{i=1}^{j-1} (a_i - a_{i-1}) \tau_i(\lambda) + (t - a_{j-1}) \tau_j(\lambda) \text{ for } a_{j+1} \le t \le a_j.$$

Recall that a weight μ in X is a weight of V_{λ} if and only if $\mu \in C(\lambda)$ and $\lambda - \mu$ is a sum of positive roots. Since the τ_{i} are linearly ordered, the differences $\tau_{i+1}(\lambda) - \tau_{i}(\lambda)$ are sums of positive roots. Note that

$$\lambda - \pi(1) = \lambda - \sum_{i=1}^{r} (a_i - a_{i-1}) \tau_i(\lambda) = (\lambda - \tau_r(\lambda)) + \sum_{i=1}^{r-1} a_i (\tau_{i+1}(\lambda) - \tau_i(\lambda)),$$

so if the a_i are chosen such that the $a_i(\tau_{i+1}(\lambda) - \tau_i(\lambda))$ are still in the root lattice, then $\pi(1)$ is a weight of V_{λ} . To ensure that $\pi(1)$ is a weight of V_{λ} , we introduce now the notion of an a-chain. Note that the condition below is stronger than just demanding

that the $a_i(\tau_{i+1}(\lambda) - \tau_i(\lambda))$ are in the root lattice. We use the usual notation $l(\cdot)$ for the length function on W/W_{λ} and β^{\vee} for the coroot of a positive real root β :

Let $\tau > \sigma$ be two elements of W/W_{λ} and let 0 < a < 1 be a rational number. By an a-chain for the pair (τ, σ) we mean a sequence of cosets in W/W_{λ} : (see [5])

$$\kappa_0 := \tau > \kappa_1 := s_{\beta_1} \tau > \kappa_2 := s_{\beta_2} s_{\beta_1} \tau > \ldots > \kappa_s := s_{\beta_1} \cdot \ldots \cdot s_{\beta_s} \tau = \sigma$$

where β_1, \ldots, β_s are positive real roots such that for all $i = 1, \ldots, s$:

$$l(\kappa_i) = l(\kappa_{i-1}) - 1$$
 and $a(\kappa_i(\lambda), \beta_i^{\vee}) \in \mathbb{Z}$.

The last condition can be expressed as follows: Each summand in

$$a(\tau(\lambda) - \sigma(\lambda)) = \sum_{i=0}^{s-1} a(\kappa_i(\lambda) - \kappa_{i-1}(\lambda)) = \sum_{i=1}^{s} a(\kappa_i(\lambda), \beta_i^{\vee}) \beta_i$$

is an element in the root lattice. This is obviously stronger than just to demand that $a(\tau(\lambda) - \sigma(\lambda))$ is an element of the root lattice. The following definition is a reformulation of the definition in [5] into the language of paths.

Definition A rational W-path π of shape λ is called a *Lakshmibai-Seshadri* path, if for all $i = 1, \ldots, r-1$ there exists an a_i -chain for the pair (τ_i, τ_{i+1}) .

Remark If $\pi = (\underline{r}, \underline{a})$ is a rational W-path of shape λ , then there exists an $n \ge 1$ such that π is a Lakshmibai-Seshadri path of shape $n\lambda$.

Theorem [7] The A-module $A\pi_{\lambda}$ has as basis the set of all Lakshmibai-Seshadri paths $\pi = (\underline{\tau}, \underline{a})$ of shape λ .

Let $\rho \in X$ be such that $\langle \rho, \alpha^{\vee} \rangle = 1$ for all simple roots α . In the following we denote by Λ_{α} the Demazure operator on $\mathbb{Z}[X]$:

$$\Lambda_{\alpha}(e^{\mu}) := \frac{e^{\mu+\rho} - e^{s_{\alpha}(\mu+\rho)}}{1 - e^{-\alpha}} e^{-\rho}$$

The following character formula had been conjectured by Lakshmibai and Seshadri [5]:

Theorem [7] Let $\tau = s_{\alpha_1} \dots s_{\alpha_r}$ be a reduced decomposition of $\tau \in W/W_{\lambda}$, and denote by $B_{\lambda}(\tau)$ the set of Lakshmibai Seshadri paths $\pi = (\underline{\tau},\underline{a})$ of shape λ such that the initial term satisfies $\tau_1 \leq \tau$. Then

$$\Lambda_{\alpha_1} \dots \Lambda_{\alpha_r}(e^{\lambda}) = \sum_{\pi \in B_{\lambda}(\tau)} e^{\pi(1)}.$$

The P-R-V conjecture

Consider the tensor product $V_{\lambda} \otimes V_{\mu}$ of two \mathfrak{g} -modules of highest weight λ and μ . The Parthasaraty–Ranga-Rao–Varadarajan conjecture states that

P-R-V conjecture If $\sigma, \tau \in W$ are such that $\nu := \tau(\lambda) + \sigma(\mu)$ is a dominant weight, then the module V_{ν} occurs in $V_{\lambda} \otimes V_{\mu}$.

Proofs of the conjecture have been given independently in [4] and [10]. To show how the paths can be used to prove existence results, we sketch how to give a new proof of this conjecture. Starting with the paths π_{λ} and π_{μ} , it is easy to see that the path $\pi_{\sigma(\mu)}$ connecting 0 with the weight $\sigma(\mu)$ by a straight line, is in fact in $\mathcal{A}\pi_{\mu}$.

The figure below shows how to construct successively a path π' such that (see [7]) $\pi_{\lambda} * \pi' \in \Pi^+, \pi' \in \mathcal{A}\pi_{\mu}$ and the endpoint is equal to $\nu := \lambda + \pi'(1) = w(\lambda + \sigma(\mu))$.

It follows by the decomposition formula that V_{ν} occurs in the tensor product for any $w, \sigma \in W$ such that $w(\lambda + \sigma(\mu))$ is a dominant weight, but this is just a reformulation of the P-R-V conjecture.

References:

- T. Joseph, "Quantum Groups and their primitive ideals," Springer Verlag, New York, to appear,
- M. Kashiwara, Crystalizing the q-analogue of Universal Enveloping algebras, Commun. Math. Phys. 133 (1990), 249-260.
- M. Kashiwara, Crystal bases of modified quantized enveloping algebra, RIMS 917 (1993).
- S. Kumar, Proof of the Parthasarathy Ranga Rao Varadarajan Conjecture, Invent. Math. 93 (1988), 117-130.
- V. Lakshmibai, C. S. Seshadri, Standard monomial theory, "Proceedings of the Hyderabad Conference on Algebraic Groups," Manoj Prakashan, Madras, (1991), 279-323.
- 6. V. Lakshmibai, Demazure modules, preprint (1994).
- P. Littelmann, A Littlewood-Richardson rule for symmetrizable Kac Moody algebras, Invent. Math. 116 (1994), 329-346.
- P. Littelmann, Paths and root operators in representation theory, to appear in Ann. math. (1994).
- G. Lusztig, Canonical bases arising from quantized enveloping algebras II, Prog. Theor. Phys. 102 (1990), 175-201.
- O. Mathieu, Construction d'un groupe de Kac-Moody et applications, Compos. Math. 69 (1989), 37-60.