H oY VAL BIYALIAANAL WVEINLRD PUN INPUVURE TIVAL T HYISIUVLDS —_—
LCTPE, P.O. BOX 586, 34100 TRIESTE, ITALY, CaBLt CENTRATOM TRIESTE

& &
g Q The United Nations I@ UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION L
@ UnlverSlty INTERNATIONAL CENTRE FOR SCIENCE AND HIGH TECHNOLOGY

. ¢ 8 PTERNATIONAL CENTRE FOR THEORETICAL PHYSCS MI%) TMIESTE (ITALY) VLA GRIGNAND. § AADRIATICO PALACE) 2 C. 30X 06 TELEPHOME 40207 TELEFAX G2 TELEX 4008 APH |

SMR/772 - 18

INTERNATIONAL WORKSHOP ON PARALLEL PROCESSING
AND ITS APPLICATIONS IN PHYSICS, CHEMISTRY AND MATERIAL
SCIENCE
5 - 23 September 1994

PARALLEL PROGRAMMING LANGUAGES

Domenico TALIA
CRAI
Localita' di Santo Stefano
Rende
87036 Cosenza
ITALY

These are preliminary lecture notes, intended only for distribution to participants.

Maus BuLoing StRapa CosTien
Mrcrortacrscon Las. iR A L TeL 22401 TeLerax 22416) Terex 460392 ApmiaTico GLEST HousE Via Grignano, 9 TEL 224241 Tereray 224531 TeLEX 460449

TEL. 224471 TELEFax 22416) Tevex 460390 GaLieo Guest House Via Beiaut, 7 Ter. 22401 Tevrerax 224559 Tevex 460392

Parallel Programming
Languages

Domenico Talia

CRAI - Consearzio per la Ricerca e le Applicazioni di Informatica

International Workshop on

Parallel Processing and its Applications
Trieste, September ., 1994

Email: dot@crai.it

.

W]

OUTLINE

Introduction

Background

Shared-Memory Languages

Distributed-Memory Languages

Parallel Object-Oriented Languages

Parallel Functional Languages

Parallel Logic Languages

Conclusions

INTRODUCTION

L To assure the success of parallel computation it is necessary to
= invest in the development of parallel software languages
and tools.

= train many people to write parallel software.

J Aim of the lecture:

To give an overview of the most important parallel
programming languages designed in the last decade
and to introduce issues and concepts related to the
development of parallel software.

I The lecture covers both parallel languages currently used to

develop parallel applications in many areas from numerical to
symbolic computing, and novel parallel programming

languages that will be used to program parallel computers in
the next ten years.

INTRODUCTION

U The main reasons to use parallelism are because:

@ it can deliver high performance when necessary,

<« many real world problem are naturally parallel and
can be modeled more naturally and directly in a
parallel way,

<« a multiprocessor can be cheaper per computation
than the leading edge uniprocessor, especially as
development costs increase for each new
generation of processor,

@ the speed of light is a bound on the speed that can

be achieved by a single processor and so there is
ultimately no choice.

O These will lead to a mass market in parallel computation if the

software development will not be much complex,

INTRODUCTION

Q Parallel computers represent more and more a great
opportunity to develop high performance systems and to solve
large problems in many application areas.

QO This trend is driven by parallel programmming languages and
tools which contribute to make parallel computers useful in

supporting a broad range of applications.

O Parallel programming languages allow the design of parallel
algorithms as a set of concurrent actions mapped onto
different computing nodes. The cooperation between two
actions can be performed in many ways according to the
sclected language.

O High-level languages decrease both the design time and the

execution time of parallel applications, and make it easier for
new users to approach parallel computers.

INTRODUCTION

Q Typical issues in parallel programming are

& process creation,

i

synchronization,
communication handling,
deadlock, and

process termination.

O ¢ 0

QO These issues mainly arise from the fact that when a concurrent
program is running there are many flows of control through

the program, one for each process.

0 A designer of parallel applications is concerned with the
problem of ensuring the correct behavior of all of the processes

that comprise the program.

Q Parallel programming languages were designed to help
programmers cope with these problems, aiming to allow the
programming of parallel computers to be not much harder

than programming sequential computers.

BACKGROUND

O Parallelism in programming languages was originally studied

as a branch of operating system programming,

QO The proposed primitive mechanisms are semaphores,

conditional critical regions, and monitors.

U Semaphores are a simple mechanism for the implementation
of synchronization between processes which access the same
resource.

@« FEach access to a shared resource must be
preceded by a request operation and followed by a

signal operation on the same semaphore.

O In conditional critical regions each shared resource may be
accessed only using conditional critical region statements

which guarantee mutual exclusion on the resource.

U Monitors cncapsulate both a resource and operations that

manipulate it. Resources defined in a monitor must be
accessed using only the operations defined by the monitor
itself,

BACKGROUND

O These mechanisms were used to extend sequential

programming languages. For example, the monitor concept

was introduced by Brinch Hansen in the language Concurrent
Pascal.

[} As a consequence of these early research activities several high-

level parallel programming languages were designed and

implemented on the parallel computers that were
commercially available.

These languages were mainly based on the conventional

imperative approach, and began to be used to express and
develop parallel programs, extending their application area
from operating systems to many others.

In the last decade a large number of parallel programming
languages providing high-level constructs and mechanisms
have been designed. They reflect many paradigms and

architecture models and cover a wide range in terms of goals,
performance, and applications.

O The concept of shared memory is a useful way to decouple

program control flow issues from issues of data mapping,

communication, and synchronization.

O In shared-memory parallel architectures this programming
style can be mapped directly. However, programming is
difficult because programmers are responsible for ensuring
that simultaneous memory references to the same location do

not occur.

O One way to make shared-memory programming easier is to

use techniques adapted from operating systems to enclose

accesses to shared data in critical sections.

U Physical shared memory cannot be provided on massively

parallel systems, but it is a useful abstraction, even if the

implementation it hides is distributed.

O In highly parallel computers a useful approach is to provide a

high-level abstraction of shared memory.

0 One way to do this is called virtual shared memory. The

programming language presents a view of memory as if it is
shared, but the implementation may or may not be.

= The goal of such approach is to emulate shared memory
well enough that the same number of messages travel
around the system when a program executes as would
have travelled if the program had been written to pass
messages explicitly.

@ The emulation of shared memory imposes no extra

message traffic.

O The other way is to build a system based on a useful set of

sharing primitives.

0 Shared-Memory languages:

Concurrent Pascal, Linda, Orca, SDL (Shared Dataspace
Language), Ease.

10

Q Linda provides an associative memory abstraction called tuple
space.

Q0 Processes communicate with each other only by placing tuples
in and removing tuples from this shared associative memory.

O As a result, programs written in any imperative language can

be augmented with tuple space operations to create a new par-
allel programming language.

O These languages are called coordination languages because the

tuple space abstraction coordinates, but is orthogonal to, the
computation activities.

U In Linda, tuple space is accessed by four actions:
= one to place a tuple in tuple space: out(T)
= two to remove a tuple from tuple space, one by copying:
rd(T) and the other destructively: in(T)
= and one which evaluates its components before storing the

results in tuple space (allowing the creation of new
processes): eval(T).

11

O An example program which finds prime numbers:

main()
{

int i, ok;

for(i=2; i < LIMIT; ++1i)
{
eval("primes", i, Is_Prime(i));
}
for(i=2; i <= LIMIT; ++1)
{
rd("primes", i, ? ok);
if (ok)
printf ("%d\n", 1i);

O The efficient implementation of tuple space depends on

distinguishing tuples by size and component types at compile
time, and compiling them to message passing whenever the

source and destination can be uniquely identified, and to hash
tables when they cannot.

12

U The approach used in Orca is to build a system based on a

useful set of sharing primitives.

O The Orca system is a hierarchically structured set of

abstractions.

@ At the lowest level, reliable broadcast is the basic primitive
so that writes to a replicated structure can rapidly take
effect throughout a system.

@ At the next level of abstraction, shared data are
encapsulated in passive objects that are replicated
throughout the system. Orca itself provides an object-
based language to create and manage objects.

O Rather than a strict coherence, Orca provides serializability:

if several operations execute concurrently on an

object, they affect the object as if they were executed
serially in same order.

13

O Parallelism in Orca is based on processes: an explicit fork

primitive is provided for spawning a new child process and
passing shared data object:

fork child on (processor);

O Processes communicate indirectly by shared data objects.

A child process may pass an object as shared to its children,

and so on there will be a hierarchy of processes sharing objects:

process child (Id: integer; Ob3jX: shared ObjectType) ;

begin

U The implementation of Orca is based on
<« replication

« reliable broadcast.

14

DISTRIBUTED-MEMORY LANGUAGES t %

O These languages reflect the model of distributed-memory

architectures composed of a set of computing elements (CE)
connected by a communication network.

Processor ¥ | Processor 2
E ”‘--.

O In this approach, a distributed concurrent program consists of

a set of processes cooperating by message passing and located
oI one or many computers,

4d The two major issues in designing distributed languages for

parallel programming are related to process spawning and
process cooperation.

15

Q Some languages provide primitives for explicit process creation

during the parallel program execution (dynamic creation),
fork/join, new, and create.

O While in others the total number of processes is defined at

compile time (static creation) by parbegin, cobegin/coend,
and par.

O Several mechanisms have been defined for the cooperation of
concurrent processes. They can be divided into three main
classes:

% explicit message passing,
% rendezvous,
% remote procedure call, and

% data parallelism.

J Distributed-Memory languages:
Ada, CSP, Occam, HPF, Concurrent C, NIL,
Joyce, C* DP, CLU, SR,
PVM, P4, Parmacs and Express.

16

2 In the area of distributed-memory paradigms for parallel
programming, the CSP (Communicating Sequential Processes)

model influenced the design of several other languages.

O In CSP a program is regarded as a network of processes, each
one with its local environment, and cooperating by means of

explicit message passing.

@ The main features of the CSP model are:

% communication management by means of input and
output commands [send (!) and receive (?)], and the use
of channels,

% the exploitation of parallelism by means of the parallel
command [P 1] @], and

% non-determinism management by guarded commands.

17

O Occam is based on the concepts of concurrency and

communication derived from the CSP model.

O It has been developed at INMOS as the basic language of

Transputer.

U Occam programs are expressed in terms of concurrent
processes each one operating on its own variables and
communicating through synchronous channels.

Q A typical Occam program is composed of a network of
processes running on a Transputer network. However, the
Same processes can also be executed concurrently on a single
Transputer sharing its time among the processes.

18

2 Occam programs are constructed from a small number of

primitive processes:
assignment (:=), input (?), and output (!).

O To design parallel processes, the primitive processes can be
combined using the parallel constructor PAR:
PAR
Prod (chproducer)

Cons (chconsumer)

SingleBuffer {chproducer, chconsumer)

U A parallel construct terminates only after all of its components
have terminated. That is if only one process of the PAR
construct does not terminate because it is waiting to
communicate, the entire PAR process becomes waiting.

PROC SingleBuffer (CHAN OF BYTE chproducer, chconsumer)
BYTE c
BOOL end IS FALSE:
SEQ
WHILE NOT(end)
chproducer ? ¢
chconsumer | ¢

19

D oD B R
SRS e S e

0 HPF (High Performance Fortran) is the result of an
industry/academia/user effort to define a de facto consensus
on language extensions for Fortran-90 to improve data
locality, especially for distributed-memory parallel computers.

Q HPF is a language for programming computationally intensive
scientific applications on SIMD, MIMD and vector pProcessors.

Q A programmer writes the program in HPF using the SPMD
style and provides information about desired data locality or

distribution by annotating the code with data-mapping
directives.

Q The program is compiled by an architecture-specific compiler.

The compiler generates the appropriate code optimized for the
selected architecture.

20

3 Processor directive: declares rectilinear processor
arrangement specifying their name, number of dimensions

and size of each dimension:
'HPF$ Processors P(128,64), Q{(8192)

QO Distribute directive: specifies a mapping of data to abstract

Processors ina Processor arrangernent:

THPFS$ Distribute D2()

Q Align directive: specifies that certain data are to be distributed

in the same way as other data:
IHPF$ Align A(I,J) with B(I+2, J+2)

O ForAll contruct: expresses parallel assignement to sections of

arrays:
ForAll (I=1:M, J=1:N) A(I,J) = I * B(J)

O HPF also defines a standard library of computational functions

and a set of built-in data-mapping directives.

21

Q0 The PVM (Parallel Virtual Machine} environment is not a
complete language, but it provides a set of primitives that can
be incorporated into existing procedural languages to

implement parallel programs.

O The PVM system is gaining widespread acceptance as a
methodology and tool kit for heterogeneous distributed
computing. Hundreds of sites around the world use PVM for

scientific applications.

Q PVM supplies functions to start processes and lets them to

communicate with each other.

Q Users can write parallel programs in FORTRAN or C by calling
simple PVM routines such as pvm_send() and pvm_recv().

QO PVM applications may be run transparently across a wide
variety of architectures. Some processes may run on a vector

supercomputer and others on a powerful workstation.

22

PYM._Spawn
U A process in PVM is spawned by invoking the primitive il

including the process name: Jsm_—— 8 ("proclv).
PV thawn
O Several primitives are defined to provide inter-process

communication:

% pvm_send(process, message); to send a data to a

process;

% puvm_recv(process, message). to receive a data from a

process;

% pvm_mcast(processes, message). to send a data to a set
of processes:

= pvm_bcast(processes, message). to send a data to all
the processes which compose a parallel program;

O The version 3.0 does not:
- automatically parallelize
- do automatic load balancing.

23

O An object is a unit that encapsulates private data and a set of
associated operations or methods that manipulate the data
and define the object behavior. The list of operations associated
with an object is called its class.

O An object interacts with the outside world exclusively through

an interface defined by its operations.

O By inheritance a class may be defined as an extension or

restriction of another previously defined class.

O The parallel object-oriented paradigm is obtained by combining
the parallelism concepts of

* process activation and communication

with the object-oriented concepts of
* modularity, data abstraction and inheritance.

24

U Parallelism in object-oriented languages can be exploited in two
principal ways:
¥ using the objects as the unit of parallelism assigning
one or more processes to each object (active objects): If
multiple processes execute concurrently within an
object intra-object parallelism is exploited.
& defining processes as components of the language: a
process is not bound to a single object, but it is used to

perform all the operations required to satisfy an action.

O Parallel object-oriented languages use one of these two
approaches to support parallel execution of object-oriented
programs.

O Examples of languages which adopted the first approach are
ABCL/1, Actors, Concurrent Smalltalk, and Mentat.

U On the other hand, systems like Argus, Presto, and Nexus use
the second approach.

QO Other important parallel object-oriented languages are POOL-
T, Emerald, COOL, Orient84/K, Cantor.

25

4 The Actor model was originally proposed by Hewitt. It was then
developed by Agha at MIT.

Q Actors are autonomous, distributed, parallel objects that can

send each other messages asynchronously.

O Actors can be created dynamically during the program
execution.

U An actor can send a message to a single actor or broadcast it to

an entire group of actors.

O When a message arrives, the actor executes a script which
accepts the message if it recognizes it, or delegates the rejected
message to a proxy which can respond to the message.

26

O Mentat is an parallel object-oriented system designed to
address the problems of developing architecture-independent

parallel applications.

O The Mentat system integrates a data-driven computation

model with the object-oriented paradigm.

O The data-driven mode! supports high degree of parallelism,
while the object-oriented paradigm hides much of the parallel

environment from the user.

O The Mentat language is an extension of C++ which supports

both intra- and inter-object parallelism.

QO The basic idea is to let the programmer specify which C++
objects can be executed in parallel. Compiler and run-time

support accomplish the task.

27

EL FUNCTIONAL LANGUAGES

T DR
SR e S R R R P R e R

0 Functional programming and logic programming are two
declarative approaches to parallel programs, concentrating on

what is to be done rather than how it is done.

U Programs do not specify in any direct way how they are to be
executed in parallel, so that decomposition does not need to be

explicit.

U Communication and synchronization take place as needed
during the execution of a computation, and are not visible, nor
even predictable, by the programmer.

Q It is still an open question how efficiently these approaches can

be implemented.

U Parallel graph reduction is the usual implementation technique
for functional programming, and has been only a limited
success, particularly implemented on distributed-memory

machines.

28

prr
2 R
ﬁco&\.?:fmx\m AR

Q Parallel functional programming languages:
Multilisp, ParAlfl, SISAL, Concurrent Lisp, QLisp.

QO Multilisp, an extension of Lisp in which opportunities for

parallelism are created using futures.

O A future applied to an expression
(future (X))
creates a task to evaluate that expression.

Q An attempt to use the result of a future suspends until the
value has been computed.

O Futures allow eager evaluation in a controlled way that fits
between the fine-grained eager evaluation of dataflow and the
laziness of higher-order functional languages.

29

O Sisal began as an abstract dataflow language. Its syntax is very

like conventional imperative languages, but the meaning of
most statements is different in important ways.

for initial
i:=1;
x:=y[1]

while i<n repeat

i:

old i + 1;
X:= 0l1d x + y[i]
returns array of x

end for

Q First, it is a single-assignment language, so that only a single
value can be assigned to each named variable in each scope.
Thus, in effect, all statements are expression.

O Most of the parallelism in Sisal programs comes from parallel

loops, whose bounds are defined by range generators, which
only incidentally impose an ordering on loop bodies.

O A powerful Sisal compiler for shared-memory machines exists,

and many Sisal scientific programs have better speedups than
equivalent Fortran programs. Much of this gain comes from
better compilation, thanks to simpler language semantics.

30

0 Parallel logic programming is born from the integration of logic

programming and concurrent programming.

O These models proposed for the implementation of logic

programming on parallel computers can be divided according
to the kind of parallelism they exploit and how it is exploited.

s If the parallelism is specified in a logic program by the

programmer (explicit parallelism)

@ or it is extracted by the language support both during

static analysis and at run-time (implicit parallelismy),

QO Models of explicit parallelism are called concurrent logic
programming languages. Example of these are PARLOG, P-
Prolog, Delta-Prolog, GHC, and Concurrent Prolog.

U Using these languages the programmer must specify, by
means of annotations, which clauses can be solved in parallel.

0 On the other hand, parallel logic models based on implicit
parallelism are PPP, the AND/OR Process model, the
REDUCE/OR model, ANDORRA, OPERA, and PALM.

31

PARALLEL LOGIC LANGUAGES

0 The two major forms of parallelism among the previous ones,

are
w AND PARALLELISM

v OR PARALLELISM

O AND PARALLELISM is obtained by parallel resolution of the
subgoals in the body of a clause.

:- p(X, Y).

p(X, Y) :- g{(X), r(Y}.

O OR PARALLELISM is obtained by solving in parallel the clauses
whose head unifies with the goal.

- p(X).
pP(X) :- aq(X).
p(X) :- s(X).

p(X) :- r(X).

32

(ONURKERT
BARATEWNT LOGIC LANGUAGES

...............

......

Q Concurrent logic languages are designed to execute on parallel

machines using explicit parallelism.

2 A user must specify, by means of annotations, which clauses

can be solved in parallel.

0 Concurrent logic languages can be viewed as a new

interpretation of Horn clauses, the process interpretation.

O According to this interpretation

= an atomic goal <- C can be viewed as a process,
© a conjunctive goal <- C1, ..., Cn as a process network,

= a logic variable shared between two subgoals can be
viewed as a communication channel between two

processes.

33

D U(LRENT
('OEWE LOGIC LANGUAGES

s

....................

...... 22
R

O A program in a concurrent logic language is a finite set of

guarded clauses:

H<-Gl, G2, .., Gn | B1, B2, .., Bm. {n, m >= 0)

where H is the clause head, {¢i} is the guard, and (Bi} is the body
of the clause.

Q Operationally the guard is a test that must be successfully
evaluated with the head unification so that the clause could be
selected.

O ‘I*is called a commit operator, and it is used as a conjunction
between the guard and the clause body. If the guard is empty
(n=0), the commit operator is omitted.

U The declarative reading of a guarded clause is: = is true if both
{ei} and {Bi} are true. According to the process interpretation,
to solve H it is necessary to solve the guard {ei}, and if its
resolution is successfully, 81, B2,..., Bm are solved in parallel.

34

Approaches to parallel programming that have not yet become
accepted, but have properties that make them of interest.

Program Composition Notation (PCN)
Compositional C++

Strand

The Bird-Meertens formalism

Pisa Parallel Programming Language (P3L).
Gamma

The BSP language

35

Q Parallel programming languages are tools that any good
programmer or researcher should know.

Q Parallelism can lead to major gains in performance in many
application areas.

QO New programming methods and languages should let
developers write more complex programs with less effort and
make the expression of parallelism simpler.

O We think this survey is a reasonable starting point both for
*> rescarchers wishing to better understand parallel
languages features and uses,

=¢ programmers which must solve computing intensive or
naturally parallel problems.

36

