INTERNATIONAL ATOMIC ENERGY AGENCY | oo,
@ UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION ﬂ
u INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

I.CT.P, P.O. BOX 586, 34100 TRIESTE, ITALY, CaBLE: CENTRATOM TRIESTE

e d
Py TS
-

©

{
@ UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION *\\.f v
INTERNATIONAL CENTRE FOR SCIENCE AND HIGH TECHNOLOGY

o/o INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS 4100 TRIESTE {ITALY) VEA GRIGNANO, % (ADRIATICO PALACE) P.0. 80X $46 TELEPHONE 0024672 TELEFAX DA0-24575 TELEX 460449 APH 1

SMR/772 - 19

INTERNATIONAL WORKSHOP ON PARALLEL PROCESSING
AND ITS APPLICATIONS IN PHYSICS, CHEMISTRY AND MATERIAL
SCIENCE
5 - 23 September 1994

ADDITIONAL MATERIAL TO LECTURES
PRESENTED BY

Domenico TALIA
CRAI
Localita' di Santo Stefano
Rende
87036 Cosenza
ITALY

These are preliminary lecture notes, intended only for distribution to participants,

1AIN BUILDING Strada Costiers, 11 Tel. 22401 Telcfax 224163 7 224359 Telex 460392 ADRIATICO GUEST HOUSE Vi Crignano, 9 Tel. 2424 46044
N — B . 1 Telcfax 224531 Tel
HCROPROCESSOR LAB., Via Beirut, 31 Tel. 224471 Telelux 224600 GALILEN GUEST HOUSE Vis Beiut, T T:I, 22401 = ’

TO APPEAR ON PARALLEL COMPUTING, NORTH-HOLLAND, VOL. 21, 1995,

A Parallel Cellular Automata Environment on
Multicomputers for Computational Science

M. Cannataro', S.Di Gregorioo, R. Rongoo,
W. Spataroo, G. Spczzano*, D. Talia*

* CRAI, Localitd S. Stefano, 87036 Rende (CS), Ttaly

° Dept. of Mathematics, University of Calabria, 87036 Arcavacata (CS), Italy
Email: dot@crai.it ; Fax:+39 984 446044

Abstract

This paper describes CAMEL (Cellular Automata environMent for
systEms modeLing), a scalable software environment based on the
ccliular automata theory implemented on a Transputer-based parallel
computer. Cellular automata were originally defined as a theory to
model the basic mechanisms of dynamic systems, permilting a new
approach which is in many cases simpler and more efficient than the
traditional approach based on partial diflerential equations. Today,
cellular automata become more attractive because they are suitable to be
effectively and noturally implemented on parallel computers achieving
high performance. CAMEL allows a user to program computational
science applications exploiting the computing power offered by highly
parallel computers in a transparent way. CAMEL implements a cellular
automaton as a SPMD program. A load balancing strategy is used to
minimize time costs in case of not uniform intervals for tramsition
sieps. In the paper the programming environment and the parallel
architecture of CAMEL are presented and some experiments are

discussed.

Keywords: Cellular automata, multicomputers, parallel processing,

simulation, software (ools, Transpuler,

1. INTRODUCTION

In the past, the behavior of many complex phenomena was investigated only
from a qualitative viewpoint since formal models, describing them, were so hard
that the main (at that time) computational modality, represented by the integration
of differential equations, was impracticable.

Consequently to the development of computer science in these last years, the
applicability boundaries have been expanded considerably because of the
continuous rise of computing power. At the same time, research in parallel
computing have revealed the relevant potentialities of parallel computing models to
represent a valid alternative to differential calculus in the description of complex

phenomena.

Cellular Automata (CA) were one of the first parallel computing abstract
models. They match the parallelism paradigm with the acentrism one and therefore
became a powerful tool for modeling phenomena which can be formalized in acentric
terms. Conceived by John von Neumann in the 1950’s to investigate self-
reproduction [21], CA have been mainly used for studying parallel computing
methods and the formal properties to model systems [4, 13]. However, with the
rapid advances in computational resources during the 1980’s, CA have become
increasingly utilized for more general computer simulation and modeling [18].
Recently, has been showed as the CA model can be effectively used both as a
realistic approach to define abstract parallel machines [11] and as a programming
methodology for computational science on parallel computers [2, 3].

CA capture the peculiar features of systems which may be seen to evolve
according exclusively to local interactions of their constituent parts [4, 22}, and
guarantee computational universality [17]. Furthermore, applied aspects of

modeling have been widely investigated from a theoretical viewpoint.

Applications of CA are very broad, ranging from the simulation of fluid dynamics,
physical [18], chemical, and geological processes, e.g., rock fracturing [15] and lava
flows [1], to image processing, biology, and weather modeling.

Parallel computers represent the natural architectures where CA environments
might be implemented, however the considerable computing power necessary to
the simulations forces a strong optimization of the solutions, since a single
architecture cannot satisfy the requirements of different CA models in the same

way.

This paper describes CAMEL (Cellular Automata environMent for systEms
modelLing), a software environment based on the cellular automata model which
has been implemented on a multicomputer (6). CAMEL is a tool designed to
support the development of high-performance applications in science and
engineering, It offers the computing power of a parallel computer although hiding
the architecture issues to a user. It provides an interface which allows a user to
dynamically change the parameters of the application during its running, and a
Graphical Interface which shows the output of the application. Moreover, the
CAMEL architecture is suitable to be implemented on several distributed memory

parallel computers such as the Intel iPSC, the Ncube, the CRAY T3D, and the
Connection Machine 5.

CAMEL has been successfully used for many problems such as the simulation
of the lava flows of the last Etnean eruption and other fluid flow models, for image
processing, and combustion process modeling. The results achieved in terms of
thoroughness of simulation and execution speedup show that CAMEL might be
used for simulation and modeling of real systems in many areas in a simple way
and achieving high performance.

The main goal of this paper is to present CAMEL as a practical and general tool
based on the cellular automata theory which allows to develop applications in the
computational science area. The remainder of the paper is organized as follows.
Section 2 gives a formal definition of CA. Sections 3 presents a short analysis of
the use of parallel computers for the implementation of CA. The CAMEL
architecture, its programming model, and the load balancing strategy used in it are
described in Section 4. Section 5 gives experimental results. Section 6 compares
the features of CAMEL to other CA environments. Section 7 describes a significant

application of the system. Finally, Section 8 concludes the paper and presents
directions for future work.

2. CELLULAR AUTOMATA

Several definitions of CA can be found in literature. In many cases one [ooks so
dissimilar from the other that they seem to refer distinct objects. That is because it

is more convenient to work with definitions adherent to the particular applications

to be developed. We introduce a definition concerning the primal and main class of
CA, i.e. the homogeneous CA, which are to our knowledge those more involved in
systems modeling and simulation. The most cases of definitions can g0 back to that

one by an extension of some property or by opportune transformations from a
formal frame to another.

A homogeneous CA can be intuitively considered as a d-dimensional euclidean
space, the cellular space, partitioned into cells of uniform size (i.e. partitioned with
a square, cubic, or hypercubic tessellation), each one embedding an identical Moore
elementary automaton (ea). Input for each eqa is given by the states of the ea in the
neighboring cells, where neighborhood conditions are determined by a pattern
invariant in time and constant over all cells. At the time t=0, ea are in arbitrary
states and the CA evolves changing the state of all ea simultaneously at discrete
times, according to the transition function of the ea.

Formally a CA A is a quadruple A=(E%, X, S, 6), where:

* E% is the set of cells identified by the points with integer coordinates in a d-
dimensional Euclidean space:

* X, the neighborhood index, is a finite set of d-dimensional vectors, which
defines the set N(X,i} of neighbors of cell i=<i1, i2, ,id> as follows: let

always the null vector, and identifies the cel] itself.
+ § is the finite set of state of the ea:

* G:5"—>§ is the deterministic transition function of the eaq.

C={clc:E4>S} is the set of possible state assignments to A and will be called
the set of configurations, where c(i) is the state of cell i. Let c(N(X,i)) be the

ordered set of states of the neighborhood of i. Then the global transition function T
is defined by

TC = C B [te)]i) = o(c(N(X,i)))

When 7T is not determined through a constant ¢ and X, then the CA is not
homogeneous.

A quiescent state 5 is such that G(sq,sq, sq)=sq; a configuration ¢ is finite

when C'(i):_\'q except for a finite number of cells.

When appropriate, the previous definition may be easily extended to different
types of space, e.g.. riemannian space, or different tessellations, e.g., hexagonal,
triangular tessellation in a bidimensional space.

We introduce now extensions of the notion of quiescent state, relevant to the

implementation of a CA environment.
In the following we will suppose that the e« could be endowed with a set of
passive states S, < § such that
V S Spr e S (€S O(Sg, 8), woves S) =5
§ 1s an inert state iff

V5[S, e , (€S Ofs, S1s 83y venen y Sy} =55

‘Sm-

3| is the set of inert states.
The stationary region R_of a configuration ¢ is defined by
R ={il(c(i)e SV (je c(NX,i}) = cj)e Sp)}.

Cells with passive states don’t change state until the neighborhood remains
passive too, while cells with inert states never change state. Thus, it is important
to develop methods to manage the stationary region in order to save precious
computational power, even if the real computation synchronism of the cells would
be lost in such a condition.

When CA are used in simulation of natural phenomena, the cell state often
represents different characters of that portion of space corresponding to the cell. It
could be useful to introduce the notion of substate, representing a single character,

while the set of states is obtained by the cartesian product of the sets of substates.

Some properties which are relevant to our goal also concern the CA complexity
trade-offs, which penmit to reduce the cardinality of the neighborhood index: a CA
A =(EY, X,, §,, 6,) can always be simulated by a CA A,=(EY, X,, S, o,) where X,
is the set of all d-dimensional vectors, whose components may be only 0 or 1 with

#X,=2%. An application of that property can be found for the unidimensional case in

reference [9].

3. PARALLEL COMPUTERS FOR CELLULAR AUTOMATA

As discussed in the previous section, the CA model offers a new methodology
for modeling and simulation of complex systems. In real applications which solve
problems in the computational science area, a very large number of cells should be
defined. When a sequential computer is used to support the simulation, the
execution time might become very high, since such computer has to perform the
transition function for each cell of the automaton one after the other in a sequential
way. Thus, sequential computers do not offer a practical support for the
implementation of CA.

There are two possible altermatives which allow to achieve a better performance
with respect to sequential computers in the implementation of CA. The first one is
the design of special hardware devoted to the execution of CA. The second
alternative is based on the design of a programming environment to be used on
commercially-available parallel computers where the state of cells can be updated
simultaneously.

CAM (Cellular Automata Machine) [18] is the most significant example of a
specialized hardware which has been designed to run CA simulations. Although
the CAM offers an high-level environment for programming CA and can run CA
simulations in an efficient way, it is limited in the size of the automata which can be
simulated and in the number of states per cell. Furthermore, it is a specialized

machine which cannot be utilized as a general purpose computer.

On the other hand, highly parallel computers offer the most natural architecture
for a CA machine. These systems are based on a number of interconnected

processing elements (PEs) which perform a task concurrently.

CA are composed of a very large number of identical simple cells which interact
only with their neighborhood. They can exploit a kind of parallelism which is called
data parallelism. According to it, the cells are partitioned on the PEs and each PE
executes the same operation on its partition on each step. The data parallelism is
generally implemented on SIMD machines, but it can also be efficiently
implemented on MIMD machines.

SIMD machines are well suited for CA where all the cells are active during all

the time of the simulation. On the other hand, in the majority of real applications the
SIMD approach does not achieve very high performance because is not possible to

exploit the computing power offered by a SIMD machine when there exists a
stationary region for which the PEs compute the transition function which does not
change the state of cells. In fact, when a large number of cells are passive or inert
many portions of an automaton do not contribute to the final global state and many
PEs are not effectively utilized.

MIMD computers are more adaptable to implement CA in comparison with
SIMD machines. On a multiprocessor, CA can be implemented mapping on each PE
a process which updates a portion of cells. The problem of stationary regions is
solved because each process can detect the passive or inert cells in its portion and
does not compute their states. Using a shared memory all cells are available to
each PE, so no communications of portion boundaries between PEs are needed.
The main drawback of multiprocessor systems is the poor speedup they achieve
when more than ten or so PEs are utilized. This effect is due to memory access
contention which occurs in shared memory multiprocessors, where the bus is a
bottleneck when a large number of PEs is used. As an example, in reference [19] is
discussed an implementation of CA on a multiprocessor where, in many
applications, the bus-memory bottleneck limits the number of PEs that can be
utilized in a cost-effective manner to 10 or 12.

To avoid the bus-memory bottleneck, a multicomputer system composed of a
large number of PEs cooperating by message passing might be used. This makes
the CA environment a scalable system where no bottleneck will emerge when the
number of processors is increased or when the size of an automaton is scaled up.

In a multicomputer data parallelism is exploited using the Single Program
Multiple Data (SPMD) model. According to this model an application on N PEs is
composed of N similar processes, each one mapped on a different PE that operates
on a different set of data. For an effective implementation, data should be
partitioned in such a way that communications locality is taken into account, and

the computation load is shared among the PEs in a balanced way.

The SPMD model is well suited for the parallel implementation of CA
environments exploiting a medium-grain parallelism. In fact, the grain size of
SPMD processes is larger than the grain size of processes in SIMD machines. On
cach PE of a multicomputer a SPMD process executes the transition function for a
partition of cells and cooperates with the neighbor PEs for the exchange of the
states of cells which are on the border of a partition. Using this approach,

multicomputer systems might be used for the implementations of cost-effective
highly parallel CA.

Based on the earlier evaluations, we have chosen to implement a CA-based
software environment for the simulation of complex systems on a multicomputer,
The next section shows how CAMEL has been implemented on a Transputer-

based multicomputer in a scalable way using the SPMD model together with an
efficient load balancing strategy.

4. CAMEL

The architecture of CAMEL is composed of a set of Macrocell processes, each
one running on a computing node of the parallel computer, and a Controller process
running on a master node. One or more contiguous portions of the lattice which
represents the system to be simulated is assigned to each Macrocell process. The
set of the Macrocell processes implement a cellular automaton. The Controller
implements the cooperation among the Macrocell processes, the file system, and
the User Interface.

The User Interface of CAMEL allows the programmer to define the rules and the
initial status of the cellular automata, and to interact with the system. Using the
User Interface a programmer may change, during a simulation, some parameters
such as, the output visualization interval, the values of the physical parameters of
the simulated system, the status of the automata cells, and the size of the
graphical output.

CAMEL has been implemented on a parallel computer composed of a mesh of 32
Transputers [12] connected to a host node. The current implementation of CAMEL
does not limit the number of Transputers which can compose the parallel computer,

so no relevant changes should be necessary in the software of CAMEL whether a
very large number of Transputer should be used.

Furthermore, as mentioned before, the CAMEL architecture is suitable to be
implemented on others distributed memory parallel computers such as the Intel

iPSC, the Ncube, the CRAY T3D, the CM-5, and the TI C40-based
multicomputers.

In the following we discuss how CAMEL may be programmed and describe the
architecture of the system.

4.1. Programming model

The development of programming methodologies for parallel computers is an
essential issue for a large use of these systems. Generally the implementation of
parallel applications is difficult because the computation must be divided over the
processors in a balanced way taking into account the physical configuration and

avoiding a large communication overhead.

The approach taken in CAMEL is to make paralle] computers available to
application-oriented users hiding the implementation issues coming from their
architectural complexity. CAMEL allows the solution of complex problems which
may be represented as discrete across a square or hexagonal grid or lattice. In such
systems, the values of a specific point at time f+/ is dependent upon the value at
time ¢ of its neighbor points on the basis of a state transition function.

Each system which can be specified using this approach can be modeled or
simulated using CAMEL. CAMEL implements a cellular automaton as a SPMD
program. CA are implemented as a number of processes each one mapped on a
distinct PE which executes the same code on different data. According to this
approach a user must specify the system he wants to simulate by a procedure
written using a sequential language such as C, Pascal, or the sequential
statements of Occam. In it are defined the macroscopic quantities of the system to
be simulated, but nothing must be specified about the parallel execution. For
example, in case of a fluid simulation, the user must encode the state transition
function of a single cell in a procedure which will constitute the core of the
processes running on each computing node of the parallel computer, and all the
macroscopic features of the fluid such as density, velocity, temperature are
expressed as parameters of the procedure.

In order to describe how CAMEL is programmed we show how a simple cellular
automaton, the game of Life, is implemented in CAMEL. Life [8] simulates a
population of interacting living organisms or cells in a 2-dimensional grid. Each cell
can be in two states: alive (1) or dead (0). The cells change state, in parallel, using
a transition function which depends on the 8 nearest neighbors of the cell (see
figure 1) on the grid according to the following rules:

+ a living cell can survive for the next generation if and only if it has exactly 2 or 3
living cells in its neighborhood. Otherwise, it dies;

* a dead cell will come to life in the next generation if and only if it has exactly 3

living cells in it neighborhood.

1 2 3
4 c 5
6 7 8

Figure 1. Neighbors of a cell c.

Life is implemented in CAMEL coding the two rules of the transition function in
a procedure called compute_state and defining the global constants of the
automaton. These constants describe the main features of the automaton as

follows:
grid_width IS 128 -- width of the cell grid
grid_height 1Is 128 -- height of the cell grid
neigh_num IS 8 -- number of neighbor cells except the cell itself
dead Is
alive I3

The schema of the procedure which represents the transition function of each cell is
described in figure 2.

FROC compute_gtate ([NS](grid_width][grid_height] INT curr_statae,
next_state, INT i, j, [NumOfFeat] REAL macro_faat)

INT living neigh

-- compute the value living neigh
CASE
living neigh < 2
next _state[0]{1][]] := dead
living neigh = 2
next_state[0][1][j} := curr state[0]1[1]1[]]
living neigh = 3
next_state[0] [1]1[]] := alive
living neigh » 3
next_state[0][1][]] := dead

Figure 2. The procedure compute_state for Life.

In figure 2 ~s defines the number of substates. The parameters £ and 3 indicate
the position of a cell in the grid, the arrays curr_state and next state are

10

respectively the current and the next state of the automaton, and the vector
macro_feat contains the macroscopic features of the system which is simulated. In
this case, due to the simplicity of the example this parameter is not used.

After the procedure is linked to the CAMEL environment, its code is
automatically mapped on each computing node and is executed in parallel to update
the state of each cell. A user may then observe the system evolution through the
Graphical Interface and eventually change the parameters of the simulation by the
User Interface.

4.2. Architecture

The architecture of CAMEL is composed of three main components:
» the Master Node,
+ the Graphic Node, and
» the Parallel Engine.

In particular, the Parallel Engine consists of a number of identical nodes on which
the cellular automaton is executed. Figure 3 shows a scheme of the parallel
architecture of CAMEL.

A
Graphic| Node

Master Node

Parallel Engine

Figure 3. The parallel architecture of CAMEL.

1

The Master Node is implemented on a Transputer. On it are mapped the
Controller (CNT), the User Interface (UI), and a Muitiple Ring Router (MRR).
The CNT provides a coordination among the Macrocell processes, the file systern,
and the User Interface. The main task of the CNT process is the synchronization of
the Macrocell processes which are running on the nodes of the Parallel Engine. At
the beginning, the CNT sends an evolve message to all the Macrocells. After that,
the Macrocells perform a number of steps, then send the results to be displayed
and wait for a signal from the CNT to initiate, in a synchronous way, the execution

of the next step sequence.

The UI allows a user to monitor the parameters of a system simulation and to
dynamically change them at run time. A detailed description of the UI is given in a

next section.

The MRR implements a routing algorithm which provides deadlock-free
interprocessor communication among the Transputers of the Parallel Engine and
the Master Node. The routing algorithm has many positive characteristics including
provable deadlock-freedom, guaranteed message arrival, and automatic local
congestion reduction [5]. The collection of the MRR allow message communication
between two Macrocell processes regardless of where they are physically located
on the Parallel Engine and between a Macrocell process and the Master Node.

The Graphic Node is implemented on a graphic board. On it is mapped the
Graphical Interface (GI). The GI displays on a video the state of a system (the set
of the states of cells) which is solved by CAMEL. In order to perform this task the
GI receives the cells states from the Macrocells and commands from the User
Interface. Section 4.2.2 describes the main features of the GI.

On each Transputer which composes a node of the Parailel Engine runs a
Macrocell (MC) process and a MRR. The MC is the heart of CAMEL. Each MC
implements a cluster of elementary cells which constitute one partition of a cellular
automaton. Each MC, for all the cells which compose the partition, executes the
state transition function defined by a user. The whole set of the MCs implement a
cellular automaton.

For each step or set of steps each MC receives from the CNT an evolve
message. Then they compute the next state of the cells which belongs to their own
partition. For this, each MC sends to its neighbors the states of cells which are on

12

the borders of its partition and receives from them the borders it needs. Then it
computes the state transition function for each cell and sends the result to the
Master Node for the visualization. After sending the cell states a MC is ready to

receive a new message from the CNT process.

4.2.1. User Interface

High level and user friendly tools allowing interaction with a user are a basic
part of the system. The UI of CAMEL is composed by an editor and a command
interpreter. It communicates with the host I/O subsystem, the Graphical Interface,
the Controller and the MRR. The UI is menu based. The commands received by the
User Interface are read by the editor, then translated by the interpreter in a set of
requests/commands to the other modules of the system. The run-time system can
be in two states: executing or waiting for a command. During an executing phase
the only allowed interaction is a suspension request that changes the system
state. During a waiting phase three menu are available: IO, Setup and
Presentation.

The Setup commands permit the tuning of the simulation. The I/O commands
permit the interaction between CAMEL and the host 1/O subsystem. The
commands of the Presentation menu involve the way how the state information are
displayed on the graphic video.

Finally, during the executing phase, the system provides a set of useful
information such as the displayed substates, the current iteration, the step of
visualization, and the step of saving.

4.2.2. Graphical Interface

The GI shows the output of a simulation in a graphic format. This module
receives raw data from the Macrocells on the network, commands from the UI and
then performs the action needed to the on-line display. The GI displays the state of
cells. To each substate is associated a range of values to be displayed and a
corresponding range of colors to be used.

The user can zoom a displayed image or its portions to obtain the best definition
level. Besides, it is also possible to visualize more substates, overlapped on the

same window, or in different windows. This provides a more complete system

13

evolution representation, but requires an higher visualization time.

It is important to note that the execution of the GI occurs in parallel with the
system execution phase. In fact, when it receives the system state to be displayed,
the Controller starts the next execution phase. If the visualization step takes
sufficient time, the waiting time between two visualizations may be reduced only to
the execution time,

4.2.3. Load balancing

A major problem to be solved when programming parallel computers is the task
distribution and load balancing over the computing nodes of a parallel machine.
Load balancing algorithms allow an effective use of resources of the nodes,
avoiding overloaded nodes while others are underloaded [7].

Let consider the state transition function for a cellular automaton. If the state of
a cell remains constant when its neighborhood’s state does not change, the cell will
remain in a given state until a change occurs in one or more cells of its
neighborhood. We defined as passive this cells, active otherwise. On each step the
sets of active and passive cells may change, For a large class of problems, as in
flow diffusion, the areas of active cells are restricted to one, or few domains. The
system evolution expands or reduces such domains over the entire automaton,
causing the cells on the frontier to become active or passive. From an operational
point of view is useless to compute the next state of the passive cells until they
become active,

For these systems a simple static cell partitioning may be devised dividing the
grid of cells in a set of partitions, each one formed by adjacent cells, and assigning
each of them to a processor of the system. Although this method involves a simple
matching between the partitions and the processors, it often produces a non
optimal task distribution. In fact, a considerable part of the automaton and of the
parallel system might remain idle for a long time.

As an example, figure 4 shows an automaton with a domain of active cells, and a
simple partition over four processors. The load distribution is very unbalanced, The

processors PO, P1, P2, P3 execute respectively the 16%, 57%, 18%, and 9% of
active cells,

On the other hand, a dynamic task distribution on each iteration should have an

14

updated snapshot of the system from which it may find out the new active cells and
distribute them over the processors, maintaining the load balanced. Obviously, this

strategy requires a high communication overhead due to the high dynamic and
complex communication patterns.

The major goal for the task distribution is the assignment of the active cells on
all the nodes in a balanced way. Due to the dynamicity of the active domains this
requirement can be only partially met. However, the partitioning should distribute a
generic area of the automaton on a high number of processors, and guarantee a
simple communication pattern between adjacent partitions.

PO

P2

Figure 4. Simple task distribution on four Processors.

The load balancing strategy defined in CAMEL is a trade-off between the static
and the dynamic approaches. In fact, the cells partitioning is static, whereas the
amount of cells mapped on each partition is dynamic. In CAMEL, the grid of cells is
first divided in n vertical folds, each fold is then partitioned into N strips, where N
is the number of processors of the multicomputer. The i-th strip of each fold is
assigned to the generic processor Pi. A similar technique known as scatter
decomposition is discussed in reference [14].

Figure 5 shows the domain of figure 4 partitioned in six folds (#=6) each one
split in four strips (¥V=4). The resulting assignment to the four processors is shown
in figure 6. According to this strategy, the percentages of active cells mapped on

15

the processors are 27%, 24%, 21%, and 28%.

To avoid useless computation the user may change, at run time, the set of folds
on which the state transition function must be applied. Each Macrocell process will
compute only the strips of the specified folds.

The set of active fold will be augmented or restricted just before some cells
become active or passive. The choice of the active folds can be automatic including
some tests. In the previous example, the active folds are FOLD2, FOLD3, and
FOLD4; the state of cells included in FOLDo, FOLDI, and FOLDS are not computed

because they are passive.

FOLD O FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5

-

5 S

00 03 5 §

50 53

Figure 5. Domain partitioning in six folds.

The task distribution based on folds requires each processor Pi to communicate
only with processors Pi-! and Pi:l, so a simple logical ring connecting all the
processors is sufficient to accomplish all the communications. On the other hand, to
obtain a good distribution in complex simulations it is necessary to increase the
number of folds n.

This increases the complexity of each Macrocell that manages n disjoint and
independent partitions. Since the number of folds n is a parameter of CAMEL, it is
necessary to find a trade-off between a better distribution of the active cells and
the complexity increase of the Macrocell. As an example, in the simulation of a lava

16

flow of the last Etnean eruption (see section 6.1), using this load balancing
strategy the execution time dropped by a 30% compared to the time obtained using
a simple static strategy.

Finally, it is important to underline that the discussed strategy has improved the
overall performance also in very dynamic problems with a high number of

contemporary active domains.

PO

ol

Figure 6. Task distribution on CAMEL.

5. PERFORMANCE RESULTS

Scalability is a common goal in the design of parallel computers. It shows the
potential ability of parallel computers to speedup their performance by adding more
processing elements.

Performance of CAMEL has been evaluated running several applications. In all
cases the system demonstrates to be scalable. The scalability of CAMEL has been
measured increasing the number of PEs used to solve the same problem in a
shorter time (speedup), and increasing the number of PEs used to solve bigger

problems in the same time (scaleup).

Figure 7 shows the speedup obtained on an automaton composed of 256 x 256

17

cells which simulated a combustion system. The speedup on 32 PEs is 28.11
(87.8% efficient). Similar performances has been obtained with different automata.

Speedup W : ; . : : : _..I‘;
28 + .
24 =
20 L |
16 -
2 -) - ideal
s L i —— exp
4 4
1 L . M \ A L :

No. of PEs

Figure 7. Speedup of CAMEL.

Table 1 shows the execution times (in seconds) obtained running the same
combustion system simulation on 2, 8, and 32 PEs using three different grid sizes.

Times in table 1 represent a measure of the scaleup of the system. It shows
that if the number of PEs is increased proportionally to the size of the problem,
bigger problems might be solved in the same time usin g a larger configuration.

Table 1. Times for different grid sizes on three different configurations.

Grid Number of Time for Time for Time for

size PEs 1 step 100 steps S00 steps
128 x 128 2 0.539 5412 269.44
256 x 256 8 0.544 54.41 277
512 x 512 32 0.548 54.85 274.14

18

6. RELATED WORK

With regard to the applications of CA, a rough classification concerning the CA
models which have been developed for the simulation of complex dynamic systems
could be defined. Such a classification can be expressed by a bipolarity.

On one hand, there are models with eq having few states (less than hundred)
and a simple transition function. They usually describe the systems from a
microscopic viewpoint and often need an optical control, step by step, on the
evolution of the CA. On the other hand, a broader application of CA needs more
detailed descriptions in order to capture the relevant elements of the system to be
simulated which can involve million states with a complex transition function of the
ea.

No real parallel environment can represent a practical solution to different types
of models, so CAM-6, a specialized machine for CA, constitutes an instrument
which is difficult to surpass when the CA model can be formulated in a simple way
(it doesn’t mean trivial), however it does not allows the implementation of CA with
a large number of states. In fact, CAM is well suited for CA with a number of
states not higher than sixteen and with a combination of the few neighborhood
indexes. It also permits a complete visualization of the CA evolution, step by step,
up to the limits of perception of the human eye.

CAMEL covers requirements diametrically opposite, and several advantages
can be evidenced from various viewpoints considering its features,

* There is no practical limit to the number of states of the ea (the RAM of a
single processing element is up to 8 Mbytes), so it is possible to reduce every
other possible neighborhood to the directly available neighborhoods by a trade
off with the states. Furthermore, when the model must be validated, it is
important to experiment different levels of detail.

* The MIMD architecture permits, by load balancing, to introduce time
optimization for a stationary region, if any exists,

* The flexibility of the environment permits to balance a larger size of cellular

space increasing the number of processors, with a little proportional slowing
down of the computation.

CAMEL partially shares these listed characters with other CA environments; a
short comparison may be tried.

19

Pussycat [16] is a parallel simulation system for cellular automata developed on
Transputers which can support ea with no more than 256 states. Tommasini [19]
discusses an implementation of CA on a shared memory MIMD machine, a
Sequent Symmetry parallel computer. This approach shows the limits in the
performance because of the memory access contention when the number of
processors needs to be increased. Wilding et alii [20] exhibit CA models
implementations on a SIMD computer, a DAP, i.e. an Active Memory Technology
Distributed Array Processor with interesting results, but obviously no time
optimization for the stationary region can be introduced using the DAP system.

At last, we consider CAPE, a CA environment implemented on a transputer
network too [15]. A first difference is given by the lack in CAPE of a load balancing
strategy, not crucial (to our knowledge) for the applications developed for CAPE
with ea having few states, but very important for several other applications. Such a
feature could be introduced easily; however an opportune choice is not trivial
because a load balancing algorithm could increase excessively the inter-processor
communication overhead for particular cases of neighborhood indexes and/or when
a large number of states is defined. Furthermore, the policy of CAPE is centered on
a quick export of Fortran programs, running on a sequential machine, to a parallel
machine.

The CAMEL approach assumes a user with a littie programming background
sufficient to roughly understand the CAMEL philosophy, to learn in a few time the
CAMEL utilities and the small sequential subset of the Occam language,
necessary to define the transition function. In such a way, CAMEL becomes very
transparent to a user, which benefits from a greater flexibility and deeper
interaction features, which seems not to be available in CAPE.

7. AN APPLICATION OF CAMEL

This section presents a significant application of modeling and simulation of lava
flows developed using CAMEL. We first describe how the problem can be defined
using the CA model, then discuss how it can be programmed by CAMEL.,

The model of a CA for lava flow is given following the specifications of reference
[1] with little changes:

Atmg = R, X, S, 6)

where

20

. R2 ={x,y)lx,ye N,0<x < ,,0=sx< ly] is the set of points with integer

coordinates in the finite region, where the phenomenon evolves. N is the set of

natural numbers.

« X = {(0,0), (0,1}, (0,-1), (1,0), (-1,0)} identifies the neighboring cells, ie.,
respectively, the cell itself and the north, south, east and west cells.

* The finite set S of states of the ea is defined as follows:
S=5,%x8; xSy xS
where
S, is correlated to the altitude of the cell;
Sy, is correlated to the lava thickness of the cell:
St is correlated to the lava temperature of the cell:

Sf4 is correlated to the lava flows toward the only four neighborhood
directions.

The elements of S, are integers, which express the value of the altitude (dm).
The elements of Sy, are integers, which represent the lava quantity inside the
cell, expressed as lava thickness in dm. The elements of St are integers,
which express the temperature as tenths of Kelvin degree. The elements of S¢

are integers, which express the outflow rate as lava thickness in dm.

«0:8°58 is the deterministic state transition for the cells in R,, it is executed
at each step to obtain a new state for each cell.
At the start time we specify the states of the cells in R,, defining the initial

configuration of the CA. Initial values of substates S, and Sf are null. At each step

the function o is applied to all cells in R, and the 4;, evolves.

The behavior of the state transition function o can be shortly described by the
following statements:

a) is computed the outflow from a cell at the previous step and the remaining
lava thickness in the cell;

b) if the lava temperature drops below the solidus the cell’s altitude is

21

increased by the thickness of lava, then the lava thickness of the cell is

reset to zero;

¢) is computed the inflow to the cell coming from its neighbors and the new
lava thickness of the cell adding to the inflow to the previous lava
thickness;

d) if the new lava thickness is not null two steps are performed: the first step
takes the average temperature of lava passing through a cell, the second
step then estimates the temperature drop due to thermal energy losses at
the surface A applying the following formula:

T, =T, W 1+(T3paw)

where T, and T, are respectively the old and new average temperature, V

is the volume of lava in the cell, and p is a "cooling parameter” determined

semiempirically.

¢) the outflow from a cell towards its neighbor cells is computed; the outflow
from a cell depends on the hydrostatic pressure gradients across the cell
due to differences in lava thicknesses compared with neighboring cells,
and on the adherence of the lava in the cell.

To program this application using CAMEL we only needed to design the
procedure compute_state described in figure 8 which performs the operations of
the state transition function defined above. The procedure has been linked to the
CAMEL environment. CAMEL mapped its code automatically on each computing
node and executed it in parallel to update the state of each cell. A user may then
observe the system evolution through the Graphical Interface and eventually
change the parameters of the simulation by the User Interface.

In figure 8 Ns defines the number of substates. The parameters 4 and J indicate
the position of a cell in the grid and the arrays curr_state and next_state are the
current and the next state of the automaton. The vector macro_feat contains the
macroscopic features of the system which is simulated, for exampie, the cooling

parameter (p) and the temperature of solidification (Tgo11a

22

PROC compute_state ([NS][grid_width][grid_height] INT curr_state,
next_state, INT i, j, [NoOfFeat] REAL macro_feat)
INT lavathick, inflow, outflow, Tl;
BEGIN
;* PFOR ind= 1 TO neighbors
a outflow:= curr_state([S.(ind)][i][j];
.. lavathick:= curr_state[S, 1[i]1[j] - outflow;
IR curr_state[ST][i][j] < Tsolid
. THEN
b next_state(S_ J{il[j]:= curr_state(s,](i]{3j] + lavathick;
: lavathick:= 0;
-. ENDIF
7 inflow: = curr_state{Sf}[i][j—l] + curr_state[sf][i][j+1]+
c: curr_state[S;][i-11[3] + curr_state(sS] [i+1][5];
i next_state($,][(i][j]:= inflow + lavathick;
2T IP next_state[sh][i][j] > 0
THEN
T1:= average value of neighbors temperature ;
. . 3 1/3
next_state[ST][1][3]:= Tl(l + (T1 P A/V)) ;
: FOR ind= 1 TO neighbors
d: next_state[sf(ind)lfi][j]:: f(curr_state[sh],
curr_state[sa], i, 3%);
ELSE
next_state[ST][i][j]:= 0;
FOR ind= 1 TO neighbors
next_state[sf(ind)][i][j]:: 0;
... ENDIP
END

Figure 8. The procedure compute_stata for the lava flow problem,

This model was validated with the simulation of 1986-1987 Etnean lava flows
on a sequential computer with computation time of the same order of the actual
event (some days). But, only the parallel implementation by CAMEL has
permitted to use it on a real emergency in Sicily when a lava flow threatened the
town of Zafferana Etnea in April and May of 1992. In this case the time necessary
to complete the simulation was about 1 hour and 45 minutes without the use of the
load balancing strategy and 1 hour and 10 minutes usin g load balancing.,

23

Various hypotheses were followed, considering different lava flow rates from the
initial event, simulating the most unfavorable conditions imaginable and the effects
of artificial obstacles in order to deviate the lava flow. Figure 9 shows such a
simulation, and figure 10 shows the same case with the outcome that the

construction of an artificial barrier has on the flow.

8. CONCLUSIONS AND FUTURE WORK

We have presented a scalable parallel environment based on the cellular
automata theory implemented on a Transputer-based multicomputer. CAMEL is a
development environment which allows a user to solve real complex problems
using efficiently the computing power offered by a highly parallel computer in a
transparent way.

CAMEL implements CA as SPMD programs. According to this approach, CA
are implemented as a number of processes each one mapped on a distinct PE which
executes the same code on different data. A load balancing strategy has been
defined to distribute the cells over the processing nodes, minimizing the occurrence
of overloaded nodes while other nodes are underloaded.

The behavior of the current CAMEL prototype has been very satisfying for the
various applications implemented on it. However, more enhancements could be
provided for a better and broader usage of the system. In particular, we identified
the following features to be added.

* To define functions which allow to transform a generic neighborhood relation in
one of the neighborhood relations which has been implemented in CAMEL. In
order to avoid that, this must be performed by a user when he defines a CA.
Together with these functions which represent an encoding of the CA states
must be defined the correspondent decoding functions for the graphical
processing.

* To allow the definition of facilities in the state transition function for
calculating and storing statistical values on regular intervals of time.

* To introduce simple graphical utilities and a general support to create data
files to be used for complex graphical facilities for CA with more than two
dimensions. Naturally, such complex graphical facilities must be let to
specialized programs, which process the data files created by CAMEL

24

according to the necessity of the user. However, a first rough optical control is
necessary during the running of simulations, so that it is important to
represent the state evolution on the screen.

The research work on the CAMEL environment will continue along these
directions. At the same time, the system is utilized for the simulation and modeling
of complex phenomena such as landslides and floods, and for low and medium level
processing in computer vision and image understanding.

REFERENCES

[1] D. Barca, G.M. Crisci, S. Di Gregorio, and F.P. Nicoletta, Cellular automata
methods for modeling lava flow: simulation of the 1986-1987 etnean
eruption, in: C. Kilburn and G. Luongo G., eds., Active Lavas (UCL Press
London, 1993).

[2] P. Brinch Hansen, Parallel cellular automata: a model for computational
science, Concurrency: Practice and Experience 5 (5) (1993) 425-448.

[3] P. Brinch Hansen, Model programs for computational science: a
programming methodology for multicomputers, Concurrency: Practice and
Experience 5 (5) (1993) 407-423.

(4] A.W. Burks ed., Essays on Cellular Automata (University of Illinois Press,
1970).

[5] M. Cannataro, E. Gallizzi, G. Spezzano, and D. Talia, Design,
implementation and evaluation of a deadlock-free routing algorithm for

concurrent computers, Concurrency: Practice and Experience 4 (2) (1992)
143-161.

[6] M. Cannataro, S. Di Gregorio, R. Rongo, W. Spataro, G. Spezzano, and D.
Talia, CAMEL : A Cellular Automata Environment on a Highly Parallel
Computer, Proc. of the International Section of AICA’93 (1993) 143-158.

(7] T.L. Casavant and J].G. Kuhl, A taxonomy of scheduling in general-purpose
distributed computing systems, JEEE Transactions on Software
Engineering SE-14 (2) (1988) 141-154.

[8] J.H. Conway, E.R. Berlekamp, and R.K. Guy, Winning Ways for your
Mathematical Plays (Academic Press, New York, 1982).

[9] S. Di Gregorio and G. Trautteur, On reversibility in cellular automata, J. of
Computer and System Sciences 11 (3) (1975) 382-391.

[10] S. Di Gregorio, F. P. Di Maio, P. G. Lignola, A. Zumpano, Simulation of

25

(11}

[12]

[13]

[14]

(15]

[16]

(17]

[18]

(19]

(20]

[21]

(22]

heterogeneous reactive processes by Cellular Automata, Atti del |
Convegno Nazionale di Informatica Chimica (1991) 118-120.

Y. Feldman and E. Shapiro, Spatial machines: a more realistic approach to
parallel computation, Communications of the ACM 35 (10) (1992) 60-73.

Inmos, The Transputer Products Overview Manual, SGS-Thomson
Microsystems (1991).

A. Lindenmayer, Cellular automata, formal languages and development

systems, Fourth Int. Congress for Logic, Methodology and Philosophy of
Science, Bucarest (1971).

D. M. Nicol and J.H. Saltz, An Analysis of Scaiter Decomposition, JEEE
Transactions on Computers C-39 (11) (1990) 1337-1345.

M.G. Noman, J.R. Henderson, 1.G. Main, and D.J. Wallace, The use of the
CAPE environment in the simulation of rock fracturing, Concurrency:
Practice and Experience 3 (6) (1991) 687-698,

E. Pauwels, Pussycat: a parallel simulation system for cellular automata on

transputers, in: Parallel Processing and Artificial Intelligence (Wiley,
1989) 233-247.

J.W. Thatcher, Universality in the Von Neumann cellular model, in: A W.
Burk, ed., Essays on Cellular Automata (University of Illinois Press, 1970).

T. Toffoli and N. Margolus, Cellular Automata Machines - A New
Enviroment for Modeling, (MIT Press, 1987).

M. Tomassini, Cellular automata calculations on a shared memory MIMD
machine, Supercomputing review (1990) 2-6.

N.B. Wilding, et a/., Scientific modeling with massively parallel SIMD
computers, Proceedings of IEEE 79 (4) (1991) 574-58s5,

J. von Neumann, Theory of Self Reproducing Automata (University of
Illinois Press, 1966).

S. Wolfram, Computation theory of cellular automata, Comm. Math. Phys.
96, (1984) 15-57.

26

Figure 9. Lava flow simulation.

Figure 10. The same lava flow with an artificial barrier.

