

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS I.C.T.P., P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE. CENTRATOM TRIESTE

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION

INTERNATIONAL CENTRE FOR SCIENCE AND HIGH TECHNOLOGY

OF INTERNATIONAL CENTRE FOR TREDRETICAL PRINSES. MANY TREETE CITALYS VIA GREGNANO, I (ADDISATICO PALACE) F.O. BOX SIX TELEPHONE 440-2017. TELEPAX 440-2017. TELEPAX 440-2017.

SMR/772 - 8

INTERNATIONAL WORKSHOP ON PARALLEL PROCESSING AND ITS APPLICATIONS IN PHYSICS, CHEMISTRY AND MATERIAL SCIENCE 5 - 23 September 1994

PDE'S Cellular Automata and Parallel Computing

F. MASSAIOLI
CASPUR
C/O Università di Roma 'La Sapienza'
P. Le Aldo Moro 5
00185 Roma
ITALY

These are preliminary lecture notes, intended only for distribution to participants.

PDE'S, CELLULAR AUTOMATA and PARALLEL COMPUTING

Federico Massaioli
CASPUR

Navier-Stokes Equations

$$\partial_{t} \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} = -\frac{1}{\rho} \nabla \rho + \nu \nabla^{2} \boldsymbol{u} + \frac{1}{\rho} \boldsymbol{F}$$

$$\nabla \cdot \boldsymbol{u} = 0$$

- Generally difficult to solve
- Many established, highly efficient numerical techniques are available
- Many of these are not suitable to distributed memory parallel machines
- Treatment of flows in porous media or multiphase flows is difficult

Micro- and Macro-Dynamics

- N-S equations are a macroscopic description of a fluid
- The large scale behaviour of a fluid is a 'limit' of the dynamics on the molecular scale
- An arbitrary microdynamics can be simulated, as long as N-S equations are recovered in the macroscopic limit
- It is possible to choose the microdynamics of the system to ease parallel implementations and to support the description of highly heterogeneous media

Lattice Boolean Gases

(Frisch, d'Humières, ...)

 Regular lattice with every lattice site x connected to b neighbouring sites

$$X + C_i$$
 $i = 1,...,b$

 The state of every site is encoded in b boolean variables n_i, evolving according to the rule

$$n_i(\mathbf{X}+\mathbf{C}_i,t+1)-n_i(\mathbf{X},t)=\Omega_i(n_i(\mathbf{X},t))$$

- The lattice and Ω_i must be chosen to recover N-S
- n_i encodes the presence of a particle with velocity c_i

From Boolean to Real

(McNamara, Zanetti)

- Conventional computers are oriented toward floating point performance
- Boolean gases suffer from statistical noise, i. e. huge quantities of sites are needed
- In 3D, Ω_i is not expressible in a closed form
- The transformation from boolean to floating point ('mesoscopic' limit) solves the first two problems

$$n_i \rightarrow N_i = \langle n_i \rangle$$

The Last Steps

 Chapman-Enskog limit (Higuera, Jimenez):

$$\Omega_{i} = \sum_{j=1}^{b} A_{ij} (N_{i} - N_{i}^{eq})$$

with A_{ij} constructed from the boolean microdynamics

 Enhanced Collisions (Higuera, Succi, Benzi):

 A_{ij} can be derived from the conservation laws and the physical parameters, i.e. LBE is a model of hydrodynamics, unrelated to microdynamics of any type

The LBE Scheme

$$N_{j}(\boldsymbol{x}+\boldsymbol{c_{j}},t+1) = N_{j}(\boldsymbol{x},t) + \sum_{j=1}^{b} A_{jj}(N_{j}(\boldsymbol{x},t) - N_{j}^{eq}(\boldsymbol{x},t))$$

with

$$N_{i}^{eq} = \frac{\rho_{eq}}{b} \left(1 + \frac{D}{c^{2}} u_{\alpha} c_{i\alpha} + \frac{D^{2}}{2c^{4}} \frac{b - 2\rho_{eq}}{b - \rho_{eq}} Q_{i\alpha\beta} u_{\alpha} u_{\beta} \right)$$

where

$$C = |\mathbf{c}_{i}|$$

$$Q_{i\alpha\beta} = c_{i\alpha}c_{i\beta} - \frac{c^{2}}{D}\delta_{\alpha\beta}$$

Hydrodynamic Behaviour

- FCHC 4D (b = 24) lattice projected down in 1, 2 or 3 D
- The collision matrix has 4 different eigenvalues: 0 (conservation laws), λ (viscosity), σ and τ (spurious ghost fields)
- Adiabatic limit:

$$\rho(\mathbf{X},t) = \sum_{j=1}^{b} N_{j}(\mathbf{X},t)$$

$$J(\mathbf{X},t) = \rho(\mathbf{X},t) \mathbf{u}(\mathbf{X},t) = \sum_{j=1}^{b} \mathbf{c}_{j} \mathcal{N}_{j}(\mathbf{X},t)$$

obey the N-S equations under some constraints on the collision matrix eigenvalues

LBE Pros

- Maintenance of a main, general purpose and optimized code
- Simple, quick and efficient SIMD and MIMD parallel implementations
- Easy boundary conditions
- Easy simulation of flows in grossly irregular geometries

LBE Cons

- Low Mach number
- Moderate Reynolds number
- Stability implies that on a lattice step Δu/u<20%

LBE Applications

- Turbulent Thermal Convection
- Flows in Porous Media
- Oil Reservoir Modelling
- Multiphase Flows

Recent Developments

- Unevenly Spaced Grids
- Compressible Flows
- Quantum Mechanics
- Lattice BGK Models

Future Developments

 Finite Volume LBE on Embedded Adaptive Grids