INTERNATIONAL ATOMIC ENERGY AGENCH
‘ @ ; URITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL QRGANIZATION m
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

LCTP. P.O. BOX 586, 34100 TRIESTE. TTALY, CasLe CENTRATOM TRIESTE

@ ’%g The United Nations

University

SMR/774 - 2

THIRD COLLEGE ON MICROPROCESSOR-BASED REAL-TIME
CONTROL - PRINCIPLES AND APPLICATIONS IN PHYSICS
26 September - 21 October 1994

REFERENCE MATERIAL ABOUT "C" AND GDB

Alvise NOBILE
International Centre for Theoretical Physics
P.O. Box 586
34100 Trieste
Italy

These are preliminary lecture notes, intended only for distribution to participants.

an{eb‘cﬂxlc f/\/\..\,TU\ 5_,0 ql,);,ur
Cl
sl

%AB

t

YA

N\

Appendix C

Library Routines

ANSI C requires each compiler to provide a set of standard library routines
(i.e., macros and functions). These routines are part of the C environment.
Moreover, each C compiler must provide the prototype declaration of each
library function and the definition of cach library macro in one of the standard
header files (as specified in the ANSI C standard (ANSI 1988a]). These
header files also contain the declarations of types and constants that are needed
for using the library routines.

The standard header files that must be provided by every ANS] C compiler are

assert.h locale.h stddef.h
ctype.h math.h stdio.h
errno.h setjmp.h stdlib.h
float.h signal.h string.h
limits.h stdarg.h time.h

Standard header files may be included in any order. Multiple inclusions of
these header files will not cause probiems. Note that multiple inclusions of
header files often occurs as a result of including files that include other files.

For some library routines, a compiler may provide both macro and function
versions. To ensure that the macro version of a library routine is used. the
library routine should not be declared explicitly. Instead, the appropriate
header file should be included. Not including the appropriate header file rules
out the use of the macro version of the library routine because header files
contain the macro definitions. If the function version of a library routine is to
be used, then the corresponding macro definition, if any, should first be
explicitly removed by using the #unde £ instruction.

As an example, suppose that both function and macro versions of the library
routine atoi are provided by the C compiler. The macro definition, if any,
will be in the header file std1ib.h. The following paradigm ensures that
macro version is used [ANSI 1988a]:

#include <stdlib.h>

i = atoi(str);

- py————-

Site e g pdidUlglll, WILICH Temoves

S e ey

the definition of the macro atoi, can be used:

#include <stdlib.h»>
#undef atoi

i = atoi(str);

Removing the macro definition, forces the linker to look for a function named
atoi in the standard library which is then linked together with the rest of the
program.

The description of each library routine consists of jts syntactic specification and
the description of its behavior or semantics. The syntactic specification of aC
routine contains information that will ailow the program to be compiled
without error. By convention, the syntactic specification of a library routine
consists of two parts:

1. One or more #include statements that include the header files

containing the definition of the macro or the prototype declaration of the -
function implementing the routine, and declarations necessary to use the -

macro or function.

2. The function prototype declaration (an equivalent declaration is given in
case of a macro).

When using a library routine, the #include statements specified in the
specification of the routine should be given in the file containing references to
the function (before the references).

For complete and detaijled descriptions of these routines, please see the
American National Standard Jor Information Sysrems—-Programming
Language C [ANSI C 1988al.

1. Diagnostic Routines
L.l Macro assert

Include: #include <assert.h»
Prototype: void assert(int expression};

Behavior: assert is used to check whether or not the condition specified by
expression is true. If expression is false, assert prints, on the
standard error stream, diagnostic information such as the unsatisfied condition,
and the name of the source file contzining the assert call and its line
number. It then terminates the program by cailing abort.

4. Cnaracter Handling Routines
2.1 Function isalnum

Include: #include <ctype.hs

Prototype: int isalnum(int c¢);

Behavior: isalnum returns a nonzero value if c is a letter or a digit;
otherwise, it returns zero.

2.2 Function isal pha

Include: #include <¢type.h>»

Prototype: int isalpha(int ¢);

Behavior: isalpha returns a nonzero value if ¢ is a letter; otherwise, it
returns zero,

2.3 Function iscntr]
Include: #include <ctype.hs>
Prototype: int iscntrl(int ¢);

Behavior: iscntrl returns a nonzero value if o is a control character:;
otherwise, it returns zero,

2.4 Function isdigit
Include: #include <ctype.h>
Prototype: int isdigit(int c¢);

Behavior: isdigit returns & nenzero value if ¢ is a digit; otherwise, it
returns zero.

2.5 Function isgraph
Include: #include <ctype.h>
Prototype: int isgraph(int ¢);

Behavior: isgraph returns 2 nonzero value if ¢ is any printing character
except the space (blank) character; otherwise, it returns zero.

2.6 Function is1 ower

Include:
Prototype:

#include <ctype.h>
int islower{int cl;

Behavior: islower returns a nonzero value if ¢ s a lower-case letter;
otherwise, it returns Zero.

2.7 Function isprint
Include: #include <ctype.h>
Prototype: int isprint(int c);

Behavior: isprint returns a nonzero value if ¢ s any printing character
(including a space): otherwise, it returns zero,

2.8 Function ispunct
Include; #include <ctype.h>
Prototype: int ispunct(int c);

Behavior: ispunct returns a nonzero value if ¢ is a punctuation character
(but not a space); otherwise, it returns zero.

2.9 Function isspace
Include; #include <ctype.h>
Prototype: int isspace(int cl);

Behavior: isspace returns a nonzero value if ¢ js a white-space character
(space, form-feed, new-line, carriage-return, horizontal-tab or vertical-tab);

2.10 Function isupper
Include: #include <ctype.h>»
Prototype: int isupper(int ch;

Behavior: isupper returns 2 nonzero value if ¢ is ap upper-case character;
otherwise, it returns zero,

2.11 Function isxdigit
Include: #include <ctype.h>
Prototype: int isxdigit(int c):

Bebavior: isxdigit returns a nonzero value if c is a hexadecimal digit;
otherwise, it returns zero,

2.12 Function tolower
Include: #include <ctype.h>
Prototype: int tolower(int c);

Behavior: If o is an upper-case character, then tolower returns the lower-
€ase version of character ¢; otherwise, it returns c.

Appendix C 205

2.13 Function toupper

Include: ¥include <ctype.hs
Prototype: int toupper({int c);

Behavior: If ¢ g a lower-case character, then

toupper returns the upper-
case version of ¢: otherwise, it returns ¢.

3. Mathematical Routines

3.1 Function acos

Include: #include <math, p»
Prototype: double 4cos(double x);

Behavior: acog returns the arc cosine of x, which must be
+11." The arc cosine computed will be in the range [0, #] radi

3.2 Function asin

in the range [—1,
ans.

Include: #include <math,h>
Prototype: double asin({double x);

Behavior: asin returns the are sine of X, which must be in the
+1). The arc sine computed is in the range {~=/2, +x/2] radians.

3.3 Function a tan

range [~],

Include; #include <math.hs»
Prototype: double atan{double x);

Behavior: atan returns the arc tangent of x, which must be in the range [~],
+1]. The arc tangent computed is in the range [~x/2, +x/2] radians.

3.4 Function a tan2

Include: #include <math,h>
Prototype; double atan2({double ¥, double x);

e —

206 Library Routines

3.5 Function cos

Include: #include <math.h>

Prototype: double cos(double x);

Behavior: cos returns the cosine of x, which must be in radians.

3.6 Function sin

Include: #include <math.h»
Prototype: double sin(double x);

Behavior: sin returns the sine of x, which must be in radians.
3.7 Function tan

Include: #include <math.hs>
Prototype: double tan(double x);

Behavior: tan returns the tangent of x, which must be in radians.
3.8 Function cosh

Include: #include <math.h>
Prototype: double cosh(double x):

Behavior: cosh returns the hyperbolic cosine of x.
3.9 Function sinh

Include: #include <math.h>
Prototype: double sinh{double x);

Bebavior: sinh returns the hyperbolic sine of x.
3.10 Function tanh

Include: #include <math.h>
Prototype: double tanh(double x);

Bebavior: tanh returns the hyperbolic tangent of x.
3.11 Function exp

Include: #include <math.h»>
Prototype: double exp{double x};

Behavior: exp returns e*.

Appendix C 207

3.12 Function f rexp

Include: #include <math.h»
Prototype: doubile frexp(double value, int *exp);

Beh'avior: frexp splits a floating-point number into a normalized fraction and
an integral power of 2. [t stores the integer power in *exp and returns a
value x, such that x is in the interval {1/2, 1) or equal to zero, and value is
equai to x multiplied by 2 to the power xexp.

3.13 Function ldexp
Include: #include <math.h»>

Prototype: double ldexp(double x, int exp);
Behavior: 1dexp returns x muitiplied by 2°%P.

3.14 Function log

Include; #include <math.h>
Prototype: double log(double =x};

Behavior: 1og returns the natura logarithm of x.
3.15 Function log10
Include: #include <math.h>

Prototype: double log10(double xj;
Bebavior: 10g returns the base-10 logarithm of x.

3.16 Function modf

Include: #include <math.h»
Prototype: double modf (double value, double #iptr);

Behavior: modr splits the argument value into integral and fractional parts

(each has the same sign as value). It stores the integral part in »iptr and
returns the fractional part.

3.17 Function Pow
Include: #include <math.h»

Prototype: double pow(double x, double ¥l
Behavior: pow returns x7.

3.18 Function sqrt

Include: #include <math.h»
Prototype: double sqrt(double x};

Behavior: sqrt returns the nonnegative square root of x.

3.19 Function ceil

Include: #include <math.h>
Prototype: double ceil(double x);

Bebavior: ceil returns the smallest integer greater than or equal to x.
3.20 Function fabs

Include: #include <math.h>
Prototype: double fabs(double x);

Behavior: £abs returns the absolute value of x.
3.21 Function floor

Include: #include <math.h>
Prototype: double floor(double x);

Behavior: £1oor returns the largest integer less than or equal to x.
3.22 Function fmod

Include: #include <math.h>»

Prototype: double fmod(double x, double y);

Behavior: £mod returns the floating-point remainder of x/y. ie, it returns
x—iy for some integer i such that, if y is not zero, then the value returned is
less than y and it has the same sign as x.

4. Nonlocal Jump Routines

Besides other items, header file setjmp.h contains the dccla‘ration‘of ty.pe
Jmp_buf which is used for savirg and restoring environments in conjunction
with the set jmp and long jmp routines.

4.1 Macro setjmp

Include: #include <setjmp.h>

Prototype: int setjmp(jmp_buf env);

Behavior: setymp saves its calling environment in argument env for later
use by longjmp. When returning from a direct invocation, set jmp returns
zero. If it returns as a result of calling longjmp, then setjmp returns a
nonzero value.

4.2 Function longjmp
Include: #include <setjmp.h> .
Prototype: void longjmp(jmp_buf env, int val);

Behavior: 1ongjmp restores the environment saved in jmp_bu'f by t-hc last
invocation of setjmp. If the function containing the setjmp invocation has

Appendix C 209

completed, then the behavior of longjmp is undefined. After executing a
longjmp call, program execution continues as if the corresponding invocation
of setjmp had just returned the value val. Note that longjmp cannot

make setjmp return a zero. If val is equal to zero, setimp will return
one,

5. Signal Handling Routines

Besides other items, header file signal.h contains definitions of the macros
S1G_DFL, SIG_ERR and SIG_IGN which are used for handling signals;
these macros are discussed later. File signal.h also defines following
constants identifying signals:

signal name signal generated due (o

SIGABRT an ‘abnormal termination, e.g., one cansed by
calling abort

SIGFPE an erroneous arithmetic operation, e.g., zero
divide or an overfiow

SIGILL an illegal instruetion

SIGINT an interrupt, e.g., from the keyboard

SIGSEGV an invalid memory reference

SIGTERM a termination request sent to the program

These signals are generated automatically;

they can also be generated by
calling function raise.

5.1 Function signal

Include:; #include <signal.h»
Prototype: void (#signal(int sig,

void (*fun){int)))(int);
Behavior: signal associates the function fun (signal handler) with the

signal numbered sig. How the signal numbered sig is handled depends
upon the value of fun:

value of fun
SIG_DFIL
SIG_IGN
pointer to function f

signal handling
defauit handling
signal is ignored
function f (signal handler) is called.

At program startup, signals may be ignored or handled in the default manner;
this treatment is implementation dependent.

If signal executes successfully, then it returns the value of the previous
signal handler for sig. Otherwise, SIG_ERR is returned and a positive valye

is stored in errno.
5.2 Function raise

#include <signal.h>
int raise(int sig);

Include:
Prototype:
Behavior: raise generates signal sig. If successful, raise returns zero;
otherwise, it returns a nonzero value,

6. Macros to Handle Variable Number of Arguments

Besides other items, header file stdarg.h contains the definitions of type
va_list and the macros va_start, va_arg and va_end, which are
used for accessing arguments of a function that can be called with a variable
number of arguments. Information needed by the variable argument
manipulation macros is stored in an object of type va_list.

The variable number of arguments, which do not have explicit names, is
indicated by the ellipsis following the last parameter in the function header.
The rightmost parameter of such a function is special (the one just before the
ellipsis) and is designated as parm, in the discussion below. Parameter parm,
must not be given the register storage class, or be a function or an array
type or a type incompatible with the argument type (after the default
argument promotions).

6.1 Macro va_start

Include: #include <stdarg.h>
Prototype: void va_start(va_list ap, parm,);

Behavior: va_start must be invoked before invoking va _arg to access the
unnamed arguments (represented by the ellipsis). va_arg initializes ap.

6.2 Macro va_arg

Include:
Prototype:
Behavior: The i invocation of va_arg (after invoking va_start) returns
the value of argument parm,,,;. Parameter ap must be the one initialized by
va_start. Parameter rype specifies the type of the next argument.

#include <stdarg.hs
type va_arg(va_list ap, type);

6.3 Macro va_end

Include: #include <stdarg.h>
Prototype: void va_end(va_list ap)l;

Behavior: va _end must be called after accessing the variable arguments.

7. Input/Output Routines

Besides other items, header file

' Stdio.h contains the definitions of the
following types and macros:

types macros macros

size_t NULL SEEK_CUR

FILE _IOFBF _END

fpos_t _IOLBF SEEK_SET
_IONBF TMP_MAX
BUFSIZ tmpnam
EOF stderr
FOPEN_MAX stdin
FILENAME _MAX stdout
L_tmpnam

7.1 Function remove

Include;
Prototype:

#include <stdioc.h>

int remove(const char #«fname);

Behavior: remove deletes the file with the name pointed to by fname. If
successful, remove returns zero; otherwise, it returns a nonzero value.

7.2 Function rename

Include:
Prototype:

#include <stdio.hs»
int rename(const char =014,

const char *new) :
Behavior: rename changes the name of a file from that pointed to by 014 to

that pointed to by new. If successful, rename returns zero: otherwise, it
returns a nonzero valye.

7.3 Function tmpfile

Include: #include <gtdio.h»
Prototype: FILE *tmpfile(void);

Behaviolt: tmpfile creates a temporary file (opened for update). This file is
automatically temoved when it is closed, or upon program termination. |[f

successful, tmpfile returns a pointer to the file created: otherwise, it returns
the null pointer.

212 Library Routines

7.4 Function tmpnam

Include: #include <stdio.h>

Prototype: char stmpnam{char ss);

Behavior: tmpnam generates a new unique file name (string) every time: it is
called. If s is the null pointer, then tmpnam stores the ﬁle. name in an
internal static object and returns a pointer to this object. Otherwise, tmpnam
puts the file name in the array pointed to by s and returns s. Note that tl}e
array size must be greater than or equal to L_tmpnam {defined in
stdio.h).

7.5 Function fclose

Include; #include <stdio.h>

Prototype: int fclose(FILE asstream);

Behavior: fclose flushes the stream pointed to by stream and closes the
associated file. If successful, fclose returns zero; otherwise, it returns EOF.

7.6 Function £f1lush

Include: #include <stdio.h>
Prototype: int fflush(FILE sstream);

Behavior: ££1lush flushes stream, i.e., it starts writing unwritten buffered
output to the file associated with stream. If ££f1lush is called with a null
pointer, then all output streams are fushed. If successful, ££1ush returns
zero, otherwise, it returns EQF.

7.7 Function fopen

Include: #include <stdio.h>

Prototype: FILE sfopen(const char »fname, const char
#mode) ;

Behavior: fopen opens the file with the name pointed to b-y fna:-ne and
associates a stream with it. The values of argument mode, which specifies the
file mode, are listed below:

Appendix C 213

mode explanation

"r" Open text file for reading.

" Create text file for writing. Existing files are truncated to zero
length.

" a "

Open or create text file for appending.
"rb" Open binary file for reading.

b " Create binary file for writing. Existing files are truncated to
zero length.

"ab" Open or create binary file for appending.

(1] r+ L

Open text file for update (reading and writing).

- Create text file for update. Existing files are truncated to zero
length.

Open or create text file for update and appending.
"r+b"| Open binary file for update (reading and writing).

"web™ Create binary file for update. Existing files are truncated to
zero length.

"a+b"| Open or create binary file for update and appending.

Both input and output may be performed on a stream if the associated file has
been opened with the update mode. However, input may follow output only
after an intervening call to ££1ush, or to one of the file positioning functions
fseek, fsetpos or rewind. Output may follow input only after calling
a file positioning function, except if the end-of-file has been encountered.

If successful, fopen returns a pointer to the stream; otherwise, it returns the
nul! pointer,

7.8 Function freopen

Include: #include <stdioc.h>
Prototype: FILE +freopen(const char +fname,

const char smode, FILE #stream);
Behavior: freopen opens the file with the name pointed to by fname and
associates with it the stream pointed to by stream. Before doing this,

freopen closes the file, if any, associated with stream. Argument mode
is used as in function fopen.

If successful, freopen returns the value of stream; otherwise, it returns
the null pointer.

o

214 Library Routines

7.9 Function setbuf

Include: #include <stdio.h»>
Prototype: void setbuf(FILE #stream, char #buf);

Behavior: Calling setbuf is equivalent to calling setvbuf with mode
equal to _TOFBF (_IONBF if buf is the null pointer) and size equal to
BUFSIZ. The only difference is that setbuf, unlike setvbuf, does not
return a value.

7.10 Function setvbuf

Include: #include <stdio.h>
Prototype: int setvbuf(FILE #stream, char «buf,

int mode, size_t size);
Behavior: setvbuf is used to specify buffering of the stream pointed to by
stream as indicated by parameter mode:

mode effect
_IOFBF fully buffered input/output
_IOLBF line buffered output
_IONBF unbuffered input/output

If buf is not the null pointer, the array it points to may be used to buffer the
input/output (instead of an internally allocated buffer). size specifies the
size of this array. setvbuf is used after associating an open file with a
stream, but before performing input or output,

If successful, setvbuf returns zero; otherwise, it returns a nonzero value.

7.11 Function fprintf

Include: #include <stdio.h>
Prototype: int fprintf{(FILE *stream,

const char «fmt, ..,);
Behavior: fprintf writes output to the stream pointed to by stream as
specified by the string pointed to by £mt which contains characters to be
printed and conversion specifications (formats) specifying how the arguments
(indicated by the ellipsis) arc to be printed.

Each format begins with the % character which is followed by
I. Zero or more flags modifying the format.

2. An optional decimal integer specifying the minimum field width. If
necessary. the value printed is left padded (right padded if the left
adjustment fAag is given) with blanks.

Appendix C 215

3. An optional precision (a period followed by a decimal integer) which
specifies the

a. minimum number of digits to be printed for d, 1, o, u, x and X
formats,

b. number of digits to be printed after the decimal point for e, E and
£ formats,

€. maximum aumber of significant digits for g and ¢ formats, or

d. maximum number of characters to be printed for the s format.

4. An optional h (1) specifying that the following 4, i, O, u, x or X
format applies to a short (long) int or unsigned short
(l1ong) int argument, or that the following n format applies to a
short (long) int = argument; or an optional L specifying that the
following e, E, £, g or G format applies to a Jong double argument,

5. A character specifying the format.

An asterisk » given for the field width {precision) indicates that an argument
specifying the field width (precision) will be given before the argument 1o be
printed.

The flags that can modify the format are listed below:

flag meaning
- Left-justify when output.
+ Print a leading plus or minus sign for signed values.

If the first character of a signed value is not a sign, then print a
leading space.

o format: increase the precision to force the first digit of the
ouiput to be zero.

x (X) format: print a leading 0x (0X) for nonzero results,
e, E, £, g and G formats: print a decimal point,

g and G formats: do not remove trailing zeros.

0 d.i,0,u,x X, e, E, f, gand G formats: use leading zeros
for padding.

space

The formats and their meanings are

()

format meaning
Print an int argument as a signed decimal (d or 1),

4, 1,0, an unsigned octal (o), an unsigned decimal (u) or as
o X X an unsigned hexadecimal (x or X).

Print the double argument (rounded appropriately)
p in the style [-1ddd.ddd. The number of digits printed

after the decimal point is specified by the precision
(default is 6).

Print the double argument (rounded appropriately)
in the style [-}d.exdd. One digit is printed before
e E the decimal point and the number of digits printed after
it is specified by the precision (default is 6). An e (E)
is printed before the (at least two-digit) exponent.

The double argument is printed in the style specified
by the £ or e (E) formats. The e (E) format is used
only for exponents less than —4 or greater than or equal
to the precision,

c Print the int argument as an unsigned char.
Print the string pointed to by the argument. Characters
up to (but not including) the terminating null character

s are printed. If n is the precision, then only n characters
will be printed.
Print the pointer argument, which must be of type
P void ».
The corresponding argument must point to an integer
n into which is written the number of characters printed
up to now by this fprintf call. Nothing is printed.
% Print the ¥ character.

Notation {al is used to specify the optional occurrence of item a.

If successful, £print£ returns the number of characters printed; otherwise, it
returns a negative value.

7.12 Function £scanf

Include: #include <stdio.h>
Prototype: int fscanf(FILE #stream,
const char +fmt, .,.);

Behavior: fscanf reads input from the stream pointed to by str eam,
according to the formats specified in the string pointed to by fmt, anfi assigns
the values read to the objects pointed to by the remaining arguments (indicated
by the ellipsis), which must all be pointers.

Each format begins with the % character which is followed by

. An optional # indicating that the input is to be read but not assigned to

any object (no corresponding argument is given). This is equivalent to
skipping over a data item.

2. An optional decimal integer specifying the maximum field width.

3. Formats 4, i, n, o and x may be preceded by h (1) which indicates
that the corresponding argument is a pointer to a short (long) int
and not a pointer to int. Similarly, format u may be preceded by h
(1) which indicates that the corresponding argument points to an
unsigned short (long) int and not to an unsigned int.
Finally, formats e, £ and g may be preceded by a 1 (L) to indicate that

the corresponding argument points to a (long) double and not a
float.

4. A character specifying the format.

A white space in the format string indicates that input is to be read (but not
assigned to any object) up to the first nonwhite-space character (which remains
unread) or until no further characters can be read. An ordinary character in

the format string indicates that the next input character is to be read only if it
matches the specified character.

White-space characters are skipped in the input unless the next format specifier
isa{,corn. Input is read for each format except for the n format.

Unless an asterisk is given in the format o suppress assignment, the item read
will be stored in the object pointed to by the corresponding argument.

The formats and their meanings are

218 Library Routines

format meaning
a Read a decimal integer; the corresponding argument must be
an integer pointer.
. Read an integer; the corresponding argument must be an
* integer pointer.
Read an optionally signed octal integer; the corresponding
© argument must be an integer pointer.
a Read an unsigned decimal integer; the corresponding argument
must be an unsigned integer pointer.
Read an optionally signed hexadecimal integer; the
x corresponding argument must be an integer pointer.
e £. g Read a ﬂoatir_lg-poir}t int.cgcr-, the corresponding argument
> must be a floating-point pointer.
Read a string, ie., a sequence of nonwhite-space characters;
s the corresponding argument must be a pointer an array large

enough to hold the string plus the automatically added
terminating null character.

Read a string consisting of characters specified after the [and
up to the terminating 1 (called the “matching set™); the
corresponding argument must be a pointer an array large
enough to hold the string plus the automatically added
€ terminating null character. If the first character after the left
bracket is a circumflex (), then the characters read are those
not in the matching set. As a special case, if the format
begins with {] or [], the right bracket is considered to be
part of the matching set; the next] ends the matching set.

Reads n characters where # is the field width (default value is
1): the corresponding argument must be a pointer an array

c large enough to hold the string; a terminating null character is
not added.
Read a pointer value (such as one printed with fpr intf)
P the corresponding argument must be a void pointer.
No input is read; the corresponding argument must be a
n pointer to integer into which is written the number of
characters read up to now by this fscan£ call.
% Matches a single %.

fscanf returns EOF if it fails before reading any data; otherwise, it returns
the number of input items assigned (may not be the same as the number of
items read).

Appendix C 219

7.13 Function printf

Include: #include <gtdio.h>
Prototype: int printf(const chaxr #fmt,

cea)

Behavior: printf is similar to fprintf except that it writes to stdout

7.14 Function scanf

Include: #include <stdic.h>
Prototype: int scanf(const char s*fmt, ...);

Behavior: scanf is similar to fscanf except that it reads from stdin.

7.15 Function sprintf

Include: #include <stdioc.h>

Prototype: int sprintf{char #s, const char #fmt, ...}:

Behavior: sprintf similar to fprintf, except that it writes to an array

Fthe first _argumcnt). A null character is written at the end of output; it is not
included in the value returned by sprintf. '

7.16 Function sscanf

Include: #include <stdio.h>

Prototype: int sscanf{const char #5, const char #«fmt
bl

. U I
Behavior: sscanf is similar to £scan¥, except that it reads from a string

{the first argument). Reaching the end of the string is equivalent to
encountering the end-of-file.

7.17 Function vfprintf

Include: #include <stdarg.h>
#include <stdio.h>

Prototype: int vfprintf(FILE sstream,

const char #fmt, va_list argqg);
Behavior: vfprintf is similar to £printf except that the variable
argument list is replaced by the argument arg, which contains information
about variable arguments; arg must have been initialized by invoking
va_s_tart and it may have been used in subsequent va_arg invocations
Functions called with a variable number of arguments can —pass a variable or"
type va_list holding information about the variable arguments to
viprintf for printing the variable arguments.

o

7.18 Function vprintf

Include: #include <stdarg.h>
#include <stdio.h»

Prototype: int vprintf(const char #fmt, va_list arg);

Behavior: vprintf
stdout.

ts similar to vfprintf except that it writes to

7.19 Function vsprintf

Include: #include <stdarg.h>
#include <stdio.h>
Prototype: int vsprintf(char *#3, const char «fmt,

va_list arg});
Behavior: vsprintf is similar to viprintf, except that it writes its
output to a character array (specified by parameter s).

7.20 Function fgetc

Include: #include <stdioc.h»
Prototype: int fgetc(FILE #stream);

Behavior: fgetc returns the next character from the input stream pointed to
by stream. On encountering the end-of-file, fgetc sets the end-of-file
indicator associated with stream and returns EOF. If a read error 0CCuTS,
fgetc sets the error indicator associated with stream and returns EOF.

7.21 Function £gets

Include:
Prototype:

#include <stdio.h»>
char sfgets(char #s, int n, FILE *sStream);

Behavior: £gets reads up to n—1 characters from the stream pointed to by -

stream into the array pointed to by s. After encountering a new-line
character (which is stored in s) or the end-of-file, no further characters are
read. A null character is written after the last character stored in s.

If successful, fgets returns s. Otherwise, if an end-of-file is encountered
and no characters have been stored in s, or if a read error occurs, then fgets
returns the aull pointer.

7.22 Function £ putec

Include:
Prototype:

#include <stdio.h»>
int fputc(int €, FILE »stream);

Behavior: fpute writes character ¢ to the output stream pointed to by
Stream and returns . If a write error occurs, fputc sets the error
indicator for stream and returns EOF,

Appendix C° 27}

7.23 Function £ puts

Include:
Prototype:

#include <stdio.h»>
int fputs(const char *#5, PILE *stream);

Behavior: fputs writes the string pointed to by s (sans the terminating null
character) to the stream pointed to by stream. If successful, fputs
returns a nonnegative value; otherwise, it returns EOF.

7.24 Routine getc
Include: #include <stdio.h»
Prototype: int getc(FILE sstream);

Behavior: getc is similar to fgetc except that it may be implemented as a
macro.

7.25 Function getchar

Include: finclude <stdio.hs

Prototype: int getchar(void);

Behavior: getchar is simjlar 1o getc except that it reads from stdin.

7.26 Function gets

Include: #include <stdio.h»
Prototype: char *gets(char »s);

Behavior: gets reads characters from the input stream pointed to by stdin
and stores them into the array pointed to by s. It reads characters until an
end-of-file encountered or a new-line character is read. The new-line character

is discarded; a null character is written after the last character stored in the
array.

If successful, gets returns s; otherwise, if an end-of-file is encountered and
no characters have been read into the array or if a read error occurs, then
gets returns the null pointer.

7.27 Routine putc
Include:; #include <stdio.h>
Prototype: int Putc{int ¢, FILE *stream);

Behavior: putc is similar to fputc except that it may be implemented as a
macro.

AN

-

222 Library Routines

7.28 Function putchar

Include: #include <stdioc.h>
Prototype: int putchar{int c);

Behavior: putchar is similar to putc except that it writes to stdout.

7.29 Function puts

Include: #include <stdio.h>
Prototype: int puts{const char =s);
Behavior: puts writes the string pointed to by s to stdout and prints a

new-line character instead of the terminating null character. If successful,
puts returns a nonnegative value; otherwise, it returns EOF.

7.30 Function ungetc

include:; #include <stdio.h»>
Prototype: int ungetc(int ¢, FILE #stream);

Behavior: ungetc pushes argument ¢ back into the input stream pointed to
by stream. Character ¢ will be returned by a subsequent read on stream.
Only one character pushback is guaranteed. The pushed-back character will be
discarded if a file positioning function is called with stream as an argument.

If successful, ungetc clears the end-of-file indicator associated with the
stream and returns the pushed-back character ¢: otherwise, it returns EOF.

7.31 Function fread

Include: #include <stdio.h>
Prototype: size_t fread(void s+ptr, size_t size,
size_t nelem, FILE #stream);

Behavior: £read reads, into the array pointed to by ptr, up to nelem
elements of size size from the stream pointed to by stream. fread
returns the number of elements read successfully.

7.32 Function fwrite

Include: #include <stdio.h>
Prototype: size_t fwrite(const void sptr,
size_t size, size_t nelem,
FILE *stream);
Behavior: fwrite writes, from the array pointed to by ptr, up to nelem
elements of size size to the stream pointed to by stream fwrite
returns the number of elements successfully written.

Appendix C 223

7.33 Function fgetpos

Include: #include <stdio.h>

Prototype: int fgetpos{FILE *stream, fpos_t #pos};
Behavior: fgetpos stores in *pos the current value of the file position
indicator associated with the stream pointed to by stream. If successful,
fgetpos returns zero; otherwise, it returns a nonzero value.

7.34 Function fseek

Include: #include <stdio.hs>

Prototype: int fseek(FILE *stream, long int offset,
int whence);

Behavior: £seek scts the file position indicator associated with the stream

pointed to by stream. For a binary stream, the new position (measured in

characters) is equal to of £set plus the position specified by whence:

‘:;I:;:i specified position
SEEK_SET beginning of the file
SEEK_CUR the current position in the file
SEEK_END end of the file

For a text stream, offset must be equal to zero or it must be a value
returned by ftell and whence must be equal to SEEK_SET. After
calling £seek either input or output can be performed on the stream.

If successful, fseek clears the end-of-file indicator, undoes the effects of
ungetc and returns zero; otherwise, it returns a nonzero value.

7.35 Function fsetpos

Include: #include <stdio.h>
Prototype: int fsetpos{FILE sStream,

const fpos_t »pos);
Behavior: £setpos sets the file position indicator for the stream pointed to by
stream 0 #pos; the value of *pos must have been obtained by calling
fgetpos on the same stream. After calling fsetpos either input or
output can be performed on the stream.

If successful, fsetpos clears the end-of-file indicator, undoes the effects of
ungetc and returns zero; otherwise, it returns a nonzero value.,

()

224 Library Routines

7.36 Function ftell

Include: #include <stdio.h>
Prototype: long int ftell{FILE sstream);

Behavior: £tell returns the current value of the file position indicator
associated with the stream pointed to by stream. If unsuccessful, ftell
returns —1L.

7.37 Function rewind

Include: #include <stdio.h»
Prototype: void rewind(FILE astream);

Behavior: rewind resets, to the beginning of the file, the file position indicator
associated with the stream pointed to by stream.

7.38 Function clearerr

Inciude: #include <stdio.h»>
Prototype: void clearerr(FILE »stream);

Behavior: clearerr clears the end-of-file and error indicators associated
with the stream pointed to by stream.

7.39 Function feof

Include: #include <stdio.h»
Prototype: int feof(FILE sstream);

Behavior: feof returns a nonzero value if the end-of-file indicator is set for
the stream pointed to by stream.
7.40 Function ferror

Include: #include <stdioc.h>

Prototype: int ferror(FILE sstream);

Behavior: ferror returns a nonzero value if the error indicator is set for the
stream pointed to by stream; otherwise, it returns zero.

7.41 Function perror

Include: #include <stdio.h>
Prototype: void perror(const char »s);

Behavior: perror prints, on stderr, an error message corresponding to the
value of errno. This message is prefixed by the string pointed to by s.

8. General Utility Routines

Besides other items, header file stdlib.h contains definitions of the
following types and macros;

Appendix C 225

types mAacros
size_t NULL
wchar_t EXIT_FAILURE
div_t EXIT_SUCCESS
ldiv_t RAND _MAX

MB_CUR_MAX
MB_LEN _MAX

8.1 Function atof

Include: #include <stdlib.h>
Prototype: double atof(const char #nptr);

Behavior: atof converts the string pointed to by nptr to a double which
it returns as its result,

8.2 Function atoi

Include: #include <3stdlib.h»>
Prototype: int atoi{const char snptr);

Behavior: atoi converts the initial portion of the string pointed to by nptx
to an int which it returns as its resuit.

8.3 Function atol

Include; #include <stdlib.h»
Prototype: long int atol(const char snptr);

Bebavior: atol converts the initial portion of the string pointed to by nptr
toa long int which it returns as its result.

8.4 Function strtod

Include: #include <stdlib.h>
Prototype: double strtod{(const char *nptr,

char s#endptr);
Behavior: strtod converts the initial portion of the string pointed to by
nptr to a double and returns this real as its result. A pointer to the
remaining substring is stored in the object pointed to by endptr. In case no

conversion is possible, nptx is stored in endptr. (endptr is assigned a
value only if it is not the null pointer).

/73

8.5 Function strtol

Include: #include <stdlib.h>
Prototype: long int strtol(const char #nptr,
char s+endptr, int base)

Behavior: strtol converts the initial portion of the string pointed to by
nptr to a long int which it returns as its resuit. A pointer to the
remaining substring is stored in the object pointed to by endptr. In case no
conversion is possible, nptr is stored in endptr. (endptr is assigned a
value only if it is not the null pointer). If base is zero, then the string
pointed to by nptr must be an optionally signed integer constant. For more

details about values allowed for base, see the ANSI C Reference Manual
[ANSI C 1988al.

8.6 Function strtoul

Include: #include <stdlib.h»
Prototype: unsigned long int strtoul (const char snptr,
char #+endptr, int base);
Behavior: strtoul converts the initial portion of the string pointed to by
NPtr 10 an unsigned long int: this integer is returned as the result. A
pointer to the remaining substring is stored in the object pointed to by
endptr. In case no conversion is possible, nptr is stored in endptr.
(endptr is assigned a value only if it is not the null pointer). If base is
zero, then the string pointed to by nptr must be an optionally signed integer

constant. For more details about valyes allowed for base, see the ANSI C
Reference Manual [ANSI C 1988a].

8.7 Function rand

Include:
Prototype:

#include <stdlib.h->
int rand{void);

Behavior: rand returns g pseudo-random integer between 0 and RAND_MAX.

8.8 Function srang

Include; #include <stdlib.h»

Prototype: voigq srand(unsigned int sead);

Behavior: srand uses the value of seed to initiate a new sequence of
pseudo-random numbers to be generated by rand. Cailing srand with the

same seed value leads to the generation of the same pseudo-random number
sequence. The default seed used s one.

Appendix C 227

8.9 Function calloc

Include: #include <stdlib.h>
Prototype: void xcalloc(size_t nelem, size_t size):
Behavior: calloc allocates storage for an array of nelem elements, each of
size size. All bits of the allocated storage are set to zero. If successful,
calloc returns a pointer to the allocated storage; otherwise, it returns the

null pointer.

8.10 Function free

Include: #include <stdlib.h>»
Prototype: void free(void sptr);
Behavior: free deailocates the storage pointed to by ptr. The storage

pointed to by ptr must have been allocated previously by calling calloc,
mallocorrealloc.

8.11 Function malloc

Include: #include <stdlib.h->
Prototype: void *malloc(size_t size);

Behavior: malloc allocates size bytes of storage. If successful, malloc
returns a pointer to the allocated storage; otherwise, it returns the nuli pointer.

8.12 Function realloc

Include: #include <stdlib.hs»
Prototype: void *realloc(void »ptr, size_t size);

Behavior: realloc changes the size of the object pointed to by ptr to
size. The contents of the object are unchanged (up to the smaller of the new
and old sizes); if necessary, the contents of the old storage are copied to the
new storage. '

If successful, realloc returns a
otherwise, it returns the null
changed).

pointer to the possibly new allocated space;
pointer (the contents of the old storage are not

8.13 Function abort

Include:
Prototype:

#include <stdlib.h»
void abort(veid);

Behavior: abort causes abnormai termination of the program executing it
urless there is a handler for the signal SIGABRT (generated by abort) and
this handler does not return.

8.14 Function atexit

Inchude: #include <stdlib.h>

Prototype: int atexit(void (efunc)(void));

Behavior: atexit registers the function pointed to by fune, for callin.g
(without arguments) at normal program termination. If atexit is
successful, then it returns zero; otherwise, it returns a nonzero value.

8.15 Function exit

Include: #include <stdlib.h>

Prototype: void exit(int status)};

Behavior: exit causes normal! program termination. Prior to program
termination, functions registered by calling atexit are called, in the reverse
order of their registration (a function registered n times will be called » times.)
All open output streams are flushed, all open streams are closed and all
temporary files (created by calling tmpfile) are removed.

Successful program termination is indicated to the host enviror.lmcnt by calling
exit with the value zero or EXIT_SUCCESS; failure is indicated by calling
exit with the value EXIT_FAILURE.

8.16 Function getenv

Include: #include <stdlib.h>»

Prototype: char sgetenv(const char sname);

Behavior: getenv searches an environment list variable for a string that
matches the string pointed to by name. If successful, getenv returns a
pointer to a string associated with the matched string; otherwise, it returns the
null pointer.

8.17 Function system

Include: #include <stdlib.h>

Prototype: int system(const char #string};

Behavior: system passes the string pointed to by string to the hf)st
environment for execution. The value returned by system is implementation
dependent.

8.18 Function bsearch

Include: #include <gtdlib.h>

Prototype: void »bsearch(const void skey,
consat void sbase, size_t nelem, size_t size,
int (+cmp){const void », const void «))};

Behavior: bsearch searches an array of nelem elements, each of size
size, for an element equal to »key; base points to the first element of this

array which must be sorted in ascending order according to the comparison
function emp. This function takes two arguments and returns an integer less
than, equal to or greater than zero depending upon whether its first argument
is less than, equal to or greater than its second argument.

If successful, bsearch returns a pointer to the array element that matches
#key; otherwise, it returns the null pointer.

8.19 Function gsort

Include: #include <stdlib.h>
Prototype: void gqsort(void shase v Size_t nelemn,

size_t size,

int (xcmp)(const void », const void))
Behavior: gsort sorts an array of nelem elements, each of size size;
base points to the first clement of the array to be sorted. The array is sorted
in increasing order using the comparison function pointed to by cmp, which is
called with pointers to the two arguments to be compared. cmp returns an
integer less than, equal to or greater than zero depending upon whether its first
argument is less than, equal to or greater than its second argument.

8.20 Function abs

Include: #include <stdlib.h»>

Prototype: int abs(int 3§);

Behavior: abs returns the absolute value of its argument,

8.21 Function div
Include: #include <stdlib.h>
Prototype: div_t div(int numer, int denom);

Behavior: div returns a structure of type div_t that contains the quotient
and remainder resulting from dividing numer by denom:

typedef struct div_t {
int quot; /+guotients/
int rem; /#remainders/

} div_t;

Note that quot+*denom+rem is equal to numer.

8.22 Function labs

Include: #include <stdlib.h>

Prototype: long int labs(long int i)s

Behavior: 1abs is similar to abs except it returns a long int value.

AN

8.23 Function 1d4iv

Include; #include <stdlib.h»

Prototype:

ldiv_t 1div{long int numer, long int denem) H
Behavior: 1div is similar to div except that the type of its arguments and
that of the elements of the structure returned s long int.

9. String Handling Routines

Besides other items, header file string.h contains the declaration of the
type size_t and the definition of the macro NULL.

9.1 Function memcpy

Include: #include <string.h»

Prototype: void *memcpy(void #s1, const void *s2,
size_t n);

Behavior: memcpy copies n characters from the object pointed to by 82 to

the object pointed to by s1. Objects pointed to by s1 and s2 must not

overlap. memcpy returns s 1.

9.2 Function memmove

Include: #include <string.h>

Prototype: wvoid *memmove (void #5171, const void *s2,
size_t n);

Behavior: memmove copies n characters from the object pointed to by s2 to

the object pointed to by s 1. Objects pointed to by s1 and s2 can overlap.

memmove returns s 1.

9.3 Function strcpy

Include: #include <string.h»
Prototype: char *strcpy(char «s1, const char *s52);

Behavior: strcpy copies the string pointed to by s2 (including the
terminating null character) to the array pointed to by s1. Objects pointed to
by s 1 and s2 must not overiap. strcpy returns s 1.

9.4 Function strnc PY

Include: #include <string.hs>
Prototype: char *strncpy(char #s1, const char *52,
size_t n);

Behavior: strncpy copies up to n characters or up to the null character from
the array pointed to by s2 to the array pointed to by 51. These two arrays
must not overlap. If the length of the string pointed to by s2 is less than n,

Appentix L 23]

then s1 will be padded with null characters until n characters have been
written. strncpy returns g 1.

9.5 Function strcat

Include: #include <string.h»
Prototype: char xstrcat(char *s1, const char *52);

Behavior: strcat appends a copy of the string pointed to by s2 (including
the terminating null character) to the end of the string pointed to by s1. The
null character at the end of the string pointed to by s 1 is overwritten. s 1 and
$2 must not overlap. strcat returns s 1.

9.6 Function strncat

Include; #include <string.h>
Prototype: char #strnecat(char #*51, const char *s2,
size_t n);
Behavior: strncat appends up to n characters or up to the null character
from the array pointed to by s2 to the end of the string pointed to by s 1.
The null character at the end of s1 is overwritten. A terminating null
character is appended to the string pointed to by s1. s1 and $2 must not
overlap. strncat returns s 1.

9.7 Function memcmp

Include: #include <string.h»

Prototype: int mememp (const void *s1, const void »s52,
size_t nj;

Behavior: memcmp compares the first n characters of the objects pointed to by

s1 and s2 and returns an integer greater than, equal to or less than Zero,

depending upon whether the object pointed to by s1 is greater than, equal to

or less than the object pointed to by s2.

9.8 Function s trcmp

Include: #include <string.h>
Prototype: int stremp(const char #s1, const char *52);

Behavior: strcmp returns an integer greater than, equal to or less than zero,

depending upon whether the string pointed to by s 1 is greater than, equal to
or less than the string pointed to by 52,

o) LA Al Y Dautiied

9.9 Function strcoll

Include: #include <string.h»
Prototype: int strcoll(const char #37, const char ss2);

Bebavior: strcoll is the same as strcmp but the comparison is based on
interpreting the strings to be compared according to local conventions.

9.10 Function strnemp

Include: #include <string.h>

Prototype: int strncmp(const char #s1, const char #8382,
size_t n};

Behavior: strncmp compares up to n characters or up to the null character

from the arrays pointed to by s 1 and s2.

strncmp returns an integer greater than, equal to or less than zero,
depending upon whether the array pointed to by s 1 is greater than, equal to or
less than the array pointed to by s2.

9.11 Function strxfrm

Include: #include <string.h>
Prototype: size_t strxfrm(char #s1 +» const char »s2,
size_t n);
Behavior: strxfrm transforms up to n characters (including the terminating
null character) of the string pointed to by s2 (as described below) and places
the resulting string in the array pointed to by s1. Objects pointed to by s1
and s2 must not overlap. The string pointed to by s2 is transformed so that
the result of comparing two transformed strings with stremp is equal to the
result of comparing the two original strings with strcoll.

strxfrm returns the length of the transformed string.

9.12 Function memchr

Include: #include <string.h>
Prototype: void smemchr(const void »s y int c,

size_t n);
Behavior: memchr returns a pointer to the first occurrence of ¢ (converted to
an unsigned char) in the first n characters of the string pointed to by s.
If memchr does not find such a c, then it returns the nuil pointer,

Appendix L L33

9.13 Function strchr

include: #include <string.h>
Prototype: char #strchr(const char »s, int c);
Behavior: strchr returns a pointer to the first occurrence of ¢ (converted 1o

char) in the string pointed to by s (the terminating null character is also

considered to be part of the string). If strehr does not find such a ¢, then
it returns the null pointer.

9.14 Function strcspn

Include: #include <string.h>
Prototype: size_t strespn(const charx xs1

const char #s52);
Behavior: strespn returns the length of the maximum prefix of string

pointed to by s 1, which consists of characters nor in the string pointed to by
s2.

9.15 Function strpbrk

Include: #include <string.h»>
Prototype: char *strpbrk(const char «s1,

const char »s2);
Behavior: strpbrk returns a pointer to the first occurrence of any character

from the string pointed to by s2 in the string pointed to by s 1. If there is no
such character, then stzpbrk returns the null pointer.

9.16 Function strrchr

Include: #include <string.h»
Prototype: char astrrchr{const char »s, int c¢);

Behavior: strrchr returns a pointer to the last occurrence of ¢ (converted to
char) in the string pointed to by s (the terminating null character is also

considered to be part of the string). If ¢ does not occur in s, then strrchr
returns the null pointer.

9.17 Function strspn

Include: #include <string.h>
Prototype: size_t strspn(const char »s1,
const char =s52);

Behavior: strspn returns the length of the maximum prefix of the string

pointed to by s1 which consists of just the characters in the string pointed to
by s2.

-

9.18 Function strstr

Include:
Prototype:

#include <string, hs
char *strstr{const char «g1,
const char *s2),

String in the String pointeq
to by s1 that matches the string pointed 1o by s2. If there s no such

substring, strsty returns the null pointer. If s2 points 10 a zero-length
string, then strsty returns s 1.,

9.19 Function strtok

Include:
Prototype:

#include <string.hs

char *strtok{char +g1 » const char *s2});
Behavior: A series of calls 1o strtolk splits the string Pointed 10 by 51 jnto a
series of tokens (items), each of which is delimited by a character from the
Separator string pointed 1o by s2. The first argument of the first call js the

string to be split into tokens; this argument is replaced in subsequent calls by
the nul! pointer.

If a token is found, then Strtok returns a pointer to the first character of the
token; otherwise, it returns the nul} pointer.

9.20 Function memset

Include:
Prototype:

#include <string.hs»

void smemset(voigd *s, int ¢, size_t n);
Behavior: memset sets each of the first n ch

aracters of the object pointed to
by s to the character €. memset returps g,
9.21 Function Strlen

Include:
Prototype:

#include <string.hs
size ¢t strlen{const char g5},

Behavior: strien returns the length of the string pointed to by s (excluding
the terminating nujl character).

10. Date and Time F unctions

Besides other items, header file time.h contains the 4
NULL and the CLK_TCK, the declarations
clock_t, time_t zand struct tm.

efinition of the macros
of the types size_t,

clock_t and time_t are arithmetic types capable of fepresenting times.
Structure tm must have at least the following components:

Sy

g

Appendix C 235

int tm_sec; /+seconds: 0 to 59/

int tm_min; /+minutes: 0 to 59/
int tm_hour; /#+hours: 0 to 23 %/
int tm_mday; /*day: 1 to 31as

int tm_mon; /+month: 0 to T1e/

int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

/®years since 1900/

/#days since Sunday: 0 to 6/
/#days since January 1: 0 tgo 365a/
/#+Daylight Saving Time flagwe/

tm_isdst is positive if Daylight Saving Time is in effect, zero if it is not in
effect, and negative if information is unavailable.

10.1 Function clock
Include: #include <time.h»
Prototype: clock_t clock(void);

Behavior: clock returns the processor time in clock ticks used since the
beginning of program execution. To determine the time in seconds, the vaiye
returned by clock is divided by CLK_TCK.

10.2 Function 41 fftime

Include; #include <time.hs

Prototype: double difftime(time_t t1, time_t t0);
Bebavior: difftime returns the value of the expression t1—+t0 (in
seconds) .

10.3 Function mkt ime

Include: #include <time.h>
Prototype: time_t mktime(struct tm *timeptr);

Behavior: mktime returns the calendar time (using the encoding used by
time) corresponding to the time specified as components of the structure
pointed 10 by timeptr,

10.4 Function time

Include: #include <time.h»
Prototype: time_t time(time_ ¢t stimer);

Behavior: time returns the current calendar time. If timer is not equal to
the null pointer, then the value returned is stored ip stimer.

77 A

10.5 Function asctime

#include <time.hs>
char sasctime(const struct tm stimeptr);:

Include;
Prototype:

Behavior: asctime converts the time specified as components in the structyre
*timeptr into a string of the form

Wed May 18 22:43:56 1988\n\0
and returns a pointer to this string.

10.6 Function ctime

Include:

#include <time,hs>
Prototype: char *ctime(const time_t stimer);

Behavior: ctime converts the calendar time pointed to by timer to local
time and returns a pointer 1o the string containing the local time.

b pw R 6

10.7 Function gmtime

Include:
Prototype:
Behavior: gmtime splits the calendar time pointed to by timer into
components in terms of the Coordinated Universal Time (UTC) and returns a
pointer to the structure containing the components.

#include <time.h>»
struct tm sgmtime(const time_t stimer);

AL T LTI VEP ST

it

10.8 Function 1oca] time

LN 3

Include; #include <time.h»> x
Prototype: struct tm +localtime(const time_t stimer); :
Behavior: 1ocaltime splits the calendar time pointed to by timer into ;

components expressed as local time. It returns a pointer to a structure

containing the components.

S i,

e

Appendix D
Differences between ANSI C and K & RC

I will now summarize the important differences between K&R C and ANSI C
[Relph 1987; Kernighan & Ritchie 1978; ANSI C 1988a]. Unless qualified by
K&R C or ANSI C, the discussion refers 10 the changes made to K&R C by
the ANSI C standardization process, i.c., the discussion refers to ANSI C
specific facilities. Note that many C compilers already implement some ANSI
C extensions. This is because these compilers implement an extended form of
K&R C that is described in The C Programming Language — Reference
Manual [Ritchic 1980]. Extended K&R C includes features such as
enumeration and void types, structure arguments in function calls, and
structure assignment; these features have been incorporated into ANSI C.

1. General

1. A standard character set is specified whereas in K &R C the character set
was implementation dependent.

2. The following trigraph sequences, denoting characters not found on all
keyboards, are supported:

trigraph | character

sequence | denoted
??= #
77 ([
rr/ \
?7?) 1
?e’ .
T« {
7?1]
77> }
?P- -

3. Keywords const, volatile, enum, signed and void have been
added.

4. Keywords entry, fortran and asm have been deleted.

N

(1709

W3 o1 Yoy

(+oiviado punior) *

131 01 W3

e =f =x - =+ -

131 01 W3u

w3 03 Y9

W3 01 Yoy

3 01 Y9y

14315 01 Y91

W3 01 Y|

3 01 Yoy

3u 0y Yoy

31 01 13|

W31 01 Yoy

TEITRVRTE!

ya| 01 1y3u

(ssaappo) % (uonoaaipul) » (Kivuny - (Ksoumy 4

(ad£71) J03z1s - i - ++

3 01 139y

<~ [1 QO

dnanoi1oossy

sioppa2dg)

1013D100SSY/ PUD

mquﬁwuwa

L0ID424 ()
d XIANAddV

6D QUICK REFERENCE oon vernen +

Essential Commands

gdb program [corc] debug pregram [uaing coredump corc]
b [ﬁle:]_funcﬁon
ran [anghal]

set breakpoint at function ['m ﬁle]

start your program [with nrgh'sl]

bt backtrace: display program stack
p expr display the value of an expression
[continue running your program

n

next line, stepping over function calls

s next line, stepping into function calls
Starting GDB
gav start GDB, with no debugging files

gdb program

begin debugging program
gdb program core

debug coredump core produced by
program

gdb ~-help deacribe command line options

Stopping GDB

quit exit GDB; also q or EOF {eg C-d)

INTERRUPT (eg C-c) terminate current command, or
send to running process

Getting Help

help list classes of commands

help class

one-line descriptions for commande in
class

help command deacribe command

Executing your Program

run arglist start your program with arglist

Tun start your program with current argument
liat

run ... <inf >outf start your program with input, cutput
redirected

kill kill running program

tty dev use dev as stdin and stdout for next run

set args arglist apecify arglist for next run

sat args specify empty argument list

show args display argument list

show env

show all environment variables

show value of environment variable var
5ot env var string set environment variable var

unset env var remove var from environment

show envy var

Shell Commands

cd dir change working directory to dir

pwd Print working directory

make ... call “make”

shell cmd execute arbitrary shell command string
) R e

DredkKpuolnts aud yyalcnpuolnes

break [ﬁle:]h‘ne
b [ﬁle:]line
break [ﬁle:]func
break +offset

break —offset
break *addr
braak

break ... if expr
cond n [ezprl
tbreak . ..
rbreak reger

watch erpr
catch z

info break
info watch

clear

clear [ﬁle:]jun
clear Lﬁle:]line
delete [n]

dissble [n)
snable [n]

enable once [n]
snable del [n]

ignore n count

commands n
[silunt]
command-list

snd

set breakpoint at line number [in ﬁle]

eg: break main.c:37

set breakpoint at func [in _ﬁle]

set break at offset lines from current stop

set breakpoint at address addr
set breakpoint at next inatruction
break conditicnally on nonzero expr

new conditional expression on breakpoint
n; make unconditional if no ezrpr
temporary break, disable when reached
bresk on all functions matching regex
set a watchpoint for expression expr
break wt C+<4 handler for exception z

show defined breskpoints
show defined watchpoints

delete breakpoints at next instruction
deiete breakpoints at entry to fun{)
delete breakpoints on source line

delete breakpoints [or breakpoint n]

disable breakpoints [or breakpoint n]
enabie breakpoints [or breakpoint n]

enable breakpoints [or breakpoint n]-,
disable again when reached

enable breakpoints [or breakpoint n];
delete when reached

ignore breakpoint n, count times

execute GDB command-isst every time
breakpoint n is reached. [lilont
suppreases default diaplay]

end of command-list

Program Stack

backtrace [n]

bt [n]

frame [n]

up n

down n

info frame [addr]

info args
info locals

info reg [rn]. .
info all-reg [rn]
info catch

print trace of all frames in stack; or of n
frames—innermost if n>Q, outermost if
n<0

select frame number n or frame at address
n; if no n, display current frame

select frame n frames up

select frame n frames down

describe selected frame, or frame at addr

arguments of selected frame

local variables of selected frame

register values [for regs rn] in selected
frame; all~reg includes floating point

exception handlers active in selected frame

2

LXeCULIOon Lontrog

continuae [count]
< [COII"I‘]

atep [count]
5 [coun!
atepi [count]
i [count]

next [caunt]
n [count]

nexti [caunt]
ni [count]

until [loca!ion]
tinish
return [e:pr]

signal num
Jump line
jump ®address
set var®ezpr

Display
print [II] [e:rpr]
p (/1] [ezpr]

HO N tO L RN

call [/f] espr
x [INuf] expr

N

disassem [nddr]

continue running; if count specified, ignore
this breakpoint next count times

execute until another line reached; repeat
count times if apecified

step by machine instructions rather than
source lines

execute next line, including any function
calls

next machine inatruction rather than
source line

run until next instruction (or location)

run until selected stack frame returns

pop selected stack frame without
executing [utting return value]

resume execution with signal s (none if 0)

resume execution at specified line number
or address

evaluate erpr without displaying it; use
for altering program variables

show value of ezpr [or last value $}
according to format f

hexadecimal

signed decimal

unsigned decimal

octal

binary

address, absolute and relative
character

floating point

like print but does not display void

examine memory at address erpr, optional
format spac follows slash

count of how many units to display
unit size; one of

b individual bytes

h halfwords (two bytes)

w words (four bytes)

£ giant words (eight bytes)
printing format. Any print format, or

8 null-terminated string

i machine instructions

display memory as machine instructions

Automatic Display

display [/f] expr

display
undisplay n

disable disp n

show value of erpr each time program
stops |according to format _ff

display all enabled expressions on list

remove number(s) n from list of
automatically displayed expressions

disable display for expression{s) number n

EXPpressions
erpr

addr@len

file::am
{typc}ad‘dr
$

$n

39

$3n

3.

.

$var

shov values [n]
show conv

Symbol Table

info address s
info func [rege::]

info var [n:ge::]

vhatis [expr]
ptype [expr]
pPtype type

GDB Scripts

source script

deafine cmd
command-list

end

document cmd
help-test

end

Signals

handle signal act
print
noprint
stop
nostop
pass
nopass
info signals

an expression in C, C++4, or Modula-?
(including function calls), or-
8n array of len elements beginning at

addr

a variable or function nm defined in file
read memory at addr as specified type

most recent displayed value

nth displayed value

displayed value previous to §

nth displayed value back from $

last address examined with x

value at address §_

convenience variable; nssign any value

show last 10 valuea [or surrounding Sn]
display all convenience variables

show where symbol s is stored

show names, types of defined functions
(nll, or matching regez)

show names, types of global variables (all,
or matching reger)

show data type of ezpr [or 3] without
evaluating; ptype gives more detail

describe type, struct, union, or enum

read, execute GDB commands from file
script

create new GDB command cmd; execute
script defined by command.-list

end of command-list

create online documentation for new GDB
command cmd

end of help-text

specify GDB actions for signal:

announce signal

be silent for signal

halt execution on signal

do not halt execution

ellow your program to handle signal

do not allow your program to ses signal
show table of signals, GDB action for each

Debugging Targets

target type param connect to target machine, process, or file

halp target
attach param
detach

display available targets
connect to ancther process
release target from GDB control

COntromng aun

set param value
show param

set one of GDB's internal parameters
display current setting of parameter

Parameters understood by set and show:

complaint limit
confirm on/off
sditing on/off
height Ipp

language lang

listsize n
prompt str
radix base

verbose on/off
width cpt
write on/off

history ...
h...
h exp offfon

h file filename
h size size

h save off/on

primt ...
P

p array off /on

number of messages on unusual symbols

enable or disable cautionary queries

control readline command-line editing

number of lines before pause in display

Language for GDB expressions {auto, c or
modula-12)

number of lines shown by list

use str as GDB prompt

octal, decimal, or hex number
representation

control messages when loading symbols

number of characters before line folded

Allow or forbid patching binary, core files
{when reopened with sxec or core)

groups with the following options:

disable/enable readline history expansion

file for recording GDB command history

number of commands kept in history list

control use of external file for command
history

groupa with the following options:

p address on/off print memory addresses in stacks, values

compact or attractive format for arrays

p demangl on/off source (demangled) or internal form for

C++ aymbols

p asm~dem on/off demangle C++ aymbals in machine-

instruction output

p elements limit number of array elements to display

p object on/off
p pretiy off/on
p wnion on/off
p ¥tbl off/on

show commanda
show commands n
show cosmands +

Working Files
file [fire]

core [ﬁle]
axec [ﬁle]

symbol [ﬁ!e]
load fite
add-sym file addr

info files
path dirs

show path
info share

print G4+ derived types for objects
struct display: compact or indented
display of union members

display of C+4 virtual function tables

show iast 10 commands
show 10 commands mround number n
show next 10 commanda

use file for both symbols and executable;
with no arg, discard both

read file as coredump; or discard
use file ns executable only; or discard

use symbol table from file; or discard

dynamically link file and add its symbols

read additional symbols from file,
dynamically loaded at addr

display working files and targets in use

add dirs to front of path searched for
executable and symbol files

display executable and symbol file path
liat names of sharad lihrarisa ~ureantlo

Dource rues
dir names

dir
show dir

list
list -
list tines

Lﬁle:]num
[ﬁle:]function
+off
‘Oﬂ
*address
liat f,1
info line num

info source
info sources
Torw regex
I'eY regex

add directory names to front of source
path

clear source path

show current source path

show next ten lines of source

show previous ten lines

display source surrounding lines, specified
BN

line number [in named ﬂle]

beginning of function [in named ﬁle]

off lines after last printed

off lines previous to Inst printed

line containing address

from line f to line !

show starting, ending addresses of
compiled code for source line num

show name of current source file

list all source files in use

search following source lines for regex

search preceding source lines for regex

GDB under GNU Emacs

M-x gdb
C-hm
H-s

N-n

M-i

C-¢c C-f
R-c
R-u
M-d
C-x &
C-x SPC

GDB License

show copying
show warranty

run GDB under Emacs

describe GDB mode

step one line (step)

next line (next)

step one instruction (stepi)

finish current stack frame (finish)
continue (cont)

up arg frames (up)

down arg frames (down)

copy number from point, insert at end
(in source file) set break at point

Display GNU General Public License
There is NO WARRANTY for GDB.
Display full no-warranty statement.

Copyright @1991, 19932, 1993 Free Software Foundation, Inc.
Roland Pesch (pesch@cygnus.com)
The author assumes no responsibility for any errors on this card.

This card may be freely distributed under the terms of the GNU
General Public License.

Please contribute to developmert of this card by annotating it.

GDB iteell is free sofiware; you asre welcome to distribute copies of
it under the terms of the GNU General Public License. There is
abrolutely no warranty for GDB.

