INTERNATIONAL ATOMIC ENERGY AGENCY l
‘ P UNITED NATIONS EDUCATIONAL, SCIENTIEIC AND CULTURAL ORGANIZATION ﬁ
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
1.CT.P.. P.O. BOX 586, 14100 TRIESTE, ITALY, CABLE. CENTRATOM TRIESTE

@

QQ The United Nations
7> University

SMR/774 - 11

THIRD COLLEGE ON MICROPROCESSOR-BASED REAL-TIME
CONTROL - PRINCIPLES AND APPLICATIONS IN PHYSICS
26 September - 21 October 1994

LINUX-DEVICE DRIVERS

Ulrich RAICH
C.E.R.N.-European Organization for Nuclear
Research
E.P. Division
CH-1211 Geneva
SWITZERLAND

These are preliminary lecture notes, intended only for distribution to participants.

Marw BusLpina Stasoa Cormmaa, 11 Ta. 22401 Tawax 224163 Taxy 460392 Apmiance Guzsr Housmt Via Guonano, 9 Ta 224241 Tamwax 224531 Tumx 460449
— PR, Amisan AENAO £ oo ernnm Hnar Via Raaaer 7 Ta 22401 Tawax 2240310 Taxx 460392

Sep 51994 10:04:14 drivers.doc

Te A T A e Tk ok ok o v v g g ko ek o e e o o R R AR YO R R e R o ek o A O ok o ke ok ok ol ok ol ke ok o o ok ok e ek
Guide To Linux Driver Writing -- Character Devices
or,

The Wacky World of Driver Development (I}

* % X % * % % 4 *
* % X % ¥ A * X ¥

Last Revision: Apr 11, 1993

LAt RS AR RS R ESE RIS T I RS RS EE R SRS RS RS RS KL S

This document (C) 1993 Robert Baruch. This document may be freely
copisd as long as the entire title, copyright, this notice, and all of
the introduction are included along with it. Suggestions, criticiams,
and comments to baruch@nynexst.com. This document, nor the work
performed by Robert Baruch using Linux, nor the results of said work
are connected in any way to any of the Nynex companies. Information
may settle during transportation. This product should not be used

in conjunction with a dietary regime except under supervision by your
doctor.

Right, now that that’s over with, let’s get into the fun stuff!

Introduction

There is a companion guide to this Guide, the Linux Character Device
Tutorial. This tutcrial contains working examples of driver code. It
introduces the reader gently into each aspect of character device driver
writing through experiments which are carried cut by the programmer.

This Guide should serve as a reference to both beginning and advanced
driver writera.

Some words of thanka:
Many thanks to:

Donald J. Becker (beckerf@metropolis.super.ocrg}
Don Holzworth (donh@goxl.ssd.csd.harris.com)
Michael Johnson (johnsonm@stolaf.aedu)

Karl Heinz Kremer (khk@raster.kodak.com)

All the driver writeras!

.-.and of course, Linus "Linux" Torvalds and all the guys who helped
develop Linux intoc a BLOODY KICKIN’ ©/S!

++.and now a word of warning:

Messing about with drivers is messing with the kernel. Drivers are run
at the kernel level, and as such are not subject to acheduling. Further,
drivers have access teo various kernel structures. Before you actually
write a driver, be *damned* sure of what you are doing, lest you end

up having to re-format your harddrive and re-install Linux!

The information in this Guide is as up-to-date as I could make it. It also
has no stamp c¢f approval whatsocever by any of the designers of the kernel.

I am not responsible for damage caused to anything as a result of using this
Guide.

End of Introduction

Kernal-callable functions:

Note: There ias no close for a character device. There is only release.
See the file data structure below to find ocut how to determine the number
of processes which have the device open.

init : Initializes the driver on bootup.

Page 1

=

Sep 51994 10:04:14 drivers.doc

unsigned long driver init (unsigned long kmem start, unsigned long kmem_end)

Arguments: kmem start —~- the start of kernel memory
kmem end —-- the end of kernel memory

Returns: The new start of kernel memory. This will be different from the
kmem_start argument if you want to allocate memory for the driver.

The arguments you use depends on what you want to do. Remember that since
you are going to add your init function to kernel/chr dev/mem.c, you can
make your call anything you like, but you have access to the kernel memory
start and end.

Generally, the init function initializes the driver and hardware, and
displays some message telling of the availability of the driver and
hardware. In addition, the register chrdev function is usually called here.

AR A kNI AN KK
open : Open a device

static int driver open(struct inode * inode, struct file * file)

Arguments: inode —-— pointer to the inode structure for this device
file —— pointer to the file atructure for this device

Returns: 0 on success,
~errnc¢ oOn error.

This function is called whenever a process performs open (or fopen) on
the device special file. If there is no open function for the driver,
nothing spectacular happans. As long as the /dev file exists, the
open will succeed,

ARKAKR AR KK ARk
read : Read from a device

atatic int driver_read(struct inode * inode, struct file * file,
char * buffer, int count)

Arguments: inode -= pointer to the inode structure for this device
file —-- peinter to the file structure for this device
buffer - pointer to the buffer in user space to read into
count —= the number of bytes to read

Returns: =-errnc on e&rror
>=0 : the number of bytes actually read

If there is no read function for the driver, read calls will return EINVAL.
SRk bk ok kokk RN
write : Write to a device

static int driver write(struct inods * inode, struct file * file,
char * buffer, int count)}

Arguments: inode ~- pointer to the inode structure for this device
file -- pointer to the file structure for this device
buffer -- pointer to the buffer in user space to write from
count == the number of bytes to write

Returns: -errno on error
>w=0 : the number of bytes actually written

If there is no write function for the driver, write calls will return
EINVAL.

KRAAKXFEXAX AN A AKR
lseek : Change the position offset of the devicae

static int driver_ lseek{struct inode * inode, struct file * file,
off t offset, int origin)

Arguments: inode -— pointer to the inode structure for this device
file -— pointer to the file structure for this device
cffaset -- offset from origin to move to (bytes)

Page 2

-

Sep 51994 10:04:14 drivers.doc Page 3

origin —- origin to move from :
0 = from origin 0 (beginning)
1 = from current pesition
2 = from end

Raturns: —errnoe on error
»>=0 : the position after the move

See Also: Data Structure 'file’

If there is no lsesk function for the driver, the kernel will take the default
sesk action, which is to alter the file->f pos alement. For origins of 2,

the default action results in ~EINVAL if file->f inode is NULL, or it

sets file->f pos to file->f_inode—>i_size + offset otherwise.

RAINRANENRR KK
joctl : Various device-dependent services

static int driver_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned leng aryg)

Arguments: inocde -- pointer to the inode structure for this device
file -- pointer to the file structure for this device
amd —- the user-defined command to perform
arg ~= the user-defined argument.. You may uase this

as a pointer to user space, ainde sizeof(long)==
aizeof(void *).

Returns: —e&rrno on 4rror
>=0 : whatever you like! {(user—defined)

For cmd, FIOCLEX, FIONCLEX, FIONBIO, and FIQASYNC are already defined.
See the file linux/fs/ioctl.a, sys_ioctl to find out what they do.

If there is no ioctl call for the driver, and the ioctl command performed
is not one of the four types listed here, iootl will return -EINVAL.

S22 22223 3 2 4]
selesct : Performs the select call on the devica:

statio int driver select (struct inode *inode, struct file *file,
int sel type, seslect table * wait)

Arguments: inode -- pointer to the inode structure for this device
file -- pointer to the file structure for this device
sel type -- the select type to perform :

SEL_IN (read)
SEL_OUT {write)
SEL_EX {exception}
wait -- mee the section "Some Notes" for select.

Returns: O if the device is not ready to perform the sel_type cperation
{=Q if it is.

See the "Some Notes" section 'way below on information on how teo use
the select call in drivers. If there is no salect call for the driver,
select will act as if the driver is ready for the operation.

ook i e ek Ak ek e e ok
releass : Release device (no process holds it open)

static void driver_;olaase(struct jnode * inode, struct file * file}

Argumenta: inode -- pointer to the inode atructure for this device
file «- pointer to the file structure for this device

The release call is activated only when the proceas cleoses the device as
many times as it has opened it. That is, if the process has opened the
device five times, then only when close is called for the fifth time

will release be called (that is, provided there weres no more calla to open!).
If there is no release call for the driver, nothing spectacular happens.

KRR EANRRNKNNNK
readdir : Get the next directory entry

static int driver_readdir(struct inode *inode, struct file *file,
struct dirent *dirent, int count)

Sep 51994 10:04:14 drivers.doc

Argquments: inode ~= pointer to the inode structure for this device
file -- pointer to the file structure for thias device
dirent -— pointer to a dirent ("directory entry")} structure
count —- number of entries to read {(currently alwaysa 1)

Returns: 0 on succeas
-~arrno on failure.

If there is no readdir function for the driver, readdir will return
-ENOTDIR. This is really for file aystems, but you can probably use
it for whatever you like in a non-fs device, as long as you return

a dirent structurae.

Ses Alsc: dirent (data structure)

LA AR R R L RT R LS4

mmap : Forget this. According to the scurce (src/linux/mm/mmap.c},
for character devices only /dev/[k]lmem may be mapped.
Beaides, I'm not too clear on what it will do.

Data structures:

dirent : Information about files in a directory.
#include <linux/dirent.h>

struct dirent {

long d ino; /* Inode of file */
off t d_off;

unsigned short d_reclen;

char d_name [NAME MAX+1]; /* Name of file */

%% vk ek gk gk e W R

file : Information about open files

According to the Hacker’s Guide to Linux, this structure is mainly used
for writing filesystems, not drivers. However, there is no reason it
cannot be used by drivers.

$include <linux/fa.h>

struct file {
mode_t f mode;

dev_t £ rdev; /* needed for /dev/tty */

off t £ poa; /* Curr. posn in file */

unaigned short f flags; /* The flags arg passed to open */
unsigned short f count; /* Number of opens on this file */
unsigned short f reada;

struct inode * f inode; /* pointer to the inode struct */

struct file cperaticns * f op; /* pointer to the fops struct */

AEAXANRAAR NN Aok

file operations : Tells the kernel which function to call for
which kernel function.

#include <linux/£fs.h>

struct file operaticns {
int” (*lseek) (struct inode *, struct file *, off_t, int);
int (*read) (struct inode *, struct file *, char *, int};
int (*write) (struct inode *, astruct file *, char *, int):;
int (*readdir) (struct inode *, struct file *, struct dirent *, int);
int (*salect} (atruct inode *, struct file *, int, select table *);
int (*iocctl) (atruct incde *, astruct file *, unaigned int,
unsigned int):;
int (*mmap) (void):
int {(*open) (atruct inode *, struct file *);
void (*release) (struct inode *, struct file *};
int (*faync) (struct inode *, struct file *};

Page 4

Sep 51994 10:04:14 drivers.doc

ol Rk kv e g ek ok
incde : Information about the /dev/xxx file {(or inode)

#include <linux/fs.h>

struct inode {

dev_t i dev;

unsigned long i_ino; /* Inode number */
umode t i_mode; /* Mode of the file */
nlink_; i_nlink;

uid t i uid;

gid t i gid;

dev_t i_rdev; /* Device major and minor numbers */
of:ﬂt i size;

time t i"atime;

time t i mtime;

time t i_ctime;

unaigned long i blkaize;

unaigned long i_blocka;

struct inode operations * i _OP;

struct super | “block * i _8b;

struct wait queue * i wait:

struct file lock * i_Flock:

atruct vm area struct * i Jmnap;

struct inode * i _next, ¥ l_PIOV,

struct inode * i hash next, * i _hash prev;

struct inode * i bound L to, * i_bound by:

unsigned short 1 count,

unsigned short i flags; /* Mount flags (see fs.h) */

unsigned char i Tock;

unaigned char i_dirt;

unsigned char i pipe;

unsigned char i_mount;

unsigned char i_seek;

unsigned char i _update;

union {
struct pipe_inode_info pipe 1:
struct m;nix inode _info minix . i:
struct ext xnode info ext iz
struct msdos inode info mados - i;
struct iso_inode_info imofs i;
struct nfa_}node_lnfo nfs_x,

}ouy

}z

See Also: Driver Calla: MAJOR, MINCR, Is_RDONLY, IS_NOSUID, IS_NODEV,
IS_NOEXEC, IS_SYNC

Driver calls:

Kk A AKXk Rhkik

add_timer : Cause a function to be executed when a given amount of time
has passed.

#include <linux/sched.h>
void add_timer(long jiffies, veoid (*fn) (void))

Arguments: jiffies -- The number of jiffies to time out after.
fn == The function in kernel space to run after timeocut.

Note! This is NOT proceas-specific! If you are looking for a way
to have a process go to sleep and timeout, look for ?

Excessive use of this function will cause the kernel to panic if there are
too many timecuts active at once.

HRERANRARK RN AN
cli : Macro, Prevent interrupts from occuring
#include <asm/system.h>

$define cli () __asm_ _ volatile {("cli™::)

Seea Also: sti

Page 5

Sep 51994 10:04:14 drivers.doc Page 6

AR K AN kR R Ak dh
free irq : Free a registered interrupt

#include <linux/sched.h>

void free_irg(unsigned int irg)

Arguments: irg -- the interrupt level to free up

See Also: request irg

Hhhkkkhhhkhhkhkhk

get_fas_ byte, geat fs word, get"fs_;ong : Get data from user space

Purpose: Allows a driver to access data in user space (which is in
a different segment than the kernel!)

tinclude <asm/segment.h>

inline unsigned char get fs byte(const char * addr)

inline unaigned short get fa word(const unsigned short *addr)
inline unsigned long get_ fa Tong(conat unsigned long *addr)
Arguments: addr -- the address in user space to get data from

Returns: the value in user space.

Sae Alsc: memcpy_fromfs, memcpy tofs, put fs byte, put fs word, put_fas_ long

AR RN KN KKKk kK

inb, inb_p : Inputs a byte from a port
#include <asm/io.h>

inline unsigned int inb(unsigned short port)
inline unsigned int inb p(unsigned short port)

Arguments: port -- the port to input a byte from

Returna: Byte raceived in the low byte. High byte unused.
Ses Alsc: outb, outb p

Je % e % W o ok ke e v i o

IS_RDONLY, I5_NOSUID, IS NODEV, IS _NOEXEC, IS_SYNC: Macroas, check the status
of the device on the fileayatem

#include <linux/fs.h>

fdefine IS_RDONLY(inode) ({(incde) ~>i_sb)} && ((inode}->i sb->a flags &
MS_RDONLY}) - -

#define IS_NOSUID(inode) ({inode)->i flags & MS_NOSUID)

#define IS NODEV(inode) ((inode)->i flags & MS_NODEV)

#define IS_NOEXEC (inode) ((inode)->I flags & MS_NOEXEC)

#define IS SYNC(inode) ({(inode)->i_ flags & MS_SYNC)

A RKAA AT ATRERK
kfree, kfree s : Free memory which has been kmalloced.
¥include <linux/kernel.h>

$define kfree(x) kfree a((x), Q)
void kfree s(void * obJ, int size)

Arguments : obj -— pointer to kernel memory you want to free

aize -— size of block you want to free (0 if you don’t know
or are lazy -- slows things down)

AAKARA NI RARARRL
kmalloc : Allocate memory in kernel spacs

#include <linux/kernel.h>

Sep 5 1994 10:04:14 drivers.doc Page 7

void * kmalloc{unsigned int len, int prioxrity)
Argumentas: len —— the length of the memory to allocate. Must not be bigger
than 4096.
priority -- GFP KERNEL or GFP_ATOMIC. GFP_ATOMIC causes kmalloc

to Teturn NULL if the memory could not be found
immediately. GFP_KERNEL is the usual priority.

Returns: NULL on failure, a peinter to kernel space on success.
3233222 8 22 0.8 0

memcpy fromfs, memcpy tofs : Copies memory from user (Fromfs)/kernel (tofs)
space to kernel/user space

$include <asm/segment.h>

inline void memcpy fromfa(void * to, const void * from, unsigned long n)
inline void memcpy tofa(void * to, const void * from, unsigned long n)

Argquments: to -- Address to copy data to
from -- Address to copy data from
n ~= number of bytes to copy

See Alsc: get_fa byte, get_£a_word, get_fa long,
put_fs byte, put_£s_word, put_fs_long

Warning! Get the order of arguments right!

FT2 22222 X a2)

MAJOR, MINOR : Macros, get major/minor device number from inode i_dev entry.
#include <linux/fs.h>

$define MAJOR (a) { { (unsigned) (a}}>>8)

$define MINOR(a} ((a)&O0xff)

T332 R0 42)]

outb, outb p : Outputa a byte to a port

#include <asm/ioc.h>

inline void outhk (char value, unsigned short port)
inline veid outb vni{char value, unsigned short port)

Arguments: value -- the byte to write out
port -—- the port to write it out on

See Also: inb, inb p

AR AR A A A bk

printk : Kernel printf

#include <linux/kernel.h>

int printk{const char *fmt, ...)

Arguments: fmt -—- printf-style format
... =- yar-argumenta, printf-style

Returns: Number of characters printed.
A Ak RXXRK* AR
put_£fs_byte, put_£s_word, put_£s long : Put data into user space

Purpose: Allows a driver to put a byte, word, or long into user space,
which is at a different segment than the kernel.

$include <asm/segment.h>

inline wvoid put_fs_pyte(cha: val,char *addr)

inline void put_fs_ word(short val, short * addr)

inline void put_fs_}ong(unsignod long val,unsigned long * addr)

Arguments: addr -— the addresa in user space to get data from

Sep 51994 10:04:14 drivers.doc Page 8

Returns: the value in user spacse.
See Almo: memcpy fromfs, memcpy_tofs, get fs byte, get fs word, get_fs_ long

Warning! Get the order of arguments right!

drd de o dok e A ek ko ok ok
register_chrdev : Register a character device with the kernel

#include <linux/fa.h>
#include <linux/errno.h>

int rogister_chrdev(unsigned int major, censt char *name,
struct file operations *fops)

Argquments: major -~ the major device number to regiater as
name -- the name of the device (currently unused)
fops -- a file operationa structure for the device.

Returns: -EINVAL if major ias >= MAX CHRDEV (defined in fs.h as 32)
~-EBUSY if major device has already been allocated
0 on success.

kv ek Ao kok kw
request_irq : Request to perform a function on an interrupt

#include <linux/ached.h>
#include <linux/errno.h>

int request irqg(unsigned int irq, veoid (*handler) (int))
Arguments: irg -= the interrupt to request.
handler -- the function to handle the interrupt. The interrupt
handler should be of the form void handler (int).

Unless you really know what you are doing, den't
use the int argument.

Returns: -EINVAL if irg>l5 or handler==NULL
-EBUSY if irq is already allocated.
0 on success.
See Also: free_irg
e %k T v o A o ok ke ke
select_wait : Add a procese to the select-wait queue

$include <linux/sched.h>

inline veoid select wait (struct wait_queue ** wait addreas, select table * p}

Arguments: wait_address -- Addresa of a wait queue peinter

=3 -~ Address of a selact_table
Devices which use select should define a struct wait gqueue pointer and
initialize it to NULL. select wait adds the current process toc a circular
list of waits. The pointer to the circular list is wait_address. If

p ia NULL, select_wait doss nothing, otherwise the current process is
put to sleep.

See Alsc: sleep_on, interruptible sleep on, wake_up, wake up_ interruptible

IZE 222 8040 00
sleep on, interruptible aleep on : Put the current proceas to sleep.

#include <linux/sched.h>

void sleep_on({struct wait_gueue ** p)
void interruptible asleep_on(struct wait_gqueue ** p}

Argquments: g -- Pointer to the driver’'s wait_gqueue (see select wait}

slesp on puts the current process to sleep in an uninterruptible state.
That Is, signals will not wake the proceas up. The only thing which
will wake a process up in this state is a hardware interrupt {which
would call the interrupt handler of the driver) -- and aven then the
interrupt routine needs to call wake_up to put the process in a running

.

Sep 51994 10:04:14 drivers.doc Page 9

state.

interruptible sleep on puts the current process to sleep in an interruptible
atate, which means that not only will hardware jinterrupts get through, but
alsc aignals and process timeouts ("alarms") will cause the processa to

wake up (and execute interrupt or signal handlers}. A call to

wake_up_ interruptible is necessary to wake up the process and allow it

to continue running where it left off.

See Also: select_wait, wake_up, wake_up interruptible

FogeWd e e e ek ek
sti : Macro, Allow interrupts to occur

finclude <asm/system.h>
#define sti() _ asm _volatile ("sti"::)

See Almoc: oli

fhkA xR hhhhhik

sys_getegld, sys getgid, sys_getpid, ays getppid, sya getuid, sys geteuid :
Funky functions which get varioua information about tha current process,

#include <linux/sys.h>

int sys getegid({void)
int sys_getgid(void)
int sys_getpid(void)
int sys_getppid(void)
int sys getuid(void)
int aya geteuid(void)

ays_getegid geta the effective gid of the process.
ays_getgid gets the group ID of the process.

ays_getpid gets the process ID of the process.
sys_getppid gets the proceasa ID of the proceas’ parent.
sys_geteuid geta the effective uid of the process.
ays_getuld gets the user ID of the proceas.

AARK AKX A AR NARK

wake up, wake_up_interruptible : Wake up _all processes waiting on
the walt queus.

#include <linux/sched.h>

void wake_up (struct wait gqueus **q)
void wake up interruptible (struct wait_ gqueue *%q)

Arguments: q —- Pointer to the driver’s wait_queus (see sslect_wait)

See Alsc: select_wait, sleep on, interruptible_sleep on

S My O TR
Some notes

Interrupts, Drivers, and You!

First, a brief exposition on the Meaning cof Interrupts. There are three
ways by which a program running in the CPU may be interrupted. The first is
the external interrupt. This is caused by an external device (that is,
external to the CPU) signalling for attention. These are referred to as
"interrupt requests" or "IRQa".

The second method is the exception, which is caused by something internal to
the CPU, usually in response to a condition gensrated by execution of an
instructien.

The third method is the software interrupt, which is a deliberately executed
interrupt -- the INT instruction in assembly. Systsm calls are implemented
using software interrupts; when a system call is desired, Linux places the
system call number in EAX, and performe an INT 0x80 instruction.

Sep 51994 10:04:14 drivers.doc

Since drivers usually deal with hardware devices, it is logical that driver
interrupts should refer to axternal interrupts. There are 16 available IRQas
-~ IRQO through IRQ15. The following table lists the official uses of the

varioua IRQs:

IRQO -= timer O

IRQ1 -— keyboard

IRQZ =~ AT slave 8259 ("cascade")
IRQ3 - COM2

IRQ4 -~ COMl

IRQS -—- LPT2

IRQ6E -- floppy

IRQ7 -- LPT1

IRQB-12 2?7

IRQl3 ~—-— COpProCessSor eIrer

IRQ14,15 27772177

Writing drivers which can be interrupted requires care. Be aware that
every line you write can be interrupted, and thus cause variakle
changes to occur. If you really want to protect critical sections from
being interrupted, use the cli() and ati() driver calla.

Suppose you wanted to teat aome kind of funky condition, where success of
the condition leads to going to sleep, and being woken up by an interrupt.
Consider this code:

void driver_interrupt(int unusad)

{

if (Idriver_gtutf.int_flag) return; /* Spurious interrupta
are not unheard of */
driver stuff.int_ flag=0;
weird_;hcky(); /* Do scme weird and wacky stuff
hers to handle the interrupt */
disable ints(); /* Disable the device from issuing interrupts */
wake_up(&driver_stuff.wait_gueue); /* Sets process to TASK RUNNING */

}

if (conditions_are ripe())

driver stuff.int_flag = 1;

enable _inta(); /* Enable device to interrupt us */
-lo-p_on(deiver_ptutf.wait_quoua); /* Sets process to TASK UNINTERRUPTIBLE */

}

Assume we just leave the conditions_are ripe code, determining that the
conditions are ripe! We have just enabled the device to interrupt the
machine. So we are now about to enter the sleep on code, and

what should happen but the pesky device issaues an interrupt. Ka-chunk! and
wa enter the driver interrupt routine, which does some weird and wacky
stuff to handle the interrupt, and then we disable the device’s interrupts.
Ka-ching! we enter the wake_up function which sets the proocess up te run again.
Boink! we exit the interrupt handler and commence where we left off

{just about to enter the slesp on code)} . Vooosh! we’'re now sleeping the
proceas, awaiting an interrupt which will never occur, since the interrupt
handler disabled the device from interrupts! What to do?

Use c¢li() and sti() to protect the critical sections of code:

cli(};
if (conditiona_gre_ripa())

{
driver stuff.int flag = 1;

enable_inta(); /* Enable device to interrupt us */
slesp on(&driver_stuff.wait_ queue); /* Sets process to TASK _UNINTERRUPTIBLE */

}
elses sti();

First we clear interrupts. This is not the same as disabling device
interrupts! This actually prevents a hardware interrupt from causing the
CPU to execute interrupt code. In effect, the interrupt is deferred.

Now we can do ocur check and perform sleep_on, sscure in the knowledge that
the interrupt handler cannot be called. The sleep on (and interruptible
asleep on) call has a sti{}) in it in the right place, so you don’t have to
worry about calling sti() before aleep on, and running into a race condition

again.

Of course, with any interruptible device driver, you must be careful never
to spend too much time in the interrupt routine if you are expecting more

Page 10

Sep 51994 10:04:14 drivers.doc Page 11

than one interrupt, because you may miss your seccnd interrupt.

Drivers and signals:

When a process is sleeping in an interruptible state, any signal can wake it
up. This is the sequence of events which occurs when a sleeping process
receives a signal:

(1) Set current->signal.

(2) Set the process tc a runnable state.

{3) Execute ths rest of the driver call.

{4) Run the asignal handler.

{5) If the driver call in step 3 returned -ERESTARTNOHAND or -ERESTARTNOINTR,
then return from the driver call with EINTR. If the driver call in step
3 returned -ERESTARTSYS, then restart the driver call. Otherwise, just
return with whatever was returned from the driver call.

In the driver, you can tell if a slesp has been interrupted by a signal
with the following code:

if (current->signal & ~current->blocked)

/* Do things based on sleep interrupted by signal */
}

Drivers and timeocuts:

Suppose you wanted to sleep on an interrupt, but also time out after
a period of time. You could always use the add_timer, but that’s
frowned upon because there are only a limited number of timers
available =-- currently there are 64.

The usual solution is to manually alter the current process’s timeout:

current->timeout = jiffies + X;
interruptible sleep on{&driver stuff.wait queus);

(Interruptible sleep on must be used here to allow a timeout to interrupt

the sleep). This will cause the scheduler tc set the task running again when
X jiffies has gone by. Even if the timeout goes off and the proceass is
allowed to continue running, it is probably a good idea to call

wake up interruptible in case the process needs to be rescheduled.

To find out if it was a timeout which caused the process to wake up,

check current->timeocut. If it is 0, a timeout ococurred. Otherwise it
should remain what you set it at. If a timeout did not occur, and something
slses woke the process up, you should set current->timecut to 0 to prevent
the timeocut from continuing.

The disadvantage of this method is that the process can only have one
timeout at a time. Over *all* drivers.

The driver_ select call:

When a process issues a select call, it is checking to see if the given
devices are ready to perform the given oparations. For example, suppcse

you want a driver to have a command written to it, and to disallow further
commands until the current command is complete. Well, in the write call

you would block commands if there is already a command operating (for example,
waiting for a beard to do something). But that would regquire the process to
write over and over again until it succeeds. That just burns cycles.

The select call allows a process to determine the availability of read and
write. In the above example, cne merely haa to select for write on that
device’s file descriptor {(as returned by open), and the proceas would be
put to sleep until the device is ready to be written to.

The kernel will call the driver’s driver select call when the process iasues a
select call. The argumenta to the driver select call are detailed above.
If the wait argument is non-NULL, and there ia noc error condition caused

. -

Sep 51994 10:04:14 drivers.doc

by the select, driver select should put the Procesa to sleep, and arrange
to be woken up when the device becomes ready (usually through an interrupt).

If, however, the wait argument is NULL, then the driver should quickly
see if the device is ready, and return even if it is not. The select wait
function does this already for you (see further}.

Putting the process to sleep does not require calling a sleep on function.
It is the select wait function which is called, with the p argument being
sgqual to the wait argument passed to driverﬁselect.

select wait is pretty much equivalent teo interruptible slesp on in that it
adds the current process to the wait gqueue and sleeps the process in

an interruptible state. The internals of the differsnces betwean
select_wait and interruptible aleep on are relatively irrelevant here.
Suffice it to say that to wake the process up from the selact, one needs
to perform the wake up interruptible call. When that happens, the
pProcess is free tc run.

However, in the case of interruptible sleep on, the process will continue
running after the call to interruptible_sleep on. In the case of select wait,
the procesa does not. driver select is called aa a "side effect" of the
sslect call, and sc completea even when it calls select wait, It is

not select wait which sleeps the process, but the select call. Nevertheless,
it is required to call select wait to add the process to the wait-gueue,

since aelect will not do that”

All one needs to remsmbsr for drivor_seloct is:

(1} call select wait if the device is not ready, and return 0.
(2) Return 1 if the device is ready.

Calling select with a timecut is really no different to the driver than
calling it without select. But there is one crucial difference. Remember
timing out on interrupts above? Well, interrupt timecuts and select timecuts
cannot co-exist. They both use current->timecut to wake the process up

after a period of time. Remember that!

Installation notes:

Bafore you ait down and write your first driver, first make sure you
understand how to recompile the kernel. Then go ahead and recompile it!
Recompilation of the kernel ias described in the FAQ. If you can’t
recompile the kernel, you can’t install your driver intc the kernel.
[Although I hear tell of a package on sunsite which can load and unload
drivers while the kernsl is running. Until I test out this package,

I won't include instructions for it here.]

For character devices, you need to go into the mem.c file in the
(aource)/linux/kernel/chr_dov directory, to the chr dev_init function,
and add your init function to it. Recompile the kernel, and away you go!

(BTW, would you manually have to do a mkned to make the /dev/xxx entry
for your driver? Can you do it in the init functien?)

In general, one installs a device special file in /dev manually, by using
mknod: .

mknod /dev/xxx ¢ major minor

If you registered your character driver as major device X, then all accesses
to /dev/xixx where major==X will call your driver functions.

Page 12

v

Sep 51994 10:04:14 tutorial.doc

AR R 22 S d R R Rttt i AR SR LT FE RIS

* *
* Tutorial To Linux Driver Writing -- Character Devices *
L *
* or, *
* *
* Now That I’'m Wacky, Let Me Do Something (I} *
* *
* Last Revision: Apr 11, 1993 *
* *
ARAA AR AR AR TR AR A ARk AR kA AR Ak AWk ke ek

This document (C} 1993 Robert Baruch. This document may be fresly
copied as long as the entire title, copyright, this notice, and all of
the introduction are included along with it. Suggeations, criticisms,
and comments to baruch@nynexst.com. This document, nor the work
performed by Robert Baruch using Linux, nor the results of said work
are connected in any way tc any of the Nynex companies. This product
0% organic as defined by California Statute 4Z//7&A. No artificial
coloring or flavoring.

Introduction

There is a companion guide to this Tutorial, the Guide to Linux Driver
Writing =-=- Character Devicea This Guide should serve as a referencs to
both beginning and advanced driver writers, and should be used in
conjunction with this Tutorial.

- S e — R —
Some words of thankas:

Many thanks to:

Donald J. Becker (becker@metropclis.super.org)

Don "May the Source be With You!" Holzworth (donhB8gcxl.sasd.csd.harris.com)
Michael Johnaon (johnsonm@atolaf.edu)

Karl Heinz Kremer (khk@raster.kodak.com)

Pat Mackinlay (mackinlafcs.curtin.edu.au)

...others toco numerous to mention...

All the driver writerast

---.and of course, Linus "That’s LIN-uhka" Torvalds and all the guys who helped
develop Linux into a BLOODY KICKIN’ 0O/S!

L
--.and now a word of warning:

Messing about with drivers is mesaing with the kernel. Drivers are run
at the kernel lavel, and as such are not subject to acheduling. Further,
drivers have access to various kernel atructures. Before you actually
write a driver, be *damned* sure of what you are doing, lest you end

up having to re~format your harddrive and re-install Linux!

The informatiocn in this Tutorial is as up-to-date as I could make it. It also
has no stamp of approval whatscever by any of the designers of the kernel.

I am not responsible for damage caused to anything as a result of using this
Guide.

End of Introductiocn

CHAPTRE THE FIRSTE : How did *they* get the device driver in the kernel?

You have to realize that device drivers really are part of the kernel. The
kernel can hock in to the functions in your device driver if you tell it
the addresses of some standard functions. These standard functions are
detailed in the Guide.

As a part of the kernel, the code of the device driver must be compiled in
with the kernel. That ia, you must alter some Makefiles to compile your
driver and to get it archived into the chr drv.a library, or you can

archive it yourself and link it in to the kernel at a later compile stage.

Page 1

Sep 51994 10:04:14 tutorial.doc Page 2

The first step, before you aven write a single line of driver code, is to
make sure you know how to recompile the kernel. Then go ahead and actually
do it, to be sure you (and your system) are sane. Of course, you need

the scurces to the kernel. If you have the SLS diatribution of Linux, you
already have the socurces in /linux. If you don’t have the scurces, you

can get it at one of these fine ftp sites near you:

tesx-1l.mit.edu:/pub/linux
sunsite.unc.edu: /pub/Linux

Briefly, here’s how to compile the kernel (at leaat this is how it’s done
in the SLS release):

Go to /linux {(or wherever the socurce for Linux is}
You will see a directory which looks a lot like this:

=-rw-r==-r=- 1 baruch 17982 Nov 10 07:54 COPYING
-rw-r——-r—— 1 baruch 1444 Jan 13 15:24 Configure
-rw-r—--r-- 1 baruch 6934 Feb 22 13:31 Makefile
-rw—r—--r—— 1 baruch 4078 Dec 12 06:45 README
drwxrwxr-x 2 baruch 512 Feb 22 13:34 boot
-rw-r--r-- 1 baruch 1724 Feb 9 15:07 config.in
drwxrwxr=-x 8 baruch 512 Feb 22 13:34 fs
drwxrwxr-x 4 baruch 512 Dec 1 19:40 include
drwxrwxr=-x 2 baruch 512 Feb 22 13:34 init
drwxrwxr-x 5 baruch 512 Feb 9 15:11 kernel
drwxrwxr-x 2 baruch 512 Feb 9 15:11 1lib
-rwXr-xr-x 1 baruch 166 Nov 10 07:54 makever.sh
drwxrwxr-x 2 baruch 512 Feb 22 13:34 mm
drwxrwxr~x 3 baruch 512 Feb 9 15:11 net
drwxrwxr-x 2 baruch 512 Feb 22 13:34 toels
drwxrwxr-x 2 baruch 512 Feb 22 13:34 zBoot

The README file should contain instructions, but here’s how anyway:
Log in as root.

make clean (Do this only once. Otherwise you’ll have to sit around
for 45 minutes or so while the whole thing racompiles)

make config (Answer the gquestions -- usually nesded only the first time)

make dep (Makes dependencies)

make (makes the karnel)

You should end up with an Image file. Thia is the kernel. Put it where
you like {LILO users should take it from there). To make a bootable disk,
just pop a DOS formatted disk in drive A, and do:

make disk

Now, the directory you're interested in is <src>/kernel/chr drv. Thia is
where all the character device drivera are kept. Go to that directory.
Open up a new file, and call it testdata.c. Here is what you should

put in it:

File Listing 1l: testdata.c

$include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/tty.h>
#include <linux/signal.h>
#include <linux/errnc.h>

tinclude <asm/io.h>
#include <asm/segment.h>
#include <asm/sysatem.h>
#include <asm/irq.h>

unsigned long test init{unsigned long kmem start)

printk ("Teast Data Generator installed.\n"};
return kmem atart:
}

A

Sep 51994 10:04:14 tutorial.doc Page 3

The include files are all thera for convenience. You may need them later.
All this driver does is upon initialization, display a mesasage.

Now, to get this driver into the kernel, you need to do several things.
The first two things do in the chr_drv directory:

I. Get the kernel to call your init function on bootup. To do thias,
adit the mem.c file, and go to the very end to the function
chr_drv_init. It locks socmething like this:

long chr_dev_init(long mem_start, long mem_end)

if (register_ chrdev(l, "mem" &memory fopa})
printk ("unable to got major 1 for memory devs\n"};
mem_ atart = tty init (mem_start):
mem | start = ip_ znxt(mem atart);
mem_start = mousa_lnlt(mem start};
mem start = soundcard_init (mem start);
return mem start;

You need to add your test init function to the code. Put it right
before the return:

mem start = teat init (mem start});
Save the file.

II. Edit the Makefile to compile testdata.c. Edit the Makefile, and add
testdata.o to the OBJS liat. This will cause the make utility to
compile testdata.c into an cbject £file, and then add it to the
chr_drv.a library archive.

Save the file.

The next step is to re-compile the kernel. Go to the <arc> directory,
and do a make from the top as described in the first chapter. There is
no point in doing a "make clean" or "make cocnfig". If all goes well, the
make should proceed down to chr drv, and compile your testdata.c file.

If there are warnings or errors, do a ctrl-C to break out of the make,
and fix the problem.

Once you are left with an Image file, put the Image file where LILO
wants it, or use "make disk" to make a bootable disk. It’s a good
idea to save your cld Image file (or save the disk it was on).

Now reboot. When Linux comes up again, you should see your message
printed on bootup after all the character devices’ messages, before
any of the block device messagesa. If the message came up, have a soda.
Jump up and down a little. (Well, first jump, _then have the soda)}.

If it didn’t work, go back and find out what you did wrong. Are you

sure you recompiled the kernel? Did it recompile with testdata.c? Did
you reboot using the new kernel? Are you sure? Are you root? Maybe

your kernel ia bad or old. I have used 0.99plé, with the new libc.so.4.3.2
shared library successfully, and I am currently using 0.99pl8 with
libc.so.4.3.23

This example is taken from the Writing UNIX Device Drivers_ boock by
George Pajari, published by Addison Wesley. It can usually be found

in a Barnes and Noble bockators, or any large bookstore which has

a nice section on UNIX. The ISBN is 0-201-52374-4, and it was published
in 19%2. This book is highly recommended for the device driver writer.

This device driver will actually be read from. You can open and close

it (which really won’t do much}, but the biggeat thing it will do is

allow you to read from it. This driver won’t access any external hardware,
and sc it is called a "pseudo device driver". That is, it really doesn’t
drive any device.

Have your Guide handy? OK, now alter your testdata.c file soc that it
locks like this:

Ao

Sep 51994 10:04:14 tutorial.doc Page 4

File Listing 2: teatdata.c

#include <linux/kernel.h>
#tinclude <linux/sched.h>
#include <linux/tty.h>
#include <linux/signal.h>
#include <linux/errno.h>

$include <asm/io.h>
#include <aam/segment.h>
#include <asm/system.h>
#include <asm/irqg.h>

static char test data[]="Linux is really funky!\n";

static int test_read{struct inode * inode, struct file * file,
char * buffer, int count)

{
int offset;

printk("Teat Data Generator, reading %d bytes\n",count);
if (count<=0Q)} return -EINVAL;
for {offset={(; coffset<count; offset++)
put_fs byte(test data[offset % (sizeof (test data)-1)], buffer+cffset);
return offset;

}

static int test open(struct inode *inode, struct file *file)

printk ("Test Data Generator opened.\n");
return 0;

}

static void test_relsase(atruct inode *inode, struct file *file)

printk ("Test Data Generator released.\n")};

}
struct file_ operations test_fops = {

NULL, /* test seek */
test read, /* test read */
NULL, /* tesat write */
NULL, /* test readdir */
NULL, /> test:select *x/
NULL, /* test_ioctl */
NULL, /* teat _mmap */
tesat open, /* test_open */
test release /* teat_release */

1

unsigned long test_ init (unsigned long kmem_start)
{
printk ("Test Data Generator installed.\n"):
if (register chrdev(2l,"teat", stest_fopa)};
printk ("Test Data Generator error: Cannot register to major device 21!\n");
return kmem start;

OK, let’s go over this. Look firat at the test_init function. Notice
the new function -- register chrdev. This registers the character device
with the kernel as using major device number 21. All devices (except for
the really simple one in the last chapter) use major device numbers to

be accessed. The kernel has an internal table of devicea and their
associated device functicns which is indexed by major device number.

The device numbers go from 0 to MAX CHRDEV-1. MAX CHRDEV is defined in
linux/fs.h, and is currently set at 32. In general, you want to stay away
from devices 0-15 because those are reserved for the "usual" devices.
Currently, these usual devices (according to the FAQ) are as follows:
—=-Excerpt from FAQ begina~---

QUESTION: What are the device minor/major numbers?

The Linux Device List

Sep 51994 10:04:14 tutorial.doc Page 5

maintained by rick@ee.uwm.sdu (Rick Miller, Linux Device Registrar)
February 17, 1993

Many thanks to richardd@atat.tamu.edu, Jim Winstead Jr., and many others.

Majors:

0. Unnamed . (unknown) for proc-fs, NFS clienta, etc.

1. Memory .. (character) .. ram, mem, kmem, null, port, zerc
2. Floppy .. (block) fd[0-1]1<[dhDH] {360, 720,1200,1440}>
3. Hard Disk (block) hd[a-b]<[0-8]>

4. Tty {(character) .. {p,t}ty<{(s, [p-s][0-£}}><$>

5. tty (character) .. tty, cua[0-63]

6. Lp (character) .. 1lp[0-2] or par{0-2]

7. Tape (block) t[0-?] {reserved for Non-SCSI tape drives)
8. Scsi Disk (block) sad[a-h]<[0-B]>

9. Scai Taps (block) <n>rmtf[0-1]

10. Mouse ... (character) .. bm, psaux (mouse)

11. CD-ROM .. (block} +..... sad[0-1]

12. QIC-tape? (character} .. rmt{8,16}, tape<{-d,-reset}>

13. XT~disk . {block) xd[a-b]<[0-8]>

14. Audio ... (character) .. audio, dsp, midi, mixer, sequencer

——-Excerpt from FAQ ends---

The FAQ goes on to break down the major devices by minor numbers. Each major
device can be broken down into at most 256 minor devices (0-255)., The

device driver can determine which minor it is supposed to ¢operate on. More
on that later,

In any case, I‘'ve chosen major 21 for experimentation purposes. By the way,
the name of the driver (here it’s "test") is not important. The kernel does
not do anything with it. [It would be nice if it would. Then you could
interrogate the kernel and find out what drivers are installed!]

register chrdrv also takes in a pointer to a file operations structure. This
structure tells the kernel which function to call for which kernel operation.
The details of thia structure is given in the Guide. For now, what is
important is that we are telling the kernel to call test read for read
operations, teat open for open operations, and teat close for release
opearationa.

If a driver has already taken major 21, register chrdrv will return -EBUSY.
Hers, all we do is print a message saying that 2T ias already taken.

Now, the test_open and test_release functions just print out things to
the console. They are really there for debugging purpocses, so that you
can see when things happen.

The meat of the driver is the test read function. The first thing it does
is print out how many bytes were requested. Then it puts that many bytea
into user space. Remember that the driver is executing at the kernel level,
and the user space will be differnet from kernel space. We have to do

some kind of translation to put the data which is in kernel space into

the buffer which is in user space. We use here the put_fs byte function.

The loop puts the string into the buffer, going back to the beginning of

the string if necessary. Once the loop is finished, we just return the
actual number of bytes read. The actual number may be different from the
requested number. For example, you may be reading from the driver some kind
of message which has a fixed size. You may want to code the driver so that
if yeu attempt to read more than the message size, you will get only the
message size, and nc more. Here, we just give the process however many
bytes it wants.

Now, let’s get this driver into the kernel. But first what we’ll do is
create a special file which can be opened, read, and closed. Operations on
this special file will activate your driver code.

The special files are normally stored in the /dev directory. Do this:

mknod /dev/tastdata c 21 0
chmod 0666 /dev/testdata

This makes a special character (¢) file called testdata, and gives it major
21, minor 0. The chmod makes sure that everyone can read and write the
device.

Now recompile the kernel, and reboot. Once again, make sure you fix any
warnings or errors in your testdata.c compilation.

1~

Sep 51994 10:04:14 tutorial.doc Page 6

Now, go to the /tmp directory (or whereever you want), and write this
program:

File Listing 3: data.c

$include <stdio.h>
#include <sys/typas.h>
#include <unistd.h>
#include <fontl.h>

void main(veoid}
{
int £d;
char buff{128];

fd = open("/dev/testdata",O_RDWR);
printf(“/dev/teatdata opened, fd=%d\n",fd);

if (fd<=0) exit(0);
printf(“sizeof(buff)—%d\n",sizeof(buff));

printf ("Read returns %d\n", read (£d,buff, sizeof (buff}));
buff{l127]=0;

printf ("buff=\n’%s’'\n", buff);

close(£fd);

Compile it using geoo. Run it. If it said "Linux is really funky!" lots
of times, pat yourself on the back (or whereever you want) for a job
well done. TIf it didn’t, check the output, and see where you went wrong.
It could just be that you have a bad or old kernel.

The last line may be partial, since you’re only printing out 127 characters.

B 5 i e e s o
EXPERIMENT 1
e e e e J

Use mknod to make another special file, this one with minor 1. <Call it
something like /dev/testdata2. Change the device driver sc that in the
read call, it finds out which minor is being read from. Use thia:

int minor = MINOR(inode->i rdev);

Print out L L& s~ number, --1 depending on which minor it is, read
from a different message string. Test your driver with code aimilar to
data.c.

P Al

Now that you’re reading strings, you may want to write strings and read them
back. We’ll go through two versions of this =~ one that uses static memery,

and one that dynamically allocates the memory.

Keeping your current driver, all you need to do is add a write function to
it, not forgetting to put that write function into the file cperations

structure of the driver.

Add this section of code to your driver above the file_operations structure
declaration:

File Listing 4 {partial): testdata.c

static char teat_ﬂata{lZB]-"\O“;
static int test_data_pizo-O;

static int teat write(struct inode * inode, struct file * file,
char * buffer, int count)

printk ("Write %d bytes\n", count);
if (count>1l27) return -ENOMEM;

3%

Sep 51994 10:04:14 tutorial.doc

if ((lteat data size) || (count<=0})} return =EINVAL;

memcpy fromfa((void *)test data, (void *)buffer, (unaigned long)count):
teat_@ﬁfa[lZT]-O; /* NUL-terminate the string if necessary */

test data size = count;

return count;

Also, alter the test read function so that instead of using sizeof (test_ data)
as the size of the test_data string, it uses test_data_size.

In the teat write function, I have decided to prevent the acceptance of
atrings which are too big to fit (with a NUL-terminator) into the test data
area, rather than just writing only what fits. In this case, if the offered
string is too long, I return ENOMEM. The write function in the user’s
proceas will return <0, and srrno will be set to ENOMEM.

Alsc note that I have used the memcpy fromfs function, which is real
convenient —- much more convenient than looping a put_fs byte.

Compile this driver, and test it by modifying data.c to write some data,
then read it back.

e AR AR mn s SRS
EXPERIMENT 2
T s & o B e

Re-write the driver so that it can have two different strings for the two
minor devices as in experiment 1.

s S e

Now that we can write data to the driver, it would be nice if we could
dynamically allocate memory to atore a string in. We will use kmalloc to

do this. (Why is discussed later)

One thing which must be realized with kmalloc -- it can only allocate a
maximum of one Linux page (4096 bytes). If you want more, you will have
to create a linked list.

Change your driver so that inatead of listing 4, you have thia:

File Listing 5 (partial): testdata.c

static char *test data=NULL;
static int test data size=0;

static int test write{struct inode * inode, struct file * file,
char * buffer, int count}

{
printk ("Write %d bytes\n",count);
if (count>4095) return -ENOMEM;
if (test_data!=NULL) kfree sa((void *)test_data, teat data size);
test_data size = 0; -
teat data = (char *)kmalloc{{unsigned int)count, GFP_KERNEL};
if (test_data==NULL) return -ENOMEM; -
memcpy_fromfs((void *)teat_data, (void *)buffer, (unsigned long)count};
test_data[count]=0; /* NUL-terminate the string if necessary */
test data size = count;
return count;

Here, instead of statically allecating memery for the =tring, we dynamically
allocate it using kmalloc. Note first, that if we had already allocated

a string, we free it firat by using kfree_s. This is faster than using

kfree, because kfree would have to search for the size of the object allccated.
Here we know what the size was, so we can use kfree_s. kmalloc vs. malloc

is discussed below. -

Next, note that we use the GFP_KERNEL priority in the kmalloc. This causes
the process to go to asleep if there is no memory available, and the process
will wake up again when there is memory to spare. In general, the process
will sleep until a page of memory is swapped out to disk.

In the event of catastrophic memory non-availability, kmalloc will return

A

Page 7

Sep 51994 10:04:14 tutorial.doc

NULL, and we should handle that case. Unfortunately here, we have already
freed the previous string -- although that ococuld be changed easily by
kmallocing, then kfreeing.

The rest of the code reads as in listing 4.

When we get into the section on interrupt handling, we will discusa the
use of GFP_ATOMIC as a kmalloc priority.

A brief excursion into kmalloec vs. malloc:

The malloc() call aliocates memory in user space, which is fine if that’s what

You want. Here, we want to have the driver stors information so that *any*
Process can use it, and sc we have toc allocate memory in the kernel., That
means, kmalloc(). Further, there is a maximum of 4096 bytes which can be

allocated in any one call of kmalloc. This means that you cannot be guaranteesd

to get contiguous aspace of over 4096 bytes. You will have to use a linked
list of kmalloced buffers,

Alternatively, you can fool with the init section of the driver, and reserve
contiguous space for yourself on init (but then it may as well be statically
allocated) .

The thing which really saves multitasking operating systems is that
many process sleep when waiting for events to ocour. If this were not
true, processes would always be burning cyclesa, and there would really
be no big difference between running your processes at the same time,
or cne after the other.

But when a process sleeps, cther processes get to use the CPU, In general,
proceases sleep when an event they are waiting for has not yet happened. The
exception to this is processes which are deaigned to de work when nothing

is happening. For example, you might have a process sitting around using
cycles to calculate pi out to a zillion digits. That kind of backgrocund
process should have its priority set real low so that it isn’t sxecuted
often when other (presumably more important) processes have work to do.

Since processes slesp when waiting for events, and said events ars usually
handled by drivers, drivers must cause the processes which called them to

sleep if not ready. Thias is the idea behind the selact ()} call, which will
be dealt with in a later chaptar,

To illustrate sleeping and waking processes, we will alter our driver from
listing 2 by adding a new write function and changing the read function
around as follows:

File Listing 6 (partial): testdata.c

static char test_data[l="Linux ia really funky!\n";
atatic int wakeups = 0;
static struct wait_gueue *wait queue = NULL;

static int test write(struct inode * incde, struct file * file,
char * buffer, int count}
{

int i;

Printk ("Write %d bytes\n", count);

wake up interruptible(&waig_quaue):
printk (TWoke %d processes.\T",wakeups);
wakeups = 0;

return count;

}

static int test read(struct inode * inode, struct file * filae,
char * buffer, int count)

{
int offaet;

pPrintk ("Test Data Generator, reading %d bytes\n",count);

printk ("Process going to sleep\n");
wakeups++;

Page 8

Sep 51994 10:04:14 tutorial.doc

interruptible sleep on (&wait_gqueue};
printk ("Process has woken upT\n"):

for {(offset=0; offset<count; offset++)
put_fs byte(test data[offset % (sizeof (Leat_data)-1}], buffert+offset);

return offset;

Don’t forget to put the test write function in the file operations struct!
But don’t compile this driver just yet! Read on...

The operation of this driver is as follows: ©On a read, put the proceas
to slesp. On a write, wake up all those processes which have gone to
sleep in this driver. This will allow the processes to complete the read.

There are two new variables here, wakeups and wait_gueue. The wait queue is
a circular queue of processss which are asleeping. It is FIFO, so that the
process wocken up is the first process which went to sleep.

The kernel handles the gqueue for us; all we need to de is supply a peointer
to the queue and initialize it to NULL (i.e., the queue is empty).

We'll uae the wakeups variable to tell us how many processes are taken off tha
wait queue (i.e.,, woken up)} -- which is the number of procesass which have
already gone to sleep. So each time a process is slept on, we increment
wakeups. When a write request comes in, we wake up wakeups processes and reset

wakeups to zeroc.
Simple, yes? Now we get intc the sticky part.

In the Guide, you see that you can choose twoc ways of sleeping —— interruptible
or not. Interruptible sleeps can be interrupted (i.s., the process is woken
up) by signals (such as SIGUSR) and hardware interrupts. Non-interruptible
slesps can only be interrupted by hardware interrupts. Not even a kill -39

will wake up a non-interruptible process which is sleeping! Suppose you havae a
signal handler in your process which will react to aignal 30 (SIGUSR).

That is, you can do kill -30 <pid>. What happens?

When the scheduler gets around to checking the signalled process for
runnability, it sess that there is a signal pending. This allows the process
to continue to run where it left off, with a twist: when the process leavea
kernel mode (the driver call) and enters user mode, the signal handler is
called (if there is one}. Once the signal handler function exits, one of

two things can happen:

(1) If the original system call exited with —-ERESTARTNOINTR,
then the process will continue as if it calls the aystem call again
with the same arguments.

{2) If the original system call did not exit with ~ERESTARTNCINTR,
but with -ERESTARTNOHAND or -ERESTARTSYS, then the process will
continue exitting from the system call with -1, errno -EINTR.

(3) If the original system call did not exit with -ERSTARTNOINTR,
-ERESTARTNOHAND, or -ERESTARTSYS, then the process will continue,
exitting from the system call with whatever was returned.

You can ses moat of this (if you can read mutilated 80386 assembly) in
<src>/kernsl/sys call.S and <src>/kernel/signal.c¢. Although signal handling
has been considerably revamped for 0.99pl8, the basic sequence of cperations
is intact across patch levels. -ERESTARTNCHAND is new in 0.99pl8.

Thia is important ~- the driver call should not be completed except for
cleanup, since the kernel will return an error for you or redo the system
call.

When the process continues to run before calling the signal handler, it pickas

up where it left off —— in the interruptible sleep on function. This function
takes the process off the wait queue automatically (which is nice). But then
wakeups is not updated (which is not so nice). In that case, when a

subsequent write comes in, the number of sleeping processes reported will
be wrong!

[pulpit-pounding mode on]

Although for thias driver ignoring thias is not such a big deal, it is aloppy
programming for a driver. Driver code must be so perfect that it operates
like a well-oiled machine, with nc slip-ups. OCne error -- one bit of code
that gets ocut of aync -- and you can at least annoy users and make them throw
up their hands in frustration, and at worat panic the kernel and make users

74

Page 9

Sep 51994 10:04:14 tutorial.doc Page 10

throw your code away in frustration! Also, there is nothing worse than
spending time debugging an application when the bug is in the driver, or
trying to code around a known driver flaw.

[pulpit-pounding mode off]
S0 how do we solve this ocut-of-sync problem?

Fact: ignoring interrupts, all processes are atomic when they are in the
kernel. That iz, unless a process performs an operation which can sleep (like
the call to kmalloc we visited above), or a hardware interrupt comes in, the
flow of execution goes from entering the kernsl to leaving the kernel, with no
time taken cut to run anything else. This does not mean that the code in user
space gets to continue to run. If the process leaves the system call and

is not eligible to run, other proceases may run and then later on the aystem
call appears to have returned to the process. More on that later,

That fact is good to know. It means that as long as we are sure upon entering
the test write call that wakeups contains the correct number of sleeping
processes, test write will work 100%. That is, unless a hardware interrupt
comes in which causes the driver to sxecute an interrupt handler, we are safe,
but here we have no such handler, and so we can ignorxe that foxr now. We will
deal with interrupts in a later chapter.

So we know that write doesn’t really have to be changed. It’s really the
read that we’re concerned about. What we need to do is after we get out

of interruptible sleep on() we see if we were genuinely woken up through

a wakeup call, or if we were signalled. If we were signalled, then

we know that the write call wasn’t the cause of the wakeup, and a0 we should
really decrement wakeups.

Now for some loose ends. Remembar that upon signalling, the kernel only
flags the signal for the process, and sats the process to a runnable state.
That does not mean that it c¢an run immediately. Another process may get

to run first, and that procesa may very well run the driver’s write code,
waking up all processes. Of course, we can consider the signalled process
to ba still asleep when it gets the signal, because it has not yet run its
signal handler. So when that other process gets to run the write code, the
number of sleeping processes is indeed correct, and wakeups is set to 0.

But now, when the signalled process is run again, the read code will attempt
to decrement wakeups, making it =-1! The next write will display the wrong
number of sleeping proceassea!

One thing saves us -- the fact that we can detect in the read code that the

write code was executed, simply bacause wakeups is 0. Remember that wakeups
is incremented before the slesp, so it is guaranteed to be greater than 0 if
the write code was not axacuted before waking up because of a signal.

So if the write code was executed, it really does not make sense to decrement
wakeups, so we just say that only if wakeups is non-zerc do we dacrement .

To implement all this, add this code after the sleep:

File Listing 7 (partial}): testdata.c

if (current->signal & ~current->blocked} /* signalied? */
{

printk ("Process signalled.\n"};

if (wakeups) wakeups—-—;

return —-ERESTARTNOINTR; /* Will restart call automagically */
}

Now that you’ve got that straightened out, let’s add some more confusion to
the mix. Suppose you're in the driver call, doing nice things, and then
all of a sudden a nasty timer interrupt (task switch possibility) comes in.
What now? Will there be a task awitch? No. A RUNNING task in the kernel
cannot be switched out, otharwise all hell would break loose. Whew!

I'm glad we don't have to pay attention to that!

Well, now that we’ve gone through all the possible ways signals can make
your insides twist, you can code the driver. Remember toc put listing 7 into
listing 6!

Sep 51994 10:04:14 tutorial.doc

Here’'s how we’re going to test this driver. Several procesasass will call
read (and sleep). When they wake up, they’'xe going to say that they were
woken up (as opposed to printing out what they just read -- we already know
that works). One process will do a write to wake the othar processes up.
This is the trigger process. Here is the code for the two types of processes:

File Listing 8: data.c

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <signal.h>

/* The reader process */
void signal_handler(int x}

printf("Called signal handler\n"};
signal (SIGUSR1l, signal handler); /* Reset signal handler */

}
void main{void)

{
int f£d;
char buff(128];
int rtn;

signal (SIGUSR1, signal handler); /* Setup signal handler */

fd = open("/dev/testdata",0_RDWR);
printf("/dev/testdata opened, fd=%d\n",fd};
if (fd<m0} exit (0C):

rtn = read(fd,buff,sizeof (buff));
printf ("Read returns %d\n",rtn};
if (rtn<0)
{

perror ("read");

exit (1);

printf ("Process woken up!\n");
closa (£4);

File Listing 9: trigger.c

#include <atdio.h>
#include <sya/typesa.h>
#include <unistd.h>
#include <fontl.h>
#include <errcno.h>
#include <asignal.h>

/* The writer process */

veoid main{int argc, char **argv)
{

int f£d;

char buff[l128];

int rtn;

fd = open("/dev/testdata",0 RDWR};
printf ("/dev/testdata opened, fd=%d\n", fd);
if (fd<m) exit(0):

if (arge>l)
{

kill (atoi{argv([1l]),SIGUSR1);
axit (0} ;
}
rtn = write(fd,buff, sizeof (buff)};
if (rtn<0)

Page 11

Sep 51994 10:04:14 tutorial.doc
{

perror ("write");
exit (1);

close (fd);

Compile these programs using gcc. HNow run twe or three of the data processes:

data &

The last thing each of these processes should print is
Process going to sleap.

because all of thase processes are asleep. Now run the trigger program:
trigger

This should wake up all the other processes, which should say,

Process woken up!

Had the read function returned an error (like EINTR), they would have aaid
read: <errcor text>

Now, let’s test to aee if the signal detection and restart mechanism works.
Run a single data process in the background via "data &". Remember it's
pid. Now, run the trigger process with that pid as an argument:

trigger <pid>

This will signal <pid> instead of waking it up via write. The driver should
say,

Process asignallad.
Called signal handler

but. the process should not wake up, since we restarted the call. Only a
write will astop the call.

R & L R A,
EXPERIMENT 3
bbbt bbb 4

Re-write the driver so that instead of always restarting the call, it returns
with EINTR on signal when the read call’s count is a special value or values
(say anything less than 1000}). Tesat to see if the read call returna EINTR when
the trigger program signals the reading process.

RA R o L RN S W e

CHAPTER SIX: I want this, that, that...no, THIS, and that. Or, selects!

The select call is one of the most useful calls created for interfacing to
drivers. Without it, or a function like it, if you wanted to check a
driver for readineas, you would have to poll it regularly. Worse, you
would not be able to check multiple drivers for readiness at the same time!

But enocugh of this. You have select, so rejoice and be happy.

A= already implied by the first paragraph, the select system call allows

a process to check multiple drivers for readiness. For example, suppose
you wanted the process to sit around and wait for one of two file
descriptors to be ready for reading. Usually, if a descriptor is not ready
for reading and you read it, it will put your process to sleep {(or "block").
But you can only read one file descriptor at a time, and here you want to
essentially block on _two_ fd’a.

In that case, you use the select call. The syntax of select was already
explained in the Guide, =30 let’s go about implementing a select function in
our driver.

Add the following code to the driver, and put the teat select function in

Page 12

Sep 51994 10:04:14 tutorial.doc Page 13

the fops atructure:

File Listing 10 (partial}: teatdata.c

static int test_select (struct inode *inode, struct file *file,
int sel type, select table *wait)
{
printk ("Driver antaring select.\n");
if (sel_type==SEL IN) /* ready for read? */

if (wakeups) /* Any process is sleeping in here */
{

select_wait(&wait_gueue, wait);

printk ("Driver not ready\n"};

return 0; /* Not ready yet */

}
return 1; /* Ready */
}

return 1; /% Always ready for writes and exceptions */

Here's what this function dosa. When a process issues a select call with
this driver as one of the fd’s to select on, the kernel will call
test_select with sel type being SEL IN. If wakeups is non-zerco (that is,
processes have read without a process writing) then we will say that the
driver is not ready for reading. In this case, select_wait will add the
process to the wait_queus and immediately return. The return of 0 indicates
that the driver is not ready for the operation.

For any other typs of operation (or if there are no processes sleeping in
read) we say the driver is ready (return 1).

The only thing that must be remembered is that we are using the same
wait_queue structure for procesases sleeping in read and processes sleeping
in select. This means that writing to the driver will wake up both types of
processes. If deaired, a different wait_ gqueue could be used, and the
appropriate wake up code would have to be written.

Compile this new code into the kernel. We will teat this drivexr by writing
a new type of process which will call the aelect system call. Here is the
new proceas’ code:

Fiie Listing 11l: sel.c

$include <atdioc.h> /* Doesn’t hurt, can only help! */
#include <fontl.h>
$include <sys/time.h> /* For FD_* and select */

void main(void)
{
int £4;
int rtn;
fd_set read fds;

fd = open("/dev/teatdata", OC_RDWR);
printf ("/dev/testdata opened, f£d=%d\n",fd);
if (fd<=0) exit (0);
printf ("Entering select...\n");
FD ZERO(&read fds);
FD_SET (£fd, &read_fds) ;
rtn = select (&read fds, NULL, NKULL, NULL);
if (rtn<0}
{
perror ("select”);
exit (0);

}
printf ("Select returns %d\n",rtn}:

When the kernel is re-loaded, the first test we will perform is to see
whether the select call returns immediately given that no processes are
sleaeping in read. Just run sel -- no need to run it in the background.

2.0

Sep 51994 10:04:14 tutorial.doc Page 14

You should see something like:

Entering select...
Driver entering select.
Select returns 1

This is as it should be -- select has determined that one file descriptor is
ready for reading.

Our next test is to see whether select sleeps properly. Run this:

data &
sal &
trip

When sel is run, you should see:

Entering select...
Driver entering select.
Read not ready

Driver entering select.
Read not ready

The aelect call in the kernel calls the tesat select function again once if
the first time the driver is not ready. However, the process is only added
to the wait queue once -- the first time.

Once the trip program is run, you should sea:

Process has woken up!
Read returns 1024
Driver entering selact.
Select returns 1

That is, the data process woke up due tc the write, as did the sel process.
Note that the test select function is called once again when the sel process
is woken up. This is alac a consequence of the kernsl design, and is
nothing to worry about. Those who are interested in the inner workings of
the select call should loock in the file <arc>/fs/select.c.

A word about signals and select. Since the select call in the driver doea
not return any srror code ~- just 0 or non-0 -~ there is no way to decide
whether the select call should be restarted or not. Select will return -1,
errno EINTR if interrupted by a signal.

CHAFTER SEVEN: This next chap -- oh, helle! -- this next chapter is about
————————————— intexrupta.

This chapter will be one of the most difficult chapters to go through as a
tutorial, since some means of generating interrupts must be used to test
things with. Furthermore, the interrupt must be one which is currently
unused by the system, and one must be willing to meas around with a hardware
device which is connected te the IRQ.

I will start out with something meore centrolled than external interrupts --
internal, or software, interrupts.

Why internal interrupts? There really is not such a big difference between
internal and external interrupts. Certainly an IRQ is generated by a
hardware device, but the hardware IRQ results in a scftware interrupt. I
will discuss the required changes for dealing with hardware rather than
software interrupta later in this chapter.

Note: The following paragraphs deal with B80386/8048B6 specific stuff. Those
who are not really interested in the "why" of Linux interrupts may skip

ahead!

To be able to use interrupts, we must first understand how Linux handles
interrupts. Interrupts most often require a transfer of exacution control
from one code segment to another, and this may be accomplished in two ways.
The first is by specifying the descriptor of the other executable segment,
and the second is by a "gate".

In Linux, three functions are used to initialize gates: set_intr_ gate,
set_trap gate, and set system gate.

set_intr gate sets up a 32-bit interrupt gate with descriptor privilege
level (DPL) 0 (the moat privileged level).

e

i Hx

L

Sep 51994 10:04:14 tutorial.doc

set_trap gate sets up a 32-bit task gate with DPL O.
set system gate sets up a 32-bit task gate with DPL 3.

Each of these setups enter the gate into the interrupt descriptor table
{(IDT) so that when an INT n instruction is performed, the gate in the IDT

corresponding to n is exscuted.
THIS ENDS 80386/80486 DISCUSSION.

The three Linux calls allow us to install an interrupt handler for any
interrupt from 0x00 to OxFF. We will use set intr gate to install an

interrupt handler into interrupt 0x90.

e

Page 15

