INTERNATIONAL ATOMIC ENFRGY AGENCY | et
UNITED NATIONS FDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION

u INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
1.C.T.E, P.O. BOX 586, 34100 TREESTE, ITALY, CaBLE. CENTRATOM TRIESTE

The United Nations
University

@l

SMR/774 - 12

THIRD COLLEGE ON MICROPROCESSOR-BASED REAL-TIME
CONTROL - PRINCIPLES AND APPLICATIONS IN PHYSICS
26 September - 21 October 1994

X11 PROGRAMMING

Ulrich RAICH
.N.-European Organization for Nuclear
Research
E.P. Division
CH-1211 Geneva
SWITZERLAND

C.C.R

These are preliminary lecture notes, intended only for distribution to participants

Man BuiLoing S‘MACm 11 T._ 22401 Tlmx 724163 Tasx 460392 Apmiamico Guust Houss Via Guicrano, 3 T 224241 Tasrax 224531 Tma 460449

L AMAEAN Tl . ALNIOY £ i o Taieae Hmiiae Vi R 7 T

2401 Taway 2240310 Taxx 460392

]

Infroduction to X-Windows

X started its life in 1984 at the Massachusetts Institute of Technology (MIT) with the
project Athena. At MIT several hundreds of workstations were scattered on the
campus. They were intended for the use by students and were rather heterogenous
(severeal different manufacturers, different operating systems). On the other hand
most of them had:

¢ a powerful 32 bit CPU

* big address space

* a high resolution bitmapped display

* some of them were equipped with a mouse

¢ and they had a network connection

The idea was therefore to provide a window system allowing to write vendor
independant applications, that could run on any of these stations. In addition, it
should be possible to access applications on any of the workstations from any other
workstation using the network. Of course performance was another keyword for the
design.

Sinee the lecture time for X-Windows programming is fairly limited (there are some
10 books of 700 pages each explaining the X-Window system!!!) we prepared this little
booklet, which should contain an explication of some basic features of the system and
also all the calls you will need for the exercises.

In the course of the lectures you will build up a little X-Windows application
simulating the Colombo board on the screen and interacting with it. The exercises are

appended to this script.

introduction to X-Windows 1-1

2

The Client-Server Model

In order to write device independant applications, the details of device access must be
hidden in some sort of driver. In X this is a program called the X-Server. It provides
all the basic windowing mechanisms by handling connections from X-applications,
demultiplexing graphics requests and multiplexing input from keyboard, mouse etc.
back to the application. This program is usually provided by the hardware vendor.

An application connects to the X-Server through an interprocess communication path
(ICP) either through shared memory or through a network protocol like TCP. Such a
IPC path is called the X-Client. Since most applications open only a single connection
we often call the application itself the X-Client. However: an application having
several IPC paths open is considered as several clients.

The communication protol between X-Client and X-Server is called the X-Protocol.
One of the main design objectives for this protocol was to minimize the network
traffic, because the network must be considered the slowest system component.
Therefore an asynchronous protocol has been chosen. In order to bring windows up on
the screen the application simply sends of requests without waiting for an
acknowledgement. This can be done because of the reliability of the underlying
network protncol. The application does not poll for events like key presses and mouse
button presses neither. It registers interest in certain events with the X-Server, which
will then send only relevant events back to the application. Both the output requests
and input events are buffered.

The X-Protocol is the fundamental layer onto which other tools can be build. It is user
interface policy free. This means that only rectangular windows are handled but no
buttons, menues and the like. These so-called widgets are implemented in a toolkit

sitting on top of the protocol.

The XLib contains routines that allow access to the X-Protocol. It provides the
following functionality:

e display management {open, close displays)

+ window management (create/destroy window and change their visual aspects)
+ two dimensional graphics (draw lines, circles, rectangles, text)

* color management {color map and its access routines)

* event management (registration of interest in events and event reception)

This gives us an overview over the next few chapters.

In fig 2-1 we see 3 X-Clients running on 3 different machines (A,B,C} and
communicating with a single X-Server (on system C). For the clients on A and B the
X-Protocol runs over the network, while for the text editor a shared memory IPC path

is used.

The Client-Server Model 2-1

Figure 2-1 The Client-Server Model

Server Queue Server Queue

System A System B
B.e am CAD Program
Simulation
XLib / XLib /

Screen

” Keyboard

2-2 The Client-Server Model

3

Display Management

In order to create windows on the screen and to receive events a connection to the
display must be established. In X terminology the display consists of :

* One Or more screens
* asingle keyboard
* an (optional) pointing device
¢ the X-Server
This connection can be built up through the XLib call:
Display XOpenDisplay(display_name)
char *display_name

If display name = NULL the display_name defaults to the value stored in the
environment variable DISPLAY. If you want to open the server on your neighbor’s
workstation, he will first have to allow you access to it (xhost name_of_your_station),
then you may define display_name as his_station:server_number.screen_number
(usually 0.0).

The return value from this cali must be saved, because it will be passed into all
subsequent calls. In case of error a NULL display is returned.

There are several Macros giving information about screen properties like;

» DisplayHeight(display, screen_number)
Display display;
int screen_number;

e DisplayWidth(display, screen_number)
giving the width and the height (in pixels) of the sereen.

Disptay Management 3-1

4

Window Hierarchies

Once the Client-Server connection is established, we can generate our first windows:

Window = XCreateSimpleWindow(display,parent,x,y,width, height,
border_width,border_color,background_color);

Display *display

Window parent;

int XY; /* position with respect to the upper left corner */
/* of the parent window */

unsigned int width, height, border_width;

unsigned long border_color;

unsigned long background_color;

x,y,width height and border_width do not need any explanation. background specifies
the background color. Since colors will only be explained later we will put this to:

unsigned long WhitePixel(display, DefaultScreen(display))

where WhitePixel and DefaultScreen are Macros returning the pixel value for "white"
and the default screen number respectivly. The border parameter specifies the color
for the window border and is set to:

unsigned long BlackPixel(display,DefaultScreen(display)}.

The parent parameter will need some more explanation: All windows are inserted into
a window hierarchy, where each window has a parent window. The great-grandfather
of all windows is the root window who’s id can be obtained by:

Window RootWindow(display,DefaultScreen(display)).

The root window

covers the screen completely

=+ cannot be moved or resized

¢ is the parent of all other windows

* has all window attributes like background color, patterns etc

s you can draw onto it as on all other windows

The return value from XCreateSimpleWindow is used to build up the window
hierarchy. In fig. 4-1 a complete hierarchy is shown. Since all windows are clipped to
the boundaries of their parents some of the windows may be completely invisible.

Window Hierarchies 4-1

Figure 4-1 Window Hierarchies

Root Window

B Main Window C Main Window

/T

A Main Window

D Child Window

E Child Window

‘Root Window

\

N\

Legend:

4-2 Window Hierarchies

\
N

clipped

root window

vigible part of window

%

N\ N\

After the XCreateSimpleWindow all the data structure needed for the management of
the window will be created, however the window will still not be visible.

XMapWindow (display,window_id)
Display display;
Window window_id;

will map the window and all of its subwindows, for which the XMapWindow routine
has been called. Once the window is mapped, there are several XLib calls to change its
layout:

. XN[oveWindow(display,window_id,x_offset,y__offset)

. mesizeWindow(display,window_id,width,height)

. XMoveResizeWindow(display,window_id,x_offset,y_offset,width,height)
. XSetWindowBorderWidth(display,window__id,border_width)

) XSetWindoWBackg‘round(display,window_id,background_pixel)

. XChangeWind0wAttributes(diSplay,window_‘id,value_mask,attributes)

and many more.

The last call allows to change any of the window attributes in a single call.
“attributes” is a XSetWindowAttributes structure, having a certain number of fields.
The value_mask tells the system, which of the attributes fields are to be taken into
acount. Only these values will be changed. It is a bitwise inclusive OR of the valid

attribute mask bits.
Using this mechanism windows can also be create with:

XCreateWindow(dispIay,parent,x,y,width,height,border_width,depth,class,visual,
valuemask,attributes)

If in the situation of fig 4.1 we would call
XUnmapWindow(display,B_main_window)
the window B and all of its subwindows (D and E) would disappear.

Figure 4-2 Structure and Value Mask

i

anything

valid

valid

anything

anything

valid

Window Hierarchies 4-3

drag side

drag
corner

4-4 Window Hierarchies

Fig 4-3 shows the results of such a Map call for a single main window.

It has been explained before, that a window simply consists of a rectangle. Here on the
contrary many more items like the three buttons on top of the window, the stars, the
triangles on each corner etc. can be seen. The layout and the functionality depend on
the look and feel (the policy) of the window system. It is another X-Client, the
window manager, which is responsible for the decoration of the main window (child
of root window). It allows to change the stacking order of windows, displace and resize
windows, iconize them and even killing them (and the application).

The XLib provides calls to communicate easily with the window manager in order to
modify the decorations like
XStoreName(display,window_id title_bar_text);

This call will communicate the title to be put into the title bar to the window manager.
The communication is done through the Inter Client Communication Convention
(ICCCM, M=manual) using so called window properties, which are data that can be
attached to windows. We will not be able to go into any detail because of lack of time.

drag top
drag
corner
iconize
ctandard title bar button
option maximize
menu butten
drag
side
drag
corner

drag bottom

5

Drawing, the Graphics Context

Let us consider the simplest possible drawing instruction: drawing a line between 2
points. This is done with the call

XDrawLine(display,drawable graphics_context,x1,y1,x2,y2)

Display display;

GC graphics_context;

int x1,y1,x2,y2;

The meaning of all parameters except "drawable" and "graphics_context” should be
obvious. The “"drawable" tells the system where to draw. In fact there are 2
possibilities. Either we draw into a window on the screen or into a window simulated
in memory, a pixmap (Details on pixmaps in one of the next chapters). Remember that
the root window is treated like any other window, so it is possible to generate
background pictures by drawing onto the root window,

Coming back to our draw line primitive. When drawing the line, several questions
remain open:

+« what is the line width?
+ what color?
e straight line or dashed, dottet ... and what are the distance between dashes

* how to join lines

and there are many more drawing attributes.

Since it is the X-Client who generates these graphic requests and it is the X-Server
who executes them, all attributes must be send to the server. This could be done on a
per primitive basis, however network traffic would be strongly increased and the
performance would suffer. For this reason graphics contexts containing all these
attributes can be prepared on the server. In the drawing call the identifier of the

graphics context resident on the server is specified.

GC XCreateGC(display,drawable,values,value_mask)

Display display;
Drawable drawable;
XGCValues values;

unsigned long value_mask;

creates a graphics context for us.

Drawing. the Graphics Context 5-1

B R

The value structure of type XGCValues has over 20 entries. In the following table
some of the entries and their corresponding value_mask bit name are given.

Entty value_mask bit usage and possible values
values.line_width |GCLineWidth
value.line_style GCLineStyle LineSolid draw full line
LineDoubleDash odd lines fill differently
from even lines
LineOnOffDash only even dashes are
drawn
values.cap_style GCCapStyle How to draw the end point:
CapButt line square at the end
point
CapNotLast as CapButt, but the last point
is not drawn
CapProjecting as CapButt, but the line is
longer half the projection
CapRound round end points
values.join_style GCJoinStyle how to join fat lines
JoinMiter outer edges extend to meet at
an angle
JoinBevel corner is cut off
JoinRound round off edges
values. fill_style GCFillStyle FillSolid uses foreground color for
- filling
FillTiled uses a colored tile pattern
FillStippled same as FillSolid but uses a
stipple pattern bitmap as mask
FillOpaqueStippled same as FillTiled but uses a
stipple pattern as mask in
addition
values.function GCFunction logical operation for drawing
possible values see later
values.foreground |GCForeground foreground color
values.background | GCBackground guess what!
values.tile GCTile tile pixmap
values.stipple GCStipple stipple bitmap
values.clip_mask |GCClipMask clip mask
values.ts_x_origin | GCTileStipXOrigin shifting the tile of stipple pattern origins
same for y
values.font GCFont font for text drawing

In order to create a graphics context that allows drawing of a dashed line of width 4
the following code segment would do the job:

XGCValues
unsigned long
GC

value_mask = GCLineStyle | GCLineWidth;
values.line_style = LineOnOffDash;
values.line_width = 4;

values;
value_mask;
graphics_context;

/* setup the value mask */
/* define the fields indicated in mask*/

graphics_context = XCreateGC(display,main_window,values,value_mask);
All other GC values will be defaulted.

5-2 Drawing, the Graphics Context

Another way is to generate a default GC using
DefaultGC(display,screen_number)

and then use
XChangeGC(display,graphics_context,value,value_mask)
to do the necessary changes.

There are also lots of convenience functions changing a single entry in the value
structure:

+ XSetForeground(display,graphics_context foreground)
* XSetBackground(display,graphics_context,background)

* XSetLineAttributes(display,graphics_context,line_width,line_style,
cap_style,join_style)

+ XSetDashes(display, graphies_context,dsh_offset,dash_list,n)

» XSetFillStyle(display,,graphics_context,fill_style)

o XSetTile(display,,graphics_context,tile)

e XSetStipple(display, graphics_context,stipple)

» XSetClipMask(display,graphisc_context,clip_mask)

¢ XSetFont(display,graphics_context,font)
and many more. Fig 5-1 shows the result of these graphics context manipulations.

Last not least there is an entry value.function, which sets the binary function that is
applied to the existing pixel value when drawing onto the screen (src is the pixels to
be drawn newly, dest is the actual pixel value)

* GXClear 0
« GXand src and dest
* GXandReverse src and (not dest)
+ GXcopy src (this is the default of course!)
s GXnoop dest
» GXxor sre¢ xor dest
3iinor {(not src) and (not dest)
e GXequiv {not sr¢) xor dst
+» GXinvert not dst
s (GXorReverse src or (not dest)
» GXcopylnverted not sre
¢ GXorlnverted (not src) or dst
s GXnand (not sre) or (not dest)
» GXset 1

Drawing. the Graphics Context 5-3

EGraphics context demo

W TODOMT NSO

T

T

| — ey p—) ma

default line

b. CapNotLast, last point is not
drawn (difficult to see!)

c. line width set to 8, CapButt

d. CapProjecting

e. CapRound
LineDoubleDash

g. LineOnOffDash (would need fill
patterns to see the difference)

h. different dash lengths

1. JoinBevel

-

J- JoinRound

5-4 Drawing, the Graphics Context

LI}

S

S I

FillTiled

Changed the tile origin
fill stippled

use a clip mask

use XOR graphic function
filled text

6

Bitmaps and Pixmaps

In the previous chapter we were talking about pixmaps as drawables for drawing
primitives. Therefore the questions: What exactly is a pixmap? What is the difference
between a bitmap and a pixmap? and how can we generate pixmaps?

As already explained before a pixmap is a sort of a simulated window in memory. As
long as we work on a black and white workstation we need 1 bit for each pixel to be
displayed. An array, describing such a pixelplane is called a bitmap. Once we use a
color display several bitplanes are needed depending on the number of colors, that can
be displayed. This collection of bitmaps with a certain depth is called a pixmap.

An empty pixmap can be allocated with the call:
Pixmap XCreatePixmap(display,drawable,width height,depth)

Display display;

Drawable drawable; /* needed to determine which screen the pixmap is stored on */
unsigned int width,height;

unsigned int depth;

The pixmap will be stored on the X-Server, which is the reason for the drawable
narameter. Just sneeify the id of your main window. Once you allocated the pixmap
you can use it as drawable in any of the drawing primitives. In order to visualize your
pixmap you must copy its contents onto a window:

XCopyArea(display,source_drawable,dest_drawable,gc,src_x,src_y,
copy_width,copy_height,dest_x,dest_y);

If you have a bitmap which you want to convert to a pixmap or simply visualize on a
color display you use:

XCopyPlane(display,source_drawable,dest_drawable,gc,src_x,src_y,
copy_width,copy_height,dest_x,dest_y,plane);

with plane =1 (bitmap).

Of course it might be rather difficult to build up bitmaps using only drawing
primitives. For this reason X provides a utility, the bitmap editor.

Bitmaps and Pixmaps 6-1

The command "bitmap” will bring up the application shown in fig. 6-1
Figure 6-1

Bitmap Editor a

[CGlear All
Set All
[Invert All

3 | Clear Area
§|7 Set Area |
{[(invert Area |

[Copy Area |
[Move Area |
[Overlay Area |

[Line |
| Gircle |
[Filled Gircle |

[Flood Fill |

[Set Hot Spot |
[Glear Hot Spot|

[Write Output |
| Quit |

6-2 Bitmaps and Pixmaps ,
1]

The result of the editor is a C source file which can be included into you application:

#define smiley_width 11

#define smiley_height 11

static char smiley_bits{] = {
Oxf8, 0x00, 0x04, 0x01, 0x02, 0x02,
O0xd9, 0x04, 0xd9, 0x04, 0x01, 0Ox04,
0x21, 0x04, 0Ox8%, 0x04, 0x72, 0x02,
0x04, 0x01, 0xf8, 0x00};

This code can be used to create a pixmap:

Pixmap XCreatePixmapFromBitmapData(display,drawable,smiley_bits,
smiley_width,smiley_height,foreground,background,
DefaultDepth(display,screen_number));

Here the macro DefaultDepth is used te find the number of bitplanes used for the
display. The same result can be obtained by reading in the bitmap file directly.

int XReadBitmapFile(display,drawable,bitmap_file_name,&width,&height,
&hot_x,&hot_y);

{hot_x, hot_y give the coordinates of the "hot spot” used for cursors). Now the bitmap
can be converted to a pixmap with the XCopyPlane call.

There is also a freely distributable library and a pixmap editor which can be used to
generate pixmaps (in color) directly. (Try "pixmap" on your machine!)

Pixmaps are used for cursors, tiles, stipples icons etc. They can alse be used to restore
pictures which have been destroyed by overlapping windows (see chapter on events).

Bitmaps and Pixmaps 6-3

7

Drawing Primitives

X-Windows is NOT a graphics system! This can be easily seen by the limited number

of graphies primitives and by their simplicity:

There are a few functions to clear out an area to be drawn in

* XClearArea(display,window_id,x,y,width,height,exposures)

¢ XClearWindow(display,window_id)

¢ XFillRectangle(display,drawable,graphics_context,x,y,width height)

While most graphics primitives work on a drawable, XClearWindow and XClearArea

work only on windows.
Here are the primitives which actually draw graphic objects:

XDrawPoint(display,drawabie, x,y)
XDrawPoints(display,drawable, points,npoints,mode)
where points is an array of type

typedef struct {
short XY,
} XPoint;

npoints, the number of XPoint entries in the array "points”
and mode = CoordModeOrigin (x,y is given in absolute pixel coordinates)
or mode = CoordModePrevious (x,y are the relative distances to the last point)

XDrawLine(display,drawable,gc,x1,v1,x2,y2)
XDrawLines(display,drawable,gc,points,npoints,mode)
XDrawRectangle(display,drawable,gc,x,y,width height);
XDrawRectangles(display drawable,gc, rectangles,nrectangles)
where rectangles is an array of type

typedef struct {
short X,Y;
unsigned short width,height;
IXRectangle;

XFillRectangle(display,drawable,gc,x,y,width,height);
XFillRectangles(display,drawable,gc,rectangles,nrectangles)

and there are some more for drawing of arcs, segments etc.

Drawing Primitives 7-1

For text drawing lots of different fonts are available. The command xisfont prints the
names of all available fonts. If you want to know how the font looks like, try xfd

(x font display).
The font names are standardized as follows:

AADOBE-Helvetica—BoldvR—Normal——12*120—75775—P-70—1808859-1

Average
L width

Spacing
M-Mono
P=Proportional

Y-Resolution (dpi)

X Resolution (dpi)

—— Point size (x10)

— Pixel Size

—— Slant: R=Regular, O = Oblique

—— Weight: Medium or Bold

L— font type

First the font must be loaded with
Font XLoadFont(display,font_name)

then the font must be specified in the graphics context and last not least we can draw
our text using XDrawString(display,drawable,gc,x,y,string,length).

It is also possible to fill an array of text items:
typedef struct {

char *chars;
int nchars;
int delta; /* distance between strings, is added to horizontal origin */
Font font;
| XTextItem.

and use XDrawText(display,drawable,ge,x,y,item_array,nitems)
which allows drawing of multiple font text strings.

7-2 Drawing Primitives

8

The Color Model

The Color Model 8-1

9

Event Handling

Once the client-server connection is opened the X-Client sends requests for bringing
up windows, changing them, drawing things into them etc. but the X-Server can also
inform the X-Client of certain events like exposure of a window, mapping of a window
or user initiated, asynchronous events like mouse clicks or keyboard button presses.

Due to the enormous amount of possible events (think of mouse movement only!} and
the relatively small number of events the X-Client is actually interested in, it is much
more efficient to filter the events on the server side. Before treating any events the
X-Client must therefore register interest in a certain type of event on a per window

basis,

Figure -1 The event chain

Event Handlina 9-1

» ~~

The general layout of an X-Client is therefore given by the below diagram:
Figure 9-2 Flow of control in an X-Client

Initialize
connect to
X-Server

l

Create and
map
windows

l

register
interest in
events

!

MainLoop

/O

Service
event 1

Service
event 4

Service Service
event 2 event 3

¢-2 Event Handling

While in the "usual” programming style the program asks for user input at the
moment it is needed and convenient (the program controls the user!) in X-Windows
programs the user can change the flow of control in any manner choosing functions
provided by the program in a completely random manner.

There are 2 possible ways for the X-Client to register interest in events:

« at the moment of window creation we can set the entry "event_mask" and the
corresponding bit "CWEVENTMASK" in the value mask to the event types we are
interested in

. XSelectInput(display,window_id,event_mask)

If one of the selected events arrives at the XServer (say a mouse click) it sends this
event into the XClients event buffer. There the main loop can pick it up and analyse
it.

The call
XNextEvent(display,&event)
Display display

XEvent event

retrieves the next event from the event queue and blocks if no events are available.

The XNextEvent returns an XEvent structure of the following form:

typedef struct {

int type;

unsigned long serial;

Bool send_event;

Display *display;

Window window;

} XAnyEvent;

typedef union {

int type;

XAnyEvent xany;

XButtonEvent xbutton; ... many more ...
XExposeEvent Xexpose; ... many more ...
XKeyEvent xkey;

XMapEvent xmap, .. many more ...
} XEvent;

From the event.type we can find out which sort of event has happened. The following

table gives a few examples. The event mask enablin

the symbol for the event type are given.

g reception of the event type and

Event Mask Event Type Event Structure
KeyPressMask KeyPress XKeyPressedEvent
KeyReleaseMask KeyRelease XKeyReleasedEvent
ButtonPressMask ButtonPress XButtonPressedEvent
ButtonReleaseMask ButtonRelease XButtonReleasedEvent,
PointerMotionMask MotionNotify XPointerMovedEvent
LeaveWindowMask LeaveNotify XLeaveWindowEvent
EnterWindowMask EnterNotify XEnterWindowEvent
ExposureMask Expose XExposeEvent

The event loop in an X-Client therefore has the following structure: (see also fig 9.3)

/* before the loop: */
for (i=0;i<MAX_DIGIT:i++)

XSelectInput(display,digit,ids[i],ExposureMask);

for (i=0;i<MAX UP_BUTTON;i++) {

XSelectInput(display,up__button_ids[i],ExposureMask;
XSelectInput(display,up_button_ids[i],ButtonPressMask;

f

/* and now the event loop */

for (;;) |
XNextEvent(display,event);

switch (event.type) (
case {(Expose):

if (event.xanyevent.window == digit_ids{0]

/* redraw first digit */
break;

case (ButtonPress);

/* check from which window it comes and treat it */

if (event.xanyevent.window == exit_button_id)

exit(0);

Event HanAdlinn 9-3

Figure 9-3 Events and Event Masks

Colombo Board Simulator

B
||
N
N4

DB &
R

In the above example Expose events need to be enabled for each of the subwindows
and ButtonPress events must be enabled for the up/down arrows and the exit button.

When drawing into a window using the X drawing primitives, the window must
already be mapped onto the screen and all window properties like position, size, id ..
mus. ve known. Since the visualization is done by the X-Server there is a problem of
synchronization, Therefore we usually create and map the windows to be drawn in
during the program initialization. Interest in Expose events are declared as well. As
soon as the X-Server has mapped the window (all information on the window is
available) an expose event in generated. The drawing is then down in the expose event
handler.

The XExposeEvent structure has the following form:
typedef struct {

int type;
unsigned long serial;
Bool send_event,
Display *display;
Window window;
int X,¥;
int width,height;
int count;

| XExposeEvent,

9-4 Event Handling

The x,y,width height parameters in the structure describe a rectangle of pixels which
must be redrawn. As can be seen in fig 9.4 redrawing of several rectangle may be
needed. The count entry indicates how many more such expose events are going to
follow. The easiest method to treat these events discards all expose events with
nonzero count and redraws the full window on the last (count=0) expose event.

If the window size does not change, we can put our drawing into a pixmap of same size
as the window and on expose events copy the pixmap onto the window using
XCopyArea.

Figure 9-4 Expose Events

[
wa| Colombo Board Simulator o fif

—"I xclock

< € a € ¢
(sl 7 X a X a X -}
ah @ € @ &
(suvE + X 2 X 3 ¥ .+ J
o b a8 O €

example_4

xclock

t B 1
s .heighf

xcalc

This diagram shows the rectangles to be updated if the calculator is brought
into foreground.

Event Handling 9-5

10

The Athena Widgets

Up to now only XLib calls have been used. We managed with some difficulties to
implement a "button", treating mouse button clicks within the up/down windows and
a sort of label containing the digits. It seems to be a good idea however to standardize
on how such a button should react and on how it should look like (contain some text or
bitmap, be activated when mouse buttonl is pushed and released within its window).
This is the so called "look and feel” which is implemented in libraries lying above the
XLib. A window together with an input/output semantic is called a widget. Typical

examples are:

s labels

+ pushbuttons and toggle buttons

s pulldown and popup menus

» boxes and forms containing other widgets
» text input widgets and many more.

For us widgets are simply user interface objects which are the building blocks for our
applications. There are several widget sets available on the market. The most commeon

~nec are:
e Motif

¢ OpenLook

¢ the Athena Widgets

Fig 10-1 shows some of the Athena widgets.

We chose to describe the Athena widgets because this is the smallest set, it is freely
available and it is part of the standard X distribution (Motif is the most common
widget set now, but it is commercial) .

In order to implement such a widget set a support library is supplied: the Xt
(X toolkit) library. On top of Xt is the actual widget set itself in the case of the Athena

widgets: the Xaw library.

The Athena Widgets 10-1

Figure

10-1 The Athena Widgets

athena

‘l toggle button]

3, .

\ grip
label widget
with bitmap

Thiz|is just to
A téxt widget

say hello to all participants!

\

\)mmand widget

scroll bar

) clock widget
text widget

Figure 1G-2 The Library layers

2

B

The X toolkit (Xt)
support lib to build widget sets

10-2 The Athena Widgets

XLIB gives access to the X protocol (lowest level)

Instead of building the window hierarchies the application now builds up widget
instance hierarchies. Again we have a "root widget” called the TopLevelShell. This
widget communicates with the window manager to set up the decoration of its
window. The child of the TopLevelShell is usually a container widget which manages
the layout of its children (geometry management). The Athena widget set knows 2
types of container widgets: the box widget and the form widget. Inside the container
widget you may put any other widgets like buttons, labels, menus etc. and of course
other container widgets. As for the windows in XLib the windows of the widgets are
clipped to their parent widget window boundaries.

The widgets provide a data structure containing so called resources, which describe
them fully. When creating a widget instance all resources are defaulted to reasonable
values but they can be changed at creation or later during runtime.

The widgets we will be using for our Colombo Board Simulator are the following:
s form (the container widget)

* command button (for the up/downbuttons)

e label (for the digits)

¢ menu button

e pull down menu (just for demonstration, only the "Quit" menu entry will be
implemented)

Before using any widget the X toolkit must be initialized and the TopLevelShell must
be created. This can be done with the call

Widget XtInitialize(shell_name,application class,options,num_options,argc,argv)

char *shell_name; /* can be NULL */

char *application_name;

XrmOptionDescRec options[]; /* You may specify X specific options in the */
/* command line. The command line parser */
/* will pick out all these options and leave */
/* the non X specific ones. Put NULL here */

Cardinal num_optiens; /* we don’t treat special X options, put 0 */
Cardinal *arge;
char *argv(];

The return value from this call is an identifier for the TopLevelShell, which is the
great-grandfather of all other widgets.

Now we can start to build up the widget instance hierarchy. For each type of widget
an include file containing widget specific definitions is provided. In order to create a
widget call

Widget XtCreateManagedWidget(widget_name,widget_class,parent,args,num_args)

String widget_name; /* give it the name you like */
WidgetClass widget_class; /* defined in the include file */
Widget parent; /* used to build the hierarchy */
Arglist args; /* allows to change the resources */
Cardinal num_args;

Tha Athenc Wicdnets 10-3

The following tables show the widget names, their class name and the corresponding
include file name for the widgets we will be using:

Widget Type |Widget Class Name include file
form formWidgetClass <X11/XawFrom.h>
command commandWidgetClass «X11/Xaw/Command.h>
label labelWidgetClass <X11/Xaw/Label.h> but this
is part of Command.h
simpleMenu simpleMenuWidgetClass <X11/Xaw/SimpleMenu.h>
smeBSB smeBSBObjectClass <X11/Xaw/SmeBSB.h>
menuButton menuButtonWidgetClass <X11/Xaw/MenuButton.h>

As an example we show how to create a form widget with default resources:

#include <X11/Xaw/Form h>

Widget toplevel form;

main(arge,argv)

toplevel = Xtlnitialize(...

form = (Widget) XtCreateManagedWidget("main_widget",formWidgetClass, NULL,0);

A widget tree (widget instance hierarchy) can easily be build using several of these
XtCreateManagedWidget calls. In order to bring the windows corresponding to these
widgets onto the screen we must "realize" the root of the tree:

XtRealizeWidget(toplevel)

does this for us. In contrary to our window examples the widgets already contain code
for treatment of the X events. However the programmer must be notified of certain
sequences of events like ButtonPress followed by ButtonRelease within the window of
a command widget, which corresponds to "pressing the pushbutton” on the screen.
This can be done with callbacks: Almost all widgets allow to connect callback
routines to certain actions. Use the routine:

XtAddCallback(widget_id, callback_name, callback, client_data);

Widget widget_id;

String callback_name; /* In our case: XtNcallback */
XtCallbackProc callback; /* address of callback proc */
caddr_t client data; /* address of data to be passed */

XtCallbackProc is defined as:

typedef void (*XtCallbackProc) (widget_id, client_data, call_data);
Widget widget_id;

caddr_t client_data; /* specified in XtAddCallback */

caddr t call_data; /* call specific data, depends on the
widget */

For the exit button in our example programs we will therefore construct a callback

procedure:

void exit_callback(w,client_data,call data)

Widget w;

caddr_t client_data,call_data);
{ /* cleanup if needed */

exit(0});
]

10-4 The Athena Widgets

After creation of the exit button

exit_button = XtCreateManagedWidget("exit_button",commandWidgetClass,

main_widget, NULL,NULL);

(creation of a command widget) we connect this routine as "activate callback" to the

widget:

XtAddCallback(exit_button,XtNcallback NULL).

Once this widget tree is complete and all callbacks are connected, control is given back
to the window system, which will call the registered callback routines as soon as the

corresponding event sequence has happened. The call
XtMainLoop();

does this.

The flow of control in an application program using widgets has therefore the

following form:

Figure 10-3 Flow of control in a widget based application

Initialize
Toolkit

¥

Create Widget Instance
Hierarchy

v

Attach Callbacks

l

Realize Root of

Widget Tree
XtMainLoop
callbacks on
event sequence
Callback 1 Callback 2

Callback 3

The Athena Widgets 10-5

The Widget Class Hierarchy

Simple

Widgets are build using object oriented programming techniques. This means, that
there are some "basic” widgets (basic data structures and access routines, so called
methods) which are defined in the Toolkit intrinsics. These basic widgets are the Core
widget and several Shell widgets. A new widget uses part of the datastructures and
methods defined in these basic widgets and augments them with new data entries and
new access routines or modifies some of the properties. Consider a label and a
pushbutton (command widget): The label has some basic resources like width, height,
border width, foreground/background color etc. which it inherits from the core widget
(all widgets have these properties!) In addition it has a string or a bitmap associated
with it. A command button can be considered to be a label widget having the
additional features of being active. In the case of the Athena command widget the
window is highlighted when the cursor enters its window and a callback for activation

can be attached.

When the programmer calls XtCreateManagedWidget a widget instance of the
specified class is created. This instance contains the individual values for the label
string, the colors etc. while the class provides some additional data fields valid for all
instances and all the access routines. This is why we always insisted to talk about the
widget instance hierarchy and not just the widget hierarchy!

Figure 10-4 The Athena widget class hierarchy

I
I [| I |

|
Shell Label | | Text || List Grip scroll

Box Viewport
[I
Vpaned Form Command
Dialog

VendorShell

OverrideShell

ToplL:evelShell
ApplicationShell

TransientShell

10-6 The Athena Widgets

In order to change the default layout of the widgets we must access its resources.
These changes can be performed during widget creation or using the Xt routine
XSetValues at runtime. Before doing so we must fill an argument list, where each
element is of the following type:

typedef struct |
String name; /* name of resource to by modified */
XtArgVal value;

} Arg, *ArgList;
A Macro has been defined to accomplish this:

XtSetArg (arg,resource_name,value)

Arg arg; /* argument to be set */
String resource_name; /* e.g. XtNwidth, XtNheight ... */
XtArgVal value; /* value of the resource */

This argument list and the number of entries may be specified in the widget instance
creation routine or in XtSetValues:

void XtSetValues(widget_id,args,num_args);
Widget widget_id;

ArgList arg,;

Cardinal num_args;

An example: We want to set the string "Quit” in the exit button and set its width and
height to fixed values:

Arg args[5];

XtSetArg(args[0],XtNlabel,"Quit"),

XtSetArg(args(1],XtNwidth,100);

XtSetArg(args(2], XtNheight,50});

XtSetValues(exit_button,args,3); /* will set these 3 resources at runtime *)

In the same manner it is possible to read back resources from a widget:

XtSetArgs(arg{0], XtNlabel, *return_stringy);
XtGetValues(exit_button,args,1);

will return the label string into return_string.
The next step is to give you a compilation of resources that you will need for
development of the exercise on widgets {exercise 5). This list is of course far from

being complete. We therefore encourage you to have a look into the X Toolkit
Instrinsics Manual, which has a chapter on the Athena widgets.

The Athena Widgets 10-7

The form widget

The form widget is a container widget performing geometry management on its
children. The children of a form may specify their position relative to each other or
relative to their parent. When a widget is child of a form it has the following
additional resources:

Resource Name |Type Default Desciption

XtNbottom XtEdgeType XtRubber possible values:
XtChainTop,XtChainBottom
XtChainRight,XtChainLeft
keeps the distances to bottom,
top ... constant
XtRubber scales the distances

XtNtop XtEdgeType XtRubber

XtNright XtEdgeType XtRubber

XtNleft XtEdgeType XtRubber

XtNfromHoriz Widget NULL attach to this widget for
horizontal distance

XtNfromVert Widget NULL attach to this widget for vetical
distance

XtNhorizDistance |int XtdefaultDistance |no of pixels from widget where
we are horizontally attached
(by XtNfromHoriz

XtNvertDistance |int XtdefaultDistance |[same as above for vertical

In the exercise you may limit yourself to setting XtNfromHoriz and XtNfromVert.
This will enable proportional distances when you resize the form. Of course you are
invited to play with the other resources and see the effect.

10-8 The Athena Widgets

The label widget

Resource Name |Type Default Description
XtNx Position 0 x coordinate in pixels relative to
the upper left corner of the
parent
XtNy Position 0 see above
XtNwidth Dimension the minimum width |height of the window
containing boundaries in pixels
2*XtNinternalheight
+height of XtNlabel
XtNheight Dimension see above see above
XtNlabel String Iabel name String to be displayed in label
XtNbitmap Pixmap none Bitmap to be displayed instead
of text string
XtNjustify XtJustify XtJustifyCenter How to justify the label

The Athena Widgets 10-9

The command widget, being a subelass of the label widget, has got all the label
widgets resources with the possibility to connect a callback in addition.

Still missing is the way to construct menus. As explained above the children in the
widget instance hierarchy are always clipped to their parent windows. When creating
menus this is not acceptable and we must therefore create another shell widget, which
will contain the menu. On the other hand we don't want decoration of the window
coming up when we activate the menu. This can be accomplished by creating a "Popup
shell™

Widget XtCreatePopupShell(name,widget_class,parent,args,num_args)

the arguments are of same type as in XtCreateManagedWidget. Once the menu is
created buttons can be into the menu. However these are not the known command
buttons but specialized objects of smeBSBObjectClass. In order to pop the menu up a
menu button is needed. The menuButttonWidgetClass has a resource which allows to
hook the menu onto the button. The whole sequence for creating a menu is therefore:

/*
create the menu
*/
file_menu = (Widget) XtCreatePopupShell("file_menu",simpleMenuWidgetClass,
NULL,0);
/*

put some buttons into it
and connect the callback);

#/
XtSetArg(args(0],XtNlabel,"Quit");
exit_button = XtCreateManagedWidget("exit_button”,smeBSBObjectClass,
main_widget, args,1);
XtAddCallback{exit_button,XtNcallback,quit_proc, NULL})
/*
here you may create some more buttons of the same style
then create the menu button to be able to bring the whole thing up:
*/
XtSetArg(args(0],XtNlabel, file");
XtSetArg(args(1],XtNmenuName,"file_menu");
menu_button = XtCreateManagedWidget("menu_button”,menuButtonWidgetClass,
main_widget,args,2);

and that 1s all we need!

Connections of widgets to XLib

For several widgets a bitmap id can be used in order to display pictures in buttons,
labels etc. When creating a bitmap however we need the identifier of the opened
server connection (display variable) or a window id. In order to get this information for
a specific widget (which window corresponds to the main_widget for example) several
calls are available:

Display XtDisplay{widget_id) returns the id of the server connection
Window XiWindow(widget_id} returns the widgets window id.

Using these calls you may now happily intermix Xaw, Xt and Xlib calls.

10-10 The Athena Widgets

11

Exercise 1

Exercises

This series of exercises will gradually build up an application which interacts with the
Colombo board. The application simulates the boards seven segment displays and
implements 4 up buttons and 4 down buttons which increment/decrement the
simulated displays on the screeen and the real ones on the board.

Write a program that brings up a window on the screen. The window should appear
centered on the screen and it should have half the screen size in x and y direction.

Please fill in the following skeleton:

/****************tt*t*****k*********************/

/* */
/* EXAMPLE 1 for XLIB */
/¥ How to open a connection to a display, */
/* and create a window. */
/* */

/t***t***********ti*i—t**************************/

#include <stdio.h>
#include <X11/Xlib.h>

#define TRUE 1
#tdefine SCREEN_NUMBER 0

main(argc,argv) unsigned int argc; char *argv(l; {

Display * display;

Window main_window;

int main_window_x,main_window_y;

unsigned int main_window_width,main_window_height;
unsigned int main_window_border _width;

unsigned long main_window_border_color;

unsigned int main_window background_color;
unsigned int display_width,display_height;

XEvent event ;

/t

Open the connection to the X-server
The "NULL" server name defaults to the display name

Exercises 11-1

M 3

s

defined in the environment variable DISPLAY, which
usually 1s setup to the station running the client
{client and server on the same machine).

*/

/* your code */

/*
get the display width and height
*/

/* your code */

/t
calculate the width of the main window
to {width of screen}/2
and the same for height
*/
/* your code */
/‘il
calculate the x and y positions to 1/4 of the screen size
*/
/* your code */
/*
This will be explained in more detail
when we will talk about colors
*/
main_window_border_color

BlackPixel (display,

SCREEN_NUMBER) ;
main_window_background_color = WhitePixel (display,
SCREEN_NUMBER) ;

/*
Create a window (the window does not appear on the screen yet)
The ‘rootwindow’ is the parent of all other windows
and covers the entire screen.

*/

/* your ccde */

/*

Make the window created above appear on the screen
*/

/* your code */

/*
This we will see later {when talking about events)
in rather great detail
*/
while (TRUE)
XNextEvent {display, &event} ;

Y

In order to build your program copy the file "skeletoﬁl.c" to "example_l.c. Now fill in
the missing code and save it. "make example_1" will build the executable.

You can stop the program either with AC or by using the menu that comes up if you
click the small upper left rectangle marked with "-". Ignore the error message that will
appear.

11-2 Exercises e

Exercise 2

The result of you program should look like this in the end:

Figure 11-1 Solution of exercise 1

Having already 1 window on the screen, we should now learn about window
hierarchies. First create 2 more windows within the main window of exercise 1. The
windows should overlap and be siblings (both have the same parent, namely the main
window). After the XMapWindows call sleep for 1 second (sleep(1)) and then call
XCirculateSubwindows(display,window_id,direction) with window_id =
main_window, direction = RaiseLowest or direction = LowerHighest. What happens?

Try to make the second subwindow a child of the first one (instead of being siblings).

At last lets advance with our Colombo board simulator. Create the 4 windows for the
seven segment displays (size 32x64 pixels) the 4 up - and the 4 down buttons (same
width as the seven segment displays but only half height) and a window that will be
used as "exit” button.

Adapt the size of the main window to the new layout and give it a nice title (e.g
"Colombo Simulator”) using XStoreName.

There is no new skeleton program. Simply copy exercise_l.¢ to exercise_2.c and add
the code needed for the subwindows.

Exercises 11-3

Exercise 3

11-4 Fyercices

Fig 11-2 shows the expected result:
Figure 11-2 Colombo board simulator with all its windows generated

Colombe Board Simulator

~ ™11

“ v we need t. 71l the windows: Create 10 bitmaps for the seven segment displays,
one for each digit (0-9). Use bitmap "filename" 32x64 to start the bitmap editor. The

files should be named "zero.bm","one.bm", "two.bm", “three.bm"...

Copy skeleton_3.c to example_3.c and add the code needed to read and display the
bitmaps in the "display” windows. Here we provide a new skeleton program because it
is rather tricky to implement these drawing procedures without the usage of events. If
there are a few strange calls, forget them, they just circumvent this event problem.

Change the code in order to read the bitmaps and display them in the "display”
windows.Try the number 8888 or 1234 as an example.

Draw the arrows into the up and down buttons using XDrawLines.
Load a font and write the text "Quit" into the exit button.

Just a little test to be done: Overlap your application with another window (e.g. an
xterm or xclock) and then bring it into the foreground. What happens and why?

Exercise 4

Again the expected result:

Figure 11-3 The Colombo Simuiator after drawing

Colombo Board Simulator

||
|
AN
7

PN
~

Activate Lu whole thing! This can be done by treating the ButtonPress events when
the first mouse button is pressed on the up/down or on the exit button. Start
implementing the exit button only since it is easiest, then complete for the up/down
buttons. Of course now you need all 10 pixmaps for the digits and a counter for each
display, which is incremented/decremented for each mouse click on the arrow
windows. Don't forget to load the bitmap corresponding to the counter into the correct

display window.

As we have seen in the previous exercise the digits and the arrows need to be redrawn
on expose events. When the window comes up on the screen for the first time or when
the window is re-exposed an Expose event is generated. It is therefore sufficient to

implement the drawing of the digits and arrows in the Expose event handler only.
So, the XNextEvent loop must now be filled.

Start from example_3.c to build example_4.c

Exercises

11-5

a4 A

Exercise 5

Exercise 6

11-6 Exercises

Redo the whole application using the Athena widget set. For the displays you may use
label widgets with bitmaps and for the up/down counters use command widgets. These
widgets should be put into a frame in such a way, that the application nicely adapts
when the main window is resized.

At first use a command widget as "quit" button and let the frame widget place it
automatically. Then create the displays and attach their upper boundary to the quit
button and their left boundary to each other (the first one is automaticaily attached to

the frame.

The up buttons are attached to the displays for their upper boundary and to each
other for their left boundary...

Add the callbacks to the up/down buttons and the exit button. Notice that no Expose
handling is needed because it is already treated by the widgets themselves.

If you have some time left, implement a "file" menu which contains the "quit" option
instead of the "quit” command widget.

Skeleton_5.c¢ can be used as basis for this exercise.

Fig 11-4 shows the final result.

example_5

Connect the application to the hardware.

First try out the ictp driver and write some number onto the display. You need to open
the driver, write the number and then close the driver.

The driver is deliberately (you are supposed to learn something!) primitive. It accepts
byte values which map to the electrical lines used to drive the Colombo displays.

You must:
¢ Set the digit value with the corresponding clock line high

» Set the digit value with the clock line low
s Set the digit with the clock line high again.
Add the digit writing to the callback procedure for the up/down buttons.

12

The ICTP device driver

A sample device driver for the ICTP board has been developped. The following gives a
summary of its functions.

The ictp driver expects an I/O board using an Intel 8255 chip at I/O adress 0x300. The
connections to the ICTP board must be made as follows:

Port A: ICTP displays
Port A is therefore programmed as output port.
Port B: ICTP switches

Port B is therefore programmed as input port.

If you open minor device 0, the port B of the 8255 will be set to mode O (non
strobed input, allowing to read directly the state of the switches. Port A is set to
mode 1 (strobed I/O).

When opening minor device 1 the 8255 chip is initialized such, that both, port A
and port B are set to mode 1 (strobed /0). This allows interrupts for both ports.

In mode 1, with port A output, the bits 4 and 5 of port C may be used as normal
I/O pins, while the other bits are used as handshake signals or interrupt lines.
Bit 4 of port C must be connected to CA2 (the ICTP buzzer).

Bit 2 and Bit 6 of port C are strobe lines which must be connected to one of the
interrupt generating line CA1,CA2 or CB1,

The driver functions:

Read calls:

The driver uses major number 31 and 4 minor numbers:

read on minor number 0: read the switches

(the following may not yet be implemented, ask your local guru)

read on minor number 1; blocks until interupt 1 arrives and returns the
number of interrupts arrived since the last read call.

read on minor number 2: same as above for interrupt 2

read on minor number 3: waits for interrupt 1 to occur and returns the

number of interrupt 2 arrivals within 1 interrupt 1 period.

(from here on everything is implemented again!)

The ICTP device driver 12-1

Write calls:

Writing works on any of the for minor devices. There are 3 different write mode which
may be set up by ioctl calls (see later).

« ICTP_MODE_RAW: in this mode the data coming from the user are
sent untreated to the IO port. In order to make the displays work ok, the user
must select the correct data/chipselect sequences (cs high + data, cs low + data, cs
high + data for all digits). Normally 12 data bytes are expected but any all buffer
data are simply sent on!

e ICTP_MODE_SINGLE_DIGIT: a single data byte is accepted. The high nibble
contains the digit number (0-3) and the low nibble contains the data.

e ICTP MODE_FULL_NUMBER: a short is expected. This number will be put onto
the digits.
ioctl calls:

e ICTP_SET MODE: sets up the writing mode. The following values are accepted:

— ICTP_MODE_RAW 12 data bytes expected but anything
allowed
— ICTP_MODE_SINGLE_DIGIT: only 1 data byte allowed
— ICTP_MODE_FULL_NUMBER: a short needed;
e ICTP_GET_MODE: return the current write mode
e ICTP_SET_BUZZER: controls the buzzer. Valid args are:
— ICTP_BUZZER_ON
— ICTP_BUZZER_OFF guess, what they are doing!
e ICTP_GET_BUZZER: read the current buzzer state.

12-2 The ICTP device driver

