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Software Advances in Measure-

ment and Instrumentation.
LabVIEW

Abstract:

Today’s data acquisition and instrument control systems combine personal com-
puters (PCs) and workstations with sophisticate software that integrates gen-
eral-purpose data-acquisition, data analysis, and intuitive, graphical data
presentation,

Fabio Soso, CERN-CN/CE
soso@cernvm.cern.ch
October 1994
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1 - SUBJECT OF THE TALK

I wish to present LabVIEW!, a program developed by National
Instruments Corporation of Austin, Texas, for the control of elec-
tronic instrumentation.

Fortunately, LabVIEW is more than a specialized application: it's
a purely graphic, general purpose programming language, with
extensive libraries of functions and an integral compiler and
debugger. It has few intrinsic limitations, and only a minimal
performance penalty when compared with conventional pro-
gramming languages. The fact that LabVIEW is a real program-
ming language, of anew kind, makes it an interesting topic.

To evaluate LabVIEW in its natural context of instrumentation
control, we must consider two introductory subjects:

(a) electronic instrumentation: it evolves rapidly, presenting
the user with an apparently chaotic set of choices.

(b) software for instrumentation control; this generic term
includes quite a variety of tasks and solutions.

In fact, the sitnation is so fluid, that we'll see that instruments are
not instruments any more - we'll call them "virtual instruments" -
and the software too can be different from the traditional pro-
gramming languages.

The introductory parts, although useful for the general under-
standing, risk to be slightly boring. Hence to keep interest alive,
we will start with an amusing (yet instructive) LabVIEW demon-
S[ra;;uh.

Let us play with a Bouncing Cube (Fig 2.1).

1. Laboratory Virtual Environment Engineering Workbench
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2 - THE BOUNCING CUBE EXAMPLE

The Bouncing Cube

Figure 2.1 A LabVIEW Example

By playing with the bouncing cube (as with any other Virtual
Instrument) we can appreciate some LabVIEW features:

] a user friendly, easy to customize “front panel” interface;
] an easy to read, self documenting logic diagram;
. the Help feature;

. the built-in, light-speed graphic compiler, immediate check
for syntax errors;

] the monitoring/debugging features when running an appli-
cation;

" the multitask capability of LabVIEW;

. The portability of applications. For instance, the binary file
describing the Bouncing Cube for Windows could be
e-mailed to a MAC or SUN user, and run without modifi-
cations.
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3 - ELECTRONIC INSTRUMENTATION

In the 70's, instruments were mostly "analog”. Power supplies,
multimeters, sinewave/pulse generators, fast or slow oscillo-
scopes, were controlled by knobs, switches, displays on the front
panel; the user couldn't modify the type and number of controls,
nor the instrument built-in functions.

The recording of measurement was essentially manual (pen-
cil&paper, Polaroid cameras, occasionally a chart recorder).

In the 80's, instruments became more sophisticate with the addi-
tion of numerical functions. Semi-automatic measurement
recording used printers, paper tape punches, mag tape drives;
some instruments had a special connection to a small computer
equipped with a teletype terminal. Data recording was followed
by off-line data processing. The functional characteristics of
instruments were still those defined by the manufacturer, every
bit of extra flexibility adding to the cost.

Two events marked this time:

(1) The definition, by Hewlett Packard, of a General Purpose
Instrumentation Bus (GPIB) for the connection and control
of groups of instruments; GPIB soon became an interna-
tional standard, ref. IEEE 488, and is still in full use.

(2) The PC revolution. As the processing power of desktop
computers surpassed the internal processing capability of
most instruments, the benefits of connecting PC's to instru-
ments increased as well, and so did the number of users.

Control and data acquisition tasks shifted from the controlled
instrument to the controlling computer.

The instruments began to change, some front panels lost their
buttons, replaced by graphic windows with operating menus on
the computer screen.

For simple applications, the whole instrument could be replaced
by a single plug-in board, inside the computer.

Today, we can use various types of instruments, more or less
complex, more or less costly, but never disconnected from a
computer, which has become the core of a measuring system
(Fig. 3.1).
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Figure 3.1 Instrumentation Control System

Schematically, we may find:

(1) A PC or a workstation, with some interactive software for
instrumentation control.

(2)  Traditional style instruments, often performing and costly,
with crowded front panels, internal memory and signal
processing capabilities (digital oscilloscopes, digital multi-
meters, frequency synthesizers, logic analyzers, etc.). The
instruments (Slide 2a,2b) are connected to a computer via
the GPIB bus, or via a serial port. The front panel can be
replicated on the computer screen.

(3)  Modular instruments (Slides 5b to 7a), i.e. plug in modules
of a standard chassis; types include VME or VXI, Camac
and Fastbus in physics experiments. The front panel is
reduced to the bare minimum, every control and display
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being provided by the computer. Modular instruments are
smaller, easier to test and develop, user-configured: the
choice of functions, the number of channels, the amount of
memory, the use of local intelligence can be tailored to the
user's needs and modified at any time.

Moreover, the various instruments manufacturers are striv-
ing to define universal routines for the control of instru-
ments (SCPI standard commands for instrumentation
programs, Plug&PLay for VXI modules and plug-in
boards)

(4) Plug-in data acquisition boards for the various types of
computers (Slides 3a to 5a). The evolution of Analog to
Digital converter circuits and of signal conditioning mod-
ules makes the choice of plug-in DAQ boards a popular
one (whereas VXI and GPIB instruments are used for more
sophisticate measuremnents).

Signal conditioning modules are used to adapt the trans-
ducer electrical signals to the DAQ boards input: amplify,
linearize, isolate, filter. Also multiplexing is a useful tech-
nique when measuring many signals.

(5) Programmable Logic Controllers (PLC's), robust and reli-
able low speed analogue and digital /O interfaces and con-
trollers for industrial equipment. Used in physical plants,
they use proprietary series protocols, many of which are
supported by LabVIEW drivers available from 3rd-party
developers.

The future will bring us new features. Fig 3.2, for instance,
shows a distributed measurement and control system developed
by an Australian manufacturer of implanted cardiac defibrilla-
tors.

The control system is used to set up instruments, initiate tasks,
collect data in a useful format for the final report of each pro-
duced part.

By using Sun Sparcstations, GPIB/ENET interfaces the size of a
cigarette box, and Tektronics TDS series oscilloscopes, the full
system can control up to 32 test benches, each containing up to
16 test instruments.

In this multitasking environment, the company engineers, with-
out leaving their desk, can use their workstations to connect 1o
any group of instruments via the GPIB/ENET interface and to
check the performance of a device under test.

Operators can also control and monitor tests and review data at
home, via a modem, or anywhere in the world with Ethernet.

Another trend, towards miniature, portable control systems, is
shown by PCMCIA data acquisition and interface boards for
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notebook and Laptop computers (Slide 84). These boards have
the same performances of their full scale correspondents, but
with an extremely low power consumption and the size of a
credit card.
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Figure 3.2 A distributed Instrument Control System
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4 - STRUCTURE OF PROGRAMS FOR
INSTRUMENTATION CONTROL

Fig. 4.1 gives a schematic view of a computer controlled
test&measuring system, including the various parts of the control
software.

(From bottom to top). Physical parameters are transformed into
electrical signals by transducers/actuators, with the help of sig-
nals conditioners/multiplexers when required.

The electrical signals are measured, i.e. converted to numerical
data, by various types of instruments: stand alone, modular,
DAQ's (data acquisition boards), industrial controls.

Each type of instrument is linked to the computer by a plat-
form-specific, plug-in interface board. Low level drivers allow
the computer operating system to talk to the I/F boards.

Instrument drivers (e.g. within LabVIEW) allow to address the
relevant features of each instrument, seen as one device, e.g.
through a replica of the front panel. The user can choose to
access a high level function, or get up to a particular register of
the instrument.

The managing program (e.g. LabVIEW) must supervise the
instruments setting and calibration, the measure sequence, data
dependent decisions, the time scale, provide interaction with the
user, authorisation protections, etc.

Data analysis, data presentation and storage, data transmission,
are not mandatory parts of an instrumentation control software.
However they are part of a well organized data acquisition s§ys-
tem {e.g. they are part of LabVIEW), even better if they are inte-
grated with the other types of operation.
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Figure 4.1 Structure of Software for Instrumentation Control

10




CERN/CN/FS§/94

- LabVIEW

5 - THE IDEAL SOFTWARE

Comprehensive

Easy to learn

GUI based

Homogeneous

Modular

Looking back at Fig. 4.1, we could do a little exercise: imagine
to have a measuring task, knowing more or less the instruments
that we are going to use, and list on paper our definition of the
"ideal software for instrumentation control".

So ideal, for instance, that if we receive all our instruments and

materials today, and we have our Macintosh, PC or Workstation
available, we can endeavour to have the whole thing configured
and running, controlled at the screen of our computer, by tomor-
Tow.

According to my list, the software should be:

Using different types of software fro the same application can
cost development time. The ideal software should include all the
functions shown in Fig. 4.1, viz. the low level drivers for the var-
ious categories of instruments (GPIB, VXI, Camac, VME, DAQ
boards and communication ports), for all the operating systems;
the high level (instrument) drivers; and provide all the functions
needed to bring data through the analysis, presentation and stor-
age level.

to use, and to program. At its best, it should be a software for non
programmers. Time spent in learning syntactical subtleties, met-
aphors, compiling and linking commands, etc. is subtracted from
the rea' :»% of measuring and interpreting data.

i.e. use a graphical user interface intuitive in operation, simple to
apply, customizable.

using the same programming method and user interface at all
levels.

It is necessary to split complex programs into any number of
modules, connected either vertically (hierarchically) or horizon-
tally. Time is gained by developing each module independently
from the others, and sharing it between different users and appli-
cations.

11
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Portable

Easy to debug

Interactive

The software should be the same on every platform (PC, Mac,
Sun, others). Better, every application developed should be por-
table w/o modifications.

Obviously

Obviously

Easy to maintain/modify

Fast

Powerful

Cheap

Stable

Standard

Only if a program is self documenting, 1t allows modifications by
any user, at any time, and any stage (instrument configuration,
data acquisition program, presentation),

PC's and alike are slow enough, when used with instruments, to
tolerate also slow programs.

A program which limits the size, type or speed of applications
becomes quickly useless.

It makes a difference whether it costs 20003 or 30000% (real
cases, without names).

developments and collected data must last for years. So should
do a program. Upwards compatibility is esscatial.

be vendor independent, and possibly labeiled with an interna-
tional norm.

Having thus defined the ideal software for our application, we
can better appreciate the fact that a decade ago some people, in a
then small company (National Instruments), sat down to do the
same exercise. The difference is that they were enough visionary
to start a project, and keep it alive for the long time that it took to
bring it to completion. The story of LabVIEW development is
interesting in itself, and worth telling.

Since the end of 1993, anyway, the program fulfils all the
requirements that we have ideally listed, except one - it's a pro-
prietary product.

Truly, the low level drivers exist only for the materials proposed
by the company (butter on their bread), and some commercial
instruments miss their drivers. But overall, the goal is attained.

12
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6 - THE DEVELOPMENT OF LABVIEW

Most programs for the first generation of PC-controlled instru-
ments (via GPIB bus), were written in BASIC.

BASIC had a simple and reusable set of commands, and interac-
tive capabilities, but like any other text based programming lan-
guage it required scientists, engineers and technicians to become
programmers, i.e. to translate the knowledge of their applications
into long and tedious line programs, even for simple measuring
tasks.

Users with little or no programming experience, or occasional
users were discouraged by arcane syntax and messagesl. Asa
result, data acquisition was automated only when it was abso-
lutely necessary.

Nat.Inst. which had its own team of programmers struggling to
develop tools for the control of instrumentation, was sensitive to
the programming burden placed on engineers.

In April 1983 Jeff Kodosky and other cofounders of Nat.Inst.
decided that only a new tool for developing instrument software
would make the computer accessible to non-programming users.

But what form a new language should take? The original ideas
were:

a) A graphic user interface. Most engineers learn about an
instrument by studying its front panel and experimenting
with it Hence the most familiar and intuitive user interface
had to be a facsimile of a real instrument front panel.

b) A graphic programming method. Designers who start a
project, draw as the first thing a block diagram. It helps to
visualize the problem and suggests a design. Why not
translating it into a design tool, using labelled icons to rep-
resent the functions, and electric-like wires to symbolize
data transmission. A data-flow- based operation was cho-
sen, to simulate real systems, and some programming
structures like loops and iterations were added in a special
graphic form. Hence the name of "structured data flow pro-
gramming".

With these ideas in mind, J.K. and a few others hired a 80 sqm
loft, away from the company but near the university of Austin;
they brought in ten small Macintosh (512K memory) chosen for
their graphics capabilities, 10 young people out of school, a
refrigerator and a microwave oven. There were no windows and

1. Remember?

(beep) SYNTAX ERROR AT LINE 3457

13
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no visible clock; work would most often go on overnight, inter-
rupted by sudden, collective discussions on interesting topics.

The early development went on very quickly, but getting to a via--
ble product was less easy. The task had been largely underesti-
mated, the machines available had many limitations, etc. When,
three years later, they had to release version 1.0 for Macintosh,
the program was slow even compared to interpreted Basic, and
defective.

In 1987 came version 1.2; now the program was reliable and
robust, proving the original idea good, but still too slow for large
applications. The only solution was to make it compiled, but that
unfortunately required a complete redesign!

In 1990 LabVIEW was fully rewritten, taking also into account
many user remarks. When version 2.0 was shipped, it was fast, it
incorporated Object Oriented Programming and, as a new fea-
ture, an almost instantaneous integral compiler. For the user the
compiled version was as flexible and interactive as the previous
interpreted version.

It was running only on Macintosh, a platform unfamiliar to engi-
neers and originally intended only for prototyping. At that time,
PCs and DOS still lacked the graphics capability and the 32-bit
addressing support necessary 1o a large, sophisticated applica-
tion, Windows 3 had still to come.

By luck, the Mac II had an open architecture, and so Nat.Inst.
started to produce plug-in boards for the Mac + LabVIEW asso-
ciation, while other companies were mostly producing plug-in
boards for PC's.

In the following years, with the appearance of new operating sys-
tems, Nat.Inst. decided to give LabVIEW a new portable archi-
tecture, and to produce LabVIEW for other platforms.

In Aug. 1992 LabVIEW ver. 2.5 would run also on PC and Sun
platforms. Once more, most of the machine dependent (‘'man-
ager’) layer had been redesigned. Although they would appear
the same program to a Macintosh or a PC user, the two versions
were not compatible.

Only at the end of 1993 (ten years later!), with version 3.0, the
architecture was unified, according to the original idea of the
founders. The applications (VI's) are fully portable between plat-
forms - and such will hopefully remain.

14
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7 - LABVIEW FEATURES

"The user's time is more valuable than the developers’ time”.
This axiom, today conventional wisdom, has taken a few years
(and Windows 3) to be accepted. New, user-friendly program-
ming tools which reduce the effort of individual software devel-
opers are the answer . Software modularity, maintainability and
reusability, intrinsic in LabVIEW hierarchical and homogeneous
structure, are vital in controlling the cost of test programs of
increasing complexity.

By working with a few LabVIEW examples we will examine the
LabVIEW features that go in the direction of facilitating both the
developer's and the user's task, and which make LabVIEW the
ideal software for instrumentation control.

The features that we want to point out are the following:
" graphic user interface

n graphic programming method, self documenting

" dataflow execution

] integral compiler

. modularity and homogeneity

" instrurnent drivers

" data analysis libraries

. data presentation libraries

] communication/storage tools

L] inter-platform portability

Graphic User Interface (GUI)

Graphic interaction is generally preferred to textual interaction.
The LabVIEW built-in graphic user interface is the same for all
levels of hierarchy; it's intuitive in operation, simple to apply and
to customize, and nice to look at. Control panels that mimic real
panels are adapted also to unskilled users.

Vis
The concept of virtual instrument (VI) has been pioneered by
LabVIEW,; it allows for instance to transform a real instrument
(e.g. a voltmeter) into another, software based instrument (e.g. a
chart recorder), thus increasing the versatility of available hard-
ware. The VI concept is so fundamental to the way that

15
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LabVIEW works, that programs are in fact called VIs. Virtual
Instruments are particularly useful when using panel-less instru-
ments, like high performance ADC plug-in boards or VXI mod-
ules. All VI's follow the same rules, whether they describe low
level or top level functions, and can be modified, interchanged
and combined. In addition, VI's are easy to understand and to
maintain.

Graphical Programming

Dataflow Execution

Fast Compiler

LabVIEW programming is done via a block diagram, consisting
of icons and wires, which directly couple to executable code;
there is no underlying procedural language or menu-driven sys-
tem.

LabVIEW iconic programming is not simply an organizational
tool - it's a true programming language complete with multiple
data types, programming structures and a sophisticated compiler,

The LabVIEW programming structures are the same as in clas-
sic, textual languages: For loops, While loops, Sequence and
Case instructions, with all the corresponding tools. Icons are
placed within structures in the same way as code lines are
enclosed in a textual structure.

High level operations are encapsulated in convenient VI librar-
ies, either supplied with LabVIEW, or developed by users.

The precise method of producing Vs, and their self documenting
character, favour the development of large projects.

LabVIEW programming is based on modern Object Oriented
programming. and data flow execution. With data flow program-
ming, an object cannot be executed until all its input data are
present. The same way, the object outputs cannot be used until
the object has executed. It is the data flow between connected
objects which controls the execution. This method makes free
from the linear (sequential) structure of textual languages. In
LabVIEW several paths can be created and executed simulta-

neously.

LabVIEW includes a graphic compiler which generates a
machine-optimized code, executable at a speed comparable to
that of C-compiled programs. From the user's point of view, the
compiler is fast and invisible, and the programs are as interactive
as interpreted ones. One can also create applications for the
Run-time version of LabVIEW or as executables, with the appli-
cation butlder.

16
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Modularity

Instrument Drivers

Data Analysis

Data Presentation

Complex programs must be subdivided into an arbitrary number
of modules, connected either horizontally or vertically (hierar-
chy). Every module must be testable/developable independently,
and shareable between users and applications.

LabVIEW is unique for hierarchy, expandability and homogene-
ity. It also has the advantage of using the same programming
method (and user interface) for any type of function (low or high
level).

Every Virtual Instrument (VI) can serve as a sub-program for
another VI, and sub-VI's can be opened interactively to examine
their way of working.

LabVIEW includes the low level (interface) drivers for four
types of data acquisition material - plug-in I/O boards - GPIB
controlled instruments - VME/VXI modular instruments - RS232
instruments. Message-based (GPIB, R§232, VXI) instruments
can be mixed with register-based (VXI, DAQ boards) instru-
ments without conflicts.

Drivers are supplied with libraries of functions for the hardware
programming; the options they offer are independent of the plat-
form, of the operating system, often of the instrument. In addi-
tion to the low level drivers, there are high level (instrument)
drives for the most popular types of instruments.

The source code of instrument drivers is modular, readable and
modifiable according to the developer's taste.
Re-configurable instruments are more flexible.

The real benefit of virtual instruments, and the power of
LabVIEW, appears when acquired have to be fed into the analy-
sis Vs,

No special data formatting, or use of other proprietary software
is needed, as data flow smoothly between the various applica-
tions.

LabVIEW contains more than 170 analysis functions. These
functions fall into several major groups: signal generation/simu-
lation, DSP, digital filters, smoothing windows, statistics, array
operations, integral/derivative, and pulse/threshold detection.

Data presentation is the final element of a complete data acquisi-
tion, it’s an often neglected, yet time consuming task for pro-
grammers. Many data acquisition system are only as good as
their data presentation.

In the past, data were presented through text based interfaces,

17
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Communication

Portability

sometimes obscure, unsuitable to demonstrate the relational
information of data.

LabVIEW offers simple routines to display and correlate data
graphically, and thus maximize the transmitted information.

LabVIEW has dnvers for TCP/IP network connection and for
connection to databases. Special drivers are available for Igor,
Mathemauca, Matlab or HiQ, supporting the file formats of these
applications.

LabVIEW runs on the most popular platforms, Apple Macintosh
and Power PC, IBM PC compatibles, Sun Sparcstations and
DEC stations.

The user interface and all the library functions are the same on
each platform, and the programs (VIs) are portable without mod-
ification.

18
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8 - CONCLUSION

LabVIEW is a complete tool, and a complete program. It allows
the user to perform from the lowest level functions, like access-
ing a particular register of an instrument, to the highest level
ones, like displaying the result of advanced spectral analysis,
without having to resort to the use of another programming lan-
guage. It has the computational ability of a classical program-
ming language and the parallelism of concurrent programs.

It is also an excellent automation tool. Note the difference
between simple data acquisition, and automated, hands-off pro-
cesses, in which the computer governs a sequence of events,
takes measurements (and decisions) and presents the results.
Many operations require automation: long term, low speed data
collection such as environmental monitoring and control, high
speed operations such as pulse power diagnostics, collecting lot
of data in a short ime, repetitive operations such as test and cali-
bration of series produced equipment, high precision operations
beyond human capability, such as star tracking with a telescope,
complex processes with many simultaneous inputs outputs

LabVIEW is suitable for all these tasks.

Finally, programming with LabVIEW is fun! (anyway, more than
Q).

19
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9 - ANNEX

REAL TIME

The precise definition of real time depends on your system tem-
poral response. This includes both the cycle ime or sampling
rate for data exchange and the computer system's latency - the
time it takes to respond to an external occurrence.

For example, the real time control of a house heating system
requires a response time of about 1 minute (even PCs can do
that!). The real time flight control of an F16 plane are sampled at
45Hz, and so on, all the way down to nanosecond phenomena.

For LabVIEW the real time scale unit is about 0.1 sec (if you
avoid receiving mail on a Sun, or inserting a floppy in a MAC, or
hold down the mouse button, or scroll down a menu).

For more stringent needs it’s better to use a dedicated machine or
an external smart controller (PLCs, embedded processors).

MACHINE REQUIREMENTS

IMITATORS

The minimum memory for LabVIEW use is 8 MBy, and
20-32MBy for professional applications.

Similarly, the minimum Hard Disk space is 120 MBy, but
250-500MBy for professional use.

Following LabVIEW, most instrument softwares offer a front
panel oriented user interface. Quite often it is simply a display/
top level user interface added to an otherwise conventional, tex-
tual language based programming system.

Another imitated feature is iconic programming - but often icons
hide just conventional programming methodologies. These icons
offer a pre-set number of operations, simple to use because of
their turnkey nature, but impossible to expand/modify without
reverting to standard programming languages.

LabVIEW iconic programming is not simply an organisational
tool - it's a true programming method, as we have seen.

20
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Evolution of Instrumentation

Virtual instrumentation '_,,"’-».,_,»%

¥Xl Chassis

Fully Programmable System

IEEE 488 Rack and Stack System . o Eearas

Slide 1 a)

Instrumentation Today

Plug-in Data
Acquisition

Boatds
Signal — 3
Conditioning PN
-/ ‘:‘a""

Stimuius
Control
Yoltage
Current

Waveiorm Proces Temperature
or UUT Fressure
Vallage
Current
Wavelorm
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GPIB Programming Example

GPIB
Interface
is Board O

1] 11
1 0 -
—

DMM at address 6

e e p—

» Remote programming standard since 1975
« 8-bit parallel protocol

« Transfer rate of more than 1 Mbytes/s

- Standard cable

+ Control up to 14 instruments

- Large installed base of instruments

Slide 2 a)

RS-232

RS-232 Cable

{0oonans
Balybeis

111110100000101111

bo—TH po——aA L/
Computer TRAILING IDLE CHARACTER LEADING Instrument
BITS be IDLE BITS
STOP BIT
PARITY BIT START BIT

- Port is standard on most computers; cabling is not standard
« Each port can communicate with only one instrument
- Common RS-232 instruments - digital thermometers, scales
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Plug-In Data Acquisition Boards

Analog
Input/Ouwiput
=
—

Digital

Input/Output orf

mming o LTUTUTL

Input/Output *

DAQ Board

Slide 3 a)

-

L]

*

Multifunction I/O Board

16-bit ADC with 16 analog inputs
Programmable gains up to 100

100 kHz sampling rate at all gains
using NI-PGIA

256-sample deep FIFO

Pretrigger and posttrigger modes
Continuous and interval scanning
Two 12-bit DACs AT-MIO-16X
Eight digital I/O lines

Three 16-bit counters

Self-calibration
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Price

Wide Range of Performance

H Lab-PC+

12-bit

PC-LPM-16 75 kHz
Low-power pj
12-bit

50 kHz sampling
SE

AT-MIO-16
12-bit
100 kHz

AT-MIO-16F-5
12-bit

200 kHz
NI-PGIA

Programmable gain

AT-MIO-16X
16-bit

100 kHz
NI-PGIA

L

AT-DSP220C
16-bit

High-accuracy
Onboard DSP

Antialiasing filters

EISA-A2000
12-bit
1 MHz
T/H circuitry

Performance (Analog Input)

Slide 4 a)

Analog Signals

AR

JU VO

DC Signal Time Domain Signal Frequency Domain Signal
Temperature ECG Vibration
Pressure Blood pressure Speech
Flow Single-shot events Sonar
Strain Chromatograph
Considerations for Plug-in Boards
DC Accuracy Resolution Resolution

Sampling rate
AC and DC accuracy
Triggering

Sampling rate
AC accuracy

Triggering

Antialiasing filters

Slide 4 b)
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SCXI — Three-Port Signal Conditioning System

« Conditioned

Signal Conditioning _
« Multiplexing N
e Signals
« Amplification 2
» Isolation
+ Filtering
+ Excitation
+ Cold-junction compensation . signals <2
- Signal and device switching o L

Slide 5 a)
;é“:.aé' VXl "VME Extensions for Instrumentation"

IEEE standard 1155
Combines instruments with modern

computer architecture
More than 50 vendors offering VXI products

More than 500 VXl instruments
Lacks front panels - requires GUI
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DiSPLAY
a4
CONTROL

it

- COmEutor Module

VXI - An Open Architecture with
Shared Processor Bus and Timing

!
DJAJ

DU —
| Timing
&=l

n

.| Message-Based Instrument ( Timi ng )
I ] ‘ ’

m-

vXIbus Mainframe Backplane

—\

(‘ PROCESSOR BUS )

A A

[/

Tlmlng
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i

VXI Controllers

GPIB-VXI

MXlbus High-Speed
Direct Link

Embedded CPU

-

To Othar
GPIB Devices

PIBIENST{INST [IRAM

vXI ] #1 || #2
INSTHNST
#1 || »2

CPU |INSTEINST [IRAM
#1 || #2
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VXI Instrument Drivers

Hewlett-Packard AD Data Tasco Tektronix

Racal-Dana Talon Wavetek

Instrument <:[>
Driver

Kinetic Systems Corelis Schlumberger
Giga-tronics Cal-Av
Slide 7 a)

Ethernet based Control System

Ethernet
T I T B
: - i | anches are
Sun i | | TI | BN | idantifiad by Iheir
SPARCstation [ | - | / ol | GPIB-ENET Box
== | A |
. X Window “Satallite |
RS-232 | Temminals |
_ I l f
yse L r ! t | .
Terminal j I :
B - UV JES |
A ‘ P | [ ! !
N Located in e i ! i
Bultding No. 7 . |
and Bullding No. 2 ¢ i [ ! .
X Window ) |
Usar's Dosk Usar's Desk Terminals I : - !
e of up to 32
Located overseas | : te3t benches, :
I | with up 1o 18 1
R ' l how  Samens i
A 3 ]
I f | t e e m e m— - ————
() ﬁ
Modam i odam : . Usar's Banch
i User's Home ! -
o e e R e WS e - e ot
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PCMCIA

Inter-
face
Slide 8 a)
DATA DATA STORAGE/ CONNECTION TO
PRESENTATION OUTPUT OTHER COMPUTERS
S I SIGNAL ANALYSIS
o 2 MANAGING PROGRAM (LabVIEW)
f t INSTRUMENT DRIVERS (One/ Instrument)
1 r DOS Windows 3.x Windows NT 05/2 UNIX MacOS
w u NI-GPIB NI-VXI NI-DAQ Serial NI-DAQ
a m Driver Driver Driver Driver Driver
r e GPIB I/t VMENVXI lif DAG RS-232 Digital VO
Board Board Board Port Board

e n

t v v ; P9
f a VX1 MODULES SIGNAL INDUSTRIAL
o t [TRADITIONAL | CAMAC/VME | CONDITIONERS/ |  CONTROLS
r i FASTBUS MOD. | MULTIPLEXERS (PLC'S)

o I I | Il

n Electrical Transducers - Detectors - Actuators

Physical Parameters to be Measured/Controlled

Slide 8 b)
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THE IDEAL SYSTEM

The LEGO!

» Intuitive operation
« Structured design and packaging
« Modular, reusable components

« Consistent, unified paradigm

» Standard interface, top to bottom

Slide 9 a)

The LabVIEW Lego

Non-Virtual Instrument Framework Virtual Instrument Framework
Data
Presentation

Data Data

Analysis \ Analysis
\&

Binding Binding

Instrument tnstrument

Hardware Hardware

Slide 9 b)




Virtual Instrument Framework E

Icon
interface to higher-lev

Graphical Language
for using other Vis

xample — LabVIEW
Library Modules

Presentation

Analysis

instrument
Drivers

1/Q Drivers

. ———

Slide 10 a)

LabVIEW - A GUI and a Graphical Programming Met

Purpose
+ Software to simplify development of

hod

_automated m_easurement and
instrumentation systems

+ Virtual instrument concept

Front Panel
« Graphical user interface (GUI)
« Intuitive control of instrumentation

Block Diagram
» Familiar technique

- e ||
g | oe—— ————— e — RS .
a0 g |
- [ |

« Rapidly build, test, and modify
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LabVIEW Product History

Septambar 1992

pm" LabVIEW for Windows

LabVIEW for Sun

April 1990

S/  U.S. Patent
Fabruary 1990
U.S. Patent

=
N\, January 1990

LabVIEW 2

October 1386
LabVIEW 1

Il

\ April 1983
LabVIEW Concept

1983— LabVIEW 1
«Search for instrumentation software solution
-Virtual instrument concept

1986 — LabVIEW 1
-Introduced innovative approach to programming
-Macintosh only possible platform

1990 - LabVIEW 2

*Four years of customer feedback
*Mature product

-Compiler to match industry needs

1992 — New operating systems
*Microsoft Windows, OpenWindows, X Windows
JIntroduction on other platforms

Slide 11 a)

Graphical Programming

Dataflow Programming

» Nonlinear structure
- Multitasking capabilities
« Programming structures

Hierarchy
« Modular design

» New building blocks

- Multilevel system

Graphical Compiler
» Execution speed
» Run-time system

Slide 11 b)




Analysis in LabVIEW

« Tightly coupled with acquisition Vis
+ No need to format acquired data
« More than 170 functions

Slide 12 a)

Digital Signal Processing (DSP)

File Edit O?eule Controls Windows

« Spectral analysis

« Conversion to frequency domain
— Fast Fourier Transform (FFT)
~ Power spectrum

- - i
) 1m1502wzsam:som4so4'sam‘
[ . T —————— -a

——————— - 2

Slide 12 b}
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Smoothing Windows

(13
24
_'_nn ] [ 4] 0t s
« Used in conjunction o] J/\M’M
with spectral analysis (FFTs) no
. .. s o 000 1500 =Y P
- Minimize the effect of
discrete sampling P
M-\‘\/V\AM/\/\'/\/W
a7 - v - . -
[ 1] [} o2 [} 04 a5
ﬁndp&/\\AVVNVVA«
Y w0 e e oo T
Slide 13 a)

Joint Time-Frequency Analysis

1 1 !
v ||!|!|.||n|-

1984

992.1 -

Slide 13 b)
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Gabor Spectrogram

STFT with Heamming Window

12.8

BB Gabor Specirogram EEEECIH
1

] 0~
Q 3
Time {msec)
64
12 8-

Titne (msec)

Frequency (kHz)

Frequency (kHz)

» Faster than STFT
- Better SNR
+ Solves window selection problems

Slide 14 a)

Digital Filters

Flle Edit Operate ndows
Eliminate noise and Cycles
undesired frequencies LI

Cut-On
Superior to analog filters e
No drift - not affected by smd |
temperature or humidity o
Don’t require precision Fie D
components P
Cost effective T :
’ "% o1 02 12 04 05 o5 97 08 @3 10 .!
Slide 14 b)
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Time Domain Analysis

Simutstion Tank 1 evel
Flie Edit Operate Windows
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Process Control
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Time Domain Analysis

- Peak detection
» Threshold detection

Asle*Pressure (Flla Bals} Feasl
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Chromatography

Biomedical Monitoring
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Signal Generation/Simulation
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Other Analysis Functions

Beam Analysis Panel
P .. ; &
e : INertisal Pratile
(248,00 |moge Longn
‘J 103 00 {Drameier
| mtensity
it b BT
Itmn| Mean
Brer | sua
Heor 1asnta wlibe
=1 [140.00 [image Longn
B[00 [Ormater

« Numerical analysis
- Curve fitting |t e e

- Statistics

ll‘T 31| Mean
914 | S dev
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Analysis Summary

» Key to building virtual instruments
« Define your own instruments

» Tightly coupled with acquisition Vis
» No need to format acquired data

« More than 170 functions
- DSP
- Smoothing windows
- Joint time frequency analysis
- Digital filters
- Signal generation
— Statistics
- Numerical analysis
- Curve fitting

Slide 17 a)

Data Presentation Options

count Histegram;

0.0 | \bin
50 s 100 125

Acquisition Analysis Presentation
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Screen I/O

= Flle Edit Operate Contrels Fuactions Wiadews Teels

+ Text display
- Cryptic
- Sequential

m [Temporsiura iyitam Paned] f
R I = 2 1 1 I

- Graphical user interface
— Intuitive
- Interactive/nonsequential
- Context sensitive
— Needed by VXI

(1) "o -0 wo BN

]
i o Kibos W oo . b kb I 0 o e T o i P, i ol Ul i Wt B0

« GUI editor
— Standard objects
- Custom objects

Slide 18 a)

File /0 and Hard Copy
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3 18
— Laserwriters o] <]
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: S 8
» Report generation - o| == —|&
make the VI panel § S
(=]

look like a report
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Dynamic Data Exchange (DDE)

ExcelDDCdemo [~1.]

READING

20 P
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Networking in T&M
Cliant
m Server Instrument

VXI Chassis

Cliaent internet

Share test results

Monitor remote processes
Standard on Sun workstations
LabVIEW supports TCP/IP
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Integrating Your Instrumentation

LabVIEW

E'll i
AN

RS-232 Instruments VXI instruments

|_ uuT _J

Process

Boards and Signal
Conditioning
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