INTERNATIONAL ATOMIC ENERGY AGENCY |
‘ P UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION m
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
1.CT.P.. P.O. BOX 586, 34100 TRIESTE, I[TALY, CABLE CENTRATOM TRIESTE

@ ‘ The United Nations
&

University

SMR/774 - 14

THIRD COLLEGE ON MICROPROCESSOR-BASED REAL-TIME
CONTROL - PRINCIPLES AND APPLICATIONS IN PHYSICS
26 September - 21 October 1994

CROSS-DEVLOPMENT OF EMBEDDED SYSTEMS

Chu Suan ANG
3 §824/7
Taman Megah
47301 Petaling Jaya
MALAYSIA

These are preliminary lecture notes, intended only for distribution to participants.

Mais BuiLpine Staana Cormma, 11 T, 22401 Tamax 224163 Tam 460392 Apmianco Gusst Houss Via Gmaonano, 9 Ta 224241 Tamax 224531 Tamx 460449
e sennnn e Meee Vo Ramr 7 Ta. 22401 Tamax 2240310 Tamx 460392

Real-time College 1994 September 1994

Cross-Development of Embedded Systems
(2)

CS Ang

EMBED94A SAM CS Ang

-

Real-time College 1994 September 1994

A Real-Time Kernel for Embedded Systems

® Recent surveys show that there are more then 40 real-time kernel
manufacturers.

® Real-time kernels are available for 8, 16 and 32-bit processors,
including proprietary and open market ones.

® The price ranges from $100 to $10,000.

® There are also a small number of real-time kernels appearing in
Jjournals, magazines and books, which are normally available in
source code.

® We shall look at one designed by Jean J. Labrosse called nC/OS.

EMBEDS4A SAM 1 S Ang

Real-time College 1994

September 1994

uc/os

Jean J. Labrosse published an early version of uC/OS in
Embedded Systems Programming magazine in June 1992. It was
written in C with the initial goal for creating a small but powerful
kernel for 68HC11 microcontroller.

It has since been extended to a portable system suitable for use
with any microcontroller/microprocessor provided that it has a
stack pointer and the processor status can be stacked and

unstacked.

Labrosse has written a book describing nC/OS.

. Jean J. Labrosse, UC/OS The Real-Time Kernel, R & D Publications,

Lawrence, Kansas. ISBN 0-13-031352-1

The complete source listing of pC/OS is available in the book. It
is also available in a companion disk which costs $24.95 + $15.00
for postage and handling.

The code is protected by copyright. However, you do not need a
license to use the code in your application if it is distributed in
object format. You should indicate in you document that you are

using nC/OS.

:MBED94A SAM 2 CS Ang

Real-time College 1994 September 1994

Main Features of uC/OS

® Portable

- It is written in C, with a small processor specific code in assembly to
create task, start multitasking and perform context switching.

. For 80186/80188 the assemble language code is less than 4 pages.
e ROMable

® Priority driven
Always runs the highest priority task that is ready to run.

® Preemptive

. When a task makes a higher priority task ready to run, the current task is

preempted or suspended and the higher priority task is immediately given
control of the processor.

. Execution of the highest priority task 1s deterministic.

e Multitasking
- Up to 63 tasks

® Interrupt feature
1-arrupts can suspend the execution of a task.

If a higher priority task is awakened as a result of the interrupt, the highest
priority task will run as soon as the interrupt completes.

- Interrupts can be nested up to 255 levels deep.

EMBED94A SAM 3 CS Ang

Real-time Coliege 1994 September 1994

nC/OS Tasks

® A task is an infinite loop function or one that deletes itself when it
is finished.

® The infinite loop can be preempted by an interrupt that can cause a
higher priority task to run.

® A task can also call the following uC/OS services:
+ OSTaskDel ()
*+ OSTimeDly ()
- OSSemPend/()
+ OSMboxPend()
+ OSQPend ()

¢ Each task has a unique priority, ranging form 0 to 62. The lower
the value the higher the task priority.

EMBEDIA_SAM 4 C S Ang

Real-time College 1994 Seplember 1994

nC/OS Task States

* DORMANT

- The state when a task has not been made available to nC/0S.

e READY

When a task 1s created by calling OSTaskCreate (), it is in the
READY state.

Tasks may be created before multitasking starts or dynamicaily by a
running task. If the created task has a higher priority than its creator, the
created task is immediately given the control of the processor.

A task can return itself or another task to the DORMANT state by calling
OSTaskDel ().

* RUNNING
- The hghest priority task created is in the RUNNING state when
multitasking 1s started by calling OSStart ().
e DELAYED

- The running task may call OSTimeDIly() and enters the DELAYED state.
The next highest priority task then runs.

Tho delayed task 1s made ready to run by OSTimeTick () when the
desired delayed time expires.

e PENDING

» The running may have to wait for an event by calling 0SSemPend (),
OSMboxPend () or OSQPend () . It then enters the PENDING state.

The next highest priority task then runs. The task is made ready when the
event occurs.

- The occurrence of an event may be signalled by another task or by an
interrupt service routine (ISR).

¢ INTERRUPTED

- A task may be interrupted and enters the INTERRUPTED state. The
ISR then runs. The ISR may make one or more tasks ready to run.

- When all tasks are either waiting for events or delayed, an idle task
OSTaskIdle() is executed.

EMBED94A SAM 5 €S Ang

Real-time College 1994 September 1994

nC/OS Task State Transition Diagram

OSSemPend ()
OSMBoxPend ()
OSQPend()

OSTaskCreate()
OS#TASK_SW()

DORMANT

Preempted

OSIntExit ()
OSTaskDel (}

EMBEDI4A SAM 6 C$ Ang

Real-time College 1994 September 1994

Task Control Block

® Each task has a task control block, 0S_TCB, which is used by

uC/0S to maintain the state of the task when it is preempted.
When the task regains control the OS_TCB allows it to resume

execution properly.
® Each OS_TCB has the following field:
OSTCBStkPtr - points to the top of stack.
OSTCBStat - state of the task. 0 - ready to run
- OSTCBPrio - task priority. 0 - 63
OSTCBD1y - number of clock ticks the task is to wait for an event.

OSTCBX, OSTCBY, OSTCBBitX OSTCBBitY - used for speeding up
task handling by precomputing some parameters.

OSTCBX = priority & O0x07;
OSTCBBitX = OSMapTle [priority & 0x07];
OSTCBY = priority >> 3;

OSTCBBitY = QOSMapTbl [Priority >>3];

OSTCBNext, OSTCBPrev - to doubly link OS_TCBs.
OSTimeTick () use this link to update OSTCBD1y field for each task.

«+ OSTCBEventPtr - points to an event control block.

® All OSTCB:s are placed in OSTCBTDb1 []. The maximum number of task
is declared in the user's code. An extra OSTCB is allocated for the idle task.

EMBEDY4A SAM 7 CS Ang

Real-time College 1994 September 1994

Creating a Task

Tasks are created by calling OSTaskCreate () which is target
processor specific.

Tasks can either be created prior to the start of multitasking or by
another task at run time.

A task cannot be created by an interrupt service routine.

OSTaskCreate () has four arguments:

task - points to the task code.

* data - points to a user definable data area that is used to pass arguments to

the task.

- pstk - points to the task stack area for storing local variables and register

contents during an interrupt.

- p - task priority.

OSTaskCreate () calls OSTCBInit () which obtains an
OS_TCB from the list of free 0OS_TCBs. If all 0S_TCBs have
been used, an error code is returned. If an OS _TCB is available, it
is initialised.

A pointer the OS_TCB is place in the OSTCBPrioTble{] using
the task priority as the index.

The OS_TCB is then inserted in a doubly linked list with
OSTCBList pointing to the most recently created OS_TCB.

The task is then inserted in the ready list.

Is a task is created by another task, the scheduler is called to
determine if the created task has a higher priority than its creator.

If so, the new task is executed immediately. Otherwise, control is
returned to its caller.

EMBED34A SAM 8 C % Ang

Real-time College 1994 September 1994

Deleting a Task

® A task may return itself or another task to the DORMANT state by
calling OSTaskDel ().

e The idle task cannot be deleted.

® The steps:
Removed from the ready list.
OS_TCB is unlinked and returned to the list of free OS_TCB.
If OSTCBEventPtr ficld in nonzero, the task must be removed from the
event waiting hist.

EMBEDY4A SAM 9 C 8 Ang

Real-time Coliege 1994 Sepiember 1994

Task Scheduling

® Task scheduling is done by 0OSSched () which determines which
task has the highest priority and thus will be the next to run.

® Each task has a unique priority number between 0 and 63. Priority
63, the lowest, is assigned to the idle task when pC/OS is
initialised.

® Each task that is ready to run is placed in a ready list.

® The task scheduling time is constant irrespective of the number of
tasks created.

e 0SSched () looks for the highest priority test and verifies that it
is not the current task to prevent unnecessary context switch.

® A context switch is then carried out by OS _TASK SW().

® OSSched () runs in a critical section to prevent ISR from
changing the ready status of a task.

EMBED94A SAM 10 ¢S Ang

Real-time College 1994 September 1994

Interrupt Processing

® uC/OS requires an interrupt service routine (ISR) written in
assembly language.

® Interrupts are enabled early in the ISR to allow other higher
priority interrupts to enter.

¢ OSIntEnter () is called on entering and OSIntExit () on
leaving the ISR to keep track of the interrupt nesting level. There
may be 255 levels.

¢ nC/OS's worst case interrupt latency is 550 MPU clock cycles
(80186/80188).

® uC/OS's worst case interrupt response time is 685 MPU clock
cycles (80186/80188).

Clock Tick

® Time measurement in suspending execution and in waiting for an
event is provided by OSTimeTick (), which supplies the clock
ticks or the heartbeats.

® OSTimeTick () also decrements the OSTCBD1y field for each
OS_TCB that is not zero.

® The time between tick interrupts is application specific and is
typically between 10 ms and 200 ms.

® OSTimeTick () increments a 32-bit variable OSTime since
power up. This provides a system time.

EMBELY4A SAM 11 C'$ Ang

Real-time College 1994 September 1994

Communication and Synchronisation

® LC/OS supports message mailboxes and queues for
communication.

- A task can deposit, through a kernel service, a message (the pointer) into
the mailbox. Similarly, one or more tasks can received messages through
a service provided by the kernel. Both the sending and recetving task have
to agree as to what the pointer is pomting to.

- A message queue 1s an array of mailboxes.

e uC/0OS supports semaphore (0-32767) for synchronisation and
coordination.,

® These services are evenis.

® A task can signal the occurrence of an event (POST) or wait for an
event to occur (PEND).

® |SR can POST an event but cannot PEND on an event.

® When an event occurs, the highest priority task waiting for the
event is made ready to run.

EMBED94A SAM 12 CS Ang

Real-time College 1994 September 1954

Event Control Blocks

e The state of an event consists of®

the event itself - a counter for semaphores, a message for mailboxes, and a
message queue for queues,

- a waiting list for tasks waiting for the event to occur.
® Each event is assigned an Event Control Block which has the
following data structure:
OSEventGrp
+ OSEventTbl([B]
- OSEventCnt for semaphore count

- OSEventPtr for mailbox or queue

FMBED94A SAM 13 C'S Ang

September 1994

Real-time College 1994

Memory Requirements
® Program memory - less than 3150 (for 80186/80188)

e Data memory
- 200
- +({1 + OSMAX_TASK) * 16)
. HOS_MAX EVENTS * 13)
« +HOS_MAX QS * 13)
. +SUM(Storage requirements for each message queue)
- +SUM(Storage requirements for each task stack)
. +(OS_IDLE TASK_STK_SIZE)
e Example: 20 tasks, 256 bytes for each task stack, 10 semaphores, 5

mailboxes and 5 queues of 10 entries would require 6337 bytes of
RAM.

EMBEDYA SAM 14 C % Ang

Real-time College 1994

September 1994

Kernel Services

FT# Service Description
I |OSInit() initialise nC/OS
7 OSIntEnter () Signal ISR entry
3 |0SIntExit() Signal ISR exit
4 |OSMboxCreate () Create a mailbox
5 |OSMboxPend() Pend for message from mailbox
6 |OSMbox Post () Post a message to mailbox
7 |O8QCreate () Create a queue
8 |0OSQPend() Pend for message from queue
9 |OSQPost () Post a message to queue
10 |OSSchedLock () Prevent rescheduling
[1 |OSSchedUnlock () Allow rescheduling
12 |OSSemCreate() Create a semaphore
13 |OSSemPend () Wait for a semaphore
14 |OSSemPost () Signal a semaphore
15 |O8Start() Start multitasking
16 [OSTaskChangePrio () |Change a task's priority
I'7 |OSTaskCreate () Create a task
18 |OSTaskDel () Delete a task
19 |OSTimeDly () Delay a task for n system ticks
20 |OSTimeGet () Get current system time
21 |OSTimeSet () Set system time
22 |OSTimeTick () Process a system tick

EMBEDN94A SAM

15

C S Ang

rEI ~

Reai-time College 1994 September 1994

A

uC/OS Programming Example

® An example to show a number of uC/OS features.

6 tasks are created.

TaskStat () - First task to execute. It creates the other five

which have higher priorities. It then displays statistics on the
screen.

TaskKey () - Monitors the keyboard. A message is sent to
Task1 () through a mailbox if key 1 is pressed.

Task1l () - Waits for message from TaskKey(). If not received
within 36 system ticks, a timeout counter is incremented.
Otherwise, a message counter is incremented.

TaskZ2 () - Like Taskl() except it waits for messages from a
queue.

Task3 () - Displays one of four characters at random positions on
the upper right hand side of the screen.

TaskClk () - Displays date and time on the lower right hand
corner.

EMBET94A SAM 16 CS Ang

