INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
EC.T.P., P.O. BOX 586, 34100 TRIESTE, ITALY, CAaBLE- CENTRATOM TRIESTE

IN TERNMNATLTLIOMNAL Al1LLUMIU LML ™wu v oy ol o N
‘ D UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CUE TURAL ORGANIZATION \)

@ lgla The United Nations
<>

University

SMR/774 - 17

THIRD COLLEGE ON MICROPROCESSOR-BASED REAL-TIME
CONTROL - PRINCIPLES AND APPLICATIONS IN PHYSICS
26 September - 21 October 1994

ADDITIONAL MATERIAL (II)
TO LECTURES PRESENTED BY

Ulrich RAICH
C.E.R.N.-European Organization
For Nuclear Research
P.S. Division
CH- 1211 Geneva
SWITZERLAND

These are preliminary lecture notes, intended only for distribution to participants.

Man BuiLping Staana Cormmas, 11 T 22401 Tamax 224163 Tasx 460392 Apmiatico Gussr Houst Via Grianaro, 9 Te 224241 Tawax 224531 Taxx 460449
Micaorroczasor Lan Via Bemur, 31 Ta. 224471 Tamax 224600 Tamx 460392 Gavweo Guest Houss Vi Bamr, 7 Ta. 22401 Tasrax 2240310 Tamx 460392

Problems when writing device drivers

Device drivers are an integral part of the system kernel
they execute in supervisor mode (see later)

device driver writers do not have access to the standard
libraries

debugging problems (normal debugger does not work,
printf does not work)

there are timing constraints

often the hardware (and software) documentation is
missing

Advantages of Device Drivers
Resource protection (access by multiple processes)
Accessibility by any user

Isolation of hardware intricacies into the driver
(these problems are not seen by the application
programmer)

Possibility to treat interrupts

Device Driver access seen from the Application Program

system call
(software interrupt)

User Mode : :
library Supervisor
Mode
open
User close
Program read
write etc...
—--... =
driver —
_
Software . | hardware
... QR
Hardware I
registers
ICTP board

interface

Device Drivers seen from the Application Program

The device driver is accessed like a normal file:

fd = open(/dev/ictp, O_RDONLY)
or O_WRONLY or O_RDWR
this opens the driver and returns a file descriptor

ret_code = read(fd,buffer,nchars)
allows to read nchar byte from the device into buffer

ret_code = write(fd,buffer,nchars)
writes out nchars bytes from the buffer to the device

ioctl(fd,request,argp)
int fd,request; char *argp;
controls the device driver

pos = Iseek(fd,offset,whence)
sets the file pointer

close(fd) closes the driver

All drivers are collected in the /dev directory

Is -1 /dev/ictp will give:

crw--w--w-1 1 root 31 8 Sep 94 /dev/ictp

T~

indicates a character device driver

A typical application program acessing a driver

/**‘k*****/

/* Try to run the cclombo board from the parallel */
/* interface using the ictp driver */
/* U. Raich 14.5.94 */

/***‘k****/

#include "/usr/include/stdioc.h"
#include "/usr/include/fcntl.h"
#include <sys/ioctl.h>
#include m"ictp.h"

void main()

{
int fd, 1i,ret_code;
unsigned long mode;
unsigned char buffer{12};

/*
open the device driver for writing
*/
fd - open("/dev/ictpO", O_WRONLY) ;
if (£d < 0) {
perror ("Could not open ictp port:");
exit(-1);
}
else
printf("ictp port successfully opened for writing!in");

/-k-

in raw mode

we must code data and chip select signals ourselves
*/

mode = ICTP_MODE_RAW ;

printf ("setting mode : %d4d\n",mode);

ret_code = ioctl(fd, ICTP_SET_MODE,mode} ;

i1f {(ret_code < 0)

perror("ioctl");

buffer[0]=0x1f;
buffer[1]1=0x17;
buffer(2]=0x1£f;

buffer[3]1=0x2f;
buffer[4]=0x2b;
buffer[5]1=0x2f;

22

bu
bu
bu

ffer[6]=0x3f;
tfer{7]1=0x34d;
ffer[8]=0x3f;

buffer[9]=0x4f;
buffer[10]=0x4e;

bu

if

cl

ffer(11]1=0x4f;

(write{fd,buffer,12) != 12)
perrox ("after write "};

ose{fd);

23

Types of device Drivers

Block Device Drivers

Fixed size buffers.

interaction via a system supplied buffer cache

used for disk systems in conjunction with the file system

Character Device Drivers

We will look exclusivly at these

Have a direct interaction with the hardware
transfer data on a byte by byte basis

terminal drivers
character device drivers with special support for terminals

STREAM drivers
used for high speed serial communication
e.g. networks

Major and Minor Device

Often an interface has several channels however a driver has
only a single read and write routine

Usually the I/O card (type of I/0) is assigned a major
number the channel a minor number

Drivers are accessed the same way as ordinary files
(redirect, append, pipe ... also works on devices)

The "special files" are located in /dev

Naming convention: name of driver followed by minor
number e.g ictp0

In order to create a special file:
mknod special file [b] [c] major minor e.g.
mknod /dev/ictp0 ¢ 31 0

In our driver we need 3 different "reads".

e Read the switches

e Read the number of interrupts on IRQS5 and IRQ7
=> use 3 minor numbers

24

Installing the Device Driver into the System

2 possibilities:
e [ink the device driver into the system at SysGen
(system generation)

—modify mem.c (a kernel routine calling each driver
initialization routine) zu initialize the chips and register
the driver with the system
insert: mem_start = ictp_init(mem_start)

—the driver must contain the ictp_init routine

—recompile the kernel and install the new system
e Use modules package

The kernel contains hooks to dynamically install a device
driver into the system. The modules package provides utility

programs to perform the installation and removal.

e insmod ictp.o installs the ictp driver into the system

¢ Ismod lists all modules installed by insmod

e rmmod ictp removes the ictp driver from the system
e ksyms lists the exported kernel symbols

The driver must contain 2 routines:

e int init_module(void) (equivalent to ictp_init)
initializes the chip and registers the driver

¢ void cleanup_module(void)
unregisters the driver

25

Driver Layout

The driver consists of 2 files:

e include file (ictp.h) containing all definitions
—register addresses
—symbolic names for initialization bits
—symbolic names for ioctl functions
—symbolic names for ioctl arguments

The driver code
e installation and cleanup routine

e driver jump table:

static struct file_operations ictp_fops = {
NULL, /* 1seek, not used in ictp driver */
ictp_read, /* read routine */
ictp_write, /* write routine */
NULL, /* readdir not used in ictp driver */
NULL, /* select function */
ictp_ioctl, /* ioctl driver control function */
NULL, /* mmap */
ictp_open, /* open function */
ictp_close, /* release function */
NULL /* fsync */

}
. code for each of the non NULL entries in the above table

26

Typical example of an include file

/******‘k***/

/* Definitions of 8255 addresses and control bits */
/* U. Raich 31.8.94 ny

/**/

#include <sys/ioctl.h>

#define ICTP_MAJOR 21
#define ICTP_NO 3
/*

* defines for 8255 ports

*/

#define ICTP_A 0x300
#define ICTP_B 0x301
#define ICTE_C 0x302
#define ICTP_S 0x303

/*
* defines ICTP status and control register bits
*/

#tdefine ICTP_MCDE_SELECT 0x80
#define ICTP_A_MODE_O 0x00
fdefine ICTP_A_MODE_1 0x20
#tdefine ICTP_A MODE_Z 0x40
#define ICTP_EB_MODE_O 0x00
#define ICTP_E_MODE_1 0x04
#define ICTP_INFUT_A 0x10
#define ICTP_OUTPUT_A 0x00
#define ICTP_INPUT_B 0x02
#define ICTP_OUTPUT_B 0x00
#define ICTP_INPUT_C_LOW 0x01

#define TCTP_CUTPUT_C_LOW 0x00
#define ICTP_INPUT _C_HIGH 0x04
#define ICTP_OUTPUT_C_HIGH 0x00

#define ICTP_AVAILABLE 1
#define ICTP_NOT_AVAILABLE O

#define ICTP_SILENCE 0x09
#define ICTP_NOISE 0x08
#define ICTP_BUZZER_BIT 0x10
#define ICTP_BUZZER_ON 1

AO

#define

#define
#define
#define

#define
#define

#define
#define
#define

/*

ICTP_BUZZER_QOFF

ICTP_MODE_RAW
ICTP_MODE_SINGLE_DIGIT
ICTP_MODE_FULL_NUMBER

ICTP_BUSY
ICTP_FREE

ICTP_READ_SWITCHES
ICTP_READ_TIRQ7_COUNT
ICTP_READ_TRQ5_COUNT

the ioctl codes:

*/

#define
#define
#define
#define

ICTP_SET_ MODE
ICTP_GET_MODE
ICTP_SET_BUZZER
ICTP_GET_BUZZER

(S

b

IOC_IN
I0C_OUT
TOC_IN
I0C_OUT

44

0x0001
Ox0001
Ox0002
0x0002

29

Sequence of steps to be taken in order to implement the

device driver

¢ Implement the init_module and cleanup_module routines

only and check if the driver can be installed into the

system

How do we know if the install worked?

1.) put a printk (print on console) statement into the

init_module code
2.) check with Ismod

/*

* Tmplements the ICTP character device driver.

* Create the device with:

*

mknod

*

*

* - U. Raich
* 13.3.94

port

*

/dev/ictp ¢ 31 0

* Modifications:

* 30.8.94 ; U.R. complete rewrite for Manuel's hboard

*/

/* Kernel includes */

#include
#include
#include
#include
#include
#include
#include
#include
#include

#include
#include
#include

<linux/errnc.h>
<linux/fs.h>
<linux/major.h>
<asm/segment .h>
<linux/kernel.h>
<linux/signal.h>
<linux/module.h>
<linux/sched.h>
<lictp.h>

<asm/io.h>
<asm/segment . h»
<asm/system.h>

First version working with PC parallel printer

30

/-k

* NB. we must include the kernel idenfication
install the mcdule.

* See the Makefile for release.h

*/
#include "release.h™”

extern int printk{(const char* fmt, ...);
int init _module(void) {

int i;

unsigned char testvalue = 0;

printk("ictp: init_module called\n"};
/*

register the device driver with the system
*/

string in

if (register_chrdev (HW_MAJOR, "ictp", &ictp_fops))

printk{"register_chrdev failed: goodbye

- (\n"};
return -EIO;
} else
printk("ictp: driver registered!\n");

return 0;

}

void
cleanup module{ void) {
int i,busy = 0;
printk{ "ictp: cleanup_module called\n");

for (1=0;1<ICTP_NO;i++)
if (ictp_busy[i] == ICTP_BUSY)
busy = 1;
if (busy)

printk("ictp: device busy, remove delayed\n"};

if (unregister_chrdev(HW_MAJOR, "ictp") != 0)
printk{"cleanup_module failed\n");

} else {
printk(*cleanup_module succeeded\n");

}

A%

to

world

31

Result: Ismod finds the module,
but the printk message did not appear anywhere
Questions: Who is right (Ismod or printk) ?
Where should the message come out ?
Does printk only work when the driver is compiled
into the system but not with insmod?
Is there a problem with X-Windows?
Experiment: Try to compile the driver into the system and
save new system on floppy. Boot from floppy.

Result: insmod message arrive on boot (on non X console
because X is only started after initializing the drivers)

but cleanup_module message is still not visible!
but ... => we are actually installing the driver ok!!!
So... where do the messages go0?

Advice from a Guru: The messages go to the console device
(/dev/console) so try: date > /dev/console

This comes out on the "console window". However
driver messages don’t.
" If nothing else helps, read the manual!

This gives the idea to poke around the /usr/adm area
(see System Administrators Guide)

In /usr/adm/syslog I find my printk messages!!!

Changing the syslog configuration file (/etc/syslog.conf)
allows me to redirect kernel messages from syslog to
/dev/console!

Now printk works as expected

1 32

Situation after 2 lectures

Driver include file is (at least partially) written

Driver can be installed and uninstalled. We also know how
to compile it into the kernel

Driver jumptable exists but contains only NULLs.

Hardware for reading switches and writing displays is
understood

Read routine (for switches, not interrupts) exists but only
in non driver form

A simple write display routine (non driver form) exists
printk works, some debugging is therefore possible

Next Steps: Write the displays with driver
Implement the open and close routines
Implement read and write routines
Put the entry points of above routines into the Jumptable
Put debugging information into all routines

Design decision: Only a single process may access the
driver at a time => return "busy" error if a second open is .
attempted '

- -

-7

33

