! el BV iy AL L S A L = e = o gk Al N
(@ D UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION m}
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

L.CTP, P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE CENTRATOM TRIESTE

@ l g The United Nations
<>

University

SMR/774 - 18

THIRD COLLEGE ON MICROPROCESSOR-BASED REAL-TIME
CONTROL - PRINCIPLES AND APPLICATIONS IN PHYSICS
26 September - 21 October 1994

ADDITIONAL MATERIAL (IIT)
TO LECTURES PRESENTED BY

Ulrich RAICH
C.E.R.N.-European Organization
For Nuclear Research
P.S. Division
CH- 1211 Geneva
SWITZERLAND

These are preliminary lecture notes, intended only for distribution to participants.

anico Gusst Houss Via Griovaxo, 9 T 224241 Tamax 224531 Tamx 460449

Main BuiLoineg Staana Cormmna, 11 Ta. 2240] Tamwx 224163 Tam 460392 Apa
Te. 22401 Tamax 2240310 Tam 460392

Ta 224471 Tamrax 224600 Tamx 460392 Gauneo Guest House Via Bawur, 7

Micaoreocssson Lan. Via Bazur, 31

Library for Device Driver Writers

register_chrdev(unsigned int major,
const char *name,
struct file_operations *fops)

registers a character device with the kernel

unregister_chrdev(unsigned int major,
const char *name)

printk printf style debugging function

outb(char value, unsigned short port)
unsigned int inb(unsigned short port)

void *kmalloc(unsigned int len, int priority)

MAJOR(inode->i_rdev) get major number
MINOR(inode->i_rdev) get minor number
(inode is passed into each of the driver routines)

get_fs_bywe(char val, char *addr)
put_fs_byte(char val, char *addr)
get data from user space into system space

request_irq(unsigned int irq, void *handler,
SA_INTERRUPT, char *name)
registers and interrupt handler with the system

free_irq(unsigned int irq)
unregister the interrupt handler

34

Implementing open,close,read,write

e Open: icpt_open(struct inode *inode, struct file *file)
—if Busy is set return EBUSY error
—initialize Port A to programmed output
—initialize Port B to programmed input
—set Busy flag

e Close: ictp_close(struct inode *inode, struct file *file)
—reset the Busy flag

e Write: ictp_write(struct inode *inode, struct file *file,

char *buf, int count)
—uses get_fs_byte in order to transfer the data from
user-space to system-space

—copy of non driver code from first lecture
—some printks added
—-problem: No check for data validity is made

e Read: ictp_read (struct inode *inode, struct file *file,

char *buf, int count)

——Code of non driver program is taken oven
—uses put_fs_byte to transfer data to user space
—adds a few printks

e The entry points of these routines are put into the fops
jumptable

A test program for this new driver is needed. The program
will call each of the newly installed driver routines.

[N

35

Code example: The ictp_write routine

/*

* Write requests on the ictp device.

*/

static int ictp_write(struct inode * inode, struct file * file,
char * buf, int count)

{

char ¢, *temp = buf;
unsigned char ctemp, digit;

switch (ictp_mode) {
case ICTP_MODE RAW:
temp = buf;
while (count > 0) {
¢ = get_{s_byte(temp);
outb(c,ICTP_A);
count--;
temp++;

} r

return temp-buf;
break;
default:
return -EINVAL;
break;

}

36

|

Switching the Buzzer on and off

The buzzer is switched using the ioctl function
ICTP_SET_BUZZER with the arguments
ICTP_BUZZER_ON and ICTP_BUZZER_OFF

How does the code look like?
The Buzzer is connected to PC4 (see later)

Programming Port C the manual says:

Any of the eight bits of port C can be Set or Reset with a
single out instruction. When Port C is being used as
status/control for Port A or Port B these bits can be set or
reset by using the Set/Reset operation just as if they were
data output ports.

CONTROL WORD

D, Dy | Dy | Ds | D3 | Oy | D1 | Do
| |
! BIT SET/RESET
X % X ‘ — - 1=SET
L= 0 - RESET
DON'T |
CARE {
] BIT SELECT
1 0'123[a5[6]7]
—[0110:1/0]/1]01)|8g
L »[0'a"11{0l0]1|1]|By
-0 0 0,0{1]1{1{1]Bp
BIT SET/RESET FLAG
™] 0=ACTIVE

Figure 5. Bit Set/Reset Format

The Buzzer ioctl code

#define ICTP_SILENCE 0x09
#define ICTP_NOISE 0x08
/*

* Handle ioctl calls

*/

static int ictp_ioctl{struct inode * inode, struct file *
file,

unsigned int cmd, unsigned long
arg)
{

unsigned char port_C_status;
switch (cmd) {

case ICTP_SET_BUZZER:
printk("ictp: ioctl set buzzer function entered!\n");

it {(arg == ICTP_BUZZER_OCN) {
outb{ICTP_NOISE, ICTP_S);
return 0;

}

else if (arg == ICTP_BUZZER_OFF) {
outb (ICTP_SILENCE, ICTP_S);
return 0O;

}

else
return -EINVAL;

break;

case ICTP_GET_BUZZER:
printk{"ictp: ioctl get buzzer function entered!\n") ;
port_C_status = inb(ICTP_C);:
if (port_C_status & ICTP_BUZZER_BIT)
return ICTP_BUZZER_CFF;
else
return ICTP_ BUZZER_ON;
break;

default: return -EINVAL;
}

38

“N

Treating Interrupts

We want to read the number of interrupts, that have arrived
after the last read.

With Read... Sleep(1)... Read the second read will give the
number of interrupts that arrived during 1 second.
Useful for Voltage to Frequency converter.

Steps to be taken:

Already a read routine exists, so we need 3 minor devices:
—minor 0: read switches

—minor 1: read no of interrupts on IRQ5

—minor 2: read no of interrupts on IRQ7

read routine needs a change

minor = MINOR(inode ->i_rdev) gives minor number
switch (minor) ... is needed

open routine needs a change

—We must change the 8255 initialization mode to strobed
output (IRQ7) or strobed input (IRQ5) depending on
the minor number
(Why not always strobed input mode?)

—An interrupt service routine must be written and hooked
into the system

close routine must free the interrupt
(Take out the interrupt service routine from the system)

ioctl routine to enable and disable the interrupt on 8255
level is needed

42

CONTROL WORD

0, Dg D, D, D3 D, D, DOy

Interrupts from Port A

MODE 1 (PORT A}

Hardware Connections and Timing

PA,-PA,

PC, |—— OBF,
110 1 o |1/0
r—="
I INTE | ACK
|__ PCas oA Plo [+ ACKa
1= INPUT -
0=0UTPUT 1
}« PC3 - INTRA
WR O
2
PCQ'S 4+.
wh T

INTR

ACK

OUTPUT

tair

Figure 9. Mode 1 (Strobed Output)

36

"

Interrupts from Port B
Hardware Connections and Timing

MODE 1 (PORT B)

pC,|~—— 578

CONTROL WORD

D, Dg O, D, Dy 0, D, Dg g

1 i1 1

P PC,}—— 18Fg

PCy f——— INTRg

z

-
L :3

INTR

I
;
J H
R | \ g I S
i
INPUT FROM __ } —— e — —— — o — o ——— —— o ——— ————
PERIPHERAL l

Figure 7. MODE 1 (Strobed Input)

37

Interrupt code examples
/ *
first the tough part: the interrupt code
*/

static void ictp_irg7_interrupt (int irq)
{
unsigned char dummy;
durmmy = Oxff;
outb(ICTP_A,dummy); /* this just clears the interrupt */

irg7_count++;

static 1int 1ictp_open(struct 1inode * 1inode, struct file
file)

unsigned int minor = MINOR(inode->i_rdev);
unsigned char command;
int ret_code;

switch (minor) /{

/'k
this allows interrupts on the push button
*/
case ICTP_READ IRQ7_COQUNT
ret_code=request_irqg(irqg7,ictp_irg7_interrupt,
SA_INTERRUPT, "ictp") ;
1f (ret_code) |
printk("ictp: unable tc use interupt 7\n");
return ret_code;
}
else {
printk("ictp: irg7 registeredi\n"):
command = ICTP_MODE_SELECT |
ICTP_A MODE_1| ICTP_B_MODE_0 |
ICTP_INPUT_B;
outb (command, ICTP_S) ; /* strobed output
/'k

kill the buzzer _
first setup port C to bit set (bit set/reset mode with
bit on!)
*/
outb{ICTP_SILENCE, ICTP_S);
}

break;

T4

*

set

43

Result?

insmod complains that
request_irq and free_irq cannot be found

(link error when loading the ictp.o module)
Check where these functions are defined: in the kernel

= > A new kernel version is needed

ftp to a machine where the newest kernel versions are located

The very newest kernel versions exist only in source form!
Copy it onto a floppy but ... compressed kernel is 1.6 Mbytes
big!

=> Split the kernel into smaller parts, copy these parts onto
floppy reassemble the kernel on the hard disk

Compile the new kernel

Install the new modules package

... Compile error: wrong number of arguments for

request_irq

=> Several driver callable routines have changed!!!
New documentation is NOT available

=> Get the source file of the lp: driver and just copy!

The driver now compiles and can be installed with insmod!

44
A

Get both interrupts to work

Change the test program to open and test IRQS
Result: Influence of IRQ7 on IRQS5 ?7?
The IBF and OBF signals were shortened!

MODE 1 (PORT 8}

MODE 1 (PORT A}
PB;PBg

PA, PA, __T> - R
==
| INTE 1 STa
L PC, 5T8,
PC, oBf LT_ J
\

i PC, - IBf,

1INTE § AC K
LA PCg [+—— ACK,
-4
1 PCu— INTRg

Pca_s ___/_,

e

Now the whole bloody thing works!!!

Conclusion: The interplay of hardware and software can
make big trouble!

46
2

Future developments of the driver

In the actual driver all read calls are non blocking
=> no way to synchronize to external signals

We can make the driver blocking if no interrupts have arrived
since the last read:

static struct wait_queue *wait_queue = 0;
static int ictp_read{struct inode *incde, struct file *file,

char *buffer, int count)

if (irg5_count == 0) {
printk (" Process going to sleep on IRQS\n"};
interruptible_sleep_on(&wait_queue) ;

printk({"Frocess has waken up\n");

}
put_fs_byte(irg5_count, 1) ;

return 1;

In the interrupt service routine we put:

wake_up_interruptible(&walt_queue) ;

47

