INTERNATIONAL ATOMIC ENERGY AGENCY ——
%} UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION ﬂl
L-— INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

LCTP, P.O. BOX 586, 34100 TRIESTE, ITALY, CaBLE: CENTRATOM TRIESTE

@ | gla The United Nations
<>

University

SMR/774 - 24

THIRD COLLEGE ON MICROPROCESSOR-BASED REAL-TIME
CONTROL - PRINCIPLES AND APPLICATIONS IN PHYSICS
26 September - 21 October 1994

DESIGNING AN INEXPENSIVE REAL-TIME SYSTEM:
A CASE STUDY

Ravindra KEARNAD
Five D-Electronic Technical Services
No.25 Anniyappa Garden
6th Main 10th Cross
Thippasandra
560 075 Bangalore
INDIA

These are preliminary lecture notes, intended only for distribution to participants.

Mav BuiLoine Strava Cormmma, 11 Ta. 22401 Tamrax 224163 Teax 460392 Aomiancoe Guesr Housz Via Gucnano, 9 T 224241 Tamax 224531 Tamx 460449

DESIGNING
AN INEXPENSIVE REAL-TIME SYSTEM:
A CASE STUDY

17th October 1994
Trieste

Ravindra Karnad
INDIA

Designing An_Inexpensive Real-Time System: A Case Study 17th October 1994 Ravindra Karnad

At the tail-end of this course, let us recall some of the basics of real-time

systems:

«Any system will process it's inputs and respond with certain outputs within a
reasonable response time .

sBut a real-time system is one which must satisfy explicit response-time
constraints else it may be considered to have FAILED!

«Some systems can tolerate a delayed response with a degraded performance
and are called soft real-time systyems.

«Others can tolerate only marginal degradation (i.e. can afford to have a
delayed response once in a while) are called Jirm real-time systems.

+Systems which just cannot tolerate a delyed response are hard real-time
systems

In these systems depending upon:
« the cost constraints,
+ the complexity of the processing required and
« and the time available to process these inputs before the response can be
made available
we could decide about the sophistication of the system in terms of the :
* Word size and Speed of the CPU
* Type of OS

These decisions would result in a trade-off between cost and effort:
» Ready made systems are high cost with low development effort
» Do-it-yourself systems are cheap but development intensive.

Designing An Inexpensive Real-Time System: A Case Study 17th October 1994 Ravindra Karnad

We could identify three categories in this range of solutions giving a different
mix of cost and performance:

» High-end: Example:A PC running a real-time OS with off-the-shelf I/O
cards with device-driver.

e Medium: Example: A PC with a RTOS but a do-it-yourself card and
driver.

« Low: Small embedded system with it's own RT Kernel

We shall look at a small real-time application which employs the low-end
solution:
e Small embedded system with 8 bit microprocessor/microcontroller.
» A do-it-yourself Real-time Kernel .
» Cross-development of assembly language software on PC .

We shall construct a simple hypothetical real-time problem for which we
examine the requirements of computation and then go on to define the
requirements of the real-time kernel. Consider the following problem:

On a machine a carriage performs a reciprocatory motion between two fixed
limits. As the carriage reaches either limit a signal is received from a
sensor. (However due to mechanical vibration and over-shoot the signal
Jrom the sensor is not "clean "). After every cycle of the oscillation, an
actuator is to be turned on for 50ms. The velocity of the carriage, and the
sensor determine the following :

The period of Oscillation is about 300ms

The duration of the signal from the sensor is about 60ms

The bounce on the sensor lasts for 15ms.

The pressure of the oil in the system is to be logged at 100ms intervals in
and displayed every I sec.

Designing An Inexpensive Real-Time System: A Case Study _ 17th October 1994 Ravindra Karnad

The first step in the design is to identify the number of tasks or processes
that would have to be supported by the software. In the example above,
the processes are:

« The scanning of the sensors...............cvvvmnne.... P1
» The turning on and off of the actuator................ P2
« The data logging of the pressure......................... P3

It must be recognised that these are concurrent processes.

The second step is to estimate the response-time requirements of the
system. Here this has to be done for each process that has been identified.
In our problem, the scanning of the sensors is to be done fast enough to
debounce and recognise the signal within 60ms. for the process Pl.
Likewise the process P2 is to be active only once in every period of
oscillation. The process P3 has to be activated once every 100ms.

It is interesting and important to recognise that although the three processes
are concurrent, for each of these processes, there is an idle-time. During
this idle-time the process has no need for the CPU.

It is this feature of most processes that is exploited by the kernel to run many
concurrent processes and to keep the utilisation of the CPU to the level
that 1s actually required.

This has great relevance to low-power applications where the CPU can be put
into a power-down mode when no process needs the CPU.

«— 300 ms

60 msg >
m——n —
| w ﬂ “ N SENSOR
| ' & .
> < SN AL
¢ 1oms
50me
—
1 ACTUATOR
R o/p
ON OFF on

SAMPLIN G 0iL TRESSURE

PROCESSOR GCCUPANCY.

4 A

Designing An Inexpensive Real-Time System; A Case Study __ 17th October 1994 Ravindra Karnad

Having identified the processes and their real-time needs, we can in the third-
step look at whether these processes need to communicate with each
other. In this case P1 needs to inform P2 when a complete cycle of
oscillatton is over.

A small real-time kernel is called for which provides simple mechanisms for:
« Scheduling one of several concurrent processes

» Switching from one process to another with the correct context

« Providing a simple mechanism of inter-process communication

The first two tasks are done by the scheduler and the despatcher of the
kernel.

Before we look at how we build a simple kernel to perform these functions,
let us look at a simple method of writing the software for each process:

One of the traditional methods of hardware design can be employed namely
the Finite State Machine approach.

The FSM method has the following advantages:

» Easy for the despatcher to save and retrieve the context of a process.

» Each state has a well defined entry and exit point and hence a small self-
contained routine called the state-rroutine.

+ Easy to test and debug since state transitions can be forced and changed
with ease. This makes it very easy to narrow down the culprit code even in
a system which behaves erraticaly.

« Modifications and alterations are extremely simple.In most applications
there will be a need to enhance features, or to alter specifications at a later
date on later implementations. These would necessitate the addition of
more processes and also alter the state diagram.

Sencor ON

FsM for PL

SA

Designing An Inexpensive Real-Time System: A Case Study 17th October 1994 Ravindra Karnad

As an example of the FSM method we shall look at just the case of how the
process P1 is implemted.

Since the problem states that there will mechanical bounce, we can identify
four states of this process:

« SI: state where the sensor has not sensed any signal and is waiting for a
signal.

« S2: when the sensor has sensed a signal and is waiting to debounce it.

« 83: where the sensor is in the "Sensed” condition

« S4: where the sensor is waitnig to be de-bounced again.

Note that in each of these 4 states, the processing required is extremely
simple. and in some cases even trivial!

Having identified the processes and their real-time needs as well as drawing
out the state diagrams for each process we can now proceed to build a
small kernel which schedules processes, despatches them properly to the
correct context and also provides a simple mechanism for IPC.

The kernel proposed here uses non-preemptive scheduling. This means that
each process is allowed to run to completion and is not interrupted.

This goes well with the FSM method since the scheduler can permit each
process to complete it's state-routine before despatching the next process.

Each process must have a sense of time so that it can perform it's Job within
the specified time limits. This is done by a time-keeping function
(essentially a tick of a 1ms clock) of the scheduler. Each process will have
associated with it a timer which tells the scheduler when it must run next.

Desi An Inexpensive Real-Time System: A Case Stud 17th October 1994 Ravindra Karnad

Additionally since we are following the FSM method, each process must have
a state associated with it which tells the despatcher which state of the
FSM the process must enter i.e. it must refrieve the correct context

At start-up all process states and timers are initialised.

The kernel then sets up the concurrent processes and executes them as
follows:

1. The scheduler looks at the timers of each process and the real-time
interrupt counts down these timers. When a timer goes to zero, it is time to
invoke this process.

2. The despatcher then looks at the state number of this process and calls
up the appropriate routine.

3. The state routine of this process performs it's task and terminates.
However before quitting it's state routine it updates it's timer to tell the
scheduler WHEN to invoke it and also updates it's state number to tell the
despatcher WHERE to pass on control when invoked.

————e

Ti
PTiM2
t

150me \\

PTIM (n)[_ Smg I /

TIMER LIsT

TIMP PLSE
Tmp PAsl

IMp PLSE
Imp p2 5L

F™MP PN SN.

JUMP TABLES

| WR PTR
e |

—

Msg L

/

Msag 2

NWLL

proTeE |2
5

P21 STARE

PN sTWE 2

Th.

iRk

Designing An Inexpensive Real-Time System; _A Case Study 17th October 1994 Ravindra Karnad

Inter-process communication is implemented by a circular ring buffer. The
reading and writing are done by using two separate pointers. A NULL
character is put into the buffer at the end of the last written message.by the
producer process. The consumer process reads upto the NULL. This
method will work if the long term average of the reads and writes is the
same. The size of the buffer depends upon the sudden bursts of messages
produced by the producer process and is dependent upon the application.

In case the application needs to service other device interrupts, then the ISR
must just do the bare minimum (like read the sampled data and put it in an
internal buffer) and then convey this information to the necessary process.
The concerned process can retrieve this information from the internal
buffer when it next runs. The ISR could set the state and timer of the
concerned process so that it processes this data in the next round of the
scheduler.

