| INTERNATIONAL ATOMIC ENERGY AGENCY

{ } UNITED NATIONS EDUCATIONAL . SCIENTIFIC AND CULTURAL ORGANIZATION m
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
LCL.P., P.O. BOX 586, 34100 TRIESTE, FTALY, CABLE. CENTRATOM TRIESTE

@ I QQ The United Nations
<>

University

SMR/774 - 7

THIRD COLLEGE ON MICROPROCESSOR-BASED REAL-TIME
CONTROL - PRINCIPLES AND APPLICATIONS IN PHYSICS
26 September - 21 October 1994

C PROGRAMMING LANGUAGE
(Part I

Alvise NOBILE
International Centre for Theoretical Physics
P.O. Box 586
34100 Trieste
Italy

These are preliminary lecture notes, intended only for distribution to participants.

A A e PR

Mais Bursine Stans Corrmma. 11 Te. 22401 Taoux 224163 Tuey 4607397 Anstvrn Comee Mowime Vio oo £ T Avadat o

TYPES 1

TYPES AND DECLARATIONS

inti;
/*declares the identifier i to refer to a variable of type
int ; creates (defines) the variable”/

All variabtes must be defined
All identifiers must be dectared

An identifier can be up to 31 characters fong(ANSI)
longer can be accepted, but maybe truncated
BUT GLOBAL SYMBOLS ...
contain letters,digits and _, starting with a ietter

or

upper and lower-case letters are distinct

int a,A,VeryLongIdentifier;

char
ATooLongIdentifierAsYouSeeUsedHerel,
ATooLongIdentifierAsYouSeeUsedHerel;

/* these could be considered
the same
by many compilers */
float x_3;
float 3x/*ILLEGAL!l*/;

TYPES 3
void
- no values
-— to specify the type of a function that returns
no value
void bye(...)
--- to specify a function without arguments
main (void)
--- to specify pointers to objects of any type

ARITHMETIC TYPES
Floating types

3 floating types (Old C : 2 only}
float

double

long double

NOTE: float : basic floating provided by hardware

{ 32 bits almost everywhere, FORTRAN REAL)
double : at least the same precision and range than
float, or better (REAL*87)

long double : at least the same precision and range
of double, or better (REAL"16)

- floating types are hardware: their behaviours and
properties are implementation dependent {description
in standard include file <float.h>)

TYPES 2

GLOBAL SYMBOLS : visible outside the file where
they are defined

ANSI: are distinguished on the basis of their first &
characters, case indipendent. WHY? Limits of system
software-> not true on any UNIX or UNIX-like system

ELEMENTARY DATA TYPES

Data types: - set of values
- possible oparations

Elementary data types provided by the language
Structured data types created by the programmer

C has very many to closely fit the hardware
-- possible portability problems
- possible avoidance of portability problems {1}

- void
-scalar types
- anithmetic types
- integral types
- floating types
-pointer types
-enumeration types
TYPES 4

- when mixing types in operations, obvious
conversions:
-- float a;
double b;*
... b*a
means.
convert a to double; perform product;
returm double
and so on;
-- a=b;
means:
convert b to float; assign resultto a

WARNING:

conversion of double to float can be impossible
or an operation can yield a non representable
result (Example: maxfioat+maxfloat) ->
UNDEFINED BEHAVIOUR

FLOAT CONSTANTS

3.1 .33 3e2 5e-5 3.7e12
have type double

3.5f has type float

3.5e2L has type long double

TYPES &

ARITHMETIC TYPES
Integral types

char

short int or just short
long int or just long
int

each of the above can be modified by
signed or unsigned

char
- must contain {the numeric representation of) any
character in the alphabet;
- must be at least § bits long.
Usualiy it is 8 bits long (but a chinese compiler
could decide differently)

Excursus : the alphabet

ANSI detines the minimum alphabet of C

- Source alphabet (to write programs):

a-z A-Z 0-9 space tab form-feed newline

"'# %2000, . ,+-"/\~?; «=>_ &

- Execution aiphabet

Source alphabet + null alert(bell} backspace carriage
return

TYPES 7
g Al
\n' Wt
\w,\o7
\octal number’
x47'
"xhexadecimal number
'G' is V107" is "x47' if using ASCII

Because they are integers

9 =='9"'-"'0'; /*common trick, good only for ASCII
machines*/

'‘a' =="'A' +32; /I* as above */

How to print a list of numeric values of letters?

#include <stdio.h>

main({void)

{char ¢ = 'a'
while(c <= 'z')(
printf("%c %d\n" , ¢ , ¢) ;
¢ = c+1 ;

Why getchar() is int and not char ?
(binary files)

TYPES 6
Trigraphs:
Source alphabet is ASClH
1SO standard alphabet misses some characters
(national characters instead)

ANSI defines trigraphs to represent these missing characters in the
source programs on computers not using full ANSI character set.
Ex. : 2?= can take the place of #

??(can take the place of]
trigraphs are a single character from any point of view, but only in
source programs,

Again on char:
IT IS A (smaif) INTEGER!
8 bits, CAN be longer({impiementation dependent)

signed char: range from -127 to 127 (?)

unsigned char: range from 0 to 256

char: whatever hardware prefers {"natural"

representation) BUT{ANSI)

- guaranteed minimum range 0-127

- atleast 8 bits

- value >0if content is a character of the
alphabet

CHARACTER CONSTANTS

TYPES B
int, short int and long int

short int : at least 2 bytes

long int : at least 4 bytes

int: "natural” hardware integer, at least 2
bytes

-short int used mainly for saving memory
-long int used mainly for range

ak

TYPES 9

unsigned and signed

unsigned short k;
unsigned long int j;
unsigned int |;

- Range from 0 to 21 or from 0 to 2% -1

- Never overfiows (arithmetic modulo 2'° or 233y
WARNING : integer overflow gives undefined results!
Ex.:

short 1 = 256 ;

unsigned short n = 256;

n = n*n + 1;/%* 256*256 is 0 mod 2~16 */
/* n bacomes 1*/

i = 4i*i + 1 ;
/* anything can happen*/

- Used for : -- exploiting all bits
-- representing positive-only objects
-- getting definite results with shifts
- Arithmetics can be slow

sighed
usefui only for char {(could be same as unsigned
char)

TYPES 11

assigned to an int -> UNDEFINED

EXPLICIT TYPE CONVERSION (CASTING)

(scalar type) expression

Ex:

flocat £ = 3.5 ;
int 1 , o= 2 , m = 3 ;

{ = (int)f; /* i=3 */
f = m/n; /* f=1.0 */
£ = (float)m/n; /* f=1.5 */

()

TYPES 10
integer constants

10 int, 10 decimal

50000 long int if intis 16 bits, eise int, decimal
010 int 10 octal (8 decimal)

0x10 int 10 hex (16 decimal)

0xB000 int if int is 32 bits, else unsigned int

-1 int decimat

-035 int octal (-29 decimal)

RULE:

decimal take the type int, long int or unsigned long
int (the smallest that fits)

hex and octal take the types int, unsigned int, long
int or unsigned long int {the smallest that fits)

Explicit sizing:
101 long int
10u unsigned int (ANS| ONLY)
WARNING: DONT BE TOO CLEVER

-1 is represented by Oxffff (16 bits)
BUT

short int n;
n=0Oxfff£f; /* ia mot -1*/

oxftff is a positive constant;
of type unsigned int (does not fit into an int}

TYPES 12
MIXING TYPES IN ARITHMETICS AND
ASSIGNMENT

int m , n ;
float a , b ;
char c ;
short q ;

a=m+ n/a-b + c*q*b

Most reasonable:
short types converted to defauit
{short, char to int)

it operators involves different types,
convert to "most powerful

{int + long, convert to long , retum long)

{int + float, convert to float, return float)

(int + unsigned, :convert to unsigned, retumn
unsigned)

Convert result to the type of the variable
on the left of =, and assign.

TYPES 13
IMPORTANT WARNING

int m = 256;
long int n ;

n = m*m ;/* UNDEFINITE RESULT if int is
16 bitg */

m*m is computed as int, but result overflows
result is converted to long int, but too late

E’ (long)m*m ; /*works*/

WARNING: mixing unsigned and signed

unsigned int n=10;
int m;

m = n-15; /% 2~16-5%/

TYPES 15

/* the following should cause a warning
message */
BulbBrightness=red;
PaperColors=2;

- there is nothing specific to enum to go from one
value to the next; adding 1 works (poorl);

enum day {sun, mon, tue, wed, thu, fri,
sat);
enum day d;

for (d=sun; d<=gat; d=d+l)...

- enum can be used to give names to arbitrary
integer constants, as follows:

enum{ Minimum«-12, Dangerl.ow, Hot=98,
Maximum=100} status;

/* Dangerl.ow becomes -11*/

USAGE:
- Give names to constants:

essential to improve readability. Important !
- To check against unreasonabie type mixing

TYPES 14

ENUMERATED TYPES

Like in Pascal: a set of names, holding costant values
assigned by the compiler

enum { red, blue, gree, yellow }
LightColor, PaperColor; /*LightColor,
PaperColor are variables of an
“anponymous" enumerated type */

enum Brightness {bright, medium, dark};
enum Brightness
BulbIntensity, ScreenIntensity;
/*BulblIntensity, ScreenIntensity are
variables of type "enum Brightness":
Brightness is a type tag */

LightColor = red;
BulbIntenalty = bright;

enum { constant_identifiers }
or
enum tag { constant_identifiers}

- constant identifiers bring integer values from Q on

- a good compiler would issue a warning but never
an error for a conflicting enum:

TYPES 16

Old C style: use

#define MINIMUM (-12)

- Ok for readability
- No protection for type mixing (all integers!)
- Valid for a whole file (SCOPE problem}

TYPES 17

POINTER TYPES

C uses extensively pointers : ESSENTIAL TO
USE THE LANGUAGE

Hardware view of pointers

variables are memory cells

each one has an address

this address is some kind of integer

| can store the address of a variable in another
varable

this one becomes a pointer to the first one

Example:

variable i IS memory cell 2347
contains the vafue 35
variable j IS memory cell 1398
j contains the value 2347

jis a pointer to i

TYPES 13

int 1 ’ j’lsF
float a , b=l.4;

to intg */
float *pfl;
a float */

/* pfl is a pointer to

pfl = &a; /* store the address of a
in pil */

pfl = b; / 1s the same as a=b */

pfl =b; /* illegal */

b = *pfl -0.25;/* is the same as b=a-
0.25 */

pfl = &b;

b = *pfl - 0.25;/* is the same as b=b-
0.25 WHY*/

pil = pfil; /* is illegal : type
mismatch */

pil = & i;

pi2 = pil;

pl2 = j; / 1s the same as i=j */

int *pil , *pi2; /*pil,pi2 are pointers

TYPES 18

C approach to pointers

Similar, BUT

.

variables of different types use different “memory
cells"

addresses are not int

addresses of objects of different types are of
different types;

If a is a variable of type T, &a is a pointer to it and
has type "pointerto T"

If p has type "pointer to T and is not null, *pis a
variable of type T

Exampie:

TYPES 20

NULL POINTERS

A pointer containing a zero value does not point to
anything.

int *p;
p = 0; /* ugly but legal */
p = {int *)}0; /*better */

- &anything never returns 0;
- memory allocation facilities never return 0;

TYPELESS POINTERS

vold * malloc(int size);
float * fptr;
fptr= malloc(sizeof{float});

. Every pointer can be assigned to a void
pointer and reassigned from it and it will not be
modified

void *ptr; float *fpl,fp2; double *dpl;

ptr=fpl;fpl=ptr;/* same as fp2=fpl */

dpl={double *)fpl;fp2={(float *)dpl;
/*legal, but result dubiocus */

. can be dereferenced only after casting

TYPES 21

veid *ptr;

float a,b:;

ptr=&a; /*ok*/

b=*ptr;/* illegal: *ptr has no type
(type void) »*/

be*(float*)ptr;/* ok*/

CONSTANT POINTERS
On some machines:
(char *}100 points to "memory position" 100
NOT STANDARD
require byte-addressed memory

(int ") would not work
POINTERS TO FUNCTIONS

float integrate{float (*f)(},float a,
float b, float eps)
{

y=f(x); /*yessir!+*/
}
float sgi(float x){return x*x;}
main(vold)
{printf("%f\n",integrate(sq,-1.0,1.0))}

- a function cannot have another functions as
arguments: it can have as an argument an address
of a function:

TYPES 23

float fl(float a, float b){...
float f2(float a, float b){...
float E3(float a, float b){...
float f4(float a, float b){...
main(void){

float (*(tabf[4])) ()={f1,£2,£3,f4);
float z;

int n;

}
}
H
}

e

acanf {*%d", n);
z=tabf [n] {(argl,arg2);

}

possible use: a 'compound variable' that includes
the pointers to the functions needed for its own
manipulation -> at the origin of OO programming

TYPES 22
float (*f)}{) means
« (*ffargs) is a float
« *fid a function returning a fioat
+ *fis a pointer to a function returning a float
- afunction can return a pointer to another

function
-_a pointer to a function is a legal variable
float (*pf) () +8q9i,8qgc; /% pf ig pointer

to function returning float =/
pf=sq;/* let'g 8q(x) return x*x */
sqi:integrate(pf,—1.0,1.0);
pf=mycca; /* another function returning
cog(x)*/
sqc=integrate(pf,—1.0,1.0);

- every reference to a function name, except when it
is being defined or declared, is intepreted as a
pointer to the function; therefore when one calls sq
- like y=sq(a); - , sq is intepreted as a pointer to the
function labeied by sq.

This is the reason of integrate (sq,-1 .0,1.0) instead
of integrate (&sq,...) and of pf=sq; instead of
pf=&sq;, and of y=f(x); in the body of integrate

Possibie use: a table of functions, selected on the
basis of an input value;

TYPES 24

COMMENT : declarations

C deciarations are "by example®,
int *p;
means :

Y

P is an int', therefore *p is a pointer to an int"

For this reason:

int *pi1, +pi2, i, 1: /* means i,j are
int, pil, pi2 are pointers to ints */

WARNING: common error:
int * p1, p2,p3;

L

TYPES 25

USER DEFINED TYPES
typedef

/* type definitions*/
typedef unseigned int size ;
typedef int * P_to_i ;
typedef size * P_to_8 ;

/* variable definitions */
size array_size, i;

P_to_1i pi:;

P_to_s p8;

typedef deciaration type-name

afterwards ,fype-name can be used as any
predefined type

Can be used to parametrize programs:
size could be unsigned long int on 16 bits machines

Almost essential for complex type declarations
(structured types)

IMPORTANT WARNING : difference with #define

#define PI int *
PI pil,.pi2;

TYPES 26
expands to

int * pil, pi2;

pi1 is pointer to int, pi2 is int 11

BUT

typedef int* P_i;
p_i pil,pi2; /* both are pointers to
integers */

OPERATORS

- C has many

- Ctreats as operators things that other languages

do not
- Contribute significantly to the complexity of the
language

ALREADY MET
Arithmetic operators
+-*/
- apply to arithmetic types; if types mismatch,
arithmetic conversions
- actually, + - apply also to pointers (later);

%

- applies to integral types only

OPERATORS 3

float a;

a=1.0/3.0;
1£(1.0 == 3.0%a) ../*usually FALSE +/

Address operator
& identifier

- applies to any variable except bit-fields and
register variables
- returns a pointer to its operand

Dereferencing operator
* pointer

Comma operator
expri , expr2

- applies 1o expressions of any type

- evaluates both its operands, and returns the
vaiue of expr2 (expr1 evaluated only for side
effects)

. operands are evaluated in order (first operand
evaluated first!)

- WARNING : this is NOT the comma that appears
in function calls

Meaning is obvious, except one WARNING
intn=-10,m=3,p, q;

p=m/n;
q = n%m;

can yield either
p=-3 gq=-1

or

p=-4 q=2

Relational operators
< > »>= <= == I=

. apply to all scalar types

. operands must be of the same type

. return int 1 (true) or O {false); no Boolean-
LOGICAL type in C!

. testing pointers for greater-less meaningfui only if
pointers to different elements of the same array

or structure
. comparing pointers for equality with O fegal (ugly:
use cast)

» warning : written without intermediate spaces
(== not = =)
- WARNING: careful about checking floating
types for strict equality:

OPERATORS 4

int £{int *nl, int *n2);

f(&nl , &n2) /* 1is not the comma

operator¥/
f(({nl=1 , &nl) , &n2) /*the first ,
igs an operator*/

GENERALITIES ON OPERATORS

1)Precedence Level

a+b/c is a+(b/c)
a<b-c is a<(b-c}
2)Associativity

if same level of precedence

2.0/3.0/4.0is (2.0/3.0)/4.0
LEFT ASSOCIATIVE

a=b=c is a=(b=c)
RIGHT ASSQOCIATIVE

Highest precedence (precedence level 1)

Postlix operators
Associativity: left to right
[a[2].p is (al21).p]

- Array reference []
-- if a is an array, a{1] is an element of it

- Function call ()
- if f is a function, f(...) calls it and returns its value

- Component selection . ->
- discussed with structures

Precedence level 2
Unary operators

Associativity: right to left

[-*a 18 -(*a)

- Address operator &
- Dereference operator *

- Minus -
applies to arithmetic operands
changes the sign of its operand

-Plus + ANS]only

applies to arithmetic operands
forces immediate evaluation of its operand

OPERATORS 7

-- Example

int m , n = 3 ;
m « n++ ; /* ig like m=n; n=n+l; */
m = ++n ; /* 18 like nan+l; m=n; */

—~ WARNING

int m = 2;
m + m++ /*UNDEFINED :4 or 5%/

: NEVER use twice in the same expression
a variable subject to side effects of an
operator
-m++ /* right associativity: means -{m++) */

—m++ I* illegal (why?)*/

- sizeof operator

applies to a name or expression of any type
returns the size of its argument in bytes
has two forms : operator and function

--- mathematically, a+{b+c) == (a+b)+c
--- in these cases, associativity rules do not apply
--- compiler authorized to reorganize gven
removing unneeded parentheses
--- + can be used to force an order of evaluation
+{a+b)+c
or
a+ +b+c)

- Logical negation !
any scalar operand
returns int 1 if operand is 0, else returns 0

- Bitwise complement -~
any integral operand
returns bit complement of the operand

- Increment and decrement operators ++ --
VERY MUCH USED

HAVE SIDE EFFECTS

apply to any scatar variable (NOT TO AN
EXPRESSION!)

m++ returns the current value of m AND
modifies m adding 1 to it

++m modifies the value of m adding 1 to it
returns the modified value

OFERATORS B

double f;

gizeof f /*applied to wvariable or
expression®/

gizeof (double) /* applied to a type
*/

ESSENTIAL when dealing with dynamic
objects (memory management)

Level 3
Associativity: right to left

- Cast operator (type)

1f (p==(char *)0)...
f=(float)m/{(float)n;

Level 4,5
Arithmetic operators
Associativity : left to right

Level 4: multiplicative operators * / %
Level 5; additive operators + -

Level 6
Shift operators
Associativity: left to right

@

- Left shift <<
- apply to integral operands
right operand must be >=0 and <= number of
bits of the left operand
filling with O

int 1 = 0x3 ;
1 = f<<d ;/% 18 0Ox30 */

- Right shift >>
- as above, BUT
if left operand is unsigned or >=0, zero filling;
+ else, implementation dependent (zero or sign
extension)

int m,n;/* int = 2 byteg */
m=715;/*binary 0000 0010 1100 1011%/
n=m>>2; /* n=715/4=178 */

m=-1;/* binary 1111 1111 1111 1111 */

n=m>>1 /* implementation dependent:
-1 or 215 1%y

DO NOT USE IN PLACE CF * ¢/

Levels 7.8
Relational operators
Associativity : ieft to right

Level 7 Comparison > < »>= <=
Level 8 Equality == '=

OPERATORS 11

Level 13
-Logical or I
returns 1 if one operand non-0 else return 0
EXACT:
if opTnon 0 return 1
else if op2non O return 1
else return 0

Example:

int +*p;

if (p && (*p = getchar()) && D l=
ECF)...

getchar called only if p non NULL (non 0),
otherwise disaster!

check for EOF only after getchar called,
otherwise meaningless

The ONLY operators apart from comma with
guaranteed order of evaluation;

therefore

the ONLY case, together with comma, where
repeated use of variable affected by side effects is
safe

int *p;

if (p && (*p = getchar(),*p !=EOF))

Note this one is probably right, the previous one is
probably wrong. Even better, as we will see:

1f (p && (*p=getchar(})!=EOF)

49

Levels 9,10,11
Bitwise operators
Associativity: left to right

Apply to integral operands

Level 9 Bitwise and &

Level 10 Bitwise A
exclusive or

Level 11 Bitwise |
inclusive or

Ex:

short int i1=0x0180 , mask=0x00c0;

Bhort int masked_i1;

masked_il = i1 & mask | 3; /*
masked_il 0x0083 «/

Levels 12,13
Logical operators
Apply to scalar operands
Evaluate second operand only if needed

Level 12
-Logicaland &&
returns 1 if both operands non-zero
EXACT:
if opfis 0 return 0
else if op2is O return 0
else return 1

OPERATORS 12

Level 14
Assaociativity right to left
- Conditional Operator ? :

exprl ? expr2 :axpr3
evaluates expri;
if exprlis not 0, evaluate expr? and return
its value;
else evaluate expr3 and retum its value

expr1 must be a scalar
expr2 and expr3 must have compatible types

Example
max=x>y?x:y;

Level 15
Assignment operators

Associativity: right to left
WHY OPERATOR?
variable = expression
evaluate expression
convert its value to the type of variable

assign to variable
retum the value assigned to variable

HAS SIDE EFFECTS

int p;

float a=3.5,b;
bap=a; /* means b={p=a)
p=3

b=3.0

*/

int pl, atatus(FILE *fp};
if {(pl=sgtatus(fp))printf(“error
%d\n",pl);

OPERATORS 15

Compound assignment operators

4= = *= J= %= <<= »»= &= "= |I=
binaryoperator=

int j.k;

j 4= k; /* same as] = j+k */

Same operands as corresponding binary operator

VERY USEFUL (safer than simple assignment)

[if (p && (*p = getchar())!=EOF))...

means:
if p not zero
then call getchar, put its value in *p,
then check the value assigned to “p
for equality with EOF, if different
then...

COMMENT: relation with assignment
statement

Most language have assignement statement
in C, statement is any expression followed by ;

[a=b; /*assignment statement */

From Example 1

[while ((c=getchar(}) != EOF) |

=getchar() assignment expression
modifies ¢
returns the value of ¢

(c=getchar()) parentheses needed because
precedence of = lower than
precedence of =

(c=getchar())!=EOF relational expression,
evaluatesto t or 0
leaving useful value inc

OPERATORS 16

WARNING : not exactly same as simple
assignment: better!

Left operand evaluated only once

a[i++] = 3; /* al[il 1s element i of
array a */

means

a[i]l = 3;
i = i+1; /*in this order */

[ali++] += 3;

means

afi] = afil+3;
1 = i+1; /* in this order */

BUT

la[i++] = afi++] + 3;

|

is undefined (two occurrences of I++ in the same
expression)

Level 16

- Comma operator

CONCLUSION

great power at your fingertips
easy to make mistakes
- relational and logical operators returning integers
H(a&b == c) /"legal : means a&(b==c) v/
- side effects: use sparingly
never use twice in an expression a variabie
affected by side effects, except if expression is
"logical" one { 8&, II)
b + (b=c) *undefined:
not even b + +(b=c) */
i~ && a(i]=b /* OK because && */
multipie unary operators

- precedence problems : use manuals and
parentheses

L = B = e

EMPTY STATEMENT

e
STATEMENTS 1

STATEMENTS
SIMPLE STATEMENTS Ex:
if (3 == 3}
expression ; :
else
J++;

means:

evaluate expression
discard the result GREAT OPPORTUNITY FOR MISTAKES

USEFUL ONLY FOR SIDE EFFECTS while(condition) ; {do something}
if(condition);{do something}

int i,3:;
i=9; COMPOUND STATEMENTS
1++;
i-4; /* legal but ugeless : no side {
£ Eff&"tjs)" /* legal, even if func definitions and declarations;
unc(i,j); . .

returns a value; useful or not ? */ } statements ;
{void)func(i,j):/* equivalent, but

better programming style: why?*/

STATEMENTS 4

STATEMENTS 3
reverse{float al[l, int n)

- Compound statements can nest;

int i=0,j=n-1; { int i=1,j=n-1;
while{ 1<n/2)
while (1i<3) ‘ N) 5 X {

float temp;
temp = a[i];
afi]l = afil;:
alj] = temp;

}
)
- - variables defined in a compound statement hide

i. NOTE : compound statements definitions of variables of same name outside;

* taerminated by { ;:f'i,j;

- , H

I=2;

:/nOt by { float 1; /* i redefined */

- 1=3.0;

printf ("%f %d\n",1i,3);

/* 1 from lnner, j from outer
definition */

}
printf ("%d,\n", 1i};

/* here inner i 1s no longer
existent */

- Functions bodies are a single compound
statement
main(void)

STATEMENTS 5

COMMENT: definitions in compound statements

STATEMENTS 6

WARNING

should be used to keep variables definitions int k = 0, § =1;
close to the place where they are used: float a =1.0 ;
readability
if (k)
if (j) a = 3.0 ;
else
a=2.0;
FLOW CONTROL

- conditional { 2 statements) WHAT IS THE VALUE OF a ?

- loops (2.5 statements)

- transfer of control (3 statements) associativity:

if (e7) if (e2) s1 else 52

THE it STATEMENT means
if(e?) {if {e2) s1 else 52} YES
if { expression) statement 1 or

it (e1) { it (e2) 51} else s2 NO
if (expression) statement 1

else staternent 2 Do not trust indenting

expression : must be of any scalar type.
If non 0,staterment 1 is executed
it 0, statement 2, or nothing if else
missing

statement 1 and statement 2 must be

one single statement

possibly a compound one

if({ a == b) 1 = 1;
if{ a == b){j=1l;k=n;)} /*note ;} */

STATEMENTS 8

if {expri){
statement 1;

STATEMENTS 7

USE COMPOUND STATEMENTS EVEN IF NOT
NEEDED, TO BE SURE;

int k = 0, 3 =1; }else {
float a =1.0 ; if (exprd) {
staterment2;

if (k) { }else {

if (j) a = 3.0 ; statement3;
lelee(}

a= 2.0 H }
}/* no doubtsg! */

THE switch STATEMENT AND break

USEFUL COROLLARY switch (expression } {
case conslanty :statementsy;

a specific elsif not needed case consfant? :statementsz ;

nnnnnnnnnn

if (expr1) { default : statements ;

statement?; }

lelse if (expr2) { . constant labels must be constant (known to the
Statement 2; compiler)

lelse { - expression must be of any scalar type;
statement 3; - execution jumps to the label whose constant

} value is equal to expression, or to default if

none matches;
- if there is no default and expression does not
match any label, nothing happens (poor style);
- execution does NOT end at the next label, but
continues to the end;
/\ . the break statement interrupts the flow of
gl:r execution and jumps to the end of the switch.

/ Nnrmal wav nf andinn a raca

means exactly as intended:

STATEMENTS &

WARNING: flow from one case to the other is
dangerous. Should be used ONLY when many
cases require the same action

switch (expression) {
case constantt :
case constant? :statementsy ;break;
case conslanty :statementsp ;break ;
default : statements ;
}
Ex.:
{/* convert a string to a decimal,
stopping at firat non-digit */
int num=0,c;
while({c=getchar())!=EOF)switch (c){
cage '0': case 'l': case '2': case
‘3 : cape'd': case '5': case '6';
cage '7'; case'8': case '9':
num=10J*num+c-'0";
break;
default: ;
}
}
/* NOTE: very poor <; use "if"1 »/

STATEMENTS 11

THE for STATEMENT

/* read 10 elements from input and
copy them on output, summing them in
the meantime: stupid problem with
astupld solution
w/

main{void}

{

int i, n , 8 ;

for{i=0 , B=0 ; i<10 ; i++ , B+=n) {
scanf ("%d",&n);

printf(*%d + \n",n);

}

printf (= \n = %d\n".8};

In general
for (expri; expr2 ; expr3) statement

means (almost)

exprt ; I* evaluate as statement */
while (expr2) {

statement

expr3 ;

Not like FORTRAN DO or Pascal for
{ fixed number of iterations with constant
increment of the loop control variable} /’

>)

STATEMENTS U
THE while AND do STATEMENTS

while { expr) statement

means:
loop:
evaluate expr
if non 0 perform statement

goto loop

. expr any scalar
. statement a single (possibly compaound)
statement

WARNING : common mistake
while {expr); statement;

do statement while (expr);
/* please note the final ; */

Like while, but statement executed before

testing
USUALLY NOT NEEDED

Example:

char buf[5003, *p=buf;
do *p++=getchar(};
while(*p!='\n'&&*p!=EQOF);

STATEMENTS 12

for (i =init,i<=end;i+= incn
is same as FORTRAN

DO label l=init,end,incr

WHY NOT USING while?
Concentrates in a single place all the loop
control information.

/* this function computes the
factorial of an integer; it uses
"for* as a FORTRAN DO */

long int factorial{int wval)

{
int j, fact=l;

for(j=2 ; j<=val ; J++)
fact *= 7J;
return fact;

1

BUT ALSO

/* this function reads a string of
digits and converts them to an
integer. Stops at first non-digic

It uses the library function
“isdigit*, defined in the standard
include file "ctype.h"

*/

#include <stdio,h>

#include <ctype.h>

int read_int(veid)
{
int num = 0 . 4a;
for{d = getchar() ; @ != EOF &%
isedigit(d) ;d = getchar()){
num *= 10;
num += d -'9Q';
}
return num;

b

FINAL REMARK
equivalence with while broken only in the following
case
for(;;)
means

while (1) /* while() would be incorrect ¥/

Both used for infinite loops

SYATEMENTS 15
TRANSFER OF CONTROL

Theoreticians say : don't use it (PASCAL)
Dangerous

To be used only in anomalous situations {leave
processing in case of error)

C needs it also to jump out of switch cases
CONTROLLED JUMPS : break AND continue

break;

already met. Jumps outside the surrounding
switch or for or while

for (exprt ; expr2 ; expr3){

it (error condition) break;

STATEMENTS 14

COMMENT
each of the statements discussed above is a single
statement: therefore:

for{...;....;..)
while(....)
if (...)
a=b;
elee {
b=c; d=e:
}

BUT DANGEROUS: what if you add a statement
before the above if ?

Usage of {} recommended for clarity and
robustness if depending statement is complex.

lfor (.. ... 7..01
while(....){
1f (...) (
a=b;
lelse {
b=¢; d=e;
}

L}

STATEMENTS 16

WARNING : exits from the innermost only
[float a{100](100];
int 4,7;
for(1=0;1<100;1++)
for{j=0;4<100;9++) ¢
if(a[i][3) >= 0.0)¢
alil[jl=sqrt(alilij]);

}else ¢
/* stop with the sgrt and print an
error message : how? */
}
}
continue;

for (i=-10; i<=10; 1++)(
statementl;
if (i==D) continue;
gtatement2;/* skipped 1f ia==(Q */
}

When executed, jumps to the end of the
surrounding for or while, and starts next iteration

STATEMENTS 17

/* read lines, skipping comments,
that is lines starting with *#'

Uses the routine function gets,
defined in “stdio.h", which copies
an input line in a buffer, returning
a pointer to the buffer or a null
pointer if it hits the end of file

Uses NULL, defined as a 0 pointer in
"gtddef.h”

*/

char buf[500];

char *p:

while{ (p=getsa(buf)) | =NULL) {
if(buf[0]=='#') continue;
/* Instead of *p, buf[0] would work
*/
/% start processing the line */

FINAL EXAMPLE

#include <stddef.h>
#include <stdio.h>
main({veoid) {
char buf[500];
char *p;
while(1){
p=gets (buf);
if (p==NULL)break;
if (*p=='#"')continue;/* p=w=&buf (0] */
/* atart processing */

STATEMENTS 19

labels: any string followed by *:

. do not need to be pre-declared
. must be part of a statement (possibly empy)
at end of compound statements
label _at end : ; /*; required™/
}* end of compound statement */
. visible only from inside the function where they
are used

[W= =

UNCONTROLLED JUMPS :
goto
label;

#include <stdio.h>
#include <math.h>
main{veid)
{
float a[100][100];
/* £111 a */
/* take sguare roots */
for (i=0:1<100;i++}
for(j=0;3<100;3++){
if(afi]1[31] < 0) goto error;
alil(j]l = sqrt (alillil);
}
/* here the resat of the program */
exit (0); /* normal end */
/* error handling area */
error: printf("%s %3 %d", "a negative
at", 1i,3);
exit (1);
}

break would not work because exiting from 2 loops

iy @ peliiiicis o

ARRAYS , POINTERS, STRINGS
THE REAL THING !
C intertwins closely arrays and pointers

C handles strings as character arrays

ARRAYS

collection of variables of same type

ldouble ar{1000];

ar is a 1000 elements array;

the elements are denoted ar[0],ar[1]...ar[999]
each of them is double

COMMENT: declaration by exampie:

can read:
1000-th element of ar is double (and the other too!)

WARNING : no way of specifying a range not
starting from 0

Alrays & poiNiers 2

MARNING: array size must be constant :!

int f{int m)
{

char var_sized_array[m];
/*FORBIDDEN*/

}

Like Pascal? (bleah) NOT QUITE

MULTIDIMENSIONAL ARRAYS
int t_d [2] [3];

[J associates left to right
means { t_d [2]) [3]
can read:
third element of second element oft_d is int
therefore
second element oft_d is array of 3 int
t_d is array of 2 arrays of 3 int

Valid elements:

t_d[0] t_d[1]

WARNING : ar[1000] is NOT an element of the
array! ar[999] is the last one !

Arrays & pointers 3

WARNING
No way to refer to a column
Memory storage BY ROWS
- opposite of FORTRAN
- important to remember if using pointers
Seldom used (of coursel)

WARNING
What is the meaning of t_d[0,1] ?

IMPORTANT COMMENT
arrays of anything allowed {arrays of arrays special
case)

INITIALIZING ARRAYS

ALREADY MET

int b =1 ;
int *pi = &b;

ARRAYS

int a(6) = { 1, 0, -4, 4, 2, 7 };

Arrays & pointers 4

BUT ALSO (QUITE USEFUL)

t_d[o}[0] | ¢ dfo](1} [t d[o][2] | ¢ d[1][0] [t _d[1]{1]] t d[1][2]

int af] = (1, 0, -4, 4, 2, 7 };
/*agsumed size*/

The compiler will make a an array with 6 elements

MULTIDIMENSIONAL

int £ 4 (2] ([3) = { {0, 1,

OR

int £ 4[] [3) = ({0, 1, 3},
{ -1, 4, 6}
Yo
/* array of arrays : second dimension
required */

Aftays & poiniers 5

ARRAYS AND POINTERS

int ar([5], *ip:

ip = &ar{0]; /* nothing new */

>>>> pointer arithmetics
FUNDAMENTAL

ip + 1 equals &ar[1]

it ip points to an element of an array of any type,
ip+1 points to the next one, and so on

. pointers are not integers
. pointers are not memory addresses

short s(10] , *pa;
double 4[10] , *pd;
char c[10] , *pc;
ps = &8[0] ; pd = &d[0] ; pc = &c[0];
pe8++ ; Pa++ ; DO+
/* now:
ps == &8{l]
pc == &cil]
pd == &4[1] */

Arrays & pointers 7

long int arr(4], s;

g8 = sizeof arr; /* returns 16 */

int ar(51, i; ‘]
for (i=0 ; i<5 ; i++) arfi] = 0;

equivalent to

int arf[5]. *ip:

for (ip = &ar[0] :; ip <« &ar([5] :
ip++} *ip = 0;

/* legal: using the address of alb]
is legal even if al[5] does not
exist
*/

Is it better?

IF arrays are accessed sequentially,
pointers faster except it optimizer very good.
{Not true on vector machines, helas)

ONLY way of passing variable size arrays to
functions

IN FACT ARRAYS DO NOT EXIST
C recognizes an array only

. in declarations
. as an operand to sizeof

Arrays & pointers 8

MORE ON POINTER ARITHMETICS

IN ALL OTHER CONTEXTS,

ar is a pointer to &ar[0]
ar(il is synonimous of *(ar+i)

BUT : array names are not pointer VARIABLES!

float ar(5], *p;:

p = ar ; /*legal. : p=&ar[0] */

ar = p ; /* illegal: array names are
“conatant® pointers" */

ar ++ ; /* illegal: array names are
»conatant pointers "*/

p = &ar; /* 1llegal: ar is already a
pointer to the array ; but all the
compilers would underatand and issue
a warning only */

ar[l] = *(p+3) ; /*legal*/

ar[l) = *(ar+4) ;/* legal, but
crazy*/

p = S[ar] ; / AARGHHH ... legal
means ar([5]1*/

q

/

int ar[20], *pl, *p2, br[10], *g;
float f_array[30]1, *pf=f_array;
pl = &ar([10]; p2 = &ar[15];

= &br([5];

if(pl = Q) printf("pl!-O\n');

/*legal, true*/

if{pl < p2)printf("pl<p2\n”}; /*legal,

true*/

1f(pl+5 == p2) printf ("pl+5==p2\n”"}; /™

pointer+ int legal , yields pointer*/

if(p2-5 == pl) printf (*p2-5==plin”); /*

pointer - int lagal, ylelds pointer */

printf ("%d\a",p2-pl) ;

/* pointer - pointer legal, yields
long*/

pl++;

/*legal; now pl points to ar(11] */

if(q!=pl) printf("gl=pl\n") ;

/* legal, true*/

if(pl<q@)printf("pl<ginm);

/* result undefined */

qg=pl- qi

«result undefined*/

oy | pAdilkidla g

On the other hand

pt+p2 /* illegal */
2'p1 illegal */
ql=100 I* illegal ¥/
pl1==pf fHillegal */

- No operations between peinters to different types

(pt and p2)

* < > <= >= - meaningful only between pointers

to different element of same array or structure

- tests for equality allowed for arbitrary pointers to

the same type
- comparison with int 0 allowed for every pointer
(test for NULL pointer)

PASSING ARRAYS TO FUNCTIONS

- Always interpreted as pointers
- Array notation allowed

Arrays & pointers 11

OR EVEN

int sum of_ elem(int ar[100] , int
num_of_elem)

{
int 1 , 8=0;

for(i=0 ; i<num of_ elem ; i++)
8 += ar([i];
return s;

are exactly the same. (Fourth one different it
compiler inserts array subscript checking)

Moreover

int sum of_elem(int ar[]}
{

int n,i,s;

n = gizeof ar / sizeof(int) ;
for (10 ; i < n; {++)
}

WOULD NOT WORK : sizeof ar is sizeof (int *)
most likely 4

Arrays & pointers 10

int sBum of_elem(int arf[] , int
num_of_elem)

{
int i , 8=0 ;

for(i=0 ; i<num_of_elem ; i++)
8 += ar[i] ;
return g ;

int sum_of_elem{int *ar , int
num_of_elem}

{
int *p , 8=0;

for(p=ar ; p < ar+num_of_elem ;
p++)

B8 += *p;

return s;

int sum of_elem(int *ar , int
n_elem)

{
int *p , *pend , 8B=0;

for(p=ar , pend=ar+n_elem; p < pend
i Pt+)

8 += *p;

return s;

Arrays & pointers 12

Not even if ar declared with a size
int sum_of_elem(int ar[100])
{ sizeof ar}

STYLE COMMENT

C ugly style

int sum_of_elem(int *ar , int n_elem)

{
int *pend , 8=0;

for {(pend=ar+n_elem; ar<pend; s+=
*ar++) ;
raeturn g;

DOES WORK

PASSING MULTIDIMENSIONAL ARRAYS

int f(int af](s5])

/* Note :second dimension requested
*/

{ali1[i]1...)}

or

Arrays & pointers 13

int f(int *a{5])

/* pointer to a[0], which is an array
cf 5 ints */

{.... {(*a+i)[3] ...}

or

int £ { int **a)

/* pointer to al[0], which is an
array, therefore a pointer to
a(0]{0) . COMMON FORM
*/

{.... *({int *}a + 1*5 + 3y ...

/* any information about 5 lost

*/
or better

int £f(int **a, int n_of col){
ve. *{ (int*)a + i*n_of_col + 1)

}

WHY C PROGRAMMERS AVOID
MULTIDIMENSIONAL ARRAYS ?

Arrays & ponters 18

/* gort an array of ints in aascending
order */
#define FALSE 0
#define TRUE 1
void bubble_sort{int *ar, int size)
{
int *pj, temp, sorted=FALSE;
while (!sorted){
gorted = TRUE; /*assume it's sorted
*/
for(pj = ar; pj) < ar+size-1; pi++){
1f (*p3 > *(pi+1)} (
gorted = FALSE;
/* exchange *pj and *pj+l */
temp = *pi ;
*pj = *(pi+l) ;
*({pj+l) = temp;

Arrays & pointers ¢

Example

Soning: bubblesort

/* sort an array of ints im ascending
order */
#define FALSE 0
#define TRUE 1
void bubble_sort(int arl[]}, int gize)
{
int j, temp, sorted=FALSE;
while (!sorted)({
gorted = TRUE; /*assume it's gorted
*/
for (1 = 0; j < size-1; Jj++){
if (ar{jlrar[j+1]) {
sorted = FALSE;
/* exchange a[i] and ali+l]

*/
temp = arij};
ar[j] = ar[j+1];
ar[j+1] = temp;
}
}

with pointers

Arrays & pointers 16

STRINGS

arrays of char
terminated by a nuil (\0'}

String constants
everything in quotes
" this is a string”
Compiler adds the terminating \0'

Also:

"this" "is" "a single string"

compiler chains string constants

{used with preprocessor and # preprocessor
operator}

NO specific string constructs
. hard programming
. very efficient code

. library gssential

Defining a string variable

char strl[10];

char str2[] = "string" ;

/* compiler makes str2 with 7
elements , 6§ of 's' 't*' ‘'r' 'i* 'm’
'g' + null */

or

Mrays & DO

char str2[] =
{‘sl'ltl'Irl,li‘,lnl,lgl,l\ol};

char str3[10] = "one" ;/* Ok */

char str4[3] = "one" ;/* WIrong, no
room for null */

BUT ALSO (OFTEN USED)

[phar *g="new string";

- creates a string constant containing the value
"new string” (in system private area, like all
constants)

- creates a character pointer variabie(s)

- initializes s with the address of the constant

DIFFERENCE

strl = p; /* illegal: strl is array,
l.e. constant pointer */

8 = p; /* legal; the constant string
attached to & in initialization is
loat*/

Arrays & pointers 19

char*pl="A string*; char *p2;

Pl = "OK"; /* laegal; creates new
string and puts its address in pl */

pl[(5] = ‘¢! /* wrong */

pi[l] = 'N' /* ghould transform
OK in NK :

could not work, dangerous */

p2 = "NO" / illegal, type
mismatch */

p2 = "yaa"

STRINGS vs. CHARS

char ¢ = 'a‘';
char *s = "a";

tg - lbl;

8 = "b"; / illegal */
8 = "b"; /% QK */

8 = 'b'; /* jillegal */

DO NOT CONFUSE INITIALIZATION WITH
ASSIGNMENT- with any type

float f£;
float *pf = &f ; /* OK #*/

BUT

[*pf = &f ; /*illegal */]

2

Arrays & pointers 18

STRING ASSIGNMENT

- strings are arrays or pointers to arrays
- - arrays take value by filling -> COPYING
+ - assignment affects pointers only

char carrayl[10], carray2[10];

carrayl = "mot ok" ; /*illegal:
cannot assign to array name */

carrayl[1l] = 'a’'; /* OK */

carrayl[2] = *\0'; /*now carrayl

contains "a" */

|carray2 = carrayl; /* illegal */

{ register int 1;

for(i=0;i<l0&&carrayl[1]!1="\0";1i++)
carray2[i] = carraylf[i]:

1f (1<10) carray2[i]='\D';

}

/* this is probably what you meant ,
but there are better ways*/

Arrays & pointars 20

COMPARING STRINGS

char arri[]="strt" , arr2[]="str1*;
char *si=arr1, *s2=arr2;

if (81 == 82)....

it {arr1 == arr2).,,
test fails, because compares character pointers:
equal if they point to same object, not if they point
to objects containing same value

if (*arr1 == *arr2)

wrong: compares only the first character

/* function to compare gtrings
* return TRUE if equal
*/
int str_eqg(char *sl,char *s2)
{
while (*8l == *g2)¢
if (*s8l == '\0')return 1;
8l++;
82++;
}
return 0;

}

Atsays & pointars <1

COPYING STRINGS

#include <string.h>
char stl[20] , st2[]l="wow!";

stl = s8t2 ;/* illegal */

strcpy(stl , st2) ; /* library
function only way */

char *
atrcpy(char sl([],char a2[})
{
register int i;
for{ i=0 ; 82[i} ; 1++)
sl[i])] = B2[1]:
g8l[i] = '\O';
return sl;
}

char *

strcpy(char *sl, char *s2 }

{
while (*82) *8l++ = *82++;
*gl = *\0';
return Bsl;

}

Arrays & pointers 23

THE STRING LIBRARY

#include <string.h>

contains:

strepy(s1,s2)

char *s1,*s2;/" copy s2 to s1 ™/

strncpy(s1,s2,n)

char *s1,s2;

int n; /* copy at most n characters from string s2 in
s1 : if s1 too short, may be not null-terminated or
cause run-time error*/

int strien(s1)
char *s1; /* return length of s1 */

strcat(s1,52)
char s1[], *s2; /" concatenate s2 to the end of s1 */
WARNING: s1 must have the room for cat
char *s1="alfa", “s2="beta;
strcat{s1,s2) ; /"illegal, would cause execution-
time problems */

char a{100]="alfa", *s2="beta";
strcat(a,s2);/"OK*/

strncat{s1,s2,n)

char s1{], *s2;

int n; /* concatenate at most n characters from s2
to the end of s1 */

D

L A
while (*s2) means while {*s2 = 0)

. *s2++ unary operators are right associative
therefore *{s2++) : use current value of 52, then

increment 2

. s1and s2 are copies of the arguments passed,
can be modified safely

. their values are the addresses of the arguments
being passed, that are actually modified

BETTER

char *

strcpy(char *sl ,char *s2)

{
while { *sl++ = *82++) ;
return al;

}

Arrays & pointers 24

int stremp(s1,s2)

char *s1,s2;/* compare s1 and s2: 0 if equal, <0 if
s1<s2,>0issl >s2"/

WARNING:

stremp(s1,52) returns TRUE (1=0) it §1 1=52 !!!
if(strcmp(name,"Johnny")) used for if(name
equal to "Johnny") is a very common mistake

int strncmp(s1,s2,n}

char *s1,"s2;

int n; /* compare at most n characters from s1 and
s2:0ifequal, <0ifs1 <s2,>0iss1>82"

char *index(s,ch)
char *s, ch;

char * rindex(s,ch)

char *s, ch;

* returns pointer to first (index) or last (rindex)
occurrence of ch in s, or NULL */

char * string="This 18 a sentence";

printf(”last word of string is %s\n",
rindex(stxring, ' ')+1) ;
/*dangercus!*/

safer;

char *p, *string="This is a
sentence”;

princf ("last word of atring 1=
%8\n", (p=rindex(string,' '))? p+l:

*");

MORE ELEGANT BUT NOT SAFE

#define Rindex(s,c) (rindex(s,c)?(rindex(s,c)):(s+strlen(s)))
#define Index(s,c) (index(s,c)?(fndex(s,c)):(s+strlen(s)))

THE CHARACTER LIBRARY

Just because related:

#include <ctype.h>

contains definitions of macros
isdigit(c)

isalpha(c)

isalnum{c)

ispunct(c) /* not alnum not cnt} */
isentri(e) /* "\0' to \32' and \127' ¥/
isspace(c)/* space tab newline CR FF */
islower(c)

isupper(c)

isprint(c)

