INTERNATIONAL ATOMIC ENERGY AGENCHY

%} UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION ﬂ-
(‘:—-— INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
LCTP., P.O. BOX 586, 34100 TRIESTE, ITALY, CasLt CENTRATOM TRIESTE

The United Nations
Z:> University

SMR/774 - 9

THIRD COLLEGE ON MICROPROCESSOR-BASED REAL-TIME
CONTROL - PRINCIPLES AND APPLICATIONS IN PHYSICS
26 September - 21 October 1994

C PROGRAMMING LANGUAGE
Part 11

Alvise NOBILE
International Centre for Theoretical Physics
P.O. Bos 586
34100 Trieste
Italy

These are preliminary lecture notes, intended only for distribution to participants

Muain Busoine Staapa Cosnma, 11 Ta. 22401 Tumax 224163 Tamx 460392 Apmnanco Gum Houu Vu Glm.mo 9 T5|_22424|Tu~¢ 224531 Tasx 460449
Micsoraocesann I.aa Via Remer 11

T 74271 Taocce IMALAN T ALATOMD £ .. __ . ___ax 37 @ = m asans LEYLE TR srnnna

=vuelules

STRUCTURES AND UNIONS

To group heterogeneous objects (PASCAL 'record"):

date: day month year

struct date{ int day, month, year; }:;
struct date today, yesterday,
tomorrow;

. declare structure tag date(its not a typedef!)
defines today, yesterday and tomorrow as
variables of the type "struct date'

Personal record:
name

social security number
date of birth : date

struct vitalstat

{ char vs_name[19],vs_ssnum([11];
astruct date vs_bkirth date;

} vsl;

struct wvitalstat vs2;

- declares structure fag vitalatat
- defines variables vel vs2 of type struct
vitalstat

- struct tag_name { list of declarations}

Structures 3

#include <stdio.h>

typedef struct {float re,im;}Complex;

/* placed here to be GLOBAL, that is
apply to all functions in this file
*/

/* reads in two complex arrays */

main(veoid)

{
Complex v1[10], v2[10];

for (i=0; i<10 ; i++)

scanf (" %f %f %f %E - ,
&vl[i].re , &v1[i].im,
&v2[i].re , &v2(i].im) ;

OR

#include <stdioc.h>

struct complex { float re,im;} ;
main{veoid)

{

struct complex v1[10] , v2[1l0] ;

for (i=0; i<10 ; i++)
gecanf (" %E %f %Ef %E " ,
&vl(i].re , &v1[i].im,
&v2{il.re , &v2[i].im) ;

}

Note: 1) difference between structure tag and type
name
2} No support for struct in I-O

(2)

structures 2

. struct compenents can be other structs
WARNING : but of different types

struct infinite{ int count;
struct infinite mytail;
} /*ILLEGALY*/

. tag_name is optional

gstruct {char a[l0)], b[10]} ;} strl,
8tr2;

ACCESSING ELEMENTS OF A STRUCTURE

struct vitalstat va;

strcpy(vs.vs_name, *John Smith"~);
strcpy(ve.vs_ssnum, "035400245");
va.ve_birth_date.day=17;
vs.vs_birth_date.month=9;
vg.ve_birth date.year=1956;

variable name .component narne

if (vs.vs_birth date.month > 12 ||
va.vs_birth_date.day > 31)
printf { "Illegal date. \n");

Structure components are normal variables

ARRAYS OF STRUCTURES

Arrays of anything!

Structures 4

POINTERS TO STRUCTURES

pointers to anything !

#include <stdio.h>
typedef struct {float re,im;}Complex:

/* reads in one complex array

* and computes its euclidean norm
* ggquared */

main(void)

{

Complex v1[1000];
double cnorm2(Complex v[], int 1):

for { 4i=0; i<10 : i++)

scanf (" %f %f " , &vi[i].re ,
&vi(i].im) ;

dp=cnorm2 (v1l,10);

printf (™ %f \n" , dp);
}
double
cnorm2{ Complex v1[], int n)
{

double d=0;

Complex *vend=&vl[n], *vp= vl;

for(; vp < vend; vp++)
d += (*vp).re * (*vp).re +
(*vp).im * (*vp).im ;

return 4;

}

Structures 5

(*vp).re UGLY. CAN BE TERRIBLE :

struct simple { int data;

} A;

struct messy{ struct simple * other;
} B;

struct messy * pmess;

A.data=1;

B.other=&A;

pmesa=&B; /* pmess points to B, whose
field "other" points to A: we want
the "data® field of A */

(*{*pmess) .othar) .data

Adata: int B.cther: pointer
to an object of
type simple

\j T]

an object of
ype messy

Object A of type simple

objact B of type messy

Structures 7

prmess: pointer to

struct complex {floar re,im;}

struct complex cprod (struct complex
epl, struct complex cpl)

{ struct complex product;
product.re=cpl.re*cp2.re -
cpl.im*cp2.im;
product.im=cpl.re*cp2.im +
cpl.im*cp2.re;
return product;

}

main(void)

{

struct complex cl,c2,c3,cd;

cl=cprod(c2, cprod(c3,cd)};

LAYOUT OF STRUCTURES IN MEMORY

Seldom useful; sometimes, with pointers...;

. Components are in sequential order, but not
necessarily contiguous (holes -padding-
possible to align objects to hardware required
positions)

. No padding betore first component: address of
structure is address of first component

Structures 6

NEW OPERATCR ->
p->x IS (*p)x

EXAMPLE ABOVE: pmess->other->data

double cnorm2{ Complex v1[] , int n)

{
double d=0;
Complex *vend= &vi[n]. *yp=vl;
for(; vp < vend; vp++)
a += vp->re * vp->re +

vp->im * vp->im ;

return 4;

}

OPERATIONS ON STRUCTURES

. take a component (.)

. take the address (&)

. take the size (sizeof)

. assignment (s1=§2;)

. pass to function as argument
. return from function as value

Structures 8

SELF-REFERENTIAL STRUCTURES

LINKED LISTS

Structures cannot contain themselves as

components .
Structures can contain pointers to anything as
components, even pointers to themselves

gtruct list_node{
char name[100];
gtruct list_node *next;

}

data next

Contains a pointer to itself (allowed)

list_node known as a structure lag as socn as
encountered in first line, therefore struct
list_node * is understood:

example of partial or incomplete declaration:
declare a tag to refer to a structure, then refer to
it through pointers; complete declaration of
structure before declaring any variable; can be
used in general;

Example:

struct sl ; /*incomplete */
struct 82 (

int something;

struct sl * cross;

}

struct sl {

float something else;
struct 82 *cross2;
}/*complete */

Structures 31

}
{

/* this program creates a linked ligt

#include <stdio.h>
struct list_elem{

main()

and prints it out following the
pointers
*/

int data;
list_elem *next;
ar [10};

atruct list_ele *1p;

ar[0] .data = 5;

ar(0] .next = &ar[l};

ar[l] .data = 99;

ar[l] .next = zar[2];

arl2].data = -7;

arf2].next = 0; /* null pointer to
next: no next, end of list */

1lp = ar;
while (1lp! = NULL) ¢
printf (" contents %d\n",
lp->data)
/* (*1p).data*/;
lp = lp->next;
}

exit(0);

Structures 10

- typedef WOULD NOT WORK (ONLY place
where fags NEEDED)

typedef { int data;
ListElem *next;/*wrong:
ListElem unknown here*/
} List _elem;/* type List elem known
only after this point */

WARNING:
partial declaration is obtained just by mentioning
name:

struct abe{ struct xyz *p}; /*struct
Xyz now partially declared */

DANGEROUS: mistyping can be interpreted as
legal partial declaration...

Structures 12 L
data data data data dala .
5 99 -7
nexl f nexl nexl m]next of next .1
: ar
=%
data data dala data data
= 5 99 -7

next r next T next m| next of next

i

- move from one element to the next following
pointers (Ip=lp->next, NOT Ip++)
- array structure not used at all

o ar

DYNAMIC OBJECTS

Lists are typical exampie: array structure not used.

Structures 13

data
gala next

ata next

Hata nexl data hext
/) -
Kata next

X

Please note: most often, list referred to through a
variable pointer to their first element:

list_elem *Listh;
Sometimes, through couple of variable pointers to
first and last element {

gtruct list_id {
struct list_elem *first, *last;
}LigtlA;

Both approaches help dealing with empty list case.

New problems:

add node to the list (for instance,at the beginning):
create a node
put new data in its data component
put a pointer to the current first node in the
next component of the new node
make the list to point to the new node

delete the first node of a list:

Structures 15

p->data = new_value;
p->next = Lista;
ListA = p;

COMMENT:

malloc is of type void * meaning a pointer that can
be casted to point to any type;

In both cases casting does not cause any change
in the returned pointer.

Deleting an object:

. Only if the object was created by malloc;

. free({p) /* p pointer to the object to be deleted
*f

(&)

Structures 14
detach the node from the list, making the list to

pint to the node to which the next component
of the first node points
delete the node

CREATING an object of type T

. obtain from the system enough memory to
contain a copy of an object of type T,

. handle that memory as if it was an object of type
T

DELETING an object :

. return its memory to the system

#$include <stdlib.h>

struct list_slem *Listh;

.... /* assume ListA point to first
element of list */

gstruct list_elem *p;

int 1_sz;

/* add a new element with content
"new_value® to the beginning of
listA */

1_sz = sizeof(struct list_elem);

p=(struct list_elem *)malloc (1_8z);:

malloc (size) requires to the system to provide

a block of at least size bytes, and returns a pointer
to this block (NULL if memory not available)

(struct list_elem *) is a cast that transforms the
pointer returned by malloc int a pointer to
list_elem.

Struciures 16
Deleting the first element of a list

struct list_elem *ListB;

if (ListB) /* if list empty, do
nothing */{
struct list_elem *temp;
temp= ListB;/*keep address of
first node*/
LigtB=ListB->next; /*first node
unlinked from ListB*/
frea(temp);/*delete old first
node*/
}

Would the above be good as the body of a function
that performs list-element removal?
WARNING:

{Eﬁruct list elem *ligtA, *1listB;
listB = listA;
if (listA) /* if list empty, do
nothing */
{ struct list_elem *temp;
temp = listA;
listA = listA->next; /*first node
unlinked*/
free(temp);

1istB -> data=.../* AAAARGGHHHH */

DANGLING POINTERS problem.

Soulluivs 1/
WARNING 2: Passing lists to functions:
Lists <=> pointers to their first elements
passing by reference if lists have to be be modified
=> passing pointer to lists => passing pointers to
pointers to first element
function remove_first(List)
list_elem **List;
{ list elem *temp;

if(*List}({

temp=*Liat;

*List=(*List)->next;

free (temp);

)

WARNING 3

while (something){
allocate memory
use it
forget it (without freeing)
}
causes problems difficult to trace
{memory can get exhausted depending from
path in the program ,data, etc.)

Structuras 19

Count nodes in a list
int n _nodes(List 1){
if(l)return l+n _nodes(l->next);
elsea return 0;
}

Very elegant, very powerful, not so efficient:
Eﬁr(;1;1=1—>next){ see ¥ 41
usually (much)faster
void printlist(List 1){
for{(:;1;1=1->next)
printf ("%d\n",1l->data);

}

int n nodes{List 1)}{
int ¢=0;
for(;l;l=1->next)c++;
return c;

1

Is recursion essential?
Binary trees

Search trees: for every node, (the data fields of)
all the nodes in its left subtree are 'less' and
(the data fields of) all the nodes in the right
subtree are 'greater' then (the data field of) the
node itself

Structures 18
List and recursion
If a list is a pointer to a struct one of which
fields is a pointer to an object of the same type,
then a list, by definition, contains a list:
'd

e LT

List | List
-

List
Recursive programming: a function applied to
a list can often be programmed like this

struct ligtelem;
typedef struct listelem *List;
struct listelem{int data; List next};

£1(List 1){

if(1)(
dosomething(l->data);£1(1->next);

}

or

[£2 (List 1)

{i£(1){if(l->data has some property)
dosomething;

[else £2(l->next);

}

Example: scan the whole list, printing all

elements

[void printlist(List 1){

if(1){printf("%sda\n",1-
>data);printlist (list->next);}

}

Strugtures 20
typedef structure tree_node{
int data;
struct tree node *left, *right;
} Treenode;

typedef Treencde *Tree;

/* print a binary tree of the above
type in ascending order */
tree_print(Tree tree)
{ if{tree){
tree print(tree->left);
printf ("%d\n"*, treae->data);
tree_print(tree->right);
}
)
Simple!
#include <stddef.h>
/*return a pointer to a tree node
whose data field equals the one
rassed as argument */
Treae
TreeSearch{int data, Tree treea)
{ if(!tree)return NULL;
if({tree->data==data)return tres;
if (tree->data>data}
return TreeSearch(data,tree->left);
alse
return TreeSearch(data, tree->right);

FY

| ¥ 3

Structures 21

#include <stddef.h>
#include <stdlib.h>
/* Inserts 'nmewdata' in tree */
Trae
tree_add(Tree *tp, int n)
{
if(ltp){ return NULL;}
/* NULL pointer passed: error */
if(!*tp){ /* empty tree */
if(

{*tp)->data
{*tp)->left
}
raturn *tp;/* if malloc failed *tp
ig NULL! */
}
if((*tp)->data > newdata}
return tree_add{&({*tp)->left), n};
else if ((*tp)->data < n)
return tree_add{(&({*tp)->right),n};
else return *tp;

n;
(*tp)~->right = NULL;

)

*tp=(Tree)malloc(sizeof (Treencode))) {

Structures 23

struct {
int type;
union {
float r;
int i;
} v:
} wvar;

var.type = 0;
var.v.r = 1.0;
var.type = 1;
var.v.i = 7;

e

if (var.type == {0) xsvar.v.r;

Bit fields

struct {
a: 3;
b: 7;
c: 2:
} s;

s.a is 3 bits wide;
s.b is 7 bits wide, and contiguous to s.a
8.c is 2 bits wide, contiguous t0 5.a

-- Each compiler can arrange bit fields in increasing

or decreasing order in a computer word;

-- If a bit field would cross the boundary between
twey enmnater words it is shifted to a new word

Structures 22

UNIONS

Like structures, but compenents share the same
memory: onhly one can be active at any time.

Like Fortran EQUIVALENCE, Pascal variant record

float re;
int i;

}

reint.re = 2.0; /* reint.int becomes
undefined */

reint.i = 1; /* reint.re becomes
undefined */

union reint{

NORMALLY used inside a struct, togetener with
another variable holding an indicator,

Structuras 24
-- No bit tield can be longer than a computer word
USAGE ; sometimes to save memory

often to manipulate bit-sized objects
(hardware }

Scope rules and storage classes 1

SCOPE RULES

#include <stdio.h>

typedef struct {float re,im;} Complex;
Complex arr[100];

main{void){
Complex x,y; /*OK:Complex global*/
float normx = 0.0, normy = 0,0;
int i;
for (i = 0; 1<100; i++)¢(
scanf (" %f %f", &(arr[i).re),
&larrfi].im));
if (norm{() > normx)
/* wrong: norm(} unknown
* assumed int
*/
x = arr[i];
if (norm() < normy)
y=arr([i];
}
}
float
norm(void) {
return(arr(i].re*arr[i].re +
arr[i] .im*arr([i].im);
/* WRONG : i unknown */

s

Scope rutes and storage classes 3

- i created when 1 called
deleted when f1 exits

. when f2 called from main,
i NO LONGER EXISTS

STORAGE CLASSES: when are variables
created, deleted, initiaiized, etc.

SCOPE rules must be consistent with storage
classes: non-existing variables cannot be named
- Pointers allow exceptions (AARGHH)

STORAGE CLASSES

1) auto :
normal variables declared INSIDE compound
statements.
Created and initialized before execution of the
compound statement, deleted at its end;

SCOPE: from the declaration point to the end of
the compound statement;

(<

Scope rules and storage classes 2

i has a value when norm called, but its name
unknown outside function main
The compiler detects the error

SCOPE of identifiers: where a NAME can be
used

DIFFERENT BUT RELATED PROBLEM

main(void}
{ cecnns
int *p, *fl(void):
p=£f1();
£2(p):
}
int * fl{void)({
int i=1;
£2{&i);
return &i;
}
f2({ip)
int *ip;
{
printf ("%d4d~,*ip);

}

COMPILES CORRECTLY

Scopa rules and storage classes 4

#include <stdio.h>
main{wvoid) {

int gq[100}%;

long int s;

long int sum(int arr{], int n
}:/*declaration, not definition!*/
{

int i=0 ; /*i created and
initialized */

for (; i<100 ; i++)

scanf("%4", &qg(i]) :

}

/* i no longer exists and is no
longer accessible */

8 = gum{ g, 100);
printf(*%f\n",8);

}

long int

sum (int arr[], int n)
{

long int 8 = 0; /* 8 created and
initialized +*/
int i; /* i created */

for (i=0 ; i<n ; i++) 8 += arr[i];
return s ;/* i, 8 deleted */

- NOTE : the body of functions is a compound
statement!

Scope rules and storage classes 5

. NOTE: the closest definition is the one that is

considered (hides external ones)

Ex.: in the above the reading loop could be:

{
int s=0 ;
/* 8 created and initialized
* "main"-wide s hidden
*/
for (; 8<100 ; 8++)
scanf({ *%d", &qlal) ;

2) extern {or external):
definitions outside any function, not marked
"static". Created when program starts, survive till
program end. Accessibie from other files,
through suitable affusions (declarations).

SCOPE:

. for a definition, the file in which the definition
occurs, from the definition to the end;

. for an allusion :

. ---if the allusion is in a compound statement,
the compound statement

. ---if outside any function, the file from the
allusion down to the end;

Scope rules and storage ctasses 7

Eile a.c:
#include <stdio.h>
gtruct complex {float re,im; } ;
/*defines the tag complex :
global to the file a.c*/
struct complex carr[10];
/* defines an extern array of
10 complex */
extern struct complex big x;
/* declares big x as complex ,
defined in another file; allusion */
main(void){
extern int fun(int i};
extern int errcode;
/* allusions */
int test(void);/* declaration */
struct complex z;/*definition: auto*/
/* struct complex has file scope */
tesat();
if(carril] .re==0.0)errcode=1;
/* carr has file scope */

}
int
test (void)/*definas test: extern*/{

if (carr[0).re > 100.0) {

arrcode=2;

/* wrong : errcode has block scope*/

big x.re=carr([0].re;

big x.im=carr(0].im;

/* big x, carr have file scope */

Scope rules and storage classes 6

WARNING:
storage class <=> variable
scope <=> name

The name of an external variable can have local
scope if allusion (declaration) is inside
compound statement

Do not identify EXTERN (storage class) and
GLOBAL(scope)

WARNING:

etern keyword is not the characterization of an
extern variable!: it is the marker of an affusion to
an extern variable.

Scope rules and storage classes B

i}

Fileb.c

astruct complex {flcoat re,im; }:;

extern struct complex carr[10] ;
/*allusion */

int errcode=0; /*dafinition of errcode
: extern®/

int fun(int i)/* defines fun: extern*/{

e s

}/*definition of fun: extern */

COMMENTS:

. all the function names are by default extern

. types and tags have no storage associate to
them->no storage class->no allusions-> can
be local to a block or global to file;
#include to share them among files
{ALWAYS!})->above example misses a
*complex.h”

. allusions are identified by the keyword extern;

IMPORTANT LIMITATION:

each extern object should be defined in exactly

one file! (that is its name should appear with the

keyword extern in all files except one)

extern object are initialized to 0 by default

Scope rules and storage classes 9

3) static

Two uses:

3.1) Variables defined inside a block, but created
and initialized at program start and deleted at
program end,
keep their value from call to call (unlike auto,
like extern)

SCOPE: the compound statement in which they
are defined.

int ££(int n)
{
static int first=1;
if (first){
/*scmething te be done on first call
*/

/* normal processing */

}

auto would not work (WHY?)

Scope rules and storage classes 11

INFORMATION HIDING

Problem : set of routines to manipulate a list of
names. The user should simply be able to add a
name 1o the list (addnam), delete a name from
the list (delnam), search the list for a name. The
name is a string.

File Iname.c:

#include <stdio.h>

/* basic data store not directly
accessible from ocutside */

atruct vestat{...};

atatic struct vsesstat *listOfNames ;
/* public procedures */

int

addnam{char *name)

.....

struct wsstat *
search{char *name)

@)

Scope rules and storage classes 10

3.2) Variables AND FUNCTIONS defined "at top
level" like extern ones, but whose visibility is
limited to the file of definition(cannot be alfuded

)
VERY USEFUL, HIGHLY RECOMMENDED

PROTECTS AGAINST name clashes

Scope rules and storags classes 12

/* private procedures

* NAME CLASHES impossible !
*/

gstatic int compact_list()({

static struct vsstat *
create_entry(char *name)

static error {(int errcode)

{

}
RULE: define 'static' every "top level" object,
unless you want it to be shared

4) register

Like auto, but suggests to the compiler to put

the variable in a hardware register if possible.

Can improve optimization a lot on old compilers.

Can inhibit it with optimizing compilers

. Since registers are limited, the first variable
declared register has higher priority for
allocation, and so on;

. You cannot take the address of a register
variable

Scope rules and storage classes 13

int arr[100] , k;

{ register int *pi , a=0;
for (piz=g&arx;pi<&arr[100];pi++)
8 += *pi;
k=8;
}

Scope rules and storage classes 15

volatile

A volatile variable can be modified by the
hardware or the O.S. , outside control of the
program,

THEREFORE, any store or load operation
requested by the program MUST be actually
performed (no optimization aliowed)

Memory-mapped 1/Q: output by writing to
address 500

char a[l1l00] ;
int i ;
char *out = (char *) 500 ;

for(i=0; 1<100; i++) *out = al[i] ;

most optimizers would translate into

[*out = a[99] ;

BUT

Scope rules and storage classes 14

TYPE QUALIFIERS

const

const float m=4.0;
const int *pci;
/* peinter to comst int

* Note : int * conat pci;

* what is the difference 7 */
ma= 5.0; /*erroxr */
pci = &a; /*legal*/
pel = a; /error/

. Can be used on function arguments

float sum{const flcat arr[], const int
n);

. Helps the compiter to identify mistakes
. Gives a lot of informations to optimizers

Scope rules and storage classas 16

char afl00];

int i;

volatile char *out =
(volatile char *) 500;

for(i=0; i<100; i++)} *out = a[il;

COMMENT: can be combined

|extern volatile const int clock;

Functions 17

FUNCTIONS
Glossary

declaration : the point where a name gets a type
associated with it

definition : a declaration that moreover
associates some memory with the name. For
functions, it is the place where you give a body
for the function.

formal parameters
formal arguments : the names with which a
function refers to its arguments

actual parameters

actual arguments : the names or values used
when the function is actually called -> the values
that formal parameters have on entry to the
functions.

Functions 19

. list of declarations of formal arguments, in
parentheses:

like other declarations except:

- only legal storage class is register;(ANSI)

- an array declaration is interpreted as a
pointer to an object of the same type of the
array elements;

- afunction declaration is interpreted as a
pointer to a function;

- no initializers

IMPORTANT USE:

double sqgrt{ double x);

z=sqgrt(1l);:

The compiler recognizes type mismatch and performs
convertion of 1 to double

struct vsstat *add_to list{char *
name) ;

p = add to_list(1.0);

The compiler recognizes type mismatch and signals
error

O,

Functiens 18

FUNCTION DECLARATION

Functions must be declared before being called

ANSI standard style: function prototype

char * igprint(char ¢);
gtatic struct vsstat * createnode(char
* name);

Synopsis:
- Optional static; if not present, extern
storage class is assumed

- function type (if missing, int assumed)
- cannot be array
- cannot be function
- CAN be pointer to array or pointer to

function
- function name

Funetions 20

b = createncds. (oY
/% AAARRGHIHN %7 . .

FUNCTION DEFINITION

function prototype as above
function body (compound statement)

int factorial(int n)

{
register long int p=1;
regiaster int i ;

for (i = 2; i<=n; i++) p *= i;
return p;

e

Functions 21

old ¢ -ltyle (accepted also by ANSI)

atatic {optional)

type name (list of formal arguments names)
formal arguments declaratfons

function body

:i.nt: nj.

reee

int: £lctorii:r {x:; S m——

--<char and short ara treated as int +
converswn el .
--- float are tneated as double : conversmn

argument declaratlons. as in prototypes plus:_' B

[DEFAULT GONVERSIGNS

Functions 23

float called_func{ int , float);

main{wveoid){
called_func (10.0/3.0, 2*3.5);
}

float called_func {(int iarg, float
farg) (
float tmp=1l.0;
while (iarg --)tmp *= float;
return tmp;

1

Functions 22

vold: ;_fm(oxt. c g
int ext. c;
double _e:_zt__x: :
¢ : -

¢har c,
float. e:ct'--x,-‘ -

Seldom important to know, except for cross-
language development. Can impact
performance.

CALLING FUNCTIONS

1.evaluate expressions passed as arguments;

2.convert values according to function
prototypes,

3.use these values to initialize formal arguments

4.henceforth formal arguments behave like other
local variables

Functions 24

CALL BY VALUE :
a copy of the value of the actual argument is
passed, not the actual argument itself

-> function canngt modify the actual arguments
{(uniike FORTRAN, Pascal var arguments)

int called_func(int a{]l, int n}:

main(){
int n=10, array[30];
called_func { array,10);
}
called_func (int arr[],int n)
{
for(;n>=0;n--)
printf("%d\n",arr[nl};
/*changing n is perfectly safe */
}

Functions 25

CALL BY REFERENCE:

passipg the address of the actual argument.
Function MUST be written specially to accept it

float called_func(int *i, float x Yz

main(){
int i = 1, f£;
f=called_func (&i , 2*3.5)z
}
float called_func {int *iarg, float
farg)
{
float tmp;
tmp= *iarg * farg;
(*iarg)++ ; /* changes i */
return tmp;

2

Functions 27

double fun{(double x)
L—_—
double integrate(double (*f)}{), double
a, doubles b)
{/*integral of f(x) from a to b*/
}
main(void)
{
double (*pf)(),s;
/* pf pointer to function returning
double */
Pf = fun ; /* pf = &fun wrong ;
* pf = fun() wrong ;
* pf = &fun{) wrong ;
* /
s=integrate(fun, -1.0, 1.0);
/* same as s=integrate(pf, ~1.0. 1.0)
*/

Functions 26

Arrays are not be passed by value:

void func(int arr[])

int arr[10};
func{arr);

}

is identical to

void func{int arr[])
{ seeees }

main()

{int arxr([10];

func (&arr[0]);

}

Functions are not be passed by value

(WHAT?)

EXCURSUS : pointers to functions
Often used !

function name is constant pointer to function
like array name

Functions 28

More on Default Conversions

It no function prototype used (QOld C form of

declaration or no declaration at all)
. short and char converted 0 int;
. float converted to double;

WARNING : mixing a prototyped declaration with

a non-prototyped definition can cause problems

Structures are passed by value

RETURNING FRCM FUNCTIONS

void a_func({int i,float *sa)
{

if{ !i) return ;

*8 ++

}

+ return

. flow through the end

Functions 29 Complex definitions 30

RETURNING A VALUE EXCURSUS: COMPLEX DEFINITIONS

double squareroot{double x) What's that

{
double s; [int *(*(*x) Q) [5]; B
if (x : 0.0) return 0; . » (*(*x) (}) [5] iSan int
:e:,;;_;/s_compute square root %/ [} has higher precedence than *

} ’ (*(*x) (1) [5] is a pointerto an int

*(*x} () i5 a 5-elements array of pointers to int
() has higher precedence than *

(*x) () is a pointer to a 5-elements array of
pointers t0 int

. type of returned expression automatically
converted to type of function;

WARNING : *x is a function returning a pointerto a 5 -
. mixing return value ; and return; elements array of pointers to int.
. mixing return value; and flow through end = is a pointer to a function returning ...

is meaningless
HORRIBLE! USE TYPEDEF

typedef int *PI;

/* a PI is pointer to int */
typedef PI AP[5];

/* an AP is a S5-elements array

of PI, i.e. of pointers to int */
typedef AP *FP() :

/* an FP is a function returning

a pointer to an AP */
FP *x; /* x is a pointer to an FP */

o put 1

INPUT-OUTPUT

Implemented through macros and functions, but
defined in the standard as part of the standard
library and standard header file <stdio.h>

GENERAL MODEL :

stream : flux of characters

each stream connected to an external file
(operating system dependent)

read or write take place at file position
indicator

+ f.p.i. moved after each read or write
(sequential I-0)

f.p.i can be manipulated directly to achieve
direct access I-O

Two basic types of streams : text and binary
{ANSI)

- lext: sequence of lines, composed of
printable characters. Programs see line
separators as a single newiline character
(O.S. can use other conventions)

fnput-Output 3

etc.) One field of the structure FILE identifying the
C stream is the corresponding 0.S. file descriptor.
fileno (fp)
FILE *fp;
returns the file descriptor attached to the stream ip;
elc.
OS calls (ioctl) must be done on file descriptor; etc.

stdio.h

contains the definitions of the required types and
macros, plus the prototypes of the functions, and
the definitions of 3 standard streams.

Of general interest:;

FILE typedef: the type of a struct
containing stream control information.

EOF macro. A negative integral constant, used
to signal end of file condition

stdin

stdout

atderr 3 objects of type (FILE =*},associated to
the standard input (usually keyboard),
standard output (usually screen) and
standard error (usually screen). Open at
program start.

Input-Cutput

binary: sequence of non-interpreted
characters,
THEY ARE THE SAME IN UNIX, OS/g, DOS,
etc.

streams can be buffered buffering can be
block : data passed to/from 0O.S. when
butfer full (file copying);
line : data passed toffrom 0.S. when end
of line met (terminal 1-0); ANSI
no buffer : data passed toffrom O.S.
immediately (screen editing).

« 1-O operations are syncronous :
waits until completed

program

A key distinction:
O.S. services (calls):
read write Iseek open close

Language constructs (stream-oriented)
fread, fwrite, fseek, fopen, fclose

- Old C programs often used system calls to do
"binary" I-O (buffered unformatted)

- Better to avoid: portability

- With old compilers, could be unavoidable (fread,
fwrite missing)

Therefore: in Unix and 0O.S. 9, 0.8, uses ‘“file

descriptors”" (small integers) to identify files

{open{filename) retuns a file descriptor,

read, write require passing a file descriptor,

Input-Output

ERROR HANDLING

- all |-G functions return error codes ;

- moreover error conditions and end-of-file on read
are also recorded in a member of any FILE
object;

» tested through feof() and ferror(}), reset
through clearerr()

- additional error information through system-
defined extern errno, O.S. dependent

Ex.

Input-Output

I* this function tests error status
* and resets it

* it returns 0 if no error

*1 if end-of file

*2iferror

* 3 if both

*f

#include <stdio.h>
#define EOF_FLAG 1
#define ERR_FLAG 2

unsigned char
stream_stat(FILE *fp)
{

unsigned char stat =0;

if(ferror{fp))statl= ERR_FLAG ;
if(feof{fp)) statl= EOF_FLAG ;
clearerr(fp) ;
return stat ;

DIRECT FILE MANIPULATION

int
remove (conast char *filename);
deletes the file. Returns 0 if success.

Input-Output
ACCESS MODES

for text streams

r" read only

r+" read-write {must exist)

"w" wrile only. If existing, truncated to zero,else
created

"w+" write and read. If existing, truncated to 0,else
created

"a" append. Write only, but at the end of an

existing file. Created if not existing.
“a+" append and read . Created if not existing

binary streams

“rb", "r+b" etc.

Input-Output

int
rename (const char *old, const char
*new) ;
changes file name. Valid file names are
implementation dependent.

c¢har *
tmpnam{char *s8);
create a file name that is unique. .

FILE *

tmpfile(void);
opens a temporary file which will be
automatically deleted at program termination
and has no name.

OPENING AND CLOSING

associate a stream with a file
fopen (file_name , access_mode)

returns a pointer to a FILE object or NULL (if failed)

FILE *
fopen{char *file_name, char * access)

Input-Output

Ex.

/* open with error message */

#include <stdio.h>

FILE*

opentiie{char *fname,char *access)

{

FILE *fp;

if((fp=fopen{fname,access))==NULL)

fprintf{ stderr,

"Error opening %s with access %s\n"
,fname,access);

return fp;

}

. WARNING: (fp = fopen()) == NULL

parenthesis required! common mistake
fprintf : like printf on a stream different from
stdout

Ex:
Open file "pippo” for reading and writing,; if it does'nt
exist, create, if it exists, do not truncate

if((fp=fopen("pippo","r+"})==NULL)
fp = fopen{ "pippo”, "w+"};

reopen:
associates an open stream with a different file
and/or with a different mode

Pl Sugeun

FILE *
frecpen(char *filename, char
*mode, FILE * stream)

often used with standard streams

Wﬂag set, output to disk file "outfil"*/

mt disk _flag;
if (disk_flag &&
freopen("outfi!“,"w",stdout)::NULL)
fprintf(stderr,
"Error reopening stdout\n”);

IMPORTANT WARNING
Streams open for both read and write:
between a read and a write you MUST insent

a fflush, fseek or rewind
- - exception: write after read that hits End of File

fclose:
disassociates a stream from its file and makes the
stream unusable

Input-Output 11

sscanf does conversion but not input,
using in_string as the source of characters
(FORTRAN INTERNAL FILE)

NOTE : arguments must be POINTERS to variables
format string

white space: skip input until next non-blank
ordinary character : next character in input MUST
match that character {seldom used)

conversion specifier:

|LOOK IN THE MANUAL

function returns :

EOF if EOF encountered before any
conversion, OR
« number of successful conversions

FORMATTED WRITE

int

Printf (char *format, ...)
int

fprintf { FILE *stream, char
*format,...)

tnput-Cutput 10

int
fclose(atream)
FILE *stream;

NOTE : files are automatically closed at program
termination

READING AND WRITING

formatted

unformatted : 1 character at a time
1 line at a time
1 block at a time

FORMATTED READ

int

scanf{ char *format,...)

int

fscanf(FILE *stream, char *
format, ...)

int

sscanf (char *in_string, char =*
format,...)

NOTE : scanf IS fscanf(stdin, ...)

Input-Output 12

int sprintf{char *out _string, char
*format,...}

NOTE: printf is fprintf(stdout, ..)
NOTE : arguments must be VALUES
OUTPUT FORMAT STRING

can contain two types of objects:

ordinary character : copied to output
conversion specifier:

CHECK THE MANUAL

‘anul-Oulpul

UNFORMATTED INPUT-OUTPUT
ONE CHARACTER AT A TIME
Already met
int getchar();

int putchar{c)
char c;

. referto stdin / stdout
MORE GENERAL
int getc{(FILE *fp)
int putc{char ¢, FILE *£fp)

special:
int ungetc(int ¢, FILE *fp)

. retumn EOF if error (getc/putc/ungetc) or end-of

file (getc);

. otherwise return the character read or written (as

unsigned char converted to int)
. They are macros (defined in stdio.h)
. therefore expanded by preprocessor
. FAST

Note: putchar(e¢) ispute{ ¢ , stdout)

Input-Output

#include <stdio.h>

#define FAIL O
#define SUCCESS 1

int

copyfile (char *infile, char * outfile)

{
FILE *fp1, *fp2;
intec;

if{(fp1=fopen(infile,"rb"))==NULL)
return FAILL;
if({tfp2=fopen(outfile,"wb"})==NULL)
{fclose (fp1);
return FAIL;

}
while{{c=getc(fp1))!=EOF){
if ((c=putc(c , fp2))==EOF}{
fclose(fp1); fclose(fp2);
return FAIL;
}

if (ferror(fp1)) {
fclose(fp1);fclose(ip2);
return FAIL;

}

fclose (fp1);
fclose (fp2);
return SUCCESS;

N

Input-Output

getchar() is gete (stdin)
--- WARNING

pute { 'x' , fpli++l1) :

Macro expansion : more than one occurence of
fp[j++] > RESULTS UNDEFINED

For these cases, FUNCTION VERSION

int fgetc{ FILE *fp)
int fpute(char c, FILE *fp)

Ex.:

input-Output

- note cleanup in case of failure

getc returns EOF at End of File or in case of
errot, ferror needed

putc returns EOF in case of error

- why ¢ needed? why not

[while(tfecf{fp1))putc(gete(tpl), fp2);

?
Beware of off-by-one errors !!

ungetc:

pushes back the last character read
Ex.:

/*skip until first non-blank */
#include <stdio.h>
#include <ctype.h>

void
bskip(FILE *fp)
{
intc;
while { isspace(c=getc(fp)) };
ungete(c , fp) ;

}

. only one character
. only after read
. it's not 1-0: external file not changed

Input-Qutput 17

- rewind and other fp.i. manipulations will cause
the pushback to be forgotten

ONE LINE AT A TIME

MEANINGFUL ONLY IN TEXT MODE

char *
fgets { char * s, int max_length, FILE *stream)

int
fputs { char * s, FILE *fp)

- and their stripped down versions (stdin-stdout)
char *gets (char *sg)

int puts (char *s)

fgets

. reads until EOF or newline or max_len-1
characters

. putsthemins

. adds a null at the end

. returns s, or NULL if read error or EQF
before anything read

- WARNING : input newline is included in s !

gets

Input-Output 19

usually unsigned int orunsigned long int
- nelem elements of size elize are transferred
. WARNING : this is not the same as

transferring 1 object of nelem * size bytes!!

. return number of elements transferred
- if returned < nelem
. on output, error
. on input, EOF or error (feof to check);

NOTE : implementation dependent. Can be very
fast, or use fgeteffputc and be very slow.

Ihput-Cutput 18

. almost like £gets on stdin , but discards the
newline (history...)

fputs

- writes s (as it is!) to £p discarding the
terminating null

» returns non-negative if successtul, EQF on error

puts
. almost as fputs on stdout, but adds a newline

NOTE: often implemented through calls to
fgetc/fputc -> not faster than direct use of
getc/putc.

ONE BLOCK AT A TIME

MAINLY BINARY

#include <stdio.h>

size_t
fread(void * block, size_t size, size t nelem,
FILE *stream};

size_t
fwrite{const void * block, size_t size, size_t
nelem, FILE *stream);

. size_tisa typedef in stdio.h:

Input-Cutput

RANDOM ACCESS

Getting the current f,p.i.
Setfing f.p.i. to beginning-of-file
Setting f.p.i. to an arbitrary value

Getting the current f.p.i.

long
ftell (stream)
FILE *ptream;

- returns the current £p.i. as a long int.

== binary: number of characters from start

- text: “"magic" (to be used only with £=seek)
- =1L if failure

Setting f.p.i. to beginning-of-file
void
rewind (FILE *stream)
Setting f.p.i. to an arbitrary value
int
fseek(FILE *stream, long offset,

int base_sel)

- positions the £p.i. at a distance of £set from a
base:

20

Input-Output 21

--- base_sel selects the base:
base_sel == SEEK_SET
base is beginning of file

base sel == SEEK_CURR
base is current £p.i.

base_gel == SEEK_END
base is end of file

--- SEEK_SET, SEEK_CURR, SEEK_END Macros
defined in stdio.h (in old compilers, 0, 1, 2)

--- of£seat can positive or negative

--- if in text mode, base must be SEEK_SET
and cf£set must be the cutput of £tell

--- in binary mode, SEEK_END could give strange
results if system pads bynary files

COMMENT

feeek/ftell could not work if tile length cannot
be encoded in 2 1ong int

for this general case, 2 other functions ANS! only

int fgetpos(FILE *stream, fpos_t
*pos);

Input-Cutput 23

#include <stdio.h>
char c_arr [BUFSIZ];
main(void){

FILE *fp;
I* declarations */

setbuf { stderr, c_arr);
{* stderr becomes buffered, c_arr is buffer */
setbuf (stdout, NULL);
f* stdout becomes unbuffered */

- BUFSIZ definedin stdio.h
- must be used after f£open and befere any 1-O
operation

int
fflush(FILE *stream)

- if stream is buffered, write content of buffer to
0.8.

.- if stream == NULL, applies to all open streams;

- returns 0 (success) or EQF (failure)

int

(2

Input-Output 22

int fsetpos { FILE *“stream, consat
fpos_t *pos);

FILE BUFFERING

File buftering: data are passed to-from the file only
in chunks of fixed size (from 512 B to a few kB)

. unbuffered : minimum jatency
if file 1-O used for control purposes
. buffered : maximum 1-O efficiency (less calls to
Q.8., device, etc)

WARNING : C buffering concerns passing data to
0.5., NOT to device (O.S. can buffer by itself, or
not, ©.S. dependent)

By default, files buffered (buffer size
implementation dependent)

stderr unbuffered

Input-Qutput 24

setvbuf { PILE * gtream ,char *buf
, int mode , size t buf_size);

. arbitrary size of buffer and buffering mode
. mode can be

_IOFBF Fult buffering
_IOLBF Line buffering
_IONBF No buffering

. aetbuf (stream, buf };
is (almost)
setvbuf (stream,buf, IOFBF,BUFSIZE);
and
. setbuf (stream , NULL) ;
is {almost)
setvbuf (stream, NULL , IONBF ,0) ;

SELDOM USED, BUT IMPORTANT

char c1[65536), ¢2[65536];

f1=fopen(...);

f2=fopen(...);

setvbuf{f1,c1, IOFBF,65536);

setvbuf(f2,c2, IOFBF,65536);

while((c=getc(1))!=EOF &&
{c=putc(f2))!=EQF));

f1=fopen("mydevice","wb");
setbuf(f1,NULL);

fpute(C,f1);

THE C PREPROCESSOR
Already met:

#include

#define

ANS! greatly expanded it.
Here only elementary usage

Takes code containing preprocessors directives
Transforms it into legal C without them

Works line by fine (C does not care newlines)
Does not obey scope rules:
definition holds from definition point to end of
file

--> USE SPARINGLY
Introduces C-specific things

--- > NOT A GENERAL-PURPOSE MACRO
SYSTEM

Preprocessor. Library 3

#define A a,b

#define strange(x) x-1
strange (i)

strange should be replaced
it has one argument , A
A should be replaced
A becomes a,b
strange now has 2 arguments?
ANSI says no; try yours
and what if
#define strange{A) something
Etc. : DON'T TRY

WARNING

]#dafine PA (a)

This one defines PA to be (a), not PA(a} being
nothing. SPACE BETWEEN NAME OF MACRO
AND (

WARNING

#define FILENAME myprog.c
printf ("compiled from FILENAME\n");

Dces not work :
preprocessor

strings are a single object to

(27)

Preprocessor. Library 2

#define
2 versions : function-like and not

#define EOF (-1)

if (¢ == EOF)
is translated into
if (¢ == (-1))

#define PMAC(a,b} a * b /*poor, see
later*/

FMAC(p~->data, g4])
ig translated into
p->data * g[4]

[#define max(x,y) ((x)>(y)?(x):(¥)) |

#define UPPER{c)
/*ASCII only */

((c)_lal_'_lAI)

RESCANNING

#define EOF (-1)

#define readc(c) ((c=getchar())!=EOF)
PRACTICAL RULE :
macro names (not function macros)
are all uppercase, C identifiers are lower case or
mixed case

Preprocassor. Library 4

#define FILENAME *“myprog.c"

printf ("compiled from %s\n" ,
FILENAME) ;

or, better

#define FILENAME myprog.c

printf {("compiled from " H#FILENAME
"\n");

a) Preprocessor operator # converts its argument
to a string

b) "a " "string" for C is the same as “a string"
{constant strings written one after the other are
treated as a single string);

Name generation operator

Preprocessor. Library S

#define Genericswapdef{type)} \

/* type must be a type name (bagic\
* type or typedef */\

void typed##swap(type *a, type *b}\
{type temp;\

temp=*a;\

*a=*b;\

*b=temp;\

}
#define Gswap{a,b,type}\
cype##swap(&a, &b);

typedef char * charptr;

Genericswapdef (int);

Genericeswapdef (charptr);

charptr pl,p2;

int alfa,beta;

Gawap(&kalfa, &beta,int);

Gawap(&pl, &p2,charptr);

Which then is translated into

typedef char * charptr;

void intswap(int *a, int *b){int
temp; temp=*a; *a=*b; *b=temp;}

void charptrawap (charptr *a, charptr
*h){charptr temp; temp=*a; *a=*b;
*b=temp;}

char *pl,p2;

int alfa,beata;
intaswap(&alfa, &beta):
charptrawap (&pl, &p2);

Praprocessor. Library 7

__inline_ static int
inc (int *a)
{{*a)++)}

Preprocessor. Library 6

WARNING

#define FMAC(A,b) a*b

a=FMAC (p+qg, l1+m};

becomes
a=p + ¢ * 1 + m ;]
probably wrong.

#define DOUBLE(X) R+

3* DOUBLE(x)
becomes

13* x + x

wrong

Correct format
#define DOUBLE(x) ((x) + (x))
#define FMAC(a,b) ({(a) * (b))}

WHY TO USE FUNCTION MACROS ?
- increase readability
- faster to evaluate than real functions

Useful gce extension:

static inline int
inc (int *a)
{(*a)++;}

or better

Preprocessor. Library 8
#undef identifier

Causes the definition to be forgotten

Ex.

#include <atdio.h>
#undef BUFSIZE
#define BUFSIZE 1024

#include <file>
#include "file"

#define NAME "file"
#include NAME

Includes can be nested

Conditional compilation

#ifdef identifier

#ifndef identifier

#if constant expression
#elif constant expression
#alse

#endif

- To select pieces of code that are machine
dependent
- To turn on-off parts of code used for debugging

Preprocessor. Library 9

#defina M6809

#ifdef ME6809

typedef long int Int:
fendif

#ifdef M68020
typedef int Int;
fendif

or (UNIX 1983 Source)

typedef struct (
#if vax || u3b
int _cnt;
unsigned char * ptr;
#alse
unsigned char * _ptr;
int _cnt;
#endif
unsigned char *_bage;
char _flag;
char _file;
} FILE

- vax !l udb is a constant expression. If defined and
not 0, expression not 0, etc.

defined(x) retumns 1 if x is defined, else 0
#ifdef a <=> #if defined(a)

WARNING

f#idefine NULL 0
#if NULL

would fail (#if defined NULL would succeed!}

Preprocaessor, Library 11

<assert.h> <math.h> <stdio.h>
<ctype.h> <setjmp.h> <stdlib.h>
<float.h> <signal.h> <string.h>
<limits.h> <stdarg.h> <time.h>
<locale.h> <stddef.h>

Sections of the library:

(23)

Praprocessor. Library 10

#error diagnostic message

causes the preprocessor to abort
#if wordsize==

#elif wordsize==2

#elif wordsize==8

#else

#error "wordsize is strange"
#endif

C LIBRARIES

DEFINED BY ANSI STANDARD

NOT REQUIRED:
- required in “hosted" systems
- can be missing in standalone systems ("bare" C}

STANDARD HEADERS: contain macro names and
typesused by standard libraries

WARNING:
- identifiers defined in standard headers are
reserved . Should not be redefined or reused
(like all the C keywords)
- names starting with _ are reserved

Preprocessor. Library 12

[-O <stdio.h>
String handt. «<string.h>
Debugging: <assert.h>
Character handl.: <ctype.h>
Time, date: <time.h>
Generat utilities <stdlib.h>
Implementation <lirmits.h>
<float.h>
<locale.h>
Exceptions <signal.h>
<setjmp.h>
Var. num. of arg. <stdarg.h>
Math. <math.h>

ASSERTION CHECKING

#include <assert.h>

if a>b do nothing;
else
print text of expression (a>b in this case}
, file name, line number
abort
If NDEBUG defined, expression not evaluated and
test not performed

#define NDERUG
#include <assgert.h>

all assert turned off

Preprocessor. Library 13

EXCEPTION HANDLING AND NON-LOCAL
TRANSFER

EXCEPTION:
+ occurs unexpectedly or infrequently (error
conditions)
can be originated outside program control
- hardware exception: division by 0
- user exception : interrupt key

In C : signais

-+ -can be generated by the hardware or by the
software

» -cause the execution to be transferred to a
signal handier

+ -programs can establish their own signal
handlers

- -a default signal handler (implementation
dependent) is always available
-program can send a signal to themselves

NOTE : sending signal to another program is
an O.8. problem

Preprocessor. Library 15

#include <signal.h>

void fpe_handler(int sig number);
main()

{

(void)signal (SIGFPE, fpe_handler);
}

signal returns a pointer to the old handler

#include <signal.h>
void int_handler{int sig number);
{
void (*old){int);/* pointer to a
function */
/* install handler only if signal
was not ignored */
1f{(old=aignal (SIGINT, SIG _IGN)) !=
8IG _IGN)
signal (SIGINT, int_handler);

}

Later, old can be used to reinstall the original
handler.

Preprocessor. Library 14

ANSI defines a minimum of 8 signals: more are
implementation dependent,

They are int, defined in <signal.h>

SIGABRT calling abort library function
SIGFPE illegal floating point operation
SIGILL illegal instruction

SIGINT interrupt (from keyboard?)
SIGSEGV illegal memory reference

SIGTERM software termination (sent by

another program?)
Default signal handler, calted SIG_DFL,
defined in <signal.h>, typically aborts the program

Alternative signal handler, called SIG_IGN,
ignores the signal.

User defined signal handler:

void handler{ int sig number){

}

NOTE : SIG_DFL, like SIG_IGN, are pointers to
such functions: they are declared:
void (*SIG_DFL)(int);

Handlers are associated to signals by a call {o to
the library function signal

Preprocassor. Library 16

COMMENT

full prototype of signal is

vold (*signal (int sig, void
(*func) {(int)))} (int);

or {better)

typedef void (*HANDLER) (int);
HANDLER signal (int , HANDLER):;

HANDLER STRUCTURE

« - First, call signal again (usually, signals go
back to default handler every time raised)
- Do whatever needed

. - Either return {execution continues from point
of exception

- == Or jump somewhere else with longjmp
-- or exit the program (exit()};

Example:

Preprocessor. Library 17

#include <stdio.h>

#include <stdlib.h>

#include <signal.h>

void keyboard intr(int);/*handlers*/

int number_ _of_cycles;
main{void}
{
(void)signal (SIGINT, keyboard intr);

while (....){
PR
number_of_cycles++;
}
}
void keyboard intr{int i)({
gignal (SIGINT, keyboard_intr);
printf(" Really quit?{y/n)"};
switch (getchar()) {
case 'Y’ case 'y'
printf{
"interrupted after %4
cycles\n*,number_of_cycles);
exit(0):;
default: printf{*"continue\n");
return;

}

- handlers can exit, or return: return resumes
execution from exception point
- handlers can access giobal variables

Preprocessor. Library 19

#include <stdioc.h>
#include <stdlib.h>
#include <signal.h>
volid kevboard intr(int);/*handler*/

main({void)
{
{void)signal (SIGINT, keyboard_ intr)};

while (scanf("%d %d4d",&a,&b)==2){
}
}
void keyboard intr(int i){
signal (SIGINT, keyboard_intr};
printf{" Really quit?(y/mn)"};
switch (getchar(}) {

case 'Y' : case 'y' :
exit(0);
default: printf("continue\n");
return;
)

What if signal arrive during scani?

. scanf returns EOF (MANY implementations)
{OS problem: interruptible system calls return
error code, library routines then...)

. interference of getchar and scanf

(e

Preprocessor. Library 18

#include <stdio.h>

#include <stdlib.h>

#include <aignal.h>

void float_err(int):

main(void){

int a,b;

{void)signal (SIGFPE, fpe_error);

while{scanf ("%d %d",&ka,&b)==2)
printf("%4.1f\n", (float)a/b*100);

exit (0);

}

void fpe error{imnt i){

(volid)signal (SIGFPE, fpe_error}:

printf{"No samples\n”);

return;

}

Likely wrong: execution resumes from a/b,
causes exception again
Solution 1: let handler do clean_up

volid fpe_error(int i){
(void)signal (SIGFPE, fpe_error):;
printf{"No samples\n®);:

a=0; b=1;

return;

1

Wrong: a,b local to main. Must be to global;
Unsate: at the point of error, b could be already in a
register, modifying its value in memory pointless;
Ad-hoc: generally handler dees not know where
problem happens->cannot clean_up.

Praprocessor. Library 20

. return from signal handlers dangerous, in
particular if signal generated by error

. in these cases either exit or jump to safe place to
clean up

In every case , if you plan to recover after a signal,

be careful about interrupted system calls:

. Check which calls are interruptible and recovery
possihilities {OS manuals)

. Check if SIG_IGN blocks the signal at the OS
level (it should). In this case consider protecting
critical sections by 'masking’ signals

Preprocessor. Library 21
. longjmp, setjmp

#include <setjmp.h>
I* defines type jmp_buf ¥/
jmp_buf env;

int setjimp(jmp_buf env);

- stores in env all the information to resume
execution from the peint it is called
WARNING : not a checkpoint!

- returns zero

void longjmp{jmp_buf env, int val);
- if env filled by setjmp, jumps to the return peint of
setjmp, but returning val; if val == 0, returns 1.

Ex.

#include <setjimp.h>
jmp buf env:; /* glcbal !*/
main(veld) {
int wv;
if (v=setjmp(env))}
printf(" Coming from longimp "
* valua = %d”, v);

RN

}
other_function{}{
longjmp(env, 1 };:

}

Praprocassor. Library 23

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <setbuf.h>
#define PR putchar(':')
void float_err{int},
kaeyboard_intr(int); .
/*handlers*/

float a,b, result; char opr;

jmp buf env;

/*global to be visible from

handlers*/

main{veoid)

{
(void)signal (SIGFPE, float_err):;
{void)signal (SIGINT, keyboard intr);
{void)setjmp(env);

while(PR,acanf ("%f %c %f",&ka, &opr,
&b) ==3)
{
switch{opr) {
}
}

}
void closing{ char *message, int

exit_code){

)]

Preprocessor. Library 22
Associated with signai handler

#include <stdio.h>

#include <stdlib.h>

#include <signal.h>

#include <setjmp.h>

void fpe_err{int);/*handlers*/
int a,b;

jmp_buf env;

main(void)

{

{void}signal (SIGFPE, float_err);

setimp(env);

while(scanf ("%d %d4d"},&a,&b)==2)

printf{"%4.24\n", float(a)/b):
}
void fpe_erroxr(int i)({
{void)aignal { SIGFPE, fpe_error):
printf(*No samples\n"};
longjmp(env, 1) ;
}

FINAL EXAMPLE (Exercise)

Modify the calculator of Exercise 1. Insert two signal
handlers, one for SIGFPE and one for SIGINT. Let both
the signal handlers o try to recover the program (in case
of interrupt, by asking the user as in previous example).
Use setjmp/ingjmp to return to a safe place from the
signal handler.

What is the difference with checking for O in the division?
Is this sclution more or [ess safa than the one with the
check for §? Is it more or less efficient?

Preprocassor. Library 24

void float_err{int i)({
(void)signal (SIGFPE, float_err);
printf ("Floating peint error\n®):
longimp(env,1);
}
void keyboard_intr(int 1i)({
signal {SIGINT, kevboard intr);
printf("Doc you want to quit? Y or
N:™);
switch (getchar{}) ¢
case 'Y' : casae 'y' :
cloging ("Regular end", 0);
default: printf("continue\n");
longjmp(env,1);
}
}

