| INTERNATIONAL ATOMIC ENERGY AGENCY
‘ P UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION m

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

LCTP., P.O. BOX 586, 34100 TRIESTE, ITALY, CaBLE: CENTRATOM TRIESTE

QQ The United Nations
Z> University

SMR/774 - 10

THIRD COLLEGE ON MICROPROCESSOR-BASED REAL-TIME
CONTROL - PRINCIPLES AND APPLICATIONS IN PHYSICS
26 September - 21 October 1994

CROSS-DEVELOPMENT OF EMBEDDED SYSTEMS

Chu Suan ANG
3 §824/7
Taman Megah
47301 Petaling Jaya
MALAYSIA

These are preliminary lecture notes, intended only for distribution to participants.

Mun Buowe Stuow Cosrmna, 11 Ta 22401 Tamax 224163 T 460392 Asaiarico Gumer House Via Grsonano, 9 T 224241 Tasmwe 224531 Tume 460449
Miczornoresans I .2 Vi B . 31 - A . — e ammm

Real-time College 1994 September 1994

Cross-Development of Embedded Systems

CS Ang

EMBED94.SAM CSAng

Real-time College 1994 September 1994

Cross-Development of Embedded Systems

Outline of Lectures

® Introduction to cross-development of embedded systems
- What are embedded systems?
- What is cross development?
« Microcontroller/microprocessor resources used in embedded systems.
+ Designer's skills
+ Historical background of real-time embedded systems

« Definition & classification of real-time embedded systems

® Design and development of embedded systems

System design

+ Choosing an embedded computer

- Hardware design and development

« Qutline of hardware test procedure

- Software design and development
State machine and state table
Simulators
Cross assemblers
Cross compilers

In-circuit Emulators and development systems

EMBED94.SAM 1 CSAng

Real-time College 1994 September 1994

® A microcontroller (68HC811) embedded system
- Architecture of the 68HC811
- Hardware and software features.
- Low-cost emulator
+ Cross-development in assembly language.
+ Cross-development in C.

+ A design example.

® A microprocessor (6809) embedded system
« Architecture of the 6809.
- Hardware features and software features.
- Comparison of microcontroller with microprocessor.
+ Development in assembly language (resident & cross-assembly).
Cross-development in C.

+ A design example.

® A real-time kernel for embedded systems
« Why real-time kernel?
- uC/OS.
» Kermel structure.
[nterrupt processing,.
Communication.

» Examples.

EMBED94 SAM 2 CSAng

Real-time College 1994 September 1994

What Are Embedded Systems?

® An embedded system is one with a built-in computer, typically for
carrying out some kind of real-time applications. The computer in
such a system does not behave as a stand-alone computing
machine.

® There are numerous examples of embedded systems around us:

* Laboratory - test equipment, data acquisition systems, control systems,
dedicated equipment.

* Process industry - process control system. This is the grand daddy of
real-time embedded systems, Early examples are the closed-loop control
System at a Texaco refinery in Texas in 1959 and a similar system at a
Monsanto Chemical Company ammonia plant in Louisiana.

* Manufacturing industry - production line assembly equipment, automatic
test equipment, robots.

* Automotive - engine controls, anti-lock braking, lamp, indicator and other
controls.

- Consumer goods - audio-visual equipment, microwave ovens, washing
machines, dishwashers.

* Office & banking equipment - autoteller, photocopiers, fax machines.
* Computer peripherals - printers, keyboards, visual display units, modems.
» Aerospace - flight management systems, engine controls.

Telecommunications - pagers, wireless phones, handphones.

® Although there are infinite varieties of embedded systems, the
principles of operation, system components and design
methodologies are essential the same. A typical system consists of
a computer with its standard input/output devices and an interface
to the physical environment, which may be a chemical plant, a car
engine or a keyboard, for example.

® We shall deal with the development of such systems in general,
with emphasis on a class of embedded systems using
microcontrollers which is currently the most prevailing form of
computer used in laboratory and many other applications.

EMBED4. SAM 3 C S Ang

Real-time College 1994 September 1994

What Is Cross Development?

® Developing application software for an embedded system requires
development tools. When the development system and the target
system have different types of CPU, the process is referred to as
cross development.

+ For example, when a 486-based PC is used to develop software for a
68HC11 embedded system, it is cross development because the native
compiler and assembler of PC which generate 486 codes cannot be used
for the 68HC11. In this case cross-compiler and cross-assemler which
runs in the PC but generates 68HC11 machine codes are needed.

® Cross development is necessary for a number of reasons:

« Many microcontroliers used in embedded systems are just too small to be
used as processors in development systems. Native or resident assemblers
and compilers may not be available for such systems.

- Existing computer facilities are readily available and with the appropriate
cross-development software tools, are suitable for carrying out the task of
software development. This is considered an important advantage because
no extra hardware is needed and software tools such as editors are already
available.

- Some manufacturers are supporting their products with a dial-up facility
or through Internet which allows users to download cross-assemblers and
cross-compilers to the ubiquitous PC.

+ Everyone owns a PC or can lay hands on one (quote Rinus verkerk)!

EMBED94. SAM 4 C S Ang

Real-ime College 1994 September 1994

Microcontroller/Microprocessor Resources Used
in Embedded Systems

® The evolution of microprocessor has been along two different
paths. One of them has been the development of powerful CPU
with 16- and 32-bit data bus and very large memory space (e.g.
gigabytes). These processors are used in personal computers and
workstations which form the backbone of computing facilities in
home, commercial, educational, engineering and research
environments,

¢ The power and speed of the 16- and 32-bit CPU of course do not
limit them to the domain of stand-alone computers. They are used
as embedded computers as wells. In fact they are used in many
applications where sophisticated control or high speed operation is
needed, e.g. HP Laserjet printers.

® However, it is true that for a large number of laboratory and other
applications, the tasks can often be performed by a range of

smaller processors - the microcontrollers. (Well, sledgehammer
is not needed if it is a fly, nor should the butcher's

knife be used when it is a chicken?)

® In this short series of lectures, we shall not deal with the
development of embedded systems using 16- and 32-bit CPUs
because of the complexities of such systems. However, their use
as cross-development tools for microcontroller-based embedded
systems will be elaborated.

® The second evolution path of microprocessor is along the line of
microcontrollers which on a single chip the processor is integrated
with RAM, ROM, EPROM, EEPROM, timers, serial and parallel
I/O facilities. These microcontrollers are most suited for small
real-time embedded systems or used as real-time modules in large
systems.

EMBEDS4. SAM 5 CSAng

Real-time College 1994 September 1994

Designer's Skills

® Good knowledge of the microcontroller resources. This should
include the architecture, the instruction set, the addressing modes
and the on-chip resources. The knowledge should generally
extend beyond the simplified and idealised devices. For example,
a good designer must know how the microcontroller handles
interrupts and related timing issues so as to handle real-time
activities effectively.

® Good knowledge of real-time control. The real-time requirement
of the target system must be clearly understand before an effective
solution may be found.

® Good knowledge of software techniques or software building
blocks in handling various requirements and tasks of the target
system.

- For example, it may be an advantage to represent the system by a state
machine. In this case, how can the state machine be implemented in
software easily?

+ In an embedded system where a keyboard is used, how does one handle
the keyboard parsing?

® Good knowledge of hardware I/O components or sub-modules.
To be able to design a good embedded system, knowledge of the
state-of-the-art peripheral devices is helpful.

- For example, the technology of output devices including LED, LCD and
CRT has progressed significantly. Manufacturers have implemented very
sophisticated device drivers for some displays and it is a good idea to
consider using them whenever possible.

- Many embedded systems involve the use of ADC or DAC. Again, a good
knowledge of accuracy, resolution, and speed of conversion is essential,
If a target system is expected to measure 1 millidegree in 100 degrees, it is
useless to design a system with a 10-bit ADC, for example.

» Other components such as drivers, position control and position encoding
are often used and should be included in the repertoire of hardware skill.

EMBED%4 SAM 6 C S Ang

Real-time College 1994 September 1994

¢ Good knowledge of development tools. Development of
embedded system requires both hardware and software
development tools.

Hardware tools: multimeter, oscilloscope, logic probe, pulser, EPROM &
EEPROM programmer, logic analyzer, in-circuit emulator, development
system.

Software tools: editor, cross compiler, cross assembler and linker,
simulator, development system.

EMBED94.5AM 7 CS Ang

Real-time College 1994 September 1994

Historical Background of Real-Time Embedded
Systems

¢ Earliest proposal of using a computer in real-time application for
controlling a plant:
. Brown, G.S., Campbell, D.P., "Instrument engineering: its growth and

promise in process-control problems', Mechanical Engineering, 72(2).
124 (1950).

e Early industrial installations of embedded systems:

- September 1958 by Louisiana Power and Light Company for plant
monitoring at a power station in Sterling, Louisiana.

- First industrial computer control installation was by Texaco Company for
a refinery at Port Arthur in Texas in March 1959.

® Many early systems were supervisory control systems that used
steady-state optimisation calculations to determine the set points
for standard analogue controllers.

® Later, direct digital control which allowed the direct control of
plant actuators was added.

® The early real-time programs were written in machine code which
was manageable when the tasks were well defined and the system
small.

¢ In combining supervisory control with direct digital control the
complexity of programming increased significantly. The two tasks
have very different time scales and interrupting of the supervisory
control is necessary. This led to the development of general
purpose real-time operation systems and high-level languages for
such systems.

EMBED94 SAM 8 CS Ang

Real-time College 1994 September 1994

Definition & Classification of Real-Time
Embedded Systems

¢ Oxford Dictionary of Computing:

- 'Any system in which the time at which the output is produced is
significant. This is usually because the input corresponds to some
movement in the physical world, and the output has to relate to that same
movement. The lag from input time to output time must be sufficiently
small for acceptable timeliness."

® The above definition covers a wide range of systems:
+ from UNIX workstations

« to aircraft engine control systems.

® An alternative definition:

* A real-time system receives inputs and sends outputs to the target system
at times determined by the target system operational considerations - not at
times limited by the capabilities of the computer system.

® A real-time program is:

- A program for which the correctness of operation depends both on the
logical results of the computation and the time at which the resuits are

produced.

® Classification of real-time systems:
» Clock-based (cyclic, periodic) - process control systems.
« Event-based (aperiodic) - alarm systems.

- Interactive - autoteller, airlines reservation systems.

Classification based on time constraints:

* Hard real-time - must satisfy deadlines on each and every occasion, e.g.
temperature controller of a critical process.

» Soft real-time - occasional failure to meet deadlines acceptable, e.g.
autotellers.

EMBED94. SAM 9 CS Ang

Real-time College 1994 September 1994

Design and Development of Embedded Systems

® System design.

® Design and build hardware.

® Design and develop software.

® Integrate software into target system.

® For very small projects involving only one person, the above tasks
are carried out sequentially in that order. However, for bigger
projects, it is often possible to develop the hardware and the
software in parallel. This calls for a thorough system design in the
first place.

EMBED94 SAM 10 CSAng

Real-time College 1994 September 1994

System Design

® Define the functions and requirements of the target system. The
problem must be well defined. Otherwise there is no solution.
Difficulties arise when the scope of the work is not rigidly known
or when the designer is uncertain of the capabilities of the various

hardware and software IESOUrces. (Well, talk to someone may
help!)

® Specify the interface to the target system clearly, for example:

» Number and type of parallel I/O needed for interacting with the target
system.

* What kind of real-time requirement is needed?

Any serial communication needed? If so, what is the distance of
communication?

* Is the target system localised or distributed over a wide area?

* Any ADC and DAC requirement? If s0, what are the requirements on
resolution, accuracy and sampling rate?

® Is it a networked or a stand-alone system? In the case of
distributed or networked application, define the type of
networking facility to use. This usually depends on the data rate
and response time,

If the data rate requirement is kbps and below and the response time
requirement is around a second, a low cost serial link based on RS232 or
RS8422 interfaces may be used.

- If a high data rate up to Mbps is needed, use a standard LAN-type link,
Ethernet or Token Ring for example.

® Specify the user interface. Is it an instrument panel-type
interface? Or is it a graphical user interface (GUT)? Design a
friendly user interface.

EMBED94. SAM il C S Ang

Real-time College 1994 September 1994

Choose An Embedded Computer

e Choose an appropriate microcontroller/microprocessor. The -
choice really depends on many factors, amongst them are:

. Unique functional requirements of the target system. It may be that the
ADC requirement calls for a particular processor, or the temporary buffer
needed dictates another. Other applications may require a microcontroller

with EEPROM as non-volatile storage.

- Production volume of the target system. A one-off laboratory embedded
system may use an expensive or oversized processor whereas a system that
has to be produced in quantity may be very cost sensitive. One may have
to use a $1 processor with masked ROM instead of $50 processor with
EEPROM.

- Experience of the designer. (Yes, one can learn a new processor
easily these days, but won't it be simpler if one does
not have to learn a new one at all?)

« Availability of the devices. (There is no point having a design
on paper only, other than for teaching purposes!?)

- Your boss says 'use microcontroller xyz'.

® There is yet another alternative - obtain or purchase general purpose
embedded computers with the necessary I/O and build only the interface to
the outside world. This is an attractive option if you can afford it. There are
manufacturers producing a wide variety of embedded computers ranging
from 8-bit microcontroller-based systems to full-fledged 486 PC with
1.44MB ROM disk on a single expansion card!

EMBED94.SAM 12 CSAng

Real-time College 1994 September 1994

Hardware Design and Development

® The beauty of designing embedded systems using microcontrollers
and small microprocessors is the relative ease and simplicity. You
no longer have to be a 20-year-experienced-electronic-engineer to
be able to design the hardware. You may be a software
programmer, a system analyst, a physicist or even a manager or

director ofcollege! (The folly is that you no longer can tell
your boss that you cannot do it because you are not an

electronic engineer?)

® Build, test and debug the hardware. Once the circuit design is
completed, the next step is circuit board layout and fabrication.
Unfortunately the hardware development process does not end
there. In most cases, a certain degree of hardware testing and

debugging must be done.

® To carry out these tasks, it would be advantageous if sophisticated
tools such as development system, in- circuit emulator and logic
analyser are available. However, it is possible to test and debug
with the basic electronics laboratory equipment such as
multimeter, oscilloscope and function generator alone, if a

systematic approach is adopted.

EMBED94.SAM 13 CS Ang

Real-time College 1994 September 1994

Outline of Hardware Test Procedure

® Printed circuit board (PCB) inspection for track continuity and
possible bridging. This is a step that is often overlooked.
However, it is a vital step because easily locatable faults if left
undetected, usually cause much more debugging efforts at a later

stage.
® Power up the bare PCB and check voltages.

® [f it is a microprocessor-based system, such as the 6809, or a
microcontroller-based system operating in expanded multiplexed
mode, test the address bus and (partially) the data and control bus
on the hardware kernel which is the processor itself.

In the case of 6809, this is done by forcing a NoP ($12) on the data bus by
pulling up p1 and b4 to 5V via resistors and grounding all other data lines.
It causes the continuous execution of NoP for all memory locations. This
in turn results in Ao toggling at half the system clock rate, A1 toggling at
half the rate of A0 and so forth. The address bus can thus be checked
easily with an oscilloscope. In this test, data bus and control bus are
partially verified. This step is skipped if the system is single-chip,
micocontroller-based.

- If a logic analyser is not available, implement a tight loop program in the
EPROM such as a branch-to-itself loop (Loop Bra roor). For 6809, this
consists of two bytes ($20 $FE) and takes three machine cycles to execute.
A two-byte reset vector is also needed in the EPROM. The execution of
this very short program can be followed cycle by cycle on an oscilloscope
and thereby confirming the proper operation, at least partially, of the data
and control bus.

® Test routines for 1/O ports which have input switches and output
indicators can be written and tested. Commonly used routines
include incrementing the binary value of the output port at a slow
rate for visual inspection, reading status of switches and sending it
to the output port. This stage of testing serves to verify the
operation of I/O ports and to provide users with function selection.
Normally on power up the system is programmed to check the
status of the input switches and jump to appropriate test routines or
the main program.

EMBED94.SAM 14 CSAng

Real-time College 1994 September 1994

® Small test routines for other components in the system are then
implemented. This includes testing the serial link, the timers,
ADC and the memories.

® In some embedded systems where the memory is not very small, a
monitor program or kernel is then implemented.

® At this stage most of the hardware testing are done and the task
moves on to application software testing and debugging.
However, there is one type of hardware bug which is not detected
by the testing mentioned above. These are problems caused by
intermittent faults, glitches or external interference. These are
detected by means of logic analyser or in-circuit emulator running
in surveillance mode.

EMBED94.SAM 15 CSAng

Real-time College 1994 September 1994

Software Design and Development

¢ The major task in software design is the breaking up of the entire
application software into smaller manageable modules or
components.

® The algorithm of the various processes in the system must be
translated into the language of the embedded computer used.

e Finally, the integration of all the modules in a manner that can be
tested and debugged easily is needed.

e The above tasks call for knowledge on software building blocks
and software development tools.

® Unlike hardware development, the time taken in testing and
debugging during software development can be surprisingly long if

the design is not carried out systematically. (well, one of the
corollaries to Murphy's Law says that the time taken in
software development can be computed by taking the initial
estimate, multiplying it by 2 and changing the unit of time
measurement to the next higher one. Thus, a project that
you think will take you 2 weeks to complete will finally
consume 4 months of your life. Ang's comment: it is an
underestimate!)

¢ Fortunately, the facilities that support sofiware development in the
form of low-cost emulators, affordable simulators and cross-
development software are now readily available. Many software
tasks in embedded systems need not be implemented in assembly
language anymore. It is now possible to develop most of the
software of an embedded system in the comfort and power of high
level languages like C.

EMBED94 SAM 16 CSAng

Real-time College 1994 September 1994

State Machines and State Tables

¢ For a very small system, it is conceivable that the entire function
of an embedded system be represented in a flowchart and
implemented accordingly using a single program or a number of
modules.

® There are however a number of shortcomings using the above
method:

- Testing of a monotlithic program is often difficult.

Subsequent modifications of system function, like adding another control
switch, are complex because the entire flowchart has to be revised and
often re-implemented entirely.

® For many embedded systems, the complexities often justify a more
systematic approach to designing the software. Representing the
function of a system by a state machine is a very powerful method
in developing an embedded system.

¢ The power of state machine representation comes from the fact
that this state machine can subsequently be represented by a state
table which is well suited for microcontroller and microprocessor
implementation even at assembly language level.

® Using the state table method of implementing the functions of a
system, it is natural that the task be broken down into smail, more
manageable and often independent modules, called the action
routines. Such routines are more easily tested and often reusable.

® However, the single most important advantage of state table
implementation really lies in the ease of function modification. In
most cases, only the state table is modified together with the
necessary new routines, while most of the old code would be
1ntact.

EMBEDS4. SAM 17 CSAng

Real-time College 1994

September 1994

® A simple example of a system with keyswitches and display.

Suppose we have a keypad with ten numeric keys 0 to 9 and two function
keys ENTER and DELETE and a 4-digit numeric LED display.

« On power up, the display shall show 0.

- Numeric values can be entered on the keypad and as each digit is entered,
it is scrolled into the display from the rightmost digit. During this mode,
the display blinks to indicate digit entering mode.

« The entering mode is terminated with either the ENTER key or the
DELETE key.

« IfENTER is pressed, the display stops blinking.
- If DELETE is pressed, the display stops blinking and shows 0.

® There are 3 possible states in this example:

State Name Description
SO Initial Power-on state or after DELETE,
display shows O in steady mode.
S1 Data Entry |Digit entry mode, display show digits
in blinking mode.
S2 Display Final display mode, display shows
final value in steady mode

® There are 3 types of event:

Event Name Description
EO Number Entry of any numeric key.
El ENTER |ENTER key is pressed.
E2 DELETE |DELETE key is pressed.
EMBED94.SAM 18 C S Ang

Real-time College 1994 September 1994

® There are three action routines needed:

Action Name Description
AO0 [Reset Display 0.

Al |Build digits Build up display buffer from right
while numbers are entered and blink

display.
A2 |Steady display |Show steady display.
A3 [Null No action.

® State diagram.

E1(A3)

EO(A1)

® State table.

Present State Event Action Next State
SO EO Al S1
El A3 SO
E2 A0 S1
S1 EOQ Al S1
El A2 S2
E2 A0 SO
S2 EO A3 S2
El A3 S2
E2 A SO

EMBED94.SAM 19 CShm

£l

Real-time College 1994

September 1994

¢ The complexity of the system has thus been broken down into:

« A number of action routines.

. A service routine to scan the keypad and update display.
« A state stable.

+ A very small main program.

® The main program:

Initialisation
STATE=S0

i&

Read input buffer
Scan state table

|

Execute action routine

EMBED%4.SAM

20

CSAng

Real-time College 1994 September 1994

® The keypad and display service routine may be implemented as an
interrupt service routine based on 10-ms clock ticks from a
programmable timer module for example.

[Interrupt Service Routinej

Update display

Scan & debounce keypad
Update key buffer

EMBEDY4. SAM 21

CSAmg

Real-time College 1994 September 1994

Simulators

e Simulators are programs that run on a computer, normally with a
different processor from that of the target system, and simulate in
software the operation of the target system.

¢ Many simulators are available in the PC environment now.

e The user interface of a simulator is usually a window environment
showing simultaneously a number key information required in the
tracing or debugging of a program.

¢ For example, the following windows are typically shown in the
Assembly Language screen:

« Program window

+ Register window

« Memory window
Status window

e When C code is executed, the simulator may switch the window to
a C screen which has:

« C code window
Variable window

e A command menu is available for carrying many other functions.

An example is as follows:
. File menu - for loading & executing code file, assigning port file, etc.
Set - for setting breakpoints, selecting interrupt, etc.
Clear - for clearing breakpoints, clearing interrupts, etc.
- Display - for displaying parameters, symbols, disassembled code, etc.
- Modify - for changing window addresses, register contents, etc.
Go - for starting or resuming program execution.
Undo - for undoing a number of instructions.
Option - for setting options such as subroutine skipping, trace on/off.

Exit - for getting out of the simulator.

EMBED94.SAM 22 CS Ang

Real-time College 1994 September 1994

Cross Assemblers and Linkers

® Cross assemblers are programs that run on a computer with a
different processor from that of the target system, and assemble

programs written for the target system into relocatable object
code.

® The linkers then relocate, usually with other object modules such
as library modules, to the desired execution addresses for the

target machine.

® Many cross assemblers for microprocessors and microcontrollers
are available for the PC.
® Common features of cross assemblers are:
« Provision for using macros in program, thus macro-assembler.
Conditional assembly.
» Assembly time calculations.

+ Listing control.

EMBED94 SAM 23 C$Ang

Real-time College 1954 September 1994

Cross Compilers

® Cross compiler are programs that run on a computer with a
different processor from that of the target system, and compile
high level language programs written for the target system
typically into assembly language programs.

® The use of cross compiler can reduce program development time
significant for large project.

¢ It also make programs more portable, since they are written in high
level languages such as C.
® A typical cross compiler consists of:
+ Macro preprocessor
« Parser
+ Optimizer

- Code generator

EMBED94.5AM 24 C S Ang

Real-time College 1994 Sepiember 1594

Cross Compilation from C to Executable Code

® The procedure for getting a program written in C to run in an
embedded system consists of the following steps:

1. Write a run time startup routine in assembly languge. (well, you
can't escape, can you?)

2. Assemble the startup routine into object module.
3. Write your application program in C.

4. Compile your C program into assembly language program. There may be
more than one program or file.

5. Assemble your application program(s) into object module(s).
6. Link the run time startup module, the application program module(s) and
all necessary libray files to produce the run time module.

® Run Time Startup Routine. The function of this assembly
language routine is to do the following:

Set up the stack. This is done before calling a C function. The stack
stores function arguments, return addresses and local variables. It is also
used by others including library routines and assembly language routines.

+ Call the C main fucntion.
* Provide low level routines for I/O or other hardware related functions.

» Move the constant and initialized data section into RAM if the program
executes out of ROM.

EMBED94. SAM 25 CSAng

Real-time College 1994 September 1994

An Example of Startup Routine

® The following is an example of a run time startup routine for a
6809 system based on the 2500AD C compiler.

e The default name for the startup routine is c6809r.src

® Setting up stack pointer.

stack: .equal TEEfh ;8et stack below EPROM
c6808rt_startup:
ldd #stack
subd #1ib_ temp constants_size
;allocate Lib temporary storage
std __lib_ temp_ptr ;Store ptr to temporary storage
tfr d,s

® Defining sections. The compiler uses four data classes:
- program,
+ const data,
- init data and

+ unini t__data.

And the corresponding library sections:
+ lib_program,

+ lib const_data,

.+ 1ib_init_data.

Plus two other sections:
- lib_temp constants and

- 1lib_temp constant end.

EMBEDS4 SAM 26 CSAng

Real-time College 1994

September 1994

¢ The linker links sections in the order they are defined. The run
time startup routine must define all the sections even if some other
empty. This allows the linker to calculate the size of constant and

initialised data. An example:

; Define sections that will be used. Doing it here generates the
; propaer linking order.

vectors: .section restart & interrupt vectors section
vectors addr: -equal $

pagel: .section pagel ;page0 section
page0_addr: -equal $

bank table: .section ;bank table section
bank:ﬁable_addr: .agual $

program: .section ;program section

prog_addr: .equal $

runtime program: .8ection ;start of runtime support section
runtime program addr: .equal $

1lib program: .8ection ;library program section
lib_program addr: -equal $

const _data: .saction ;constant data section
const_data addr: -equal $

lib_const data: .8ection ;library constant data
1ib_const__data__addr: .equal $

const_data end: .section ;end of program & constant data
consat _data end addr: -aqual $

init_data: .saction /initialised data section
init_data addr: .equal 8

runtime_init data: .8action sinitialised data saction
runtime ini t_data addr: .equal]

lib init data: .8action slibrary init data section
lib_init data addr: -aqual §

init._data end: .8ection ;end of all initialisad data
init data end addr: .equal 8

uninit data: .8action suninitialised data section
uninit data_ addr: .aqual §

uninit_data end: .section ‘end of all uninitialised data
uninit _data end addr: .equal $

3 NE e e we

'__1lib temp ptr-'.

r

The following sections are used to generate offsets for the library

temporary storage locations.
each location referenced as an offset fram the value in stored in

They are actually on the stack, with

lib temp constants: .section offset 0, ref only

lib_temp constants _end: .section stacked, ref only

lib_temp constants_size: .equal 8 /size of temporary constants
EMBED94 SAM 27 €S Ang

Real-time College 1994

September 1994

® Moving initialised data into RAM.

; move constant & initialised data into ram

ldd
subd
beq
ldx
ldy
?init loop: pshs
lda
sta
puls
subd
bne

#init_data_end addr
#init_data addr

?no_init_data ;8kip move if size = 0

#const data end addr ;load addr of init data

#init_ data addr ;1d runtime address

a ;save high byte of data size

, X+ ;load socurce byte

P 'ad ;store source byte

a ;restore high byte of data size
#1 ;decrement byte count

?init_loop

® Zeroing the uninitialised data area. This is required by C.

; zero uninitialised data area

?no_init_data:

ldad #uninit_data_end addr
subd lunzn;t data " addr ;get size of uninit data
beq ?no_ un1n1t data ;skip initialisation if = 0
1dx #un1n1t data addr
?uninit_loop:
clr X+ ;zero uninitialised data area
subd #1 ;decrement byte counter
bne ?uninit loop
?no_uninit data: B
.equal $
clra ;enable interrupts
tfr a,ccr
bsr _main ;execute program
bra c6808rt_startup

EMBEDS4 . SAM

28 C 8 Ang

Real-time College 1994 September 1994

® Handling I/O functions. If the C library functions for input and
output are used, the following must be provided:
* input and output jump table and

+ device drivers.

;The locations containing input and cutput device number are —_standard in
;and —standard cut and they must be declared global.

;The jump table must be named __input table and _.output table and declared
;global.

-global —_Standard in

.global __standard_out

-global _ output_table

-global __input table
. Standard in: .word 0 finit to serial input port
__standard_out: .word O ;init to serial output port
__output_tabla: -word serial out ;address of serial port output routine
__input table: -word serial in /address of serial port input routine

;Device drivers
serial in: bsr get character
rts

serial out: bsr store_character
rts

EMBEDY4. SAM 29 CS Ang

EY

Real-time College 1994 September 1994

A C Program Example for Cross Compilation

e An example of a C program used to illustrate the procedure of
cross compilation and simulation is shown below.

/*******tt***t**********ii*********tit**iiti*****t******t****i*t*t**t*****/
/* A Four Function Calculator */

/> calc.c
/*******ii***it****i***iii****t******i***************i*t***ti*******i*****/

.asm

.linklist ;update listing after the link

.aymbols ;include all symbols

.endasm
#define sprintf nf_int_isprintf /* use char & int only sprintf */
#define sscanf ns int_isscanf /* use char & int only sscanf */
#include "cé8cllsr.h” /* include the special function regs */
#include "c68cllio.h” /* include printf prototypes */
#define TX INTERRUPT_ENABLE 0x80 /% transmitter interrupt enable bit */
#define RX_INTERRUPT_ENABLE 0x20 /* receiver interrupt enable bit */
#define RX RECEIVER_ENABLE 0x04 /* receiver enable bit */
#define RX_READY 0x20 /* receiver ready bit mask */
extern void line_in (char *) ; /* line input routine */
char upper_ case (char); /* 'upper case' returns a character */
char *next_token (char *) /* ‘next_token' returns a char ptr */
int index; /* general purpose index */
int operandl, operand2, result; /* allocate operand #1, operand #2 *f

/* and result storage */

char input_buffer[30]’ /* allocate input buffer */
char result buffer([30]; /* allocate result buffer */
main ()
{
char operation; /* storage for operation character */f
char *input buffer ptr; /* pointer to input buffer */

/* Disable the serial port receiver and interrupts. */

SCCR2 &= ~(RX_INTERRUPT_ENABLE | TxﬂINTERRUPT_;NABLE | RX_BECEIVER;FNABLE);

while (1)
{
update_simulator_screen (: /* update the simulator display */
for (index = 0; index != sizeof (input;buffer); index++)
{
input_buffer[index] = ' '
}
line _in (input_buffer}; /* input a line */
input_buffer ptr = input_buffer; /* initialize ptr to start of buffer */
itf (upper_case (input_buffer[0]) = Q')
{
break; /* axit program on quit comment */

}

EMBED%4.SAM 30 C S Ang

Real-time College 1994 September 1994

/* Convert operand #1, increment input buffer ptr to start of next token */

if (sscanf (input_buffer ptr, "sd», &operandl) = Q)
{

sprintf (input buffer, "Input Error\n"):

}

alsa

{
input buffer ptr = next_token (input_buffer_ptr);

/* Skip spaces and tabs and store the operation */

while (*input_buffer_ptr = ' 1]| *input_buffar_ptr == '\t'}
input_buffer_ptr++;

op;ration = *input buffer ptr++;
while (*input buffer ptr =— ' r }| *input buffer ptr == '\t°')
inputﬂbuffer“ptr++:
}

/* Convert operand #2, increment input buffer ptr to start of next token */

if (sscanf (input buffer ptr, "3d", &operand2) == 0)
{

sprintf (input buffer, "Input Error\n"):

}

else

{
input_buffer_ptr = next token (input_buffer_ptr);

/* Perform the operation */

switch (operation)

{

case '+':
result

break;

operandl + operand?;

case '-':
result
break;

operandl - operand?;

case '¥';
result
break;

operandl * operand?;

case '/':
result
break;

operandl / operand?;

il

default:

sprintf (input_buffer, "Illegal Operation\n")};
break;
}

/* Convert and display the result */

input buffer ptr += sgprintf (input_buffer ptr, " = 8d ", result);
I

EMBED94.SAM 31 €S Ang

e

Real-time College 1994

September 1994

}

for (index = 0; index != sizeof (result buffer); indax++)}

{
result_buffer[index] ="' r;
}
strcpy (result buffer, input_buffer) ;
}
}

/* Input a line up to a carriage return. */

void line _in (buffer ptr)

char *buffer ptr; /*
{
char cl; /*
SCCR2 |= RX_RECEIVER_ENABLE; /*
while ((SCSR & RX_READY) == 0) A
{
}
¢l = SCDR; /*

while (cl t= '\r')

{

buffer ptr++ = cl; /
while ((SCSR & RX READY} =— 0) /*
{
b

cl = SCDR; /*
}
SCCR2 &= ~RX RECEIVER ENABLE; /*
buffer ptr++ = '\n’; /

*buffer ptr = 0;
}

/* Find the start of the next token */

char *naxt token (string ptr}
char *string ptr;
{
if (*string ptr == '-')
{
string_ptr++; /*
}

ptr to character storage buffer */
scratchpad character */
enable the receiver */f
wait for receiver to go ready */

input character */

store character in buffer */
wait for receiver to go ready */

input character */
disable the receiver */
terminate character string */

skip minus sign */

while (*string ptr >= '0' && *string ptr <= '9°')

{

string ptr++;

}
return {(string ptr);
}

/* Convert character to upper case */

char upper_ case {character)

char character;

{ if {(character >= 'a‘' && character <=
iharacter -= 0x20;

reiurn (character} ;

}

EMBEDS4.SAM 32 CS Ang

Real-time College 1994 September 1994

Procedure for Cross Compilation and Simulation

¢ Assemble run time startup routine:
* x6809 c6809r.src
- The cross assembler will assemble the run time startup routine and create
an object module using the same name and the default extension . obj.
® Compile application program:
c6809 calc.c

The compiler compiles the C program into assembly program and then the
cress assembler is invoked to assemble the assembly program into object
module of 6809 with the extension .OBJ.

Various switch options are available for controlling the compilation and
assembly process. For example, a -S switch tells the compiler to produce
an assembly output file .ASM The assembly listing (calc.asm) of the
C program calc. ¢ is appended at the end for reference.

® Link all the necessary modules:

* link calc.lnk
The linker command file . 1nk contains information necessary to link the
various modules.
® Run the linked program on the simulator:
+ 86809 calc

The simulator loads code file calc.s19, the symbol file calc. sym
and the debug control file calc.dcf.

- It displays the assembly language screen and runs the startup routine until
it reaches the C function main.

The simulator then switches to the C screen.

EMBEDS4. SAM 33 C 8 Ang

Real-time College 1994 September 1994

® Linker command file calc.Ink.

* this linker response file will link the c6809 calc and c6809sr
* *vactors' gets linked at FFFOO

£EFO

* 'page0' gets linked at 0

0]

* 'program’ gets linked at 8000h
8000h

* 'bank_table' gets stacked on top of 'program’
* 'runtime program' gets stacked on top of 'bank_ table'

'lib_program' gets stacked on top of 'runtime_program®

*)

'const _data' gets stacked on top of 'lib program'

*|

‘lib_const data' gets stacked on top of 'const_data’

* 'const_data_end' gets stacked on top of 'lib _const data’

* 'init data' gets linked indirectly at 100h

@100

* 'runtime init data' gets linked indirectly on to of 'init_data’
'lib init_data' gets linked indirectly on to of 'runtime init data‘

'init_data_end' gets linked indirectly on top of 'lib init data’

T D D

'uninit_data' gets stacked on top of 'init_data_end', reference only

* |

‘uninit_data end' gets stacked on top of 'uninit data', ref only

"

next filename is calc.obj

calc

* now that all sections have been Placed, the rest can be stacked.

* the easiest way to do this is with auto stack mode. that way you don't
* have to worry about how many sections there are.

i
* no more input filenamas

* output filename is calc.s19

calc

* libraries are C6809c.1lib, ¢6809s.1ib & c6809m.lib
c6B809¢c include library c6809c.lib in the output file
c6809a include library c6809s.lib in the output file
c6809m include library <¢6809m.lib in the output file

EMBED94 SAM 34 CS Ang

Real-time College 1994 September 1994

® Simulator command file calc.scf

mi ffe8, ffeS%, Program ; Modify Port I/0 Limits

fi c6809t.in, ffeSh, Binary ; Assign Input Port File

fk ffeB ; Rediract Input from Kayboard

mks ffe7, f000, Program ; Modify Stack Limits

sb end, 0, Program ; Set Program Breakpoint

ra input_buffer, Row : 4, Width : Maximum ¢ Display Global Expression
ra result buffer, Row : 5, Width : Maximum ; Display Global Expression
8i IRQ, 2500 ; Set IRD Interrupt Delay

ou on ; Update C Screen On

EMBED94.SAM 35 CS Ang

Real-time College 19%4

September 1994

® Simulator showing an assembly language screen:

File Set Clear Display Modify Go Undo Options Exit
Registers — PC : 8007
F_ DP : 00 U : 0000 A : QO
CCR : d4 S : ffdl B : 00 c6809rt_startup: .equal $§
D : 0000 1dd #STACK
EFHINZVGC X : ffdl subd #1ib_temp_constants_si
11010100 Y : 0000 std __1ib_temp_ptr
tfr d,s
— Status
Chip Undo Trace Br Bkpt ; Set up the S$6551 Serial Port chip.
6809 Off Off Off
Subroutine Cycles Int lda #00011010b
Step 0 None sta serial_control
— Memory
0000 : 00 00 00 03 32 00 ff dl1 OO0 OO0 QOO0 OO0 00 00 002......0.004
0010 : Q0 00 00 GO 00 OO0 00 Q0O OO0 Q0 OO 00 0O QD 00 OOccivnccnns
0020 : 00 Q0 00 Q0O 00 OQO OO0 00 OO0 CO OO GO 00 00 00 00c.iviennnnns
0030 : 00 00 00 Q0O 00 00 00 OO0 00 CO OO0 OO 00 00 00 00evnsncnoecns
0040 : 00 00 00 00 Q0 00 Q0 Q0 00 0D 00 OO0 Q0 00 00 00cvenecvsnen
0050 : 00 Q0 0O 00 00 00 QO OO OO OD 00 00O OO0 00 00 00vverevnnnns
0060 : 00 00 00 OGO 00 OC 00 Q0 Q0 OO0 00 OO0 OO0 00 00 00vvevanacrs
0070 : 00 00 00 OO0 00 OO0 00 OO0 00 QO O0 OO0 00 00D 00 00ceveonnnns

® After running the startup routine, simulator showing the C screen:

File Set Clear
~— main
main ()
{
char operation;
char *input buffer ptr;

while (1)

{

update_simulator_screen ()
for (index =
{
input_bufferf[index]} = '
}

line_in (input_buffer);

input_buffer ptr =

LI

input_buffer;

Display Modify Go Undo Options
Functions : Step

0; index t= sizeof (input buffer); index++)

Exit

Loops : Step Update : Off —

/* storage for operation character *
/* pointer to input buffer *

/* update the simulator display */

/* input a line */
/* initialize ptr to start of buffer *

— Local Variables

Global Variables

EMBED%4.SAM

36 C 8 Ang

Real-time College 1994 September 1994

® After executing the calculator program:

File Set Clear Display Modify Go Undo Options Exit

— line in —-eeeoe______ Functions : Step Loops : Step Update : On —
void line_in (buffer ptr)
char *buffer_ptr; /* ptr to character storage buffer */
{
char cl; /* scratchpad character */
enable_interrupts (): /* enable receiver interrupts */
while ((cl = getchar ()) I= '\n')
{
Enter Port Input Character :
*
*buffer ptr = 0;
disable_interrupts (); /* disable receiver interrupts */
}
~ Local Variables Global Variables
buffer ptr = 0x0330 (32 - ° ")
cl =0
input_buffer[0] = 32 32 32 32 32 32 32 32 32 32 32 32 32 32
result bufferf0} =0 0000000000000 0 000iiiniininnnnn.
® After entering 123 + 456:
File Set Clear Display Modify Go Undo Options Eait
— line in ————— o _____ Functions : Step Loops : Step Update : On —
void line_in (buffer ptr)
char *huffer ptr; /* ptr to character storage buffer */
{
char ci; /* scratchpad character */
enable_interrupts (); /* enable receiver interrupts */
while ((cl = getchar ()) t= ‘\n')
{
Enter Port Input Character :
*
*buffer ptr = 0:
disable_interrupts {(): . /* disable receiver interrupts */
}
r- Local Variables Global Variables
buffer ptr = 0x0330 (32 - ")
cl = -78
input_buffer[0] = 32 32 32 32 32 32 32 32 32 32 32 32 32 32
result_buffer[0] = 49 50 51 43 52 53 54 32 61 32 53 55 57 32 123+456 = 579

EMBED4 SAM 37

C S Ang

Real-time College 1994 September 1994

Emulators

e Simulators are useful cross-development tools in many ways.
There is however one aspect of system testing that simulators
cannot do - to simulate real-time operation.

¢ Emulators are systems that overcome this shortcoming of
simulators by accessing directly the target systems and running
programs in real-time.

® They emulate the behaviour of the microcontroller or
microprocessor in the target system and permit designers to load
programs and to monitor and control the operation of the system.

¢ In the case of microprocessor-based systems, the target
microprocessor is replaced by an emulating processor which has
overall control over the data, address and control bus and thus the
operation of the entire system.

® In the case of microcontroller-based systems, it is more
complicated. Typically, the emulator operates the microcontroller
in the expanded mode so as to gain access to the internal bus. It

must also have:
- extra RAM to hold the application software during development,
+ a monitor program, and

- rebuilt ports to replace those lost in the expanded mode.

® Other features available in an emulator are:

- communication facility between the monitor program and a host
computer,

ability to download object code from the host computer to the target
system,

. ability to display and change RAM contents and processor status of the
target system,

- single stepping and breakpoint features, and

- execution of the application program in full speed.

EMBEDS4.8AM 38 C S Ang

Real-time College 1994 September 1994

An Example of a Standalone Emulator

® A example of a low-cost standalone in-circuit emulator is the
M68HC11EVM designed for developing 68HC11 embedded
systems.

® It has the following features:

* Emulate both the single-chip and expanded-multiplexed modes of
operation.

Code may be generated using the resident assembler/disassembiler, or may
be downloaded through a host or terminal.

Microcontroller ROM is simulated by write-protected RAM during
program execution.

- Two serial links for host and terminal communication.

® The system operates in either one of two memory maps - the
monitor map and the user map.

® Two types of memory map switching are possible. Temporary
map switching allows modification of user memory, and
permanent map switching allows execution of user programs.

® System connections.

Terminal
(PC)
Target Emulator
System Board
Host
Computer

EMBED94.SAM 39 CSAng

Real-time College 1994 September 1994

Development Systems

e Full-featured development systems are systems that support
multiusers and multiple types of processor. An example is the

HP64000.

¢ Basically, they provide editing, compilation, assembly, and
emulation support.

® The design iteration cycle of modify software, compile-assemble-
link, and verify performance is normally very well supported by
user friendly and powerful software tools.

® Debugging is assisted by a logic analyser that monitors the
performance of the target systems.

e Software performance analysis is also provided. This is a feature
not available in low-cost development tools.

® Tt costs 55555

EMBED%.SAM 40 CSAng

Real-time College 1994 September 1994

Microcontrollers

® As mentioned earlier, the inclusion of many I/O, memory, timer
and communications resources on a single chip makes
microcontrollers very useful in real-time embedded systems.

® Many semiconductor manufacturers are producing different
families of microcontroller to suit various applications. The range
is wide - from low cost (~$1) 4-bit chips to high performance
16-bit chips ($50~3100). The Intel 8096 is an example of a 16-bit
microcontroller.

® However, the essential characteristics of the most of these
microcontrollers are the same. We shall look at one - the Motorola

68HCI11.

® The 68HC11 is a family of microcontrollers with members
providing different /O and memory facilities. They can be used in

single-chip or expanded mode.

® The main features are:

- Paralle! I/O - 40 /O lines arranged as five 8-bit ports, two general
purpose and three fixed direction.

- ADC - 8-channel, multiplexed-input, successive approximation with
sample and hold. Conversion time 16 ps for 2 MHz system.

Serial communications - A full-duplex two-wire asynchronous serial
communications interface (SCI) with baud rate ranges from 75 bps to 131
Kbps. A full-duplex three-wire synchronous serial peripheral interface
(SPI) with a maximum master bit frequency of 1 MHz.

Programmable Timer - 16-bit with four stage prescaler, three capture
functions and five output compare functions.

* Memories - ROM (4K, 8K or 12K), EPROM (4K or 12K), EEPROM
(512, 2K or 8K), RAM (256, 512 or 1K).

Others - 8-bit pulse accumulator, real-time interrupt and watchdog.

EMBED94 SAM 41 C S Ang

Real-time College 1994 September 1994

® Architecture of 68HCI11.

MQDA MODB i wa
iR {vsTay) XTAL EXTAL € (vep) XiRQ RESET
MODE CONTROL osc_| L INTERRUPT
CLOCK LOGIC J LOGIC ROM BK BYTES
-
i EEPROM 512 BYTES
§ SYSTEM §
= CPU CORE r — |
=
S
=
S & SERIAL SERIAL
3 | PERIPHERAL || commumiCATION Voo
= BUS EXPANSION aooREsSOATA 1E | | NTERFACE MuNiCAY
z ABDRESS 2 - oss
= =
: T Tt 1 =
] STROBE AND HANDSHAKE 2= «29|ae —.
z Sog PARALLEL 110 B BEEE] =2 AL

FFH A-DCDNVEHTER_.I
CONTROL HHH‘H]

e

H i1 1111

FYYYY YYD CONTROL

g

ELE

£3

Ee NOT BONOED
ON 48-PIN
VERSIONS

¢ The programming model.
- Enhanced M6800/M6801 instruction set (91 new opcodes).
- 16-bit integer and fractional divisions.

- Bit manipulation

SEIT ACCUMULATORS A AND B
OR 16-BIT DOUBLE ACCUMULATOR D

-
k.
=]
i
—
]
[~

15 0 0

[15 X 0] NDEX REGISTER X

(s ¥ 0] INDEX REGISTER ¥

[15 5P 0] STACK POINTER

115 Pt 0] PROGRAM COUNTER

7 o
[§ x w + N 2 ¥ C] COMDITION CODE REGISTER
l [CARRV/BORROW FROM MSB
OVERFLOW
ZERD
NEGATIVE
HINTERRUPT MASK
HALF CARRY (FROM BIT 3}
XANTERAUPT MASK
STOP DISABLE

EMBEDY4 SAM 42 CS Ang

Real-time College 1994

September 1994

® Single-chip operating mode. The chip functions as a monolithic

microcontroller without external address or data bus.

® Expanded-multiplexed operating mode. The chip can access a

64KB address space.
» The total address space includes the on-chip memory addresses.

* The expansion is made up of port B and port C, and control signals AS

and R/W.
Fal
4
PB7
PBG
PBS
PB4
%]
PB2
P81
PBO
PCs
PCS
PC4
PC3
PC2
PCt
PCO }—pp
AS
RW
£
- MCEBHC11A8

A1S

Ald

Al3

Al2

A1

A0

AB

) S —— Y

"HC373

S
RleogeeeRe

® Bootstrap operating mode. A special operating mode that uses a
boot loader program in the bootstrap ROM to load program into

RAM via SCI.

® Special test operating mode. This is a factory testing mode similar
to the expanded-multiplexed mode except that the reset and
interrupt vectors are fetched from external memory locations.

EMBED94.SAM

43

C S Ang

Real-time College 1994
September 1994

® Memory maps.

- In expanded mode, the areas not used internally are for external memory
and 1/0.

. Ff an external memory or I/O device is located to overlap an enabled
internal resource, the internal resource will take priority.

256 BYTE RAM
(MAY BE REMAPPED TO ANY
4K PAGE BY THE INIT REGISTER)

E

e W o Wz

64 BYTE REGISTER BLOCK
{MAY BE REMAPPED TO ANY
4K PAGE BY..THE INIT REGISTER)

w777 W ez Vi

512 BYTE EEPROM
{BYTE OR BULK ERASE)

BOOT SPECIAL
8F40 | pam BFCO MODES
INTERRUPT
----- VECTORS

BFFF BFFF

$B000

EXT
T Wz e %
EXT

7 1221:: —

% j %
//% //% //// % _____ / ™ i

v,

NV

$E000

swerr Y /A Wl sl f
SINGLE CHIP EXPANDED MUX SPECIAL SPECIAL
BOOTSTRAP TEST
EMBED94 SAM 44

CS Ang

Real-time College 1994 September 1994

A Design Example Using 68HC11

® An example of a small embedded system using a 68HC11 in the
single-chip mode.

® The system functions as either a Digital Clock or a Digital Timer.

® Digital Clock.

* Display time in 12 or 24-hour mode.

* A backup battery is used to keep time in the real-time-clock chip in case
of power failure. '

- Three push-button switches (SET, +, and -) are used to set time.

e | () oN/OF?

N o
- . | 1o

o -

® Digital Timer.
* Count-up timer in HH:MM: SS.
* Three push-botton switches (START, STOP and RESET) for usual timer

control.
‘_F-_—__:i-_‘—*u*__—ﬂ—‘_ﬁ——ﬁ'_;_- ONSOPP
I_I- []- 1 (oo
,__ ﬂ . . O stor
———— - all () RESET

EMBED94 SAM 45 C S Ang

Real-time College 1994 Sepiember 1994

® System configuration.
* A MC68HC811E2 as the embedded microcontroller.
- A MC146818A RTC chip with battery backup to provide real time.
* An LED display submodule for displaying time.
* A set of function selection switches,
* A buzzer used as audio feedback.
* An optional RS232 serial link for external setting of time.

< RS232

RTC

Function | ’*
Switches

——i’ LED Display

68HC811E2

MICROCONTROLLER

Buzzer

EMBED94 SAM 46 CS Ang

Real-time College 1994

September 1994

® Software design. Although the operation of the system is
relatively simple, it is still implemented as a number of small
subroutines for ease of testing and upgrading.

Subroutine Description

1 |BOOTSTRAP Initialise, read switches and jump to CLOCK,
TIMER or test routines.

2 |INITIAL Initialse registers, I/O and RTC.

3 |DISPLAY Test display by cycling digits: "11:11:11",
"22:22:22" .

4 |ALL Test all functions by reading time from RTC and
displaying it.

5 (TIMER Count up timer.

6 |CLOCK Real-time clock.

7 IMIN_INC Increment minute_field in time_buffer.

8 |HOUR_INC Increment hour_field in time_buffer.

9 |TEST_SECOND |Detect closure of button_1 for synchronisation.

10 INO KEY Detect release of all buttons.

1T |BZR Beep.

12 |DELAY Delay.

13 |S_DELAY Short delay.

14 IBZ DELAY Beeping duration.

IS |[WATCHDOG Arm watchdog.

16 [UPDATE_DISP |Update display_buffer, send it to display module.

17 {SET RTC Set RTC.

18 IUPDATE RTC |Update RTC.

19 IUPDATE_TIME |Update time buffer.

20 |WRITE_RTC Write one byte into RTC RAM.

21 [READ RTC Read one byte from RTC RAM.

22 |RTC_IRQ Interrupt service routine requested by RTC at
4HZ.

EMBED94.SAM

47

C3S Ang

Real-time College 1994

September 1994

Append

;calc.asm

ix] Assembly Listing of cal.c

;An assembly program produced by c6809 cross compiler. The C source

;program 18

program:
const_data:
init data:
uninit data:
bank_table:

;/ .asm

r

; .aendasm
;
;int index;

’

index:

calc.c

.saction
.saction
.saection

.gaction
.saction
. program
.llchar ?
. longchk off
.extern page0 _ operl
.extern page0 __ operl high8
.extern page0 _ oper?2
.axtern pagal d_pperz_highB
.axtern page0 _ lib temp ptr

;update listing after the link
;include all symbols

.linklist
.symbols

.uninit data
.1_align
.ds 2

+int operandl= operand2= result;

. v

_operandl:
_operand2:

rasult;

ds 2

?bhar input_puffer[30];

r

_input_buffer:

.ds 30%*1

;ichar result buffer[30];

r

’

result buffer: .ds 30%1

.prograrm

_main .equal S

?ASCO: .equal 0

?2TSCO: .equal 2

?LSCO: .equal 3
leas -?TSCO-?LSCO,s

;while

?TOLO: .equal $

EMBEDS94 SAM

48 C S Ang

Real-time College 1994 September 1994

lda #1

cmpa #0

lbeg ?BOLO
PPLCO: .equal $
;update_simulato;_screen O

jsr _ppdate_simulatog_screen

;index = 0;

clr _index

clr _index+1
?FLC1: .equal §
;index 1= sizeof (input_buffer) ;

ldd index

cmpd #30

lbeq ?BOL1

Jmp ?FLB1
?FLAl: .equal $
;index++)

ldd _indax

addd #1

std _index

imp ?FLC1
?FLB1: equal s

;input buffer|index] = '
1dd index
addd ;'input buffer
std _:bperZ—
lda #32
sta [__oper2]
Jjmp ?FLA1
?B0OL1: .aqual $
;line in (inpu;ﬁbuffer)
ldd #_input buffer
jsr line in
;input buffer ptr - inpﬁ;_buffer
ldd # input buffer
std -3+?LSCO, s
; (upper case (input buffer([0]) == 'Q")

.

lda _input buffer+0

jsr _upper case
cmpa #8681
lbne ?BOLZ2
?PLC1: .equal $
;break;
jmp ?BOLO
;(ns_int isscanf (input_buffer_ptr, "$d", &operandl) == 0)
?BOL2: .equal $
.const_data
?PLC2: .byte "%d",0
.program
ldd # operandil
pshs d

lcix #?PLC2
ldd ~3+?L8C0+2, s

jsr _ns_int _isscanf
leas 2,s
cmpd #0

EMBED94 SAM 49 CSAng

Real-time College 1994 Septernber 1994

lbne ?BOL3
?PLC3: .equal $
;nf_int_;sprintf (input_buffer, "Input Error\n")
.const_data
?PLC4: .byte "Input Error"®,0ah,0
.program
ldx #?PLC4
ldd #_input buffer
jar _pf_int_isprintf
;alse
Jmp ?EQI3
?BOL3: .equal $
;input buffer_ptr = next tocken (inputﬁbufferﬂptr)
ldd -34+7L8CO,s8
jsr _next token
atd -3+?L8CO, s

;while

?TOLA: .aqual -]

; (v¥input_buffer ptr == ' ' || *input buffer ptr == "\e*")
lda [-3+?LSCO0,s]
cmpa #32
lbeq ?PLCS

20CCQ: .aqual]
lda [-3+?1LSCO,s]
cmpa #9
lbne ?BOL4

?PLCS: .equal 5

;input_buffer ptr++
ldd -3+7?L8CO,s
addd #1
std -34+?L8CO, s

jmp ?TOL4
?BOL4 : .equal -]
;oparation = *input buffer ptr++
1ldd -3+?LSCO, s
std +0+?L8CO, 8
addd #1
std -3+7?LSCO,s8
ldd +0+?L8SCO, s

tfr d,y
ida 'Y
sta -1+?L8CO,s
;while
?TOLS5: .equal]
; (*input buffer ptr == ' ' [| *input buffer ptr == "\t')
lda (-3+?LSCO0, sl
cmpa #32
lbeq <?PLC6
?OCCL: .equal 8
lda [-3+?LSC0,s]
cmpa #9
lbne ?BOLS5
?PLCE: equal 8

;input_buffer ptr++
ldd -3+7LSCO, s
addd #1
std ~3+7L8CO, s

EMBED%.SAM 50 C 8 Ang

Real-time College 1994

September 1994

;

jmp ?TOLS
?BOLS: .equal $
;(n8_int_isscanf (input buffer ptr, "%d", soperand2)
.const data
?PLC7: “byte "$d",0
-pProgram
ldd #_operand2
pshs o
ldx #?2PLC7T
1dd -3+?LSC0+2, s
jsr _ns int isscanf
leas 2,s
cupd #0
lbne *?BOL&
?PLCH: .equal $

/nf_int isprintf

{input buffer, "Input Error\n")

0)

.const_data
?PLCY: -byte "Input Error",Oah,(
.pProgram
ldx #?PLCY
1ldd #_input buffer
jsr _nf int isprintf
;aelse
jmp ?EQI6
?BOL6: .equal 8
7input_buffer ptr = next token (input_buffer ptr)
ldd -3+?LSCO0, s
jsr _next token
std -3+?L8CO, s
; {operation)
1ldb -1+?L8SCO,s
saex
std __oper2
?PLCL10: .equal $
ldd #43
subd _ oper2
lbeq ?SWLO
1ldd #45
subd oper2
lbeq ?8WL1
ldd #42
subd operz2
lbeq ?SWL2
ldd #47
subd _ oper?
lbeq ?SWL3
lbra °?8WL4
;case '+';:
?8WLO: .equal [
;result = operandl + operand?
ldd _operandl
addd _operand2
std result
;break ;
EMBED94.SAM 5

CS Ang

Real-time College 1994

Scptember 1994

;case '-':

?8SWL1:
;result =

;break;

;Case Tk

r

?SWL2:

Jjmp ?BOL7

.equal $

operandl - opearand2

ldd _operandl
subd _operand?
std _result

Jmp ?BOL7

.equal 8

;result = operandl * operand2

;break;
;
;

;casa "/':

?8WL3:

ldd _operand2

std __oper2
ldd _operandl
jar mult int

std :;ésulz

jmp ?BOL7

.aqual $

;result = operandl / operand2

Ny Mg N

;default:

?SWLA:

;nf_int_isprintf

?PPLC11:

;break;

?BOL7:

r

1dd _operand2

std __operZ2
ldd _operandl
jsr __div int

std _reaﬂIt

jmp ?BOL7

.aqual $

.const _data

(input_buffer, "Illegal Operation\n"®)

.byte "lllegal Operation",0ah,0

.program

ldx #?PLC11

1dd #_input buffer
jsr _nf int isprintf

Jjmp ?BOL7

.equal]

;input _buffer ptr += nf int isprintf

result)

?PLC12:

.const_data

.byte " = %4 ",0
.program
ldd _result
pshs d

{(input_buffer ptr, " = %d ",

EMBEI94 5AM

52

CSAng

Real-time College 1994 September 1994

ldx #?PLC12

1dd ~3+?L8SCO+2, s

jsr _nf int isprintf
leas 2,s

std __oper2

lda -3+?LSCO0, s

addd ___oper2

std -3+4+?LSCO, s

?EQI6: .equal $
?EQI3: . equal $
sindex = 0;

clr _index

clr index+1
?FLC8: .equal $

;index '= sizeof (result“buffer);
ldd _index

campd #30

lbeq ?BOLS8

jmp ?FLBB
?FLAS: .equal 8
;index++)

ldd _index

addd #1

std _index

Jjmp ?¥FLC8
?FLB8 : .equal 8

iresult buffer{index] = ' °*
- ldd index
addd ¥ result buffer
std __oper2
1da #32
sta [__oper2)
Jjop ?FLASB
?BOLS: .equal $
;strcpy (rasult buffer, input buffer)
ldx # input buffer
ldd Q:reaulE_buffer
jsr _strecpy

r

Jjrap ?TOLO
?BOLO: .equal $
?BOF0: .equal 8
leas ?LSCO+?TSC0+0, s
rts
_line in: .equal §
pshs d
?ASC1l: .equal o
?TSC1L: .equal 2
?LSC1: .equal 1

leas -?T8C1-?LS8C1,s
;enable interrupts ()

Jjsr _enable_interrupts
;while
?TOLY: .equal S

EMBED94.SAM 53 CSAng

£ Ak

Real-time College 1994

September 1994

; ((c1 = getchar (}) '= '\n’)

.

jsr
sta
cmpa
lbeqg

?PLC13:

;*buffer ptr++ =
ldd
std
addd
std
ldd
std
lda
sta
Imp

?BOL9:

;*buffar ptr++ =
ldd
std
addd
std
lad
std
lda
sta

;*buffer ptr = 0
ldad
std
lda
sta

getchar
T1+7L8C1,s
#10
2BOLY

.equal $

cl

+0+?L8C1+?TSCl,s
+0+7?LSCl,s
#1
+0+?LSC14+?TSCl, s
+0+?LSC1,s

oper2
Z1+7L8C1,s
[__oper?]

?TOLY
.equal $

L] \n]
+0+?LSC1+7?TSC1, 8
+0+?L8C1,s
#1
+0+?LSC1+?TSC1, 8
+0+?LSC1,s
__oper2
#10
[oper2]

+0+?LSC1+7TSCl,s

__opar2
#0

[__oper2]

;disable interrupts ()

jsr

?BOF1:
leas
rts

next token:
pshs

?ASC2:

?TSC2:

?LSC2:

; (*string_ptr =

¥

lda
cmpa
lbne

?PLC14:

;string ptr++
ldd
addd
std

;while

?BOL10:

?TOL11:

; {*string_ptr >= '0' && *string_ptr <= '9’')

_§iaablq_intarrupts

.aqual $
?LSC1+?TSCl+2,s
.equal 8
d

.equal 0]
.equal 0
.equal 0

l_l)

[(+0+?LSC2+?T8C2, s8]

#45
?BOL10
.equal S

+0+?LSC2+?TSC2,s

#1
+0+7?LSC2+7?TS8C2, s
.equal $
.equal §

EMBED94.5AM

54

CS Ang

Real-time College 1994 September 1994

lda [+0+?LSCZ2+2TSC2, 5]

cmpa #48
lblt 9?BOL11
PACC2: .aequal $
lda [+0+?LSC2+?T8C2, 8]
cmpa #57
lbgt ?BOL11
?PLC1S: .equal $
;atting_ptr++
ldd +0+?2L8C2+?TSC2, s
adda #1

std +0+?LSC2+218C2, 8
jmp ?ToL11
?BOL11: .aequal $
;return (string_ptr)
ldd +0+?LSC2+?TSC2, 8

?BOF2Z: .aqual $

leas ?LEBC2+?TSC2+2,s

rts
_upper_case: .equal 5

pshs a
?ASC3: .equal 0
?PTSC3: .equal 0
?LSC3: -equal 0

r <= 'z")

; (charactar >= 'a' gg characte

r

lda +0+?LSC3+?TS8C3, 8

cmpa #97
iblt 7?BOL12

?ACC3: .equal 8
lda +0+?L8C3+7TSC3, s
canpa #122
iIbgt 7?BOL12

?PLC16: .equal S

;character -= 0x20
lda +0+?LSC3+?TSC3, s
suba #32
sta +0+?LSC3+?TSC3, s
;return (character)
?BOL12: .equal $
lda +0+?LSC3+?TSC3,S

?BOF3: .equal $

leas ?LSC3+?TSC3+1,s
rts
_update_simulatopqscreen: .equal s
?ASC4: .equal 0
?TSC4: .equal 0
?L8C4: -equal o]
?BOF4 : .equal §
rts

EMBED94 SAM 55 C8Ang

iaz

ik

I

Real-time College 1994 September 1994

.global _index
.global _result buffar
.global _line in
.extern _disable interrupts
.extern _nf int isprintf
.axtern _ns_int isscanf
.global _upper_case
.global _rasult
.extern _getchar
.extern _8strcpy
.global _input buffer
.global _update simulator_screen
.global _main
-global _next_ token
.global _operandl
.global _operand?2
.extern _enable_interrupts
.extern __mult int
.extern __div int
.end

EMBED94.SAM 56 CSAng

