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The following text is for many parts more or less taken from original papers written
by the author and co-workers. In order to make the credit clear Chapter | has parts of
paragraphs that we used for our introduction in the book: Protein structure by distance
analysis, by H. Bohr and S. Brunak, 10S press (1994). Chapter 2 is standart text book
biochemistry. Chapter 3 is partly taken from the paper: Protein fold class prediction by
knowledge based systems, by M. Reczko, H. Bohr, P. Sudhakar, A. Hatzigeorgiou and
S. Subramaniam (to be published in Protein Ingeneering {1994). Chapter 4 is from the
paper: How many fold classes are to be found, by Per-Anker Lindgaard and H. Bohr
(submitted to FEBS Letters {1994}, Chapter 5 is partly from the article: Initial events in
protein folding from an information processing viewpoint, by H. Bohr and P. G. Wolynes,
Phys. Rev A. 46, 5242 (1992). Chapter 6 is from the paper: Domain growth in protein
folding, by J. Wang, H. Bohr and P. G. Wolynes (unfinished but partly published in the
book: Protein structure by distance analysis, 105 press (1994). Chapter 7 and 8 are from
a paper called: Thermodynamics and Topology of clossed membranes, by H. Bohr, John
Ipsen and Steen Markvorson (submitted to J. de Physique, 1993). The figure material is
from the book: The structure and action of proteins, by R. Dickerson and 1. Geis, W. A.
Benjarmin Inc. {1969).

Introduction

The field of protein structure determination contains a vast and ever increasing amount
of scientific contributions due to the great importance of protein design and function-
ality in bio-technology, and, even more owing to the fact that prediction of accurate
3-dimensional structures of proteins from their sequence is still an unsolved problem.

In the light of this vast landscape of scientific information and achievements, aiming
ultimately at fulfilling the goal of protein structure prediction from genome sequence data,
the present collection of lecture notes is intended to address the more limited aspect of
protein structure determination in the distance geometry approach in order to obtain
a clearer picture of the state of the art for a part of the subject while avoiding more
general notions of protein folding already described well elsewhere(1]. In discussing protein
structure determination it is important to present both experimental as well as theoretical
aspecta of the subject in order to obtain a balanced presentation of facts and speculation.

The distance geometry approach to protein structure determination, which we shall
focuse strongly on in these lecture notes, is in the following to be understood as protein
structure analysis, experimentally as well as theoretically, carried out on the basis of ex-
act distance measures. With respect to experimental techniques this implies that protein
structures are described in time or space by means of detailed distance information within
the molecule, rather than protein structure formation being described by a phencmeno-
logical study of e.g. bio-chemical reactions. The detailed experimental techniques can
either be X-ray Diffraction Crystallography, Nuclear Magnetic Resonance, NMR, meth-
ods, Circular Dichroism methods, Infrared Spectroscopy, Neutron Scattering etc., the first
technique being the most established, the second dealing with problems of solvents, the
third having advantages in particular structure analysis.

As far as theoretical studies are concerned the limitation of distance geometry ap-
proaches implies that protein dynamics and protein structure prediction are studied under
the constraints of certain given experimental distance information or under the fulfillment
of certain distances within the protein in order to limit the degree of uncertainty in protein
structure analysis or structure prediction.

Although the problem of protein structure prediction from sequence is greatly reduced,
given knowledge about certain inter-molecular distances, one should stilt be aware of the
complexity in generating a full and detailed 3-dimensicnal protein structure from often
very sparse, and at best, incomplete information about distances within a protein. In
fact, many experiments can only give distance inequalities rather than exact real valued
distances and often in a 2-dimensional form whereby the mathematical puzzle of generat-
ing the full 3-dimensional structure is, in principle, rendered unsolvable. However, there
are various approXimation techniques|2] described in here in chapter 3 and 5 that can
circumvent these problems mostly with the use of computer simulation techniques. For a
very detailed and thorough treatment of the mathematical problems in distance geometry
analysis the reader is refered to the book by C. M. Crippenr and 1. F. Havel: "Distance
Geometry and Molecular Conformations”[3, 4].

Apart from generation of 3-dimensional structures of proteins from distance constraints
the distance geometry approach to protein structure analysis has also been understood in
a wider sense to encompas energy potential methods based on distances and angles in the
molecules. One approach([5] is to transform the problem of protein structure prediction
into the problem of minimizing an energy function for an analogous spin glass system[8§)]



where the spin states correspond to protein configurations. This method is in line with dis-
tance geometry approackes in the sense that such energy function optimization basically
implies satisfying a great number of distance constraints and simultaneously comparing
sequences corresponding to these protein configurations. Somewhat in the same spirit
is comparative protein modelling, performed by satisfying a set of spatial restraints and
aims at making exhaustive enumerations of protein conformations. Another use of poten-
tial function is to identify correctly formed protein structures rather than predicting new
structures from sequences. Moreover a whole new self-consistent molecular field theory is
used to predict 3-dimensional structures of globular proteins.

A modern theme recurrent throughout modern protein research has been the concept
of general classes of protein folds rather than describing specific protein structures. It is
believed that proteins appearing in organisms are based on a limited repertoire of different
core structures or folding motifs. In the past it has been common to classify proteins with
respect to sequence similarity for evolutionary purposes or, most commonly, to group
proteins with respect to their function so that, for example, proteases go in one group,
immunoglobulins in another etc. The concept of protein folds[7] is, however, related to
topological characteristica so that given folds belong to the same fold class if they share
the same topological structure. A fold is a distinct geometrical domain of a protein {e.g.
a cluster of super secondary structures), either of the whole protein or part of it. Often
a necessary requirement, albeit not a sufficient, is that protein folds belong to the same
class if they have more than 50% sequence identity, Proteases are for example devided
into several fold-classes. A typical example of a fold class is the Tim Barrel class. One
of the many questions concerning fold classes, and addressed in this book, is the problem
of being able to identify them from sequence studies[26] and from distance geometry
analysis. Another problem is to find an appropriate choice of parameters to link the
different classes, such as a parameter for packing of secondary structures. This question
arises especially when an entirely new protein, with practically no sequence similarity to
any known structure, has to fit into or establish a relationship to one of the known classes.
A very relevant question is in this context to ask how the most "extreme” classes could
be charactenized.

Connected to these protein folds is the new idea of "threading” [10, 11, 21, 13} meaning
that protein sequences are being "threaded” through various different folding motifs in
order to identify misfolded structures through an empirical evaluation function that can
distinguish incorrect from correct folds. For reasons of simplicity folding motifs have been
represented as linear profiles of tocal environmental properties independent of the type
of fold being considered, e.g. secondary structures, at each residue in a known protein
structure. Specific sequences can be given evaluation scores depending on preferences of
the alligned residues for their respective environmental categories. Instead of representing
folding meotifs as linear profiles they can be represented as 2-dimensional contact matrices
or as distance matrices(14, 15, 16, 17, 18] in the spirit of this forum.

Predicting which fold-class a given protein belongs to on the basis of its sequence
can also be of great help in predicting distance matrices and a whole plan for predicting
protein structures in the distance matrix approach could be deviced, perhapse leading to
higher accuracy at lower sequence similarity than has yet been achieved. According to
this plan{26] neural networks are trained on proteins from each fold-class exclusively, in
order to develop an ability to predict distance mattices for new proteins belonging to the
fold-class of the training set. There is good reason to believe that distance matrices can

be fairly correctly predicted by neural networks for proteins homologous te the ones the
network has been trained on[20]. The long term hope is to be able to develop prediction
schemes for protein folds and (the inverse folding problem} to understand how much
changes in their sequence is required for transforming a fold from one class into another.
In more direct words one could ask how many substitutions are needed to give, for example
Lysozyme, the functionality of a Cytochrome.

Protein structure determination is indeed an interesting and versatile forum for sci-
entific discussions of the methodologies of bio-technology. All considered it is fair to say,
concerning the goal of generating new protein structures, that while the experimental
efforts focuss on still higher accuracy in protein structure determination the theoretical
counter part of prediction methodologies is rather, till the present, achieving the gross
features of protein structures at low resolution.

Nondum clivum ersuperavimus[22).
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2. The basic structural elements of proteins

In this chapter we shall only briefly introduce the basic notiens in the field of protein
structure anatysis. There are highly recommendable textbooks in molecular biology that
give introductions to protein science from many different perspectives(l, 2, 3]. Concerning
the build up of the protein backbone by elementary atomic constituents there are only a
few rules to learn and therefore it is very easy to acquire the basic knowledge about the
assemnbly of a realistic, plastic protein toy model. These rules are also fairly easy to derive
from a little quantum chemistry. However, there are more subtle facts about the basic
assemnbly of the peptide chain, such as the broken chiral symmetty and the topology of
the backbone ribbon, that has up to now not been fully explained. It turns out that there
is an interesting differential geometricai study of the one-dimensional backbone chain to
be undertaken and which could be related to the physical conditions of the pre-folding
era of the the protein assembly in the ribosomes.

In this chapter we shall mostly be concerned with the more trivial and fully digestable
facts of protein assembly from a toy model point of view. The first sections will be
concerned with the atomic building blocks and their bonding geometry. The next short

section will be about the few rules that are governing the backbone geometry and the
last sections are about the most well-known ordered domains or substructures seen in
ordinary folded proteins.

2a. The building blocks of proteins.

Proteins are long chain polymers of amino acids. They are linear, non-branched simi-
lar to polyethylene or polystyrene but with a much more versatile nature than the latter
due to the very different type of amino acids involved. The 20 different amino acids have
all an amino link, {CQ — NH}, in commoen but each with a different radical (the side-
chain) attached to a carbon atom termed the C, atom. The amino, or more often called
the peptide, links are connected to each cther in a linear fashion such that the carbonyl

end of one link is connected to the amino end of the next link and so that the resulting
polypeptide chain (the protein without the side-chains) has a clear orientation.

Thus a protein molecule has a fairly easy structure with respect to its atomic con-
stituents being (see figure 1 below) first a nitrogen atom followed by a carbon atom with
a side-chain (one out of 20) attached to it and then finally followed by another carbon
atom with an oxygen attached to it. The remaining sites are accupied by hydrogen atoms.
This peptide unit is repeated typicaly several hundred times (for an average size protein)
but mostly with a different side-chain attached to the C, atom. The link between each

amino acid connecting the carbonyl end with the next amino end has a partial doubble
bonded nature that makes the peptide chain {airly ridgid.

Figure 1 a,b. a: A picture of the unfolded peptide chain. b: All the 20 amino acids
grouped.

The chemical activity of this polypeptide chain is for most parts controlled by the
electrostatic nature of the different side-chains. These 20 common amino acids can be
divided into polar and nonpolar where the polar ones can be either charged positive {ba-
sic hydrophilic) or negative (acidic hydrophilic) and neutral. The nonpolar amino acids
are to a higher or lesser degree hydrophobic. The role of being hydrophilic or hydropho-
bic (turning towards or away from water molecules) becomes, as we shall see later, an
important factor in the folding process when the protein is attaining its "native” active
structure. Figure 1.b above is dipicturing all the common 20 different amino acids. These



amino acids have their side-chains sticking out from the peptide chain (often named the
protein backbone) in a large variety of steric angles dictated by a complicated mixture of
electrostatics and steric hindrance. A given protein with a fixed content of different amino
acids will often attain a large set of different conformations, each being characterized by
specific values of side-chain orientations that are important for the proteins functionality.

Before getting into the detailed geometrical structure of the protein molecules in the
next subsection we shall end this paragraph with an appreciation of the enormous variety
or versatility that the proteins with the building blocks described above provides. The
variety of proteins is far bigger than the amount of atoms in the whole universe. Take for
example an average size protein of 150 amino acids. Since there are 20 amino acid types
{in common use) this gives a variety of 20'% configurations and if we also take into account
all the different conformations each amino acid can attain we arrive at a number that is
many orders bigger than the number of atoms in the universe (which could be estimated
to be around 10%°, only counting visible matter). The size of the variety of protein config-
urations is relevant to the discussion of how the biological evolution can transverse such
a huge state space and still come out with successfull spieces. Later we shall actually see
that there is a way out of this dilemmma since we in chapter 5[20] can show that evolution
of protein dynamics at certain stages, and to a certain extend also the biological evolution
progresses like a neural network with an associative memory that can learn from mistakes.

2b. Chemical bonding and the implication to protein structure.

In order to understand the nature of the chemical bondings in the peptide chain it is
ilustrative to look at similar but simpler examples of chemical bondings in pure carbon
hydrates. From the study of the molecular orbitals in methane and ethylene one can get a
quite clear understanding of the possible bondings that are associated with carbon atoms.
There are for example very pedagogical drawings on these molecular orbitals in the book
on protein structure by Dickerson and Geis[2).

A few general facts about molecular orbits in the relevant atoms of the proteins should
first be mentioned. When, for instance, carbon, nitrogen and oxygen atoms form bonds
they ordinarily use their 2s,2p,,2p,,2p, atomic orbitals. Carbon has four valence elec-
trons, nitrogen five and oxygen six beside the two electrons in the filled 1s orbital that
does not participate in any bonding. Hydrogen has one valence electron. These valence
electrons are not necessarily filling up the most straightforward orbitals but can be hy-
bridized. In the case of methane, € H,, the four orbitals of carbon, 2s and 2p, do not
combine directly with 1s electron orbitals in hydrogen but ate observed to be tetrahe-
drally arranged around the carbon. In this case the carbon orbitals can be thought of
as being combined (hybridized) to form four alike sp® atomic orbitals directed towards
the corners of a tetrahedron and these then each combine with an 19 hydrogen orbital to
build a C — H bond with 2 electrons. Such ¢ type orbitals are cylindrically symmetrical
about the C — H axis with a bond energy of 99 kcal/mol providing extra stability of this
methane molecule compared to the situation of five isolated atoms, see figure 2a. below.
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Figure 2a.. The molecular orbitals of Methane forming a Tetrahedron when hy-
bridized.

[n the case of the ethylene molecule, C H; = C H; we encounter another type of bond,
the double bond. In this case the 23 and two of the 2p orbitals for each carbon atom
hybridized to form three sp? orbitals, lying 120 degrees apart in a plane and resulting in
four o type C — H bonds. In addition the two unused 2p orbitals are combined to form a
different type of C — C orbital, a  bond that is not cylindrically symmetrical about the
C — C axis.

n

Figure 2b.: The ¢ and = orbitals of Ethylene.

It is something in between these two types of bonds we encounter in the protein pep-
tide chain beside the & bond. A simple example of that iz when a carboxyl group, COO-
is ionized. Instead of the usual picture of having a double bond between the carbon atom
and one of the oxygen atoms and a single bond between carbon and the negatively charged
oxygen we rather have a partial double bond phenomena between the carbon atom and
the two oxygens, a kind of resonance phenomena, such that the double bond electrons
are being "delocalized” and the negative charge is "spread” out over the whole carboxyl
group. Similar phenomena is seen in the protein peptide unit where there is a "resonance”
phenomena between the ¢ = O double bond and the C — N single bond with the double



bond electrons being delocalized to form a 7 type orbital that extend over all three atoms
in the chain O — C' — N. This provides extra stability to the peptide chain and gives this
special geometry that is so characteristic for the protein backbone. This extended x bond
in the peptide chain strongly limmits the number of degrees of freedom down to basically
2 variables (the dihedral angles, ¢ and 4} for each amino acid. The energy gained from
forming the peptide = bond is around 32kca!/mol.

Figure 2c,d c: 7 bond across the peptide plane. d: The atoms in the peptide plane,

2¢c. Basic rules of the peptide chain.

In the last section we saw what influence the nature of the chemical bondings made
on the geometry of the peptide chain or, as we shall call it from now on, the protein back-
bone. The extended 7 orbital across the nitrogen, carbon oxygen, N —C 0, atoms forced
the repeated peptide units to lay in a plane. Since any three points will lay in a plane
anyway we mean of course that this ridgit plane also includes the position of the hydrogen
atom attached to the nitrogen. Also the two flanking C, atomic positions are included
in this peptide plan but due to their rotational degrees of freedom they are able to rotate
around their peptide bond which define their dihedral angles (¢ and 1 - the former at the
Ca — N axis and the latter at the C, — C axis). Apart from minor vibrational degrees of
freedom these dihedral angles are the only conformational variables, two for each regidue,
that eventually are to be fixed by the side-chains mutual interactions and steric hindrance.

Before getting into that problem we shall first discuss the remaining reflection sym-
metry left over in the backbone geometry. If we Iook carefully at the peptide plane in
between each C, atom (see figure 2d above) we discover that even though we fix the
peptide plane the C, atom, oposite to the oxygen atom, can exchange place with the
latter by a 180 degree rotation around the C — N axis. We shall refere to the one de-
pictured below as the "trans” configuration and the other to the "cis” configuration. It
turns out that the "cis” configuration is slightly less favorable, probably due to a bend
in the peptide chain that is caused by steric problems. Actually only in a few cases we

encounter the "cis” configuration in known proteins and that is mostly associated with

the Pro residue. Furthermore, if we look at the peptide chain from the CO across the €
atom towards the amino group N H we can either have the side chain sticking out towards
the left side or the right side. The former is refered to as the left handed, or the L-form,
of the amino acid and the latter to the right handed, or the R-form. In the biology we
see around us we basically only find the L-form of the amino acids as if they once and for
all have decided to be left handed. This apparant brake down of the reflection symmetry
1s strange because we on larger scales usually see a manifestation of the mirrow symmetry.

As we discussed before, the nature of the chemical bonds in the protein backbone left
us with only two degrees of freedom, the didedral angles ¢ and , around the (', atoms for
each residue. However, up to now we have mostly just considered the backbone geometry
without the side-chains attached to each (7, atom. [t turns out that if we also consider
the side-chains we are ending up with a much more restrictive region of allowed values of
these dihedral angles due to the various steric hindrances and mutual interactions that we
have to consider for each side-chain. Included the side-chains actually makes it necessary
to consider or include another dihedral angle around the Cy — C, axis, usually denoted as
the x angle. If we plot each of the dihedral angles' alowed values for each of the residues
in & protein in a 2-dimensional diagram we discover distinct features that tell us about
the actual local structures that are present in the protein under consideration. For all
known proteins we see in fact a universal patiern in these allowed regions that indicate
the existance of commeon local structures, the so-called secondary structures in proteins.
This brings us to the next subsection.

2d. Secondary Structures in Proteins

Much have been said about this topic in lecture notes on protein structure. We shall
hence limmit ourself to only a brief introduction about the subject.

As we saw from last section there appear a universal pattern in the "local” structure of
almost all proteins known up to row. The fact is that there appear distinct substructures
in each protein that can be classified to be either helical, sheet like and a last category
we denote as random coil. In the last class we include single loops or turns. These dis-
tinct substructures are stabilized by hydrogen bonds which in turn becomes the usual
classifying criteria for these substructures. One could, however, also make the distinction
of these substructures according to the dihedral angles allowed region. To see this we
plot these regions in a 2-dimensional diagram where the x-axis contains the ¢ angles and
the y-axis the 1 angles. Such a plot depictured below is called the Ramachandran plot
and contains many features.. The white areas contain the alowed values and the dark
the seldomly occuring values. Up in the right corner we encounter the sheet structures
and more to the middle we find the helical structures, The most frequently occuring
helical structure is the e with 3.8 residues per turn and that is mostly found to be right
handed. The fractional aumber of residues per winding is due to the fact that it provides
the helical element with maximal stability since the hydrogen bonds appear asymmetrical
in that case (with respect to cylindical symmetry). In figure 3 a,b the helical and sheet



structures are depictures with detailed hydrogen bond patterns. There are proteins with
only helical structures such as the four-helix bundle. The helical structure are also the
only substructures in most globular protein. The other substructures, the beta sheets
can occur both as parallel or anti-paralle] patterns and are the dominant substructures in
immuno globulin and most proteases.

Figure 3a,b. a: 3 different helices, 3,5, a and = helix.
b: Beta-sheet in Silk.
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Figure 3c. ¢: The Ramachandran plot of substructures in the average protein.

These substructures are called the secondary structures because they occur on the
second hierachical level of organisation, the first level being the sequence and the third
level being the tertiary structures, the end product of the folding process. There has
been an extensive effort in the field to produce prediction schemes that could determine
the occurence of these structures from sequence information. These secondary structures
will again arrange themselves into tertiary, or sometimes even into quartiary structures
consisting of several domains of tertiary structures.

2e. Tertiary structure and distance geometry.

By the tertiary structure of a protein we mean the "native”, folded, 3-dimensional
structure (backbone as well as side-chains). In the case where the protein consists of
ordered domains of folded subunits of secondary structures we call the 3-dimensional
complete structure of the assembled domains for the quartiary structure. Later in the
text we shall discuss various prediction schemes for the tertiary structure. Here we shall



like to introduce a convenient way of representing the 3-dimensional protein structures

in the so-called distance geometry approach which is very much connected to the central
issue in these lectures.

In the distance geometry approach we utilize predominantly the distance matrix which
is defined as the 2-dimensional matrix whose elements are the actual distances between the
atoms in the protein. In most cases we only include the distances between the C, atoms
and are then only concerned with the structure of the backbone. The matrix element di;
is hence the distance between the position of the C, atom of the i'th residue and that of
the j'th residue. Since it is often only passible to measure distances approximately cor-
rect we often work with binary distance matrices. They are dependent on what value one
choses as a threshold for defining the binary distances or (better) the distance inequalities.
This means that if we chose a distance threshold of 8 A all distances below 8 implies that
the corresponding matrix element is 1 while distances above 8 make the matrix elements 0.

Below in figure 4 we show a binary distance matrix where the dark portions correspond
to i and the light ones to 0. The amino acids are numbered along the x-axis as well as
the y-axis. Since every amino acid is close to itself and its neighbours the diagonal and
the next to the diagonal lines are dark. For pedagogical reasons we have made the next to
the diagonal line white in order to be able to distinguish the areas close to the diagonal,
l.e. the close neighbourhood around each amino acid. It is interesting and important that
all the regular substructures such as the secondary structures can easily be determined
from the distance matrix. For example the helical structures will be elongated dark areas
(sausages) along the diagonal (extending out 4 lines from the diagonal when being alpha
helices), while the anti-parallel beta sheets are represented by bars orthogonal to the di-
agonal and sticking out as much as the length of the paticipating strands. The parallel
beta-sheets are rods being parallel to the diagonal and detached from that.

Figure 4: 2-dimensional plot of binary distance matrix of Rubredoxin, Threshold=8
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3. Structural Classification of Folded Proteins

lem

In this chapter we shall introduce and discuss the concept of protein fold classes, Apart
from mentioning the pheromenology of deviding proteins into fold classes {i.e. division
with respect to appearance of structural domains) there is the quite successful story of
predicting what fold class a protein belongs to just using sequence information. In the
recent past the author has been involved in a project where Neural Network methodology
has been used for predicting a protein fold class from the amino acid sequence. Using
a hierarchical scheme of fold classification, a recurrent network was trained to construct
features that characterize the membership of the fold class. At the highest level, a 4 class
scheme was used and the network performed with a high accuracy of about 90%. In the
case of fold classes defined by the presence of similar substructures or a certain percentage
(30% - 60%) of sequence identity, the network determines for a set of 125 novel proteins
the correct fold class (out of a total of 42 classes} to an accuracy of 81.6%. The prediction
accuracy is well above 70% also for those test proteins with a maximal sequence identity
of less than 25% amongst the training proteins, thus, establishing the robustness of the
prediction. Such a scheme is very useful for assessing protein structural topology from
sequence information alone and serves as a basis for further detailed homology modeling.

8a. Phenomenolegical look at Protein Folds.

It has recently been proposed[l, 2] that all the known 3-dimensional protein struc-
tures can be grouped into a smaller number of characteristic structural classes consisting
of domains from homologous proteins with a similar topological configuration of their
backbone. These structural domains or the so-called folds of the proteins were introduced
in order to clarify the notion of structural similarity. Such fold classes could contain en-
tire proteins or well-defined sub-domains of proteins. Pascarella and Argos[l] have used



topological similarity as a measure of fold class homology, while Holm and Sanders[3] have
used similarity of distance matrices to determine fold class membership. Orengo et al.,[4]
have reported a classification of proteins from the protein structural database into either
150 homelogous folds or 112 analogous folds from structural comparison. Chothia[2] has
postulated, based on known protein sequences and structures that the total number of
fold classes is expected to be around 1000. While it is feasible to define membership to
a fold class once the three dimensional structure of the protein is determined, efforts to
predict fold classes only from sequences have met with little success. The exceptions are
those where there is significant sequence homology between the protein whose structure
is to be determined and one whose structure is established. Most frequently, sequences
which have very little homology are known to belong to the same fold class. For example,
the proteins Adenosine Deaminase(iladd}, Aldolase A(lald), Aldose Reductase(lads), the
first domain of Cyclodextrin Glycosyltransferase(lcdg), Beta-Amylase(1btc), Endo-1,4-
Beta-1>-Glucanase{1tml), the second domain of Chloromuconate Cycloisomerase(1chr.A),
second domain of Enolase(4enl), Glycolate Oxidase{1gox), Narbonin(1lnar), first domain
of Trimethylamine Dehydrogenase(2tind.A), the second domain of Ribulose-1,5- Bispho-
sphatase(5rub.A), Triose Phosphate Isomerase(ltre.A), Tryptophan Synthase (lwsy.A)
and Xylose Isomerase(6xia)(5], all belong to the “barrel” class and the sequence homol-
ogy between any pair of these is insignificant.

In most definitions of fold classes, each member would have more than 50% sequence
identity to each other although domains with far less sequence similarity could belong to
the same class. It is important that each protein within a class wounld have a structure
with a large topological similarity and a similar packing pattern to other members of the
class. The details of the primary sequence in itself are less important. The notion of fold
classes is important for predicting new protein structures using homology modeling. In
homology modeling an unknown 3-dimensional protein structure is inferred from other
known 3-dimensional protein structures whose amino acid sequences are similar to the
sequence of the protein in question.

As we shall see later one can always make a crude classification of protein domains
into what we call super fold classes by simply distinguishing them from their content of
secondary structures. Such a super classification might actually also turn out to be deeply
connected to the folding process and could also give rise to a measure of distance among
the fold classes in the way that folds most different in secondary structure content are
most far apart. We define thus four superclasses being: 1. The class of pure alpha helices
{dencted @), 2. The class with only beta sheets (denoted ), 3. The class with alpha
helices and beta sheets clearly separated {written & + 8) and finally, 4. The class of folds
having alpha helices and beta sheets entangled (denoted a - 8). These four classes are
very well illustrated by the four prototypical proteins depictured below in figure 4a.

Cytochiome by, {1688, Plastocyanln {17¢1),

Figure 4a,b: The ribon representation of typical members from the super fold class
a (left) and 3 (right).

o-lytic prateass (2ALP). Taka-smylase (ZTAA}.

Figure 4c,d: The ribon representation of typical members from the super fold class
a + B (left) and o - 8 (right).

3b. Prediction schemes for protein fold classes.

It has been shown(6, 7, 8] that one can predict or model protein structures to high
accuracy by using structural information from proteins belonging to the same fold class
or farmily.

However, for protein sequences with very little homology to other proteins there ex-
ists no method that can predict the 3-dimensional structure to high accuracy from their



sequence data alone. On the other hand proteins with little sequence homology could
be similar in structure to a whole class of other structures or domains. It is appar-
ent that protein folding into a structure is coded by information that is not transparent
from sequential similarity alone. Several techniques have been developed for inferring
homology at the structural level from fold class membership. Some of these incorporate
a combination of secondary structure prediction schemes, functional similarity, recogni-
tion of key structural motifs and use of machine learning methods for sequence-structure
mapping[9, 10, 3, 11, 12, 13]. One method that successfully utilizes the information of
the structure of homologous proteins uses artificial neural networks. The neural networks
can be trained exclusively on homologous proteins as a basis for predicting a new protein
structure from the corresponding sequence. Such a scheme is useful only when the protein
in question has any relationship to any of the existing fold classes.

The proposed scheme, which consists of two steps, rests on the rationale that neural
networks can be effectively trained to induce features from a system that characterize
it. In the first step, a feed-forward neural network is used to determine the fold class of
a protein from its sequence data. In the second step, the predicted fold class with its
characteristic domains is used as input into a large recurrent neural network to predict
the distance matrix for the protein. Such a distance matrix prediction should be accurate
enough for constructing the 3-dimensional backbone structure for the protein, which can
then be subsequently refined by side chain placement and molecular mechanics methods.

In the following section the neural network methodology for predicting the fold class
of a protein will be discussed. In the subsequent section some results from neural network
studies are presented. A hierarchy of fold classification is used in our scheme and this is
shown to yield best prediction of fold classes,

3bl. Neural Network Methodology

The basic elements of an artificial neural network, the neurons, are the processing units
which produce output from a characteristic non-linear function of a weighted sum of input
data. A peural network is a group of such neurons and the neurons can communicate with
each other through mutual interconnections. The network will gradually acquire a global
information processing capacity for classifying data by being exposed (trained) to many
pairs of corresponding input and output data such that new output can be generated from
new input. If a set of input is denoted by {z;} and the corresponding output is denoted
by {y} the process at each neuron 7 in the network can be described by

yi = f(3 Wz, + ) (1)

where W); are the weights of the connections leading to the neuron i, 5 and f are the
characteristics of the non-linear function for the neuron. As is obvious from the equation,

such type of networks can be considered as a non-linear map between the input and out-
put data,

The most straightforward type of neural networks employed for this study were feed-

forward networks of the multi-layered perceptron type. These layers of neurons are re-
ferred as, mentioned in the consecutive order, the input layer, the hidden layers and the
output layer. The reason for choosing this network among many other types is its ability
to be generalizable to molecular biology data[l4, 15, 16, 17]. The simple structure both
with respect to processing of data and training is an additional advantage with such a
network. The training was carried cut using the back-propagation error algorithm[18]
which is also the most commonly used. The training procedure is performed until a cost
function C has reached a local minimum e.g. by a gradient descent. The cost function C
is normally written as,

1
C=s3 (8 -<p (2)
2 a
which is simply the squared sum of errors; ¢; being the correct target value and z; the
actual value of the output neurons.

Various aspects of the use of perceptron layered nets have been studied to predict
secondary structure or contacts in proteins on the basis of their sequence of amino acids.
The network task has been to correlate sequence data input with the occurence of con-
tacts between residues as output data. The input data of residue types are represented as
binary numbers and the output as integers of e.g. residue contacts correlated to others.
In each instance of training a vector of input values of residue types, where the size of
the vector (window) represents the correlation among the residues, is to be related to a
vector of output values of potential contacts corresponding to a specific residue {(e.g. the
one in the middle of the window) in the input vector. The network study was carried out
on several types of network architectures, one being for example 60 x 20 (60 is the window
size} input elements, 400 hidden neurons and 30 output neurons, the latter describing to
which of the 30 residues preceding the residue in the middie of the input window a contact
is formed.

It is important when utilizing neural networks to understand some basic facts of com-
mon knowledge about the architecture of the network in relation to the training. Firstly,
the network should be dimensioned according to the training set, i.e. the number of ad-
justable parameters (the synaptic weights and thresholds) should not exceed the number
of training examples. There is a heuristic rule that the number of training examples
should be around 1.5 times larger than the number of synaptic weights. The ability to
learn and recall learned data increases with the size of the hidden layer while the ability
to generalize decreases with an increasing number of hidden neurons above a certain limit.
This fact can clearly be understood when one considers the network as essentially a curve
fitter between points depicting relations between input and output data in the training
set. Therefore it is also easy to see that a network can be overtrained when the training
process reaches the point where the spurious data points are memorized. Secondly, the
training process and the construction of the training set is of great importance because
the predictive power of the network is dependent on how clearly the training set is defined
and how many patterns are exposed during the training.

The largest success in the present application was obtained with a training and con-
struction procedure, called Cascade-Correlation[19]. This algorithm optimizes both the



weights in a feed-forward network and the number of hidden units by adding units during
the training process see figure 5, The initial network contains only input and output
units and is first trained using the normal delta-rule which is the special case of the back-
propagation algorithm without hidden units. Thus the first phase of the training leads
to the same solution that would be obtained by a perceptron and mapa only those input
patterns that may be separated linearly onto different output patterns. This linear part
of the mapping may cover already a lot of input/output pattern pairs in the training set.
To further reduce the error, one hidden unit, that is initially not connected, is added to
the output layer. The weights leading into this unit are adapted by maximizing the cor-
relation between the activity of this unit and the residual error occurring at each output
unit. After this adaptation, all weights into this unit are frozen and the new hidden unit
is connected to the output layer with all new weights set to 0. All weights connected to
the output units are trained again to minimize the error function. The process of adding
new hidden units that maximize the correlation between their activity and the remaining
error at the output layer is repeated until the mapping has the desired accuracy. Since
each new hidden unit is also connected to all existing hidden units, the network contains
as many hidden layers as hidden units.

. 11 Q -0
A &
A C .. X
(*99 2
..[e, 77 3
r'nr I
Figure 5.: A picture of the Cascade Correlation Network.

In order to evaluate the performance of the network, various statistical measures have
been proposed. In the case of 2 dual valued output the Mathews coefficient, Cpy[20, 21],
was used to moniter the performance. If the two possible output values are denoted by
0 and 1 (signifying fold class membership or non membership) and if p is the number of
correctly predicted examples of 1s, 5 the number of cotrectly predicted examples of 0s, ¢
the number of examples of 15 incorrectly predicted and § is the number of examples of 05
incorrectly predicted then we define the coefficient Cpy as:

o = PP - 94
Ve +ap+a)E+ a5 +3)
For complete coincidence with the correct decisions (ideal performance) the measure is
1 and for complete anti-coincidence the value of Cys is —1. A poor net will give C = 0

indicating that it does not capture any correlation in the training set in spite the fact
that it might be able to predict several correct values.

(3)

3b2. Neural Network Implementation

The actual neural networks for predicting fold classes are constructed from the SNNS
(Stuttgart Neural Network Simulator) environment{22] and are of the feed-forward type.
The networks are trained on a selection of proteins from each of 42 fold classes containing
domain segments of proteins or often the whole proteins. The input representation for
each protein domain is a 20 x 20 matrix containing the relative frequencies of dipeptides
occurring in neighboring positions in the primary sequence of the domain. To calculate
these frequencies, the number of occurrences of a dipeptide is counted in the protein se-
quence and divided by the total number of residues in that sequence. All protein domains
are transformed this way into one input pattern of fixed size. Small insertions and dele-
tions from the protein sequence cause only small changes in the dipeptide frequencies.
The same holds true for rearrangements of larger elements in the sequence that do not
change the local sequences. There are many cases where members of the same fold class
differ mostly by permutations of sequence elements. Such permutations of the primary
sequence lead to very similar dipeptide matrices which supports similar classification re-
sults. Each fold class is represented by one output unit which should have an activation
close to 1.0 if the domain coded in the input layer is a member of that fold class. In all
other cases the activity should be close to 0. When an unknown sequence is classified,
the fold class corresponding to the largest activation at the output unit is assigned to
the sequence. This is the usual “winner-takes-all” evaluation of the output of a classi-
fier. In order to facilitate the interpretation of misclassifications all the fold classes were
grouped into larger super-fold classes that have a natural one dimensional order inferred
from physical properties of the folds. The super-fold class prediction and the fine grained
classification should then assign classes that are close in this order.

As mentioned earlier, a general prediction of the 3-dimensional structure of a nove] pro-
tein on the basis of its sequence of amino acids is likely to be successful by computational
techniques, and especially neural networks, only when the fold class to which the protein
belongs to can be determined first. A subsequent determination of the 3-dimensional
structure of the protein can be obtained through a prediction of the distance matrix that
represent the 3-dimensional backbone structure, The distance matrix prediction can be
carried out by a neural network trained on the protein folds from the same fold class.
In the next section, we describe the methods used to classify proteins into fold classes
for training the network. Three distinct approaches giving a hierarchy of classification of
folda are cutlined.

3b3. Fold Classifications from Packing Analysis

Protein fold classifications from the literature have been used so far. At the most
primitive level, we have classified proteins into large classes of alpha, beta, alpha+beta
and alpha-beta proteins following Lesk and Chothia[23]. In a more detailed scheme, the
classification of Pascarella and Argos{1], further enhanced by Walsh{24] has been utilized.
In addition, a novel method for characterizing the fold topology of a protein is presented
here. While the average density inside a protein is nearly a constant, the packing of
residues is determined by the overall topology[25]. Arguably, all the information pertain-



ing to the three dimensional structure and hence the topology of the protein is contailfed
at the most refined level in the distance matrix and at a less refined level in the packing
density. We define the latter as the number of pairwise atomic contacts in the protein as
a function of distance. The maxima and minima that occur in this packing density ate
very dependent on the nature of the overall protein fold. We have obtained this pa‘,ckl.ng
density for all the proteins in the database and classified them based on the sir.mla:nty
of the packing density features. Not surprisingly, this classification groups proteins into
classes that are entirely similar to the earlier classification of Pascarella and Argos. It
presents the 13 super-fold classes obtained from the packing density analysis. However,
this method enables the creation of a coarse-grained set of folds that encompasses several
fold class members of the Pascaralla and Argos set. This super-fold class delineation is
used in training the neural networks. To our knowledge, this is the first effort to use a
hierarchy of fold classifications to obtain sequence-structure correlation and prediction.

The frequency of contacts between atoms at various distances within a domain or a
whole protein is plotted against the measure of distances in A along the horizontal axis
and the normalized frequency (occurrence) along the vertical axis. This results in a char-
acteristic contact distribution for each structure of protein domains. Some structures are
represented by a very broad distribution while others have a sharp delta-like distribution.
The maxima in the normalized frequency of the distribution is a characteristic signature
of the underlying lattice structure of the domain. For example a typical protease structure
like a zig-zag lattice will have a distinct peak in the pair correlation distribution at the
lattice spacing length. The position, 1, of the peak in the distribution was taken as a
simple measure of the domain structure and all the domain structures were hence clas-
sified into distinct groups of folds using this criterion. Folds with the smallest values of
peak positions, 7, turned out to be small peptides while intermediate ranges of T usually
could represent globular proteins. Large values of r represented immunoglobulins and
ac-proteases. Small values of r thus signified little regularity and large values represented
highly regular underlying lattice frames. The results of the performance of the neural net-
works using the data provided by the t dependent fold class grouping will be presented
in the following section.

3b4. Results for predicting Fold Classes

The main results in this paper are concerning the prediction of fold classes from se-
quence alone since that is the most novel element and distance matrix prediction from a
homologous training set is well-known and is described elsewhere(17, 26]. The training
set and testing set are both constructed from the data set of the 42 classes of domains
used in ref.1. Roughly half of each fold class domains are used for training. The rationale
for choosing the 42 classes from the Pascarella and Argos definition of folds, was to make
certain that there are enough members in each class in order to perform a valid test. The
fold class predictions are performed in three different levels of detail. The first classifica-
tion uses the 4 super-fold classes based entirely on the secondary structure cormposition
and arrangement in the proteins. The classifications are based on proteins containing
the secondary structures, only alpha, only beta, one alpha and one beta domain and one

containing a combination of alpha and beta secondary structure elements, respectively.
In the second scheme, 13 fold classes each containing 3 members or more are defined by
the packing density scheme described above. By using the  measure we define a set of
13 super-fold classes that are used for prediction of the coarse fold class. In the third
scheme, the full set of 42 classes is used for fine grained classification.

For the first case of 4 super-fold classes a network trained up te 97.2% accuracy and
had a test score of 90.4% with an average Mathews coefficient of 0.81 which is a very
high performance compared to other secondary structure content predictors. The matrix
representing the actual prediction of the fold class membership is presented in Table I.
The corresponding Mathews coefficients that represent the prediction accuracy is given
in the last column. The analogous results where the 13 super-fold class set obtained
from packing density analysis is used were presented in Table 1I. This fold classification
gives a less accurate performance of training being up to 90% correct and the test being
65% correct which render this classification to be less useful for neural network based
prediction schemes. The third case that is based on much beiter distributed classification
yields a remarkable performance of 100% on the training set and with a test score of
78% in predicting a fold class correct on the basis of the sequence. Furthermore, adding
the output of the 4 super-fold classes network to the input of the 42 class based network
enbanced its performance to 81.6% on the test with an average Mathews coefficient of
0.7. The results are presented in the permutation matriz of Table 1IL. In Tabies III the
number in row ¢ and column j counts all cases where a test protein that is predicted to
be in class j in fact belongs to class 1. Optimally, all test cases should be counted on the
main diagonal of the permutation matrix. For the case of the 42 fold class prediction, the
relation between maximal sequence identity of a test sequence to the sequences used in
the training set and prediction accuracy is given in Figure 6. The four points at 25, 50,
75 and 100% sequence identity defining the solid line give the average prediction accuracy
for those test cases that have a maximal sequence similarity between 0 and 25% , 25 and
50%, 50 and 75%, 75 and 100% to the training set, The fold class prediction is still more
than 71% correct for those test sequences with 0 to 25% sequence identity to the training
set, which is an important property for a large scale application of this prediction method.
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TABLE IT

predicted
O 1 2 3 4 5 6 7 8 910 11 12

true

0: 0 0 0 0 0 0 0 0 0 0 0 0 1

l1: ¢ ¢ 0 0 0 ©0 0 0 0 0 0O 0 ¢

2: 0 ¢ 4. 0 ©¢ 0 O 1 0 O 0 0 0

3: 9 0 0 0 0 0 0 1 0 0 1 0 o

4: 0 0 0 0 O O © 2 0 O O 0 O

5:0 0 0 0 0 0 1 0 0 0 0 0 0

6: ¢ 0 0 0O 0 010 2 1 O 0 O 0

7: ¢ 0 0 0 0 0 3 27 3 0 2 1 0

8: 0 ¢ 0 0 0 0 1 2 6 O 0 1 0

9: 0 0 0 0 0O O 0 0 ¢ 2 2 0 1

10: 0 0 ¢ © 0 0@ o 0 0 1 6 1 o]

11: ¢ 0 0 0 0 © 0 2 ¢ 0 2 4 ¢

12: ¢ 0 © 0 0 O 0 0 0 0 0 0 0O

STATISTICS ( 91 patterns )
right : 64.84 % ( 59 pattern(s) )
correlation coeficcient for class 0: 0.000000
no testpattern for class 1 present.
correlation coeficcient for class 2: 0.889272
correlation coeficcient for class 3: 0.000000
correlation coeficcient for class 4: 0.000000
correlation coeficcient for class 5: 0.000000
correlation coeficcient for class 6: 0.665020
correlation coeficcient for class 7: 0.565617
correlation coeficcient for class B: 0.550617
correlation coeficcient for class 9: 0.495656
correlation coeficcient for class 10: 0.538666
correlation coeficcient for class 11: 0.492922
no testpattern for class 12 present.

{ABLE IIT

0

.1

[ 23

Le

8t

€

147

[ 14

144
187
o¢
62

FX4

7
8T
¥
¥4
[14
iz
0z

L1

Bl

L

9t

st

4l

€1

4

11

ot

1 4

z

I

20q

)y

oysepd

Xoy
yord-ow

ng
jord-emaa

mita

!p.[
nd

XOPIiIY

d>

joidw

e

up

ufda
[3] I‘q
Suipuq

srruny

™=

qiet

dwi
aredyd

dda

wn
dud
"

un

puiq-ea

di;

wr l'l
uiqof8

dim

aurg

2143
‘Ipuq IRy

ssppaplof anay

O ¢ 00 0 OCOODOOTOQ
0 0 00 0 00 0 0 0 O
¢ 0 00O 0 O 00 0 0 @
00 ¢ 0 0 0 0 0 06 0 0
0 0 0 0 0 00 0 D O 0
0 06 00 0 000 0 00D
2 ¢ 0 90 0 0 0 0 0 0 O
2 0 & 00 6 0 0 0 0 0
00 0 0 00 0 0 0 0 ¢

¢ 9 0000 0 0

g
G 00 00 0 90 0 0 0 Q

0 0 0 ¢ 00 0 0 0 0 o0

0

tooo o000
6 0 0 0 0 9 0 0 0

0 0 0 0

0

0.9 9 ¢ 00 0o 0 0 @
6 0 0 0 0 0 0 0 0 0 ¢
00 0 006 0 0 0 0 0 0
B 0 ¢ 9 0 900 00 0
0 92 0 0 00 ¢ ¢ 0 0 0
00 00 00 0D O 0 O

¢t 60 0 ¢ 0
a9 0 0 0 0

0

¢ 0 0 0
00 0 ¢

0

0O 0 ¢ 00 0 00 ¢ 0 O
¢ 0 0 0 0 0 0 0 0 0 9
0 9 0 0 0 D a9 0 0 0

00 0 0 0 ¢ 0

9 0 0

0

¢ 00 0O OO0 O0 O O O
9 ¢ 0 000 Q0O D0 O O

06 ¢ ¢ 000 0 O

¢ 00 0000 0 9

0

1]

]

1]

0
0@ 9 9 0 0 0 0 0 D O

0 0 0 0 ¢ o 0 0

0 00 0 0 0 0 0 0

4
0 ¢ 0 0 o0

0

00 00 0O
z

a

9 0 0 o

o 0 0 ¢ 0 0

¢ 0 0 0

oo

(=0 -]

e o

oo

o ™

- o

oo

(= —J

oo

oo

0
0 0 00000 0 ¥ 0

o0 o
9 0 9 0 9 o

1]

I 0 o0 o

LT OT 60 #0 L0 90 SO ¥0 €0 Z0 10

00 0 0 0 ¢
00 0 ¢ 0 0
e 00 0

L]

0 0 0 0 0 0

0 ¢ 0 0 0 o0
900 0 ¢ o
0 0 0 0 0 0
a 0 o 9

0

0 ¢ 0 0 0 ¢

9 0 0 ¢ a9 ¢

0 00 0 0 90
0 0 0 0 0 0
¢ 0 0 Q0 0 0

0
1]

1]

g 00 0
0 0 0 0 0 0

b9 o o0 0 0
0 0 0 0 0 o
¢ 0 0o 0 0 0
B 00 0o 0 0

g 0 0 0

0

00 a0 0 o
00 0 0 0 0

0 ¢ ¢ 0

¢ 0

0 00 0 0 @
a0 0 0 0o 0
¢ 7 0 0

o0
0 o 0

[/
00 o ¥
04 0 0

0

0
0
1

1]
T

0 0.0 0 o

00 0 0 90 ¢

0 00 0 ¢ 0

]

0 0D O 0 0

¢ ¢ 0 0 0 0

a0 0 0 0 0

oS

-

oo

L= =]

oo

oo

Q

90 0 ¢ 0

1] ¢ 0

9 0 0 0
LT 9T ST #1 ¢1 2t

0

0

g+=

00 0 00 OC O 0 0 O

G 6000 O0O0COD O O

0 0 0 90 0 0 0 0 0 ¢
00 0 9 00 0 0 & 0
0 0 0 ¢ 0 0 0 0 0 0
00 0 0 000 OC O 0
0 0 0 0 0 0 0 Q9 0
0 0 ¢ 0 8 0 0 0 0 0
08 00 00 0 0 0 0

0 0 0 0 00O 0 D O
e 00090 0 0 9 0 ¢

00 0 0 0 ¢ 0 0 0
e 00 0 00 0 0 0 0
O 0 0 00 0 0 0 0 0

9 0 0 0 0 0 D0 9 0 O

1

L 00 0000 0 0 9

O 2T o0 00 0 0 0 O
0 0 0D 0 OCGC O 0 0 0O

T0 0 0 0

0 ¢ 0 0 0

0 ¢ 0 0 0

00 0T
00 ¢ 0 0 Z 0 0 0 0

]

00 0 z 0 0 0

/]

0
0 0 0 0D 0 @O0 0 Z O

06 0 0 00 0 0 0 2

1
¢ 0 0 0 0 0 0 9 O

9 0 00 0 0 @

00 ¢ 0 0 ¢ 0 0 0 0

00 00 Q0 OC QG O

00 0 ¢ 0 0 0 0 0 @

00 0 00 ¢ 0 0 0 O
0 00 0 0 0 ¢ 0 0 ¢

0 ¢ 00 0 0 0 0 0
00 0 p 0O 0 0D 6 0

0 0 0 0 0 0 9

1

0

]

4

000 0 0 D 9 0 ¢ O

T o o 0 o0

0 0 0 0 o

oo

oo

oo

o @

oo

oo

o o

oo

oo

20

0

0 0 00 0 0 0

¢ 0 0 0 o
t

1]
0 9 0 0 0 0 0 0 @ O

o 0 0 0

2 0 0 0

¢ 0 ¢ 0o O

LT 9% ST ¥ €2 ZZ 1Z 0Z 61 9L

g/o
reopprof parnpaud

[ ]

0 00 090 000CO0GO0O0 O
¢ T 00 0 0000 0 O0OCOTCGC O
0 0 Z 00 00COOCDO O OO O
0 ¢ 0 F 0000 OQCD0GODO O O

¢ 0 & 0 2 0000 O0ODO O

[

[ I ]

L0 0 o 6 06 0 0 o

L 000 0 090 O 00O OO 0

0 0 0 0 0
¢ ¢ 000 00 0C D0 O0OCO O O

¢ 6 0 0 0 2

¢t 0 00 90 0 0

T

[ ]

0 0 0 0 0 60O O UL OO O
0 ¢ 000 0000 O0TCOCOTOGO

P 0 0 0 ¢ 0D OCoO OO G T OC O O
6 0 0 0 0 0 0 0 ¢ 0 0 0
0 0 0 0 0 C 0 OO OODGO ¢

1]
0
i

L]
1

T

9 0 0 0.0 6. 0 0 0 0 0 C O 0

¢ 0 0 ¢ 0 CODGOCOOCODODO O O D
0 0 ¢ 0 0000 O0O0CO0TC0CTOCTO O
¢ 0 00D OO 0O OO OO0 O D
0 0 0 U @ 000 0 0 O 0 0 0 O

0 0 0 0 0 000000900 0 0

a 0 0 0 0 o

¢ 0 ¢ 0 0 0 0 0

1

00 0 0 0 0

o 9 0 0 6 ¢ 0 0 0

¢ 6 0 0 0 000 00 ODOCTOO DO

0 0 00 00 0CO0OGCOOCTDQ Q
0 0 0 0D ¢ 0B 0 0 0 0 00 ¢ 0

9 0 ¢ 0 0

T

0 0 0 00 0 0 ¢ 0O

0O 000G 0COCG O OO0 OO O
0 ¢ 0 00 000 O0CO0O0OOCTOD0C O O
0.0 00 0 000 0 040 00 0 b
0 0 6 0 0 000 O0O0O0TCEGCOTO O
6 0 00 0 0 0 G 0 0 O 0 0 0 0
0 0 0 0 0 0 00 OGO O 0 O 90
9 ¢ 0 00 0000040 OO 0 0

0 0 0 6 0 006 0 0 0 000 0

9

00 0 0 0 0 0 0

€ 0 p 0 0 0 0 0 0 0

00 9 0 0 9

0

L]

¢

0

0 0 0
0 00

[
0

oo

oo

oo

- o

oo

oo

oo

g
]
0

00000000000000

0 0 00 0 00 0 0 ¢ 0

0

0

0

00000000000000

000000000000000
I TF OF BC 9C LT 9T SC ¥E $C 2t IE o€ BT 9T

€150
fivo

0001

000°E

44 X1)
7%8°0
0Ls'e
41 0]

o't

aHeo

00T

LY ]

wi'o

Hio

o' 1

LR 4]

0001

00T

000°0

000 T

109°0
o
HL0

000t

0001

ooog

000°1

¥L0

oY

Hi'o

000'L

00070

000°1

0o

ToLo
LETQ

L0

ilo

0000

000" T

R0

oot

o




Correct prodictiong va. hemsology

T cormer chiaifieuivn inie 41 clasey

R0~ ! i 1 1 - el
o - — O
nw -
.00~
wo-
20,00 —
50 -
000 —
nw.
ne -
™ -
T1.00 —
%, -
600
" -
5 -
%80 —
P
TS0 —
7w -
200 ~
7150 —
TI00 - 3 1 1 11—

am w000 000 e {

[ I I R

Figure 8.: This figure shows the correctness in the prediction versus homology mea-
sured in

intervals (upper curve) or accumulatively (lower curve).

3b5. Discussion

An artificial neural network system has been constructed to classify 3-dimensional pro-
tein structures by predicting what fold class they belong to on the basis of their sequence
alone. Once that is decided one may predict the corresponding distance matrix e.g. by
recurrent neurat networks that are trained on proteins from the chosen fold class and
subsequently construct a 3-dimensional structure for the test protein by a minimization
procedure. The networks appear to train surprisingly well (81.2% correct and an average
Mathews coefficient of 0.7) on the task of predicting fold classification, even for test pro-
teins with a maximal sequence identity of less than 25% to all training proteins,

The best results for training and predicting fold class membership was obtained using
the 4 class scheme. Amongst all the proteins tested 90% prediction accuracy was achieved.
Most surprisingly, beta stranded domains and proteins were predicted with high accuracy.
Interestingly, it seems that neural networks are able to achieve greater than 80% accuracy
in predicting the fold classes as compared to their prediction of the secondary structures
of peptides(27]. One explanation for that may be due to the postulate that around 70%
of the secondary structures found in the native structure are formed at an early stage (i.e.
msec) of protein folding and thus without training the network on intermediate structures
the performance will never surpass the 70%. The determination of the folds is gimilar to
the determination of the topology of the protein backbone and that, on the other hand,
depends only on the overall packing of secondary structura] elements. Furthermore the
new classification of folds that we proposed is partially dependent on the content of sec-

ondary structures. Low values of the 7 parameter tepresent alpha-rich fold classes and
high values of r represent beta-rich fold classes.
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Table Captions

Table 1. Neural network Prediction of the four super-fold classes based on the secondary
structure content alone. The matrix elements represent the number of correctly predicted
protein domains in each fold class. The last column is the Mathews coeficient (see text).

Table II. The matrix representing the number of protein domains, belonging to a fold
class defined according to the packing densities, that are predicted correctly. The last
columnp represents the Mathews coefficients (see text) for the predictions. The dashed
entries indicate non-availability of test set proteins.

Table I11. Neural network prediction of the fold classes from Pascarella and Argos's set of
42 fold classes. The matrix elements represent the number of correctly predicted protein

domains in each fold class. The last column is the Mathews coefficient (see text).

4. A Statistical Mechanical model for formation of
protein fold classes.

In these sections we shall discuss ways of constructing fold classes from purely theo-
retical means by applying statistical mechanical spin models and with that technique try
to estimate the total number of possible fold classes. We shall in details present a model
for the dynamics in the early stages of protein folding leading to a structural classification
of protein folds. The overall goal is to determine what possible topological fold-classes a
protein can adapt in the beginning of the folding process. The model turns out to be a
relative simple spin system with angular variables and simulations results in the order of
thousands fold-classes.

4a. A simple Hamiltonian for distinguishing protein fold classes.

Protein folding is an intriguing problem. How can nature fold a macromolecule con-
taining thousands of atoms into unique compact structures without testing the whole
phase space of configurations?

Recently it has been appearant that thete is a finite set of distinct fold-classes contain-
ing protein domains (2 whole or part of a protein) with a distinct topological structure.
Such a set has been estimated to consista of around one or two thousands of fold classes of
which around one hundred structures of protein domains already have been determined.
We shall here try to understand how such distinct topological fold classes can arise from
an appropriate physical theory of the dynamics of stages of protein folding,

The dynamics in the early stages of protein folding is not in this context meant to
include interactions from a specific surrounding media or other proteins such as chaper-
ones. The information necessary {o set-up such a dynamical framework is hence supposed
to be predominantly sequence data of the primary protein structure leading to a specific
structure and an important feature is to explain the extension of the dynamics of a 1-dim.
gtart to a particular 3-dim. configuration.

Before continuing we shall like to refer to some recent experimental investigations on
folding of simpler proteins, such as lysozyme, by NMR-techniques carded out by Dobson
et al. In the picture arising from those experiments and which we shall base our analysis
on, the topological folde are being formed early in the protein folding processes when
many of the secondary structure elements, and especially the alpha-helices are present.
In later stages the more complicated structure of especially the parallel beta-sheets are
formed and more accurate docking and detailed side-chain conformations are getting in
place. Such a scenario which consists of a rapid formation of the topology and roughly
determines the fold class type is essential for our analysis and in fact also makes sense
evolutionary wise since it costs too much to end up in a wrong topology and unravel the
wrong knots.



We shall here investigate a new approach in which we consider the weakest forces first

- or at an early stage. This sounds counterintuitive. However, there are several examples
in physics, where it is the weak forces which determine the gross structure and the strong
forces which determine the details. A well know example, which in fact will be close to
the present approach, is the Heisenberg ferromagnet. It represents a system described by
spin vectors § = (8z, 5, 9:)or(S, 8, ¢), which are completely isotropic in space. The spins
interact with and isotropic interaction, i.e. it is invariant for any rotation of the reference

frame
H= *J‘zjjs‘-.s, ~ lim hge,-si, (4)

where J > 0 is the important, large interaction parameter which dictates that the grounds
that, i.e. the lowest energy state has all spins parallel. However, it cannot determine the
direction in which they point. The full rotational symmetry is broken by the infinitesimal
field h = hé, = (0,0, k). Below a certain temperature 7T, the strong interactions causes a
further break in the symmetry between spin states pointing up or down the z—axis, and
domains thereof are formed.

In the following we shall construct a minimal model for protein folding in order to
establish a vocabulary and a language in which these can be described and subsequently
classified. We shall start by assuming that the proteins form a discrete or quasi continuous
tape, which although being flexible, can transfer information about angular twista along
itself to some distance. The protein is characterized by a linear information in terms of
the twenty letters in the amino acid alphabet. This information is sufficient for nature
to determine the folding. Let us suppose that there are no long range forces, i.e. unless
parts of the tape are very close in space there is no interactjon; however if that happens
the strong short range interactions get in to operation, for example the Hydrogen-bonds,
Van der Walls and/or other chemical bonds. Imagine we start the protein in a fully
extended state. This is not necessarily linear, but simply such that no part is close to any
other. There are a very large number of such states, compared to the unique close folding
which we know is the ’ground state’. The extended state therefore corresponds to a high
temperature configuration of the system. If the tape has equal surface tension on both
sides, the tape will be approximately flat. Now suppose the short range forces along the
tape change the surfaces tension of either side, locally. This will provide a bending force on
the tape. At a given temperature a section with uniform, differing surface tension will curl
up as a spiral. We shall understand this as the so-called a-helix. This secondary structure
is more stiff and rod like than the original tape. It is important to notice that this curling
up can be done without any global turning or twisting of the whole tape. It just give rise
to a contraction of the overall extent of the tape. This does not result in the formation
of any new crossings, but rather a straightening of the remaining tape. In respect to
the analogy to the Heisenberg model eq.(4) it corresponds to the formation of small
ferromagnetic domains. At the considered temperature let us assume that the extended
tape is sub-structured according to the underlying amino-acid letter code into two groups
of secondary structures. One, which we denote by large letters A, B, C, ..., representing
the described o-helix and also potential pieces for the formation of some §-sheets. The
latter cannot be described at this temperature since they require the short range forces
between different parts of the tape and not just forces along the tape. The second group
which we denote by small letters a,b,¢, ..., consisis of the remaining connecting pieces
of the tape, the unconnected strands and the turns. All elemenis are assumed to be

approximately linear. Each element is connected by a 'hinge' which is characterized by
a direction in space, perpendicular to the plane in which the two joining elements can
rotate. Using a spin &; for this description we can both define the direction and the sense
of the bend between the two elements. We then make the crucial assumption that each
element is sufficiently rigid to define the relative optimum direction of the spins attached
to its ends. We then symbolize the protein as the sequence of secondary structures with
preferential bending forces acting between them

a5 AS 0853 B85,c5CSqd . (5}

It is at this level we shall attempt to classify the various protein foldings. We assume that
the underlying linear information defines the subdivision into the secondary structures
and the preferred angle between the elements. We are now ready to formalize the model
in order to be able to make computer simulations and predictions of folding classes. We
remark that the description is independent of the lengths of the elements. It is also
independent of the position in space and of interactions between the elements. This is
not simply a lattice model, but in principle it can be made much more general with
arbitrary angles and lengths. At a later stage we will include such interactions between
the elements of the first group A, B,C, ..., in particular the potential 3-sheet elements.
The final evaluation if a folding is energetically favorable will then be judged on the basis
of the strong, short range forces. However, we expect the angular forces to determine the
general dynamical features early in the folding, which is the focus of this study, ieaving
the optimalization to the strong forces for tater stages.
The angular model

The model described above is still too complicated to be practical. At a first level it is
probably not important to allow continuous variations in the possible angles so we assume
only one allowed angle, and the value of the angle is not essential for the argument in
the first stage. For ease of representation we therefore choose this as 90°, perhaps also
including the value 0°. Let us traverse the protein represented by eq.(5) from left to right.
Each element P = A, B, C, ... has then a direction &% in a artesian coordinate system with
a = z,y,z. Similarly each element p = a,b,¢,... is characterized by é2. The structure is
given by the sequence of spin vectors §,,8,,8;,8, . The spins have unit lengths and
may each point in either of the six directions +x, +y, £z. If we consider only the 90° and
0° turns a unique description for the orientation between two elements is given by

= & X8 +(el-S)ed,
= & x5+ (el Sy)ed, etc. (6)

mr
[0

>

The cross product takes care of the 90° turns and the dot-product of the possibility of
straight continuation and the rather unlikely return-on-it-self possibility, corresponding
to the turn angle 0° and 180°. Since all angles are either £90° or 0° (and 180° which we
neglect) there is no overlap from the terms in eq. (6). It is now clear that the folding is
uniquely described by the sequence and state of the 'hinge’ variables, the spins §; and the
element variables 7 and &£. A given sequence of spins S; and start direction &% is a rigid
building prescription, by which any later element direction &}, is exactly determined. (If
we give length information on each element, the precise position in space is in fact given).
However, this is too strict we want just to give building guide lines. For an element of



group one, optimally surrounded by parallel spins (T A 1), let us say it gains an energy
J if it is the case, gains nothing if they are perpendicular (T A —) and pays an energy
—J if the spins are anti-parallel (T A ]). If the spins should have a right twist we would
give an energy gain K for the right twist, 0 for paralle] or anti-parallel and —K for the
wrong, left-twist. We can define similar energy conditions for elements of group two, with
possibly different, and lower energy values j,k. We then form a linear chain of these
energy variables, describing the preferred state of its surrounding spins f.ex.
JOKGES(-K)B8IL (=T, (7
where {f represents any of the possible six spin directions for the *hinge’ spins. We notice
this is a more flexible description than eq. (5). The structure is now determined by
the interaction constants sequence Jy, 72, Ja, Ja,- - -, given in eq. (7), as an example, as
7K, —k,—K,j,—J,---. This gives a unique best set of the spin variables 8,8z, 853,84+ -.
iFrom those the ground state can be constructed from 6. If that is all we want we could
just as well take all constants equal in magnitude, say equal to one, leaving just the signs.
This would be kind of interaction 'spin’ variables .7;. However we could also consider
'wrong’ turns and then it would be nice to have different energy parameters here to give
us the energy cost for that. A change in a spin (&;) direction at a junction p has the
dramatic consequence of rotating the entire remaining pieces of the protein around this
junction. We shall assume that there is no inertia and no steric hindrance in doing so.
Expressed in an other way we do not care how the system has arrived at any state which

we can measure the energy for. The energy of any state of the spins is given by an
interaction Hamiltonian

BN-1
H=— 3 (JpSp -Sps1+ KpSp % Spyy - €5)
P=2In+1
N )
= 2 UpSe- Sprr + K Sp X Spyn + €0). {8)
P=in

This now looks like Sg, Jo, 81, 71,82, J2, 83, T3, 4 s Jant1, Sav4z- One may start by fix-
ing 8o = z f.ex and e} = =, the rest should then follow from eq. (6). In eq. (8) the
index n is the summation index running from n = 0 to N, where 2N + 3 is the total
number of spins (the two in the ends can be disregarded (should find nicer formulation))
The constant Jp determines the energy for having the spins at the ends of a group one
element P to have parallel or anti parallel spins in the 7,y or z- direction. This could be
added in a more general treatment. The constant Kp determines the energy for having
the spins perpendicular or "anti'perpendicular to each other. We have hLere disregarded
the cases with angle 0°, and cases with the apins along the element direction. For the
a-helix it is rather clear that the interaction between the spins will be simply related to
the number of amino acids which the helix is formed by. So the ground state is given
by the sequence Jo, J1,---, Jan41. Each have four possibilities +J, £ K or +j, +k. That
gives, I think, 4*¥—! possibilities for a chain of 2/¥ 4 1 elements. One could plot out all
the states and discard the most open ones. That would leave us with the most probable
cases (classes). The information is the same if we specify the spin in eq. (6) from the
outset. However, the 7, Jh,- -, Jans1 sequence iz more directly connected to the amino
- acid chain information. We can also judge energy differences between good and bad fold-

ings for the same sequence. We need a simple "compactness’ measure. One could try the
following (at first):

Assume all lengths are equal (to 1, say; i.e. the same as as lattice model at first).
Find the site coordinates of the spins & 8 = (0,0,0), S; = (i, %, z:). 1} find the center
of gravity from the coordinates

1 IN+3
SN T3 Ea;=<a>,a=1¢,y,z. €)]

2) find a spread factor, for example one could calculate the moments around the center
of gravity

1 2N+3 - N "
F=§Tv_+_3 Z'_:[(z.-—<x>) +p—<y>)+{n—<z>)]. (10)

Let us assume small F is good and selects a desirable set of the interaction variables
Jo, 1+« y Jane1- One could now choose a 'temperature’, and do normal Monte Carlo
simulation of J; to find the states at a given 'temperature’. The smaller the more compact
configurations. The F energy and the turn energies could be put into play simultaneously
(allowing wrong turns at an energy cost {later)). We can now further chose different
lengths. First, f.ex one for group one and another (shorter probably) for group two.
Further, one could consider the robustness of the classes under a distribution of lengths
around these values. Finally it should be possible to relax the right angle conditions as
well.

A certain set of amino acid 'words’ LMN --- AST give an interaction constant f.ex.
+J for parallel spins. It is clear that the reverse order TSR--- NML also gives +J, i.e.
belongs to the same class. This may not be favorable. It is a well know problem in neural
net work theory where a Hamiltonian description normally requires that the interactions
are independent of the bond direction J;_,; = Ji;. Let us first make the assumption that
this is unimportant; subsequently one can consider when it is important. This a typical
classification indicator. The description eq. (6) contains the direction information and so
do the cross-product terms in eq. (8), however this information is lost in the dot-product
terms. It might be possible to change J to K by moving the 'hinge’ one or more unit, and
change even their signs. It corresponds to choosing a neighboring amino acid word for
example LMN .-+ RSTU followed by an other shorter one e.g. MN - - RST. This will
be important in the final optimization process, where the strong forces come into play.
The cotresponding energy should be attached to the element variable as will be further
discussed below. The second sum in eq.(8), similarity, represents the turn energy for the
spins surrounding an element of group two. Here we have treated all group elements
equally. In principle there could be many more parameters than the four introduced.
However, the main purpose here is to schematize the problem, still retaining the main
physics. The constants J, K, j, k can, as we have seen, in principle be related to the amino
acid lettering sequence (ref to Liebmann). The introduction of the *hinge’ variables thus
enables us to fairly explicitly write down the folding energy.

However, it is more convenient to introduce new variablea attached to each element de-
scribing the state of the spins surrounding it, mainly in prepatation for the final opti-
mization process. Consider element of the first group, say A. If the spins §; and 5; are
perpendicular we take the new element variable to be 84 = (8, + &)/ 2. By this we
simplify the phase space by a factor of two, since we only say the element is twisted but
we do not keep the distinction between f.ex (81,83} = (X1, ¥2) and {¥1,%z) since the sum



in both cases is a vector in the (I, 1)-direction. The element spin thus gets four states
representing different twists. The element direction &, is implicitly given by the new state
variable, namely perpendicular to the plane containing 5, and Sq; again the sense of the
direction is lost. It can probably be determined from the sequence of the elements, though.
The case with the parallel and the anti-parallel spins at the ends is more complicated.
In this case &, is four times degenerate and only determined to be perpendicular to the
direction of §,. Let us define the transformation so that §4 = (818,161« e, lé..
Again the transformation looses a factor of two in information content, since (%,,%;) and
(—%1, —%;) give the same S = &,, and the anti parallel case, the same for (%, —%,)
and (-%;,%;) giving 8 = —&,. This transformation is furthermore non-linear, but it
is unique. Next we proceed the same way to determine the element variables s° for the
group two elements. What we have done here is to design rather complicated names to a
number of building blocks. In fact several are identical by simple rotations. Consider a
case with the spins surrounding an element are parallel. The attached elements therefore
are perpendicular to the element tape as | |. We have given three different names to this
according to whether the legs point in the z,y or z-direction without sign. Normally
one would just consider one building block, which could be turned in afl possible (six}
directions. It is convenient to think of the building blocks as a kind of electrical plugs.
The one described has two holes and two pins on the same face This we could
for the big letter elements +Jand + K call a Ferro-plug. Similarly a plug with hole and
pins on opposite faces one bound call an Anti-ferro-plug, and one with holes in the y2z-face
and pins in zz-face a Right-twist-plug and in the —zz-face a Left-twist-plug. Similarly
for the small letter elements +jand + k one can define four different plugs with holes and
pins in the ends. We need iwo different kinds of holes for example O < and corresponding
pins. Instead of the two different building blocks we counld also have just one kind with
holes on the sides and pins in the end. For the 90° case considered there are only these
two times four distinct plugs or building blocks. The plugs can be twisted at an energy
cost as described above according to the internal word LMN --- RST. As described until
now the plugs are independent of the order TSR .- NML, but considered as electrical
plugs they have a current direction built in. The element spin variables have twelve states
+2, 4y, -2, £xy, yz, £z and the directions still have a direct physical meaning relative
to the element directions. However, we could at this stage just consider the variables as
Potts variables with twelve states (1,2,3---12). It is therefore easy to generalize the
situation to one in which we keep the complete description using Potts variables with 24
states (1,2,3-.-24). This eliminates the information reduction in going from eq. (6) to
(11). Now it should he possible to determine the interaction in terms of the constants
J, K, j. k. This is done by considering a 'hinge’ at position { joining the elements pand P,
Let us fix the 'hinge’ spin at i &; in one direction €,. Then we write down the energy for
the cases where §;_, and Siy1 are rotated in all possible directions (this requires rotation
of large protein pieces). The possibilities can be exactly identified as pairs of element
spins sfSf,,, where we have given the "hinge’ number ¢ to the group two element accord-
ing to eq. (5). By repeating this for all possible directions for S; we can construct the full
interaction matrix for the element variables. There is a large reduction in complexity in
going to the element variables, the 'plugs’, since the energy of their relative states is only
related to the joint at i and we neglect the complicated global rotations of the rest of the
protein.

We have therefore reduced the problem to an interacting chain of spin variables rep-

resenting the elements of group one and two, with interaction constants which can (in
principle) be derived from the original amino acid code. The Hamiltonian then reads,

Neas20 12,12
H=-Y Y T3 K 50,85, +ee (11)
i=1 o=1,0=1

The interaction matrix J52, can probably be simplified considerable by using the high
titl p g g

symmetry of the problem as demonstrated with the 'plug’ concept, such that only a few
independent interaction constants need to be considered - probably four corresponding to
the given J, K, j, k set.

We are now ready to start simulations assuming a certain chain of spin interactions
with the Hamiltonian eq.(refeq5). We start at high temperatures. Although it is im-
possible to retrieve the original folding state because of the decimation of information
in the step going to the element variables from eq.(8) to (11) we should be able to find
sets of J,-‘;-'fl which give open structures, which are not desirable and close structures for
which one probably can analyst the states corresponding to the more detailed Hamilto-
nian eq.(8). Then one could plot out the results, see how they look, add the short range
interaction variables and determine the good foldings.

Now comes the question, how can we make classes. The result les in the possible
sequences of ,Yiﬂ‘fl in the dividing assumptions made as if it depends on the direction of
the word LMN --- RSTU or not, and perhaps in the number of elements we allow for.
Some real runs will probably make the situation more evident. We have established a
unique language in which the foldings can be described with a desired degree of accuracy,
with possibility for neglecting what we may guess are less important details.

The question of similarity between different foldings should be well defined in our
procedure (the question is if it is useful of course). We have constructed a frame in which
the distances do not play a role until late. The exact length of a-helixes do not play a
role. The feature that J-sheets can be formed at a later stage is included. Temperature
can be used as a folding 'iustrument’. An energy function has been derived based on real

physical principles.
4b. How many fold classes are there in total?

Along with the rapid expansion of sequence data from the worlds genome projects
it is interesting to asses how many radically new protein structures which are yet to
be discovered. This has remained an important and open question in micro biology.
Remarkably one can obtain an upper bound of 2 4000 fold classes, from simple physical
arguments.

Recently Chothia[l] addressed the question of how many protein families or fold ciasses
there might be from a very different point of view. Based on the pace of discovery and
the presently known number Chothia estimated a total of one thousand families, More
interesting yet would be if that number was contained in the information provided by the
amino acid sequence of the proteins themselves. A simple model for super structures of
secondary protein structures is here shown to give approximately that number just from
the linear sequence information and the constraint that the useful proteins are densely
packed. A fold means[2, 3, 4, 5, 6, 7, 8] a particular structyral topology that a folded



protein, or part of it, can assume in its native state. The new paradigm is to classify
proteins by their structural topology rather than their sequence or, as usual, their function.

Proteins appear to belong to families, like plants, with specific characteristics. The
families contain many variants. Linné[9] in the 18th century succeeded in the field of
botany to identify the important classification parameters. It gives a systematic, although
not natural classification. The dense fold patterns for proteins may be such characteristics
and we shall identify a class of similar folds with families in agreement with Chothia (and
with the qualifications mentioned that the fold classes need not be the natural families, a
problem already encountered by Linné in his classification). Chothia gave a good review
of the present knowledge of the protein families, which need not be repeated here.

A major puzzle has been how nature can fold a long protein into its dense form in a
short time without trying all possibilities. This can be elucidated by well-known problems
in condensed matter physics. In many cases in physics of highly degenerate problems it
is the weak symmetry breaking forces which determine the major structure, whereas it is
the strong forces which determine the details. An example is the Heisenberg magnet for
which an infinitesimal anisotropy field will determine the overall direction of the ordering
vector, whereas all other properties are determined by the exchange interaction. Consider
now an extended protein, already composed of its secondary structures, with elements
such as (1) o-helixes [10], 3-strands for potential 8-sheets and (2} the intervening strands
(e.g. representing turns). Let us then suppose that the linear amino acid information
provides a very weak preference for a particular bending at each junction. This would
break the symmetry, which gives rise to the enormous "random walk” degeneracy, and
thus determines essentially the final folds, the fold classes, and to a certain extent removes
the Levinthal paradox[11]. He pointed out, that the space of possible configuration, i.e.
the number of local minima that a medium size protein can attain, is enormous (~ 20!%)
judged just from the linear sequence informafion. Our hypothesis is that nature solves the
paradox and reduces the number of possibilities drastically by breaking the proteins up
into building blocks, secondary structures, domains etc., with specific rules of connections.

Let us introduce a highly simplified model. Suppose the above mentioned elements are
essentially linear of various lengths, the direction is given by a unit vector é. To describe
the junctions consider for example at site P a vertical a-helix (¢7) with a strand entering
at the bottom in the direction north. Suppose the «-helix can transfer the information
that the strand going out at the top is approximately in the same direction (=snorth),
opposite (mvsouth), or =east, or ~swest. The situation can be described by the hinge
variables S, as spins giving the hinge direction and sense of turn. The information along
the element is then reduced to a set of interaction constants J,, K, within a total of four
values (+J, £ K} which favors one of the four relative spin directions. The same can be
done for the other elements (J;, K, for element (1) and j,, k, for element (2)). Thus one
could characterize a given fold configuration (here a four-helix-bundle) by a linear string
of e.g. the following content: J J Y E K Gi0-KLig-J1,
where {} represents one of the of symbols is given in the figure below, together with a more
realistic representation of the four-helix bundle 1hmq. The reduced information giving
the spin directions can be furnished by many amino acid sequences. This provides in fact
the basis for the classification, i.e. many variants having the same fold. In order to be
able to describe the energy cost for viclating the optimum fold we write the argument as

a Hamiltonian

H=— Y (JpSp-Sps1 + KpSp xSpn -&F)
P=In41
- Z (jPS, . Sp+1 + }C,, Sp x p+1 é:) (12)
p=in

This simple model is more general than a lattice model because we are allowing for both a
variable length of the elements and for a flexibility in angles. From a specific sequence of
Jpr kp and Jp, K, we can find the corresponding spin directions and construct the protein
structure given the lengths of the elements. By Monte Carlo computer simulations the
model can be shown to exhibit known

folds amongst a wealth of other structures such as non-compact and loosely packed
structures and structures that are too densely entangled in one another.

After randomly varying the linear representation and permuting the coupling constants
one can search for the minima of the energy function given above. In that way one can
obtain members from different folding classes and in principle traversing the whole space
of possible folds. A phase diagram can easily be extracted from such an analysis based on
the energy function H and we already know from previous analysis [12, 13, 14] that this
type of energy function exhibits an ordered phase at low temperature corresponding to
folded structures of proteins and disordered phases at higher temperature corresponding
to unfolded or misfolded patterns.

Here we shall demonstrate that the model is amenable to a simple estimate of the
number of dense protein fold classes. For 2 random sequence of interaction parameters
it is most likely that the siructure is extended. The number of such structures is very
large and can be estimated a8 Nyundom o 2% = 4% = 102, where N = 20 (taken as the
average number of structural elements in proteins times two, counting the intervening
strands too) is a typical number of junctions (spins) and z = 4 the turn possibilities.
The problem is to find those sequences which result in dense structures. This problem
is closely related to that of self avoiding random walks (SAW), see e.g. de Gennes[15].
The end-to-end square distance R} can be shown to scale with ¥ as Ry oc N¥, v = 3/5,
for dimension d = 3. For the protein to be dense, Ry must be small, and that reduces
the number of possibilities drastically to Nsaw,ciose N / Rj For self avoiding walks
% =z — 1 — ¢, where the —1 corrects for the direct return and where ¢ = 0.32 for d = J is
a small correction for possible later crossings. By construction of the model we have no
direct returns and thus Z = 4 or better Z & 4 — ¢. However, we want to require that the
proteins are still denser. The root-mean-square radius scales as < r? > N. Therefore
the number of proteins with extent being of the order of the length of the elements is
further reduced by a factor N £, Hence one obtains the following estimate of the number
of proteins which are dense and self avoiding

NSAW,deme o EN/Nd(v-FB = —N/N3.3- (13)

For a typical protein consisting of 10 a-helixes or §-strands there are N = 18 junctions;
and the number of distinct structural folds is computed from (2) to be A = 10°. This
number is vastly reduced from that of the free random walk estimation (= 10"}. It
must further be reduced considerably by requiring that the potential S-strands are close
together in space in order to form §-sheets. Assuming n o-helixes and m f§-strands the



restriction gives a reduction factor o n'm!/(n + m)!, which for n & m gives a reduction
factor 250 and brings the estimated number down to

Nfoldclauu == 4000 (14)

for the typical proteins. This is very close to the estimate by Chothia, who obtained his
estimate in a totally different way. It is still a bit higher and allows therefore both for
more possible findings than foreseen by Chothia, and for the possibility that nature in the
course of the evolution has not used all the statistically possible options, or rather that
some folded protein configuration were discarded because of lack of functionality. Clearly

a further reduction is arising if the structures must in addition fulfill certain functional
demands.

The argument given here has been to estimate the number, or upper bound, (< 4000)
of the final structures. In these the strong forces between the elements can equally well
be included, probably distorting the structures somewhat. However, the more important
aspect in our model is that the proteins already in their linear amino acid combination
have the fold class impregnated within them, allowing the fold to be much more well
determined and self-organjzed than that conceivable from a totally random trial and
error method. It is clear from the argument that a given fold cannot be used to determine
the amino acid sequence, whereas the reverse is possible. In our model the folds are coded
in a decimating code. We have only discussed relatively small proteins, but as discussed
by Chothia, the larger proteins produced at the recent stages of evolution are generally

combinations of the elementary ones. This will not increase the number of possibilities
drastically!
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Figure: Chain model representation of the four helix bundle protein (left
side) and (to the right) the real protein in a ribbon representation

Large5. Formation of fold patterns in the early stages of protein folding

In chapter 5 a whole new formalism is presented for analysing quantitatively the early
stages of protein folding from a structural viewpoint. Briefly the main ideas of such an
approach is the following. The processes of protein folding can be described by neural
networks using a description of the protein configuration contacts. The initial fast ener-
getically down-hill process from the random coil structure to a collapsed state of secondary
structures may be thought of as using a quasi static mean field equation which approxi-
mately is in the form of a Feed-forward Perceptton equation and a time dependent form
equivalent to the time evolution of a feed-back Hopfield neural network. On the basis of
these results we propose some changes that might improve the neural network schemes
used for prediction of tertiary structure of proteins. Qur formalism can also be used to
analyse the structure of the basin of attractors for the protein neural networks, which
might describe the early events in protein folding. Furthermore the formalism can give an
insight into the various phases of secondary structure formation in terms of temperature,
overlap parameter and randomness.

5a. Contact dynamics of protein folding and neural networks.



Recently neural networks have been demonstrated to be useful in the prediction of
secondary structures {ref. 1-3) and tertiary structure (ref. 4, 5, 6 and 7) based on the
protein’s sequence of amino acids, the latter only when there is a large degree of homol-
ogy to the training set. When little homology exists the determination of a protein’s
tertiary structure solely from its sequence, is still a major challenge of biotechnology and
represents the practical side of the protein folding problem. Understanding the success
and limitations of neural network techniques applied to structure determination may give
insight into how to make better predictions and how proteins themselves carry out this
daunting computational task (ref. 8). Thus we ask whether there is a way of deriving
the neural network equations from the physics of protein dynamics. It turns out, that in
the pursuit of a description of the initial down-hill processes of protein folding we end up
with equations for neural networks of feed-back type which can be approximated as well
in a short time limit by feed forward nets like those used. This can be understood in the
sense that feed forward neural networks provide immediate responses to sequences giving
structures in return.

Before building up the contact formalism we shall briefly give a crude scenario of what
is known of the first stages of protein folding since our dynamical equations first of all
apply to that stage.

5a1. A crude scenario of the initial stages of protein folding.

There is some reasonable consensus concerning the experimental data (e.g. ref. 9, 10)
about the main features of the various stages of protein folding. Details are still sketchy
but most crudely it seems one can divide the folding process into three stages:

1. A fast "down-hill” energy minimization process forming the molten globule state,
after a quick formation of most of the secondary structures that are found later in the
final native configuration.

2. A stower docking process between preformed structural elements and a partial or-
ganization of the hydrophobic core.

3. Slow molecular dynamics where the side-chains rearrange themselves with a deli-
cate change and some H-bonds or torsion angles (ref. 11).

Experiments also indicate that these Molten Globules are compact intermediates and have
substantial secondary structure but few if any fixed tertiary structures. The hydrophobic
side-chains are not buried as in the native proteins but often exposed to water. It is im-
portant to differentiate between different time scales involved in these folding stages. Also
at a structural level in a simplified description there are different scales, the first stage
consisting primarily of large scale back-bone motions while the last stages have the more
fine grained dynamics of side-chain motions. We shall be dealing mostly with the first
down-hill energy minimization stages of protein folding, which are dominated by polymer
physics, while the later stages are better described by intricate molecular dynamics.

The main motivation behind this presentation is to construct a physical framework
in which the vatious neural network schemes for prediction of protein structures can be
derived and explained. At the same time this approach that focuses on the informa-
tion processing aspect of the problem may help elucidate the role of the different folding
processes that participate in the dynamics of the protein folding. In our analysis the
fast down-hill physical processes are closely related to the feed forward neural network
achemes in the sense that the mean field equations of the former processes are the ones
that describe the latter perceptrons.

Another aspect of this approach is that the mapping makes available the use of many
of the formal ideas of neural network theory for thinking about folding problems. For
example the theories of the size of basins of attraction for nets can give ideas about the
probability a sequence can fold really fast. Also Gardners formalism (ref. 12) can be used
to understand whether simple codes for folding can exist. We will only hint about these
ideas in this preliminary report.

In the next chapters we shall first briefly report on the practical techniques of neural
network type for protein structure prediction and then in the light of the formalism for
the fast down-hill processes and the dynamics of contacts try to derive and motivate these
neural network methods which seem to be intimately related to the early stages of protein
folding.

5a2. Contact dynamics for proteins

The bagic variables of our description of the protein dynamics are contacts which
can be defined as a density variable which we denote by o;. This variable measures the
correlation between the i’th and 7’th residue relative to the distance p between the residue
(C,) points on the protein backbone. The correlation measures how close the residues
are to each other. The contact variables could be described as binary variables {0,1},
where 1 stands for contact within a shell of inner radius p and outher radius p +dp and 0
for no contact (see fig. 1). The variables could also be described by a continuous valued
function. In this study we shall maintain the binary notion:

. [ 1 ifjis within a sheli of (p, p + dp} from i.
5= 0 ifjis not.

If we integrate up this contact variable over the radial distance p we obtain a coarse
grained natural variable s;; which describes close contacts. It is defined as:

L)
= [ afde (15)

that measures if residue j is within the range of p from ¢ or not.



From the contact variables oi; and s;; we can define many useful quantities, one being
a quantity for measuring each residue’s position relative to the surface defined by, for
example, the center of mass for all the side-chains. We have called such quantity the
"superficiality” S? (see ref. 13) and define it as:

L
Si= =% [ ogar (16)
Iy 1%
This quantity measures the number of neighbours of residue i within the radial distance
of p. The quantity tells how much each residue is buried in the interior of the protein
(large values) or exposed to the surface (small values).

We can also define the contact variables to be relative to specific atoms of each residue.
For example og;; could denote a contact measured with respect to the distance between
the C'; atoms for the residue i and residue j. Similarly we could define O4i; @9 a contact
measured with respect to the distance between the C; atoms. The calculation is actually
done as:57; = T, Lo 95 ;- With these two difinitions we could construct a quantity
called the vector contact density or the vector superficiality as:

B = S5 — Sai (17)
Such quantity Sg,; tells about the direction the given side-chain i points. A low value
for § will indicate that the side-chain ¢ points out towards the exposed surface of the
protein, while a larger value will indicate that the side-chain points towards the interior
of the protein. Altogether it is quite clear that the superficiality variable S; is related,
if not proportional, to the solvent accessible surface area. The solvent accessible area
is harder to calculate than the superficiality whose calculation involves simply summing
up neighbours around each residue. A feed forward neural network with the purpose of
predicting surface structures of proteins on the basis of their sequence of amino acids has
been constructed (ref. 13) using the superficiality concept. The superficiality was pre-
dicted for each residue and then related to the surface area. The neural network was up to
T0 % correct in predicting the superficiality of a test set of 10 proteins after trained on 40
other proteins from the Brookhaven PDB data set and with an input window of 7 residues.

It is very important to realize that this binary distance matrix description is a unique
way of representing the 3-dimensional structure of a given protein, see ref. 39. Especially
the secondary structures are easily recognisable patterns within a binary distance matrix.
For example the various helices are elongated structures along the diagonal while the

anti-parallel beta-sheets are elongated structures perpendicular to the diagonal, see fig.
4.

It is actually possible (ref. 40) to consider the contact variable matrices of; 88 opera-
tors in a Hilbert space. In fact all types of contact (distance) matrices can be decomposed
into elementary 2z2 matrices, such as the Pauli spin SU(2) matrices. Specifically a 4z4
alpha-helix contact matrix can be composed by a tensor product of the Pauli matrices
01,020 T34 ix = 02 ® 03 and similarly a 424 beta-sheet contact matrix can be composed
by the tensor product: U‘;‘:M“t = 0 ® 03 and it scems resonable to expect that any
binary distance matrix can be generated by tensor products of elementary Pauli spin ma-
trices. Therefore the whole dynamics of arbitrary contact matrices can be described by

the eigenvalues of the dynamical operators projected on sub-spaces spaned by the Pauli
spin matrices. The corresponding wave functions are really the probability distributions
of having specific contacts.

$a3. The energy function for protein contacts

In the last chapter we introduced the basic variables af; (and sf.) measuring the con-
tact between position ¢ and j, or in terms of residues on a protein backbone, measuring
whether the 'th residue is mear (within) the distance p of the j’th residue. We shall now
try construct the free energy in terms of these variables (ref. 20). Basically there are two
parts of the free energy to consider. The first part is the free energy (primarily entropic)
of a chain and the effect of its vatious contacts involving hydrogen bonds in secondary
istructures and the other part is the contribution to the free energy from the interaction
among the side-chains.

5a3da. The general expansion

In this section the free energy is expanded in the basic contact variable o), like a
Landau theory. One should note the basic variable o;; (we shall in the following mostly
be omitting the index p) is the probability for a contact between ¢ and j rather than an
actual contact. This contact variable resembles the density variables used in liquid state
theory and much of the analysis of density functional theory can be taken over intact (ref.
21).

We shall first write the free energy in the general form:

F=r4+F (18)

where 7 is the free part and F7 is the interaction term. First we decompose the free
energy term into:

FOai5) = Fealog) + AF%(ay;) (19)

where the first term Fpg. is an entropy term for a perfect gas, and recalling that the
Boltzmann entropy expression for an ideal gas is 3°; PlogF;, we write:

Feg, = ksTY f a.;logodp (20)
iy
If we use the integrated shortrange contact variable s;; the Boltzman entropy becomes:
Fro = kaT (3 sijlogsis + (1 — 3, )log(1 — si5)) (21}
if

The second term in F°(a;;) is expanded in orders of a;;:



AFC =% Wi +3 3 Wikoiom + ... (22)

i oM
being a connectivity expansion where the first term measures the free energy gain for
forming the contact (i, 7), and the second term measures the free energy gain for forming
the contact (7, j) when already having formed the comtact (k).

A similar Taylor series expansion in terms of s,; can be used:

AF%(sy) =Y Wisi + 3.3 Winsisu (23)
i3 ] ki

i

where, of course the Taylor coefficients will be different.

It is important to bear in mind that these terms represent the energies for contacts
between points on a {ree chain. Hence the factors W;_ in the expansion can be derived
from polymer chain physics. In the first approximation W;; can be derived from free flight
statistics (ref. 26), but in order to go further and to include for example excluded volume
effects, a whole formalism has been developed (ref. 22, 27) using Feynman path integral
techniques. Including excluded volume should give a more realistic picture of the chain
with Van der Waal’s spheres centered at the atomic coordinates.

Again there are many developments in using free energy functionals for singlet density
for polymers (ref. 22-26) and these may be generalized to the pair level used here. Also
the back-bone can undergo hydrogen bonding into a-helices and f-sheets. These effects
on W etc. might be treated using the theories of associated fluids (ref. 27).

The interaction term J7! takes into account the interaction between the residues. The
interaction energy is expanded in the same way as the free term above:

Fl=Y Wi+ 33 Wioiou (24)
f G M

Now, however, it is more complicated to determine the expansion coefficients Wi({a]).
They will depend on a detailed nature of the residues, i.e. sequence information {g;}, and

this dependence must be learned.

As we shall see the minimization of the free energy in this representation leads to a
neural network and the learning can be carried out by back propagation {(or other algo-
rithms} given some examples. In this representation the associative memory Hamiltonians
of Friedrichs and Wolynes (ref. 4) correspond to instructing the interaction matrix with
examples;

F' =28 [dovyiar.af a5, ooy (25)
7 oo

where 0" =< §(r —p) >. Since the higher terms vanish in this expression the Friedrichs-
Wolynes Hamiltonian could be termed a linear associative memory Hamiltonian. An
associative mermory term using only the coarse grained near contact variable 8;; can be
used too:

Fl= ¥ 47ssi; (26)
ijo
where 53 is the value of the contact variable in the example o. Although this simpler
form doubtless diminishes the capacity of the model, it is a useful model interaction for
discussing the basin of attraction for early stages of folding.

We are now in the position to write down the total free energy expression with the
linear associative memory Hamiltonian (in terms of s;;):

F = Z/dka[(l - 3.5)109(1 - S,'j) + 3,-,-log.s,-j] - Z Wij-s‘-J —
At 17

2 Wonsion — 3 1isst (27)

i kl o

5a3b. The simplest polymer framework for the calculation of the factors W

In this subsection we shall briefly mention a formalism that, will enables us to calculate
the chain polymer energy terms. It is basically the formalism developed in the references
22,28,29.

We first consider smooth chains of residues labelled by an index. The contacts will be
denoted by a pair of indices (i, ;) meaning a contact between residue ¢ and j. A contact
means that the positions for the i'th and the j'th residues are within a certain range p
of each other. Sequential neighbours are discounted as being able to form contacts. The
order of a contact {i,7) is the number of residues between the i’th and the j’th position
on the chain. Thus contacts of order 1 are excluded. The contacts of a given order cor-
respond to a loop of a given size.

As explained in reference 29, the effect of a contact can be measured by a reduction R
of the chains conformational freedom. If (N, ¢, j) stands for the number of conformations
of a chain with N bonds and an (i, j} contact and §%,(NV) is the total number of accessible
conformations, the reduction factor R(N, 3, 7) is given as:

oy UM G
R(N,i,j) = _f(l,,_(_i\?)J_) (28)
or in terms of our energy contact matrix W;;:
.. QN,i,j
Wi = log( RN, ) = tog( g 2d) (29)

Making use of the results of the simple theory of Jacobson and Stockmayer based on
"random flight statistics”, ref. 28, the reduction factor can be written as:
d

R(N,i,j) = (Av)[m]m; (N2li-j] (30)



where d is the dimensicnality of the configurations and Av is a tolerance volume factor, ac-
tuality the volume of a sphere of radius p in whick the residues qualify as being in contacts.

The effect of two contacts {i, j} and (k,[) in the same approximation of "random flight
statistics” can also be measured by a reduction factor R(N,i,j,k,{) and one can define
{ref. 29) a topological correlation factor g as:

g* kQ(L)—_- R(leljvk?l)

" R(N, 1, 5)R(N, k,1)
where k; and %, are the two contact orders:(k, =| 1 — j |) and (k3 =i & — |} respectively,
and L is the distance between the two contacts (L =| j — ! [). This correlation there-
fore measures the ratio of the actual number of conformations satisfying the two contacts
and their dependences, to the number of conformations in the case of the two contacts
being independent. Thus it measures the degree to which cne loop effects influence the
formation of another. The simple approach of random flight statistics does not take into
account any physical geometrical constraints, such as excluded volume effects, and there-
fore gives a too simple picture of polymer dynamics. However, there exist approaches,
ref. 29, to the calculation of these excluded volumen effects via diagramatic methods of
polymer theory.

(31)

It is interesting to note that there are only 3 topological cases of 2-contact configu-
rations realized by the following index inequalities: 1. case: 0 < L < k; — ky, 2. case:
ky ~ky < L < k3, 3. case: L > k;, when we assume positive separation L > 0. In the
context of protein backbone contacts and secondary structures the first case correspond
to anti-paralle] F-sheets, the second case to a-helices, r-helices etc and the third case to
random coil configurations.

5a3c. Path integral formalism for the polymer factors

We shall now try to make a path integral construction of these reduction factors on
the basis of a more realistic picture where for example excluded volume and chain rigidity
effects are included. Usually, see ref. 29, the chain partition function Q{N) is written as:

QUV) = [[Dele-riivm) (32

where the Boltzmann energy function is:

r 2 N '
H(N,v) = 1/2]()Ndr|¥ +u,,j0 dr[J 76 | e(r) — () |

T

+ gk [dr (k) (33)

and where 7 is a contour length parameter and c(7) specifies the chain conformation,
¢{7) = v/dr(r) and r(r) is the position vector at r from the end. Furthermore k. is the
rigidity constant and « is the mean curvature, which is:

&r &
-328 &7 (34)
dr  dr?
where g is the metric, ¢ = r.r, and the cross-product in 2 dimensions is defined as

a x b = ¢;0:d; being a scalar. D[c] is of course a functional integral measure over all
possible path (conformations).

K=4g

The path integral can now be used to caleulate the number of conformations QN L, L+
k) restricted by the contact points at I, and I, + &, having r, = v(L) — r{l, + k) being
within Av:

it

QN4 L, + k) jA dr, j [Debr(L,) — o{l, + k) — £, ]e~PHNo0)

(Av)d¥? [1Delsle(ly) — e(l, + k)je0H Moo (35)

In order to proceed we could now expand the expression in powers of v, (the excluded
volume interaction strength):

Q= Q2+ Qv+ Qe + ... (36)
and
Qo = Q0 + QorQ2(v.)* + ... (37)
and similarly for the reduction factor:
N, byl + k) 4297 Q9 2
N lg+k)="—"— " = (Ap)d¥? L. o = — <2 v
R( ? + ) QD(N) ( ) Qg [1 + v, (Qﬁ Qg) + O( ]} (38)

We can now for technical conveniences develop a Feynman diagrammatic technique for
calculating the free energy contribution to any configuration of the chain in the excluded
volume interaction picture. Basically the Feynman rules are obtained by taking v, as the
vertex function and G,(c — c’,!) as the free propagator, where:

1 1 —h(c-c)?
Gole -~ &',1) = (5 ) temdee) (39)

and finally integrate over all coordinate vectors ¢ (between the vertices) over all space
and integrate over all pair of contour lengths (7, ') connected by the excluded volume
interaction line.

S8a4. Dynamics of contacts

The next step is to derive and solve the dynamical equations from the energy expression
derived in the last chapter. As we emphasised in the beginning we are interested in the



early stages of the folding process of fast down-hill energy minimization so we will be
dealing with a first order differential equation in time. Basically we have a Langevin
equation:

dsf aF
&~ as (40)

First we shall study the solutions to the static mean field equation and then the time
dependent equation.

This equation is, of course, phenomenological and close in spirit to what is used for
magnetic systems. It is more natural, to chemists, to think of s; as a concentration
variable for pairs. A rate law embodying the same free energy function can be written
down for s,; but the forward and backward rates will depend nonlinearly on the change in
the free energy in making a contact. The pre-factor of such a rate can be estimated in a
manner analogous to that used by Karplus and Weaver in their diffusion-collision picture,
ref. 30. We do not think the analysis of the nonlinear chernical kinetic equations would
be much different from that in the magnetic language.

5ada. Static Mean Field Equation and the feed forward Neural Networks

The time independent mean field equation for the energy functional introduced in the
last chapter becomes:

oF
as’
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=0 (41)

If we now insert the expression for F from the last chapter and redefine the variable
sy — (35 + 1)/2 we get:

1
0= log(1 + sij) — log(1 — 5;;) + WS+ Y Ew;;,,,sm +Wit.. (42)
ki

If we now exclude higher order terms, make use of the relation:tanh™'z = 1/2log(11£)
and insert W, = qiq; T, qf'q7 we obtain:

il

84j

tanh(W + ¢ig; 3 qiqi'st)
tanh[W; + qigjw] (48)

where we have absorbed the constant term W in Wy, and defined w = Ty qf¢f 8% The
equation above describes a trivial feed forward neural network with two input neurons
taking values of ¢; and one output neuron with the values of s;; with the rule that:

. = L if giqw > W§
v 0 if giiw < W,j

If we now include higher order terms (and absorb the constants in W, we have:

- 1 "
8ij = tanh[W{} + qigiw + E %: W:‘jklskf] (44)

which can be solved iteratively:

85,0 tanh[W/,»‘;- + q,‘qu]
_ 1 o
sija = tank[Wi + qigw + 2 3 Wiju"fr.o] (45)
L]

With the expansion of the lower order contact variable s;;0, that depends on the side-
chain properties: 3,0 = A° + B'q,g, 4 ..., it becomes an ordinary feed forward neural
network.

This network, which is similar to the Copenhagen network (see ref. 5), predicts con-
tacts or distance matrices from sequence information ¢;. In principle the thresholds and
weights can be determined partly from polymer chain dynamics. Actually since parts of
the thresholds are undetermined (the part with w} the present analysis suggests that the
essential part of the training of the neural network for predicting distance matrices is on
the thresholds. It also suggests that the "best” network should be recursive. A simi-
lar network, see ref. 13, is one for predicting the integrated contacts, the superficiality

S.' = 2’- Bij5-

A very similar view of the relationship of mean field theory to neural net architechture
has been independently developed by Bryngelson et al. (ref. 31) and used to discues helix
prediction. The connection between energy functions for biemolecules and neural network
algorithma has also been discussed by Steeg (ref. 32) for RNA secondary structures.

S5a4b. The time-dependent dynamical equation and Hopfield Neural Net-
works

In this subsection we shall consider the time dependent equation for the fast down-hill
folding process. If we insert the expression for F we have:

d.!.'j _ 6.7'- =
dt  3sy

B9 kTlog(—Ym) + W + 5 Wison + WS+ . (46)
dt 1—s; Kt

or the following difference equation:
iy
1— s

sij(t + At} = [Z'; Wiax + W} — kTlog( )+ .| At+ si;(1) (an
L

The first order differential equation looks very much like an evolution equation for a

Hopfield feed back neural network:



N
si(t + 1) = sgn(} Wis;(t) — 6] (48)

=1
if we bring the logarithmic term over to the left hand of the equation and then consider
time steps in which the variable s;;(t + 1) has relaxed to a local equilibrium. Then we
can neglect the differential term and write the equation as:

ng(f + l)
1- S;j(t +1)
and if we consider the low temperature limit with the two cases of s being nearly either
1 or 0 for either positive or negative potential A;; we can transform the logarithm into a
sign function and obtain the equation:

kT!log Y= hi =3 Woijklsu(t) + W+ Wi+ . (49)
ki

syt + 1) = sgn[d" Wi su(t) + W5 + W, (50}
K
which is a Boolean net.

Such a Boolean net arising from this special low temperature limit is unlikely to be
valid for real proteins since it implies a rigid code for the protein folding. Therefore we
shall mostly be studying the more general evolution equation:

sij(t+1) = tanh((kaT) (3 Wisn(t) + W + W] (51)
ki
that is derived similarly to the evolution equation in the previcus chapter. Both the

Boolean and the last mentioned equation describe the evolution of feed back neural net-
works. In the next section we shall discuss the solutions to these equations.

5adc. Fixed point solutions of the evolution equation and topology of chain
connectivity

We shall now try to solve the time dependent equation which we called the evolution
equation for contacts in the early stage of protein folding. Let us recall the equation again
and write it in a short notation where it is clear what is a dependent variable and what
is not:

i (t+ 1) = sgny[} Wiasis(t) + nis} (52}
ki

where 7 is a temperature factor and g is, in the terminology of neural networks, a thresh-
old which has absorbed all the interaction terms H/,-‘;H and the constants W etc.

The right hand side of this equation can only match the left hand side if the contact
variables s basically are the same or, the other way around, if the contacie are the same
{e.g. the same over a certain range of residues and otherwise zero) the equation above
is full-filled and has a fixpoint at that contact value. The fact that the contacts only

have to be equal over a certain range of the sequence and otherwise zero means that the
chain or protein back-bone has to have periodic structures along the chain. Such periodic
structures are typically secondary structures and give rise to fixed point solutions. We
shall now try to show that the typical secondary structure classes of helices and sheets
naturally comes out as solutions of the polymer chain topology.

The task is to identify the possible geometrical configurations (see fig. 2) of two
contacts interacting and determine the factor Wg,,. Therefore we consider a chain of
length N on which there are two contact configurations (iy,7;) and (t2,72) which are
separated by L = f; — j; and with contact orders ¥ = j; — ¢, and k; = 72 — 3. We can
agsume k; < k2. One needs to calculate the correlation function (see ref. 11):

R(N;il,jl,iz,;h)
R = — —
= RN RN i 72) (53)

where R(;+,7) is the reduction factor, introduced in chapter 3., when having the contact

(1,5)-

First we realize, as mentioned in the previous chapter, that there are (topologi-
cally) only 3 types of possibilities (see fig. 2) for the index configurations: 1. case:
0SS L <k~ k2 case: by — k1 < L < ky, 3. case: L > ko, when we assume positive
sepatation L > 0.

In the Jacobsen-Stockmayer approximation (ref. 10) the reduction factor can be de
rived to be:

[kj/(k; - 'kl)]df2 lf 0 2 L 2 kg - kl
Ba(L) = § [t = (ka = L) /(kz — k)] i by — by < L < hy
1 >k

If the contact-orders are equal, and hence k; = k., case 1 is absent. The importance of
the above classification is that it is complete. In the case of periodic structures it is clear
that antiparallel 3-sheet types are of case 1., a-helices, r-helices and parallel §- sheet of
case 2, while random coil (periodic or not) are of case 3. For negative L, L < 0, the case
can be transformed into the former case by the symmetry:

Ry(L) = Ra(ks —ky+ | L |} (54)

There is a natural relation between these cases and the secondary structures, The
periodicity in the helical structure means that the orders for the non-zero contacts are
equal, i.e. ky = ky, and that itself exclude case 1. For regular sheet structures the non-zero
contact orders are regular series of numbers such that &, = k; + k = k3 + 2k etc. occuring
in case 1. The question about parallel and anti-parallel structures are determined by a
twist on the contact loops.

Including excluded volumen effects basically mounts to multiplying R; with a factor
D whose coefficient f can be determined from Feynman rules: D = (1 — v, /2x f).



We can now under the assumption of some periodic structure go back and solve the
complicated summation of the evolution equation and determine the condition for stable
fixpoints related to those structures. Therefore we assume that our test protein has some
general periodic structure {(mg, m,),...,(m%, mk)}, where K stands for the number of
periodic structures and each structure is labelled by a start position m® and number of
residues m it contains. Non-periodic regions are labelled by m,,. We can now restructure
the summation in the evolution equation:

K mp my
sgny[d Y3 Wissi{(t) + i)
j=1 =1 =1
K My
sgryY_ma - Wigps () + 3 Wijsilt) + 1] (55)
=1 i=t

st +1)

Il

where Wi; = logH, is given by one of the 3 cases. We can neglect the non-periodic part
since o; in that case is zero (early folding stage).

In the real case of contacts s;; with two indices we have similarly:

K

3ij 39"‘)‘[2 MW it irpdis + 1)
Y]

K
$gny[Y MWisipisepSiier + M = Siirp (56)
{

where p is the periodicity (i.e. number of residues in each period) and the K periodic
structures were assumed not to have contacts between them and where there was assumed
no contact outside the periodic structures. Furthermore the threshold for defining a con-
tact p was assumed smaller than 2p and even smaller than 2A where % is the characteristic
hydrogen bond length for the given periodic structure.

If the periodic part is denoted p; the existence of a fixed point is depending on how
big the threshold #; is relative to p;, and how big the tempetature factor - is. This is seen
by looking at a graphical representation of the evolution equation. The fixpoint is given
where the line s; = s; crosses the function tanh. Basically there exists a non-trivial fixed
point provided p; > n and g > 1.

To determine whether the fixed point is attractive we have to solve the stability equa-
tion or the following inequality:

Btanh(B(< s > +1),

S[tanh(B{< 3; > +n)} = B<sS f<s;><d<s> (57)

which can only be fullfilled for 8 > 1.

5a5. Basins of attraction of neural network models of protein dynamics

We have shown that the dynamical equations for contact formation can be formulated
as a neural network with an interesting architecture. One of the values of this approach is
it allows us to understand the relationship between the approaches based on feed-forward
models taken by the Copenhagen group and others, and the associative memeory and spin
glass models that have been studied so much in both a practical way and by the use of
equilibrium statistical mechanics (ref. 4 and 14-19). The other outcome of this analysis
is that we are now in a position to take over many of the ideas applied to spin models
of feed-forward neural nets {e.g. ref. 33, 34) in order to think about the early stages
in protein folding. The strict down-hill dynamics discussed in the last chapter which
is equivalent to a neural net would amount, in physical terms, to folding in very short
amounts of time of the order of nanoseconds to microseconds. The down-hill dynamics
really models the early events of folding while the spin glass analysis focus on the longest
timescale processes.

We will point out how some of the formal analysis of neural networks can tell us some-
thing about the basin of atiraction of this fast downhill motion. This can be examined
rather directly if the associative memmory instruction model is used for the contacts.

Another question that often arises is whether there could exist a code for rapid downhill
folding of proteins. We see that in this representation this question is entirely analogous to
the problems raised by Elizabeth Gardner in asking about the statistical mechanics of the
space of interactions in the feed-forward neural nets {ref. 12). Considerations of that type
have also lead one to ask about optimal learning strategies and we will say a bit about this.

SaSa. The dynamics of averlaps in the associative memory model

Consider the case where the linear associative memory rule is used to develop the
interaction Hamiltonian. In the contact representation, we can see that the Hamiltonian
is the same as a regular partially frustrated spin glass with an external field which is, in
the main, ferromagnetic, i.e., favoring a single configuration and a random part coming
from other memories:

M= =Y Wigsisu+ 3 Wisi + 2 wnshisi (58)
1 akl
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where the second term T;; Wjaij represents an external field and the third term ¥, Y0 5%9i5

is the random part. The corresponding evolution equation for the spins in the fast down-
hill motion is:

st +1) = sgn[} Wousu(t) + W5 + 3 viusil
" akl
= sgnlhi; + Ay + hij) (59)
This equation corresponds to a single spin reorienting the field, partly coming from

the correct instructions, partly from the neighbouring interacting spins, and a random
part from the incorrect instructions. At this level, the evolution equation, therefore, looks



like the evolution equation in a conventional feed-forward neural net that carries out

association and we can follow precisely the analysis given by Amit et al., ref. 33, and
Krauth et al., ref 36, 37, to write down an equation for the overlap between a contact and

the correct pattern:

mas(t + 1) =¢(§%’ﬂ) (60)
similarly to the spin overlap equation:
mi
V2ar

where & denotes the error-function and r is the parameter of overlap with non-condensed
memories. Written in the integral form our overlap equation looks like:

m“=¢(

{61)

00
me, = j dz ezp(—-zz/?)tanh[ﬂ(z Wiumu + hj; + vz} (62)
-V ?

This is however a complicated matrix equation to solve in general. The size of the
basins of attraction are determined by the fixed points of this equation. If there are few in-
correct memories, it is clear that there will be a fixed point near N = 1, and the size of the
basin of attraction can be determined from the slope of the etror-function near that point.

A way to get a very crude solution to the matrix equation is to start with a strongly
simplyfied picture of the contacts and then iterate the overlap equation. Firstly one could
start with all overlaps being zero at time ¢ = 0 and then solve for the overlap at the next
time instance ¢ = 1. One then obtains a value for the overlap at a later stage by inserting
the overlap value m{t) at time ¢t = 1 in the right hand side of the overlap equation and
assuming that the overlap is constant. After some iteration steps one can then try to
determine the fixed points of the theory.

Therefore the first equation for m(1) is:

my(1) = /_Z %e"’“*anhlh? + Vaz] (63)

which right hand side has to be inserted in the next equation at a later time:

m(2) = [ Z %e—*’fztanh[n ca-m(1) + k¢ + 1/az] (64)

where the constant a is determined from the polymer coefficients Wiiri, and n stands for
the number of contacts in the overlap. (Iis an index for the type of contact.)

It is important that all the parameters in the equation above can be fixed esgentially
by assuming a specific polymer geometry, i.e. by assuming a specific type of secondary
structure contacts. We shall first assume that the only possible contact is alpha-helical or
no contact. Therefore the parameters a, n and A° are determined from polymer dynam-
ics. The parameter a is basically measuring the size of the set of "bad” or non-condensed
"random” memories. The critical value of a, i.e. when the memory capacity limit is
reached and the network breaks down can in principle be determined from the folding

entropy and folding transition temperature. We shall determine o by our numerical fixed
point analysis.

The important task is now to look for fixed points. They can be found by plotting
m1(2) a5 a function of my(1) and then look for points {fixed points) where the curve inter-
sects the straight line given by my(1) = mi(1). It turns out that we only find attractive
(8 > 1.0) fixed points (m; = f, where 0.02 < f, < 0.1) for values of a in the range
0.0 < a < 1.0 and temperatures in the range 10.0 < T < 0.0.

Once the non-trivial fixed points are determined the size if the basins of attraction
can be calculated corresponding to each fixed point. The size is found as the range of m,
for which the slope of the curve is less than 45 degrees, see figure 3, where the overlap
m(t + 1,m(2)) = my(2,m,(1)) is plottet for different values of temperatures T and o
values denoted by a. For example for the fix-point at my = 0.7 for a = 0.5 and T = 0.7
the size of the basin of attraction is around 0.3, which is quite large. The sizes of the
basins of attractions are in some cases of large e and 7' very small, so the space of in-
teraction looks like containing very steep wells of attraction situated at specific polymer
configurations. In Figure 8 we show plots of m(t + 1) as a function of m(t). There are
curves corresponding to different temperatures. The crossing between the diagonal line
{m{t + 1) = m(¢)} and the curves indicate the position af a non-trivial fixed point apart
from the one in Zero. The size of the basin of attraction can be read out from the slope
of these curves near the fixed point.

5a5b. The evolution of competing structures

We could also try to solve the overlap equations with competing overlap structures and
study the time evolution. If we for example start out with two initial overlap structeres
my(1) and my(1):

my(l) = /_: %e"’ﬁtanh[ﬁ(h‘,’ + agz)) {65)
and
ma(l) = j:: —%e_ﬂ”t““h[ﬂ(hg + ez)) (66)

these solutions could then together with a choise of the polymer synaptic weights Wik,
for example an alpha-helix pattern given by the constant w1, a beta-sheet pattern repre-
sented by the constant wy; and a mixed term Wy, be inserted in an iterative proceedure
represented by the coupled integral equations evolving in time:

© g
ml(t = 2) = [-& ——;x e“"’"tanh{ﬂ(nuwuml(l) + ﬂmﬂ}umg(l) + h? + 012”

= dr
m:(t = 2) = [m \/2_1re z’!’mnh[ﬂ(nglwﬂml(l) + Rggtﬂggmg(l) + fl; + agz)] (67)



where n,; measure the number of overlaps in each pattern (3j). This coupled system is
solved numerically by inserting the solutions at time t = 7 into the equations for ¢ = i +1
and continue a certain number of time steps. It turns out that for a resonable choice of
parameters the patterns will quickly stabilize after, say 10 time steps, while for very un-
realistic values of parameters the patterns will oscilate rapidly taking two distinct values
for the overlap each occurring at every second time step. This usually happens below
the glass transition temperature ¢,. A typical evolution of helix and sheet competition is
almost seen in any simulation. We could also have tried to iterate the time-dependent dy-
namical evolution equation and study the evolution of two different compeeting structures.

5a5c. The generic phase diagram

Another imporiant task is to try to get an understanding of the phase diagram for
our contact model of the rapid protein folding process of the early stages. We shall be
using a strongly simplyfied picture of a protein just being a uniform segment of helix and
sheet structure like in the last subsection. This is in order to make the contact dynam-
jcs simpler such that the critical quantities, for example the glass transition and folding
temperature can be derived. It is in general interesting to see if the phase diagram of
the model has any generic structure in common with similar models such as the random
energy model or the random field Ising model. We find that the phase diagram will be
of the form calculated in figure 9. There are several possibilities for phases depending on
the position relative to the folding trausition temperature. For example correctly folded
and mis-folded phases can occur and there can also be a frozen glassy phase. Beside that
there is an intermediate structural phase often called the Molten Globule phase. The
phase diagram should be quite similar to that of the random energy model, see ref. 14.
An important question is of course what role the frustration plays in our model an if it
changes the phase diagram. We remind the reader that our folding model in terms of apin
terminology is like a ferro-magnetic, frustrated spin system with a random term. on the
other hand the random energy model with not have frustration and that fact is expected
for example to change the folding transition temperature relative to the glass transition
temperature.

The folding transition temperature is calculated from a comparison of the free energy
of the folded and un-folded state. In our simple example of a protein consisting of just
an alpha-helical segment and a beta-sheet we can write the free energy as in chapter 4:

F= + kBT(EO’.'_,'InU,'j + “’:-‘;0’.':' + HG;HO'.'J‘UH) + ...
[F]
- Y oo~ Y., beai; (68)

afpood.mem.) afbad.mem.)

where we can write 6¢ = Lo (padmem.) €% and where &¢ = /Nioae (Nias being the number
of bad memories and which is proportional to our parameter a from the last subsection).

Now we specialise to our case of one alpha-helix and one beta-sheet and the contacts

we should include are therefore: o7 ) and o]’ f';(f ),

We shall now use a trick for resuming higher orders if the expression for the free energy.
We shall be using the stoichiometry constraints on the probability numbers n,,ns for

alpha-helix or beta-sheet occurrence:

0<n,+ng <l (69)

which then allows us to resum F:
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Next we shall have to find approximate values for the polymer factors:

1 . - (d AU
;;;'T:W.-'} = y—inji—j|¥y = (kD ~ V2,
WE — W _ln(——J yn
if 131 n((‘l _J)ﬂ)
a —case W’ijkl ~ M(j)-k(b = VV.[;" ~ 3/2k5T(k = 1,2,3,4)
8 —case : Pﬂi‘g ~2Wo® ~ 6/2kpT (11)

where d is the dimension of the configuration space, i, is the persistence length and - is
a parameter that can include hydrogen bond contributions. It is important to note that
the theory in this approximation just has three parameters v, ¢, kaT.

The folding transition temperature Tr is now found by setting F, = 0 and using the
contact variables for the folded structure. Let us find the temperature T for different
cases of simplified situations.

1. In the case of ¥ = 0 and just alpha-helical structure, n, = 1, we get:

Nnggo
y=0:kpTp = —nﬁ)—c = Ra(good) ¢/ (—logh + 9/2) (72)

2. Similarly in the case of just beta-sheet structures and v = 0 we get:
Nl’l od) €
=0: kgTp = —— Doleood)® -
7= 0 kol = ol = e/ (~log8 +9/2) (13)
=1

3. In the case where half of the content is alpha-helical structure, n, = 3, and beta=sheets,
ng = &, we have:

Na(good) €
logl/2 — logd — log8 + 9/2

v1=0:ksTr= {74)

0,

plc
"

(7



By choosing a sufficient number of configurations and then solve the equation above for
the corresponding values of Ty one can construct the phase diagram of this two-component
model in terms of temperature and the ¢ parameter, see figure 5. The constructed phase
diagram has much in common with the random energy field mode! with a destinct Molten
Globule phase of a mixture of good and bad memories and separated from the folded and
un-folded phase. Above the critical capacity of ¢ ~ a = 1.1 the folded phase is replaced
with a glass state where the protein has fallen into a wrong minimum.

To conclude, we can numerically study the evolution of folding of simple patterns from
the feed back neural network equations by an iterative procedure described above. In the
very simple case of studying recall of a desired (good) memory pattern, describing a par-
ticular secondary structure, and besides having a number of undesirable {bad) memory
patterns stored too, we find that the correct structure can be retrieved at a temperature
(signifying the folding transition temperature T} of around kgT = 2 and with up to
around 5 "bad” memories (for a numerical set-up with quite large protein chains, unlike
the study above where non-equilibrium properties are analyzed. Since the proteins are
only described by simple contact patterns for the backbone we envisage that adding the
side chain specificity mounts to approximately a ten-fold increase of the memory capacity.
Hence we end up with the result that during the early stages of the folding processes the
protein can collapse into 50 specific classes corresponding to the classes or families known
in the literature, ref. 41.
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Figure 8,0.: Fig.8: The overlap equation solved numerical at different temperatures.
Fig.9: The Phase diagram showing the different protein phases, altogether 4.

5a8. Discussion and future prospects

We shall at this stage summarize the results we have obtained from our analysis and
briefly mention some problems of interest for a more general investigation. The down-hill
dynamics of associative memory nets has been studied by Amit et al., ref. 35, and by
Krauth et al., ref. 36, 37. Their analysis provides a set of dynamic recursion for the over-
lap of a spin configuration with a memory. The analogous development for the protein
dynamic equation that was studied in the previous chapter can answer such questions as:
1. For a certain associative memory Hamiltonian when does a given structure exist as a
fixed point? 2. How close to this fixed point must one be for a direct free energy mini-
mization to work? 3. On the average what fraction of contacts can be formed quickly? 4.
Does this for example explain the strange coincidence between the fraction of secondary
structure found in the molten globule and the prediction rate of the best neural nets for
secondary structure determination (around 70 %).

Another approach would be to ask whether any assignment of the W! can give rapid
folding for all natural sequences. In the present spin framework this can probably be
answered using the ideas pionered by Elizabeth Gardner about the space of connections
in nets, ref. 12, 38, although a space of thresholds is apparently the proper concept for

protein folding.

Finally it is clear that the optimal code for a feed-forward net would involve maximiz-
ing the size of the basin of attraction of the folded structure. The relation of this code to
codes based on optimizing the long time features captured by spin glass models will be
interesting.
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5b. Domain grewth in protein folding.



The main aim of the work in this chapter is to study the formation of contacts and
structures in protein folding in the language of statistical mechanics of domain growth.
Important for such a discription is the appearant analogy between protein folding and
Ising spin systems with randomness.

We shall first construct a general basis for studying domain growth by chosing an ap-
propriat representation for the patterns of 3-dimensional protein structure. Such appro-
priate representation is given by the distance matrix geometry in which contacts between
any pair of residues are the fundamental variables. Earlier we were able[?] to describe de-
velopment of contacts between residues in biopolymers during the early stages of folding.
Here we shall extend that study to domain growth and somewhat beyond the early stages.

In a distance matrix geometry one can study growth of domains of contacts which in
turn stands for specific 3-dimensional configurations of protein structures. The energy
function used for describing contact formation in protein molecules is constructed from
polymer dynamics containing entropy and interactions among smooth strings[?, ?] and
with side-chain interactions contained in memory terms of known protein structures.

We can describe early stages of protein folding by a set of first order differential equa-
tions standing for down-hill energy processes. These equations can be solved analytically
if we assume that they are only weakly coupled but else, in the general case of a fully
coupled system of equations, we will have to resort to numerical computer simulations.

The pattern of these contacts can easily be translated into the corresponding 3-
dimensional structure of the protein. The contacts are usually represented by a 2-
dimensional distance matrix with the collumns and rows designating the sequence of
residues, as shown in figure 10 in the case of the native structure of 6pti. The important
thing in this 2-dimensional distance matrix representation of residue contacts is an ideal
framework for describing growth of domains of contacts. As in a lattice gas a "positive”
definite contact corresponds to a lattice site being occupied and no contact to an empty
site. In turns the growth of domains of positive contacts signifies the formation of a given
substructure in the protein, and is relatively easy to study in terms of domain growth laws
and scaling. Thus by applying such domain growth techniques we can analyze how sub-
structures in the protein get formed and thereby how the protein folds. Furtheremore the
analogy to neural networks and chemical activation processes can be used to steer the do-
main growth since the neural network methodology gives prescriptions for how to include
and use protein "memories” as a scafolding and nucleation of protein structure formation.

The main results coming out of the domain growth analysis and through a numerical
study is that the domain growth of protein substructures in the early stages of the fold-
ing processes is governed by power laws while later stages exhibit a slower logarithmic
growth. Furtheremore the nucleation in the start is predominantly of & local nature which
means that the earliest contacts are formed between neighbouring residues. These facts
resemble the dynamics of first order phase transitions in disordered media where bubles
{here contact domains) grow slowly in time. What concerns the formation of secondary
structures the helical patterns are starting to form earlier but once the sheet patterns are
nucleated they grow faster.

We shall first introduce the basic framework for studying protein contacts and con-
struct the theory for evolution of these contacts.

5bl. Domain growth

In order to make a good semiquantitative illustration of domain growth we consider
first the continuous case even though the descrete case may be more relevant to proteins.

Basically we are interested in the dynamical equation for fast down-hill processes and
we consider a kind of Langevin equation whithout the noise term. A similar equation arises
when we are to study domain growth which is a non-equilibrium thermodynamical process.
The corresponding non-equilibrium equation of motion is derived from phenomenological
thermodynamics by using the suitable order parameter ¢ and equate its displacement
with the present thermodynamical force. We therefore write the equation for the non-
equilibrium thermodynamical domain growth as:

¢ = —I‘itjf (75)
dt §e

with ‘% < 0 and where T controls the time scale of the system.

Next we need a usefull quantity for studying the growth of domains. We shall here be
using the domain size of contacts as a sort of radial parameter:

R = jé(x,y)dxdy (76)

5b2. Fast growth

In this section we study the very first stage of the process where we have no random
term h.

We consider our energy functional which in the continuous case becomes:

log P b 77
F=-9¢'+ 06"+ 14"+ He (17

in the case of an Ising Ferro magnatic system, and the kinetic equation in d dimensions
is:

dé _ 0% (d-1)9§ OF
@ g K5 g ) (78)

dt

which is derived from the equation: 222 = —I‘% and where ¢ again is the order param-
eter (the magnetization) and where ¢ ~ ¢(r ~ R(t)}. (we can put T' = 1).



Our equation in 2 dimensions, with ¢ = ¢(r — vt), is (in the sperical symmetric case):

d2¢+(K( R1)+;d¢ - bd® — (19)

and by integration we get:

vo(d—1 Kd-1)
R TR (80}

In these equations A is the change in the argument when crossing the interface, ¢
is the equilibrium surface tension and ¢, is the minimum of f, ¢, = R. We have
introduced an effective radius where the energy is maximized:

A(f_ ':bH) = 2¢3H =

1 _d-1
B=_(d-
-5 =1 (51)
We can now follow the prescription from the standard theory of domain growth [?)
and write the growth equation for the domain boundary as follows:

dR 1
= _Jt— F(R' R) =
R*RdR
AR = Fdt =
R'(R+ R'log(R— R*)) =Tt +¢, (82)

In the case of large R: R > logR we have: R"R = Tt, i.e. linear growth.
In the case of small R: R <|logR | we have:

(R*Ylog(R—R)=T(t - 1t,) (83)
50 in this limit:
R— R = ettt (84)

In the late time limit the behaviour of ¢ will have exponential growth and the field ¢
will spread out and grow like a spherical bubble.

So far we have been treating the cases of spherical symmetry but if we also want to ex-
tend the study to aspherical cases we could replace the term 715 in the equation above with
the mean curvature K for the curve that is describibg the profile of our domain of contacts.

5b3. Slow growth

Next we would like to examine the growth when we have included the random term
n(z,y,t) We shall also like to give some physical scenario of what happens when a random

term is introduced, see also [?, 7).

Concerning barrier crossing, if we include the random term h in the energy function
we can write the barrier height as a surface potential energy term and a volume term:

A= —JR"S - psRY)h (85)
and minimization with respect to § (the amount the radius is allowed to shrink) gives:
RR?
A= J (86)
so the time r it takes to overcome the barrier is:
RA?
r= neeapl(A)I ) (87)
and
JkgT t
R p= log(-) (88)

Hence we have R ~ log(r), i.e. logarithmic growth. The specific protein chemistry is
contained in the constant J that basically is a function of u and hence our contact factor
M‘}k,. It is very important that the power law growth of contact domains in the first
atages of the protein folding process, that we are to describe, is slowed down in the later
stages and become a logarithmic growth that eventually will stop. This is of course due
to the noise term from the spurious memory terms that become more important in the
later stages of the process, This conclussion is true for all dimensions d > 2.

5b4. Domain wall dynamics and the jump condition in the descrete case
We start with the free functional:
F = Wioi; + Wiinoiou + oijlogay; + (1 — ay;)log(1 — i) + W, a._, (89)

We use Einstein convention that when the index repeats itself, it means sum over the
same index. The dynamical equation for the contacts ia:

do

%= Wi + Wisnow + loy1

iy 1
—es Wi (90)

We would like to impose the thin wall ansatz to the problem we study, chosse the
proper coordinates our current two dimensional complex problem can be simplified to one
dimensicnal form:

oi; = (i~ Vit) {81)

We choose this particular form for the wall ansatz, because o helix and 3 sheets in
our contact coordinates are approximately all one dimenstional perpendicular with each
other. i and j are not independent quantities. They are linearly related to each other in



helix and sheets cases. After substituting this ansatz into dynamical equation of contacts,

we obtain: 7

_uwﬁlﬁmj=ﬂﬁ+ﬂﬁmu+bﬂl -
— Uy

)+ W] (92)

We multiply each side of equation and then sum over i, and obtain a "jump” condition
for the velocity across the boundary of the contact domain:

Vioo = oW, + W (93)

Where o) is the solution of stationary equation f= = 0. gy is the surface energy of the

wall:

gy = Z(Uin - 0)? + F(a;;) - F(a?) (94)

Since this is an approximate one dimenstional problem, when there is no random source
term, we obtain:
Xi=At + B, (95)

Here A, and B, are constant term depending on W,. X; is the position of the wall in
sequence space. When we include the random term in, we obtain:

X: = Ai{int)? + B; (96)

So we see that in contact space, the domain of contacts (helices and sheets) is growing
linear in time when there is no random source term, and it is slowly growing logrithmically
in time with the random source term. This might be approximately the domain growth
law of early stages of folding. In this derivation we have not been using any spherical
symmetry assumptions like in the other chapter so in this sense the descrete case in more
general and more appropriate for protein applications.

5b5. Numerical studies

Tn this chapier we present a numerical study of domain growth of protein structures
described by the evolution equations. These first order differential equations were derived
in the previous chapters and represented the time evolution of contacts between residues
in protein during the earlier stages of protein folding. Thus it is in the 2-dimensional plane
of contacts, where each point signify a contact o;; between residues i and § ordered along
the axis of the plane, that the domain growth is studied. Thus each domain is consisting
of points (1, j) that stand for a close contact between residue i and 7, i.e. residues having
a distance between them being less than a given threshold. In figure 10 is pictured a
typical 2-dimensional distance matrix of contacts ¢;; for the folded structure of the test
protein fpii. We are mainly concerned with contacts related to the most common sec-
ondary structures, the helical and the beta strand structures, but the analysis can easily
be carried over to other structures. the reason for being primarily concerned with these
two types of structures is that they are easily being distinguishable ir: the contact space
where the helical structures are forming close to and along the diagonal (f = 7) while
the parallel beta-strands are far away and parallel to the diagonal and the anti-parallel
beta-strands are structures orthogonal to the diagonal. These circumstances are easily

verified on figure 10,

FIGURE 1A
T My I
| Dist.Domains m

Ty

130pti-ab

o

Figure 10.: This figure shows the distance matrix plot of 6PT1.

In the evolution equation equation we have included the polymer factors corresponding
to these types of structures. The evolution equations for the contact variables were in the
earlier chapters derived from the dynamical equation for energy down-hill processes:

d{f,j 3F
-2 -7 T
dt  doy &7

where F is the energy functional
F= EW.',C'.',‘ + 3 Winioiioun + oijlogoij + (1 —ai;Hog(l — oy5) + W.“;U"j (98)
0 [T

The 2-loop factors Wijz can be derived(?, ?] for the specific secondary structures,
a, 3, under consideration:

Wy = log([1 — (|n— L | /n)“l((ni;—;%);h L=l-jmn=3 (%)

8 = lo (j_") d AV
“%H"ﬂQk—l—j+q)nQi—ﬂhn

while the 1-loop factors basically behave lke Wi ~ log[(m:Tj[}"”] and d being the di-
mengion.

and

(100}



The evolution equation can then, with the stochiometric assumption that there are
only ¢ and 3 secondary structures (i.e. helices and sheets), be written as:

do;

. o
T S Winoh + Wik + “"ij+[09{1—:'a-§)+w,-§+.. {101)
H 05T

and then be approximated by a finite difference equation and integrated on both sides to
become:

(7.'_1‘

oyt 4 1) = oy;{t) + A(kBT)[log(l f’ij) +Wy+ Wi+ {102)

—o%) — o

These equations are solved numerically by calculating the contact variables at a finite
time step and integrate. The integration is split up in m integration steps, typically of
the order of m = 100 to m = 500 steps. The integration steps become the time parameter
in the evolution of contacts.

We start out with zero contacts at time ¢ = 0 and then consiruct the contacts for all ¢
and j residues at the next time ¢+ 1. Thus we are able to follow the evolution of contacts
up to the time when the desired patterns have converged to a final stage determined by
the contact patterns enforeed in the equation through the interaction term WY in the
equation. These enforced patterns can be fully folded realistic protein structures or it can
be patterns constructed from energy functions calculated in a more general framework
of spin glass theories[?]. Basically enforcing patterns from such a framework give the
same result with respect to domain growth as adding contacts from real native proteins
but the former approach is intellectually more appealing and it is more in the regime of
logarithmic growth which makes it possible to study the slower filling of the domains in
details. However this approach can only grossly recall the correct protein structure. The
growth laws have an exponent that is around half that of the case where patterns are
enforced by real protein distance matrices.

Both a "desired” pattern of contacts we wish the trial structure to attain, as well as
other structures functioning as noise and a random number generator term, are added
to the evolution equation in order to simulate a realistic {olding process. The desired
pattern is emphasized with a slightly larger factor than the other patterns. We chose
Pancreatic Trypsin Inhibitor, 6péi, as a good test protein for the desired pattern since it
had reasonably well-defined and clearly confined secondary structures.

In figure 11 are shown a series of integration steps as evolutionary stages of the domain
growth in the distance matrix representation together with snap-shots of the related 3-
dimensional protein backbone structure. After a clear stage of nucleation happening along
the diagonal of the contact plot predominantly in the middle of the protein stages follow
of domain growth of elongated bubles that grow mostly along the diagonal towards the
boundaries of each other and then merge together. A later stage is, after the boundaries
are marked, filling out or completing each domain.

On figure 12 the growth laws are depictured both on linear and logarithmic paper of
the full protein at different temperature and with varying intensity of the random genera-
tor. It is clear from fig.2, and also expected from our analytical studies in the proceeding

chapter, that the growth laws of the middle stages of domain formation (i.e. not the
nucleation or completion stages) is governed by a power law, decreasing in power with
decreasing temperature and increasing random factor.

Figure 11,12.: A picture of the growth patterns in 6PTI and the logarithmic growth
laws.
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5c. Prediction schemes of protein structure

We shall here discuss some practical implementations of the various neural networks
and specific associative memory techniques. The implementations on which we focus try
to predict tertiary protein structures on the basis of the protein’s sequence of amino acids.
These methods will be mentioned first in this presentation in order to motivate and in-
troduce the therminology that is the basis for our later analysis. Most of the detailed
results can be found in reference 4, 5, 6, 7 and 13. In some cases we have also done new
computer experiments in order to support our analysis. In the first subsection we will
briefly mention some work performed with a multi layered feed forward neural network
(the Copenhagen network) predicting molecular contacts in the form of distance matrices,
similar to a network we shall derive by our mean field equation. In the last subsection we
shall deal with some work done with a feed back associative metnory system that is used
to store and recall memortes of protein structures.

5cl. Feed forward neural networks predicting protein distance matrices

Feed forward multi-layered perceptrons have been buijlt and employed, ref. 3, to predict
the tertiary structure of proteins. These neural networks were trajned on X-ray crystallo-
graphic data of protein structures to predict the 3 dimensional structure of folded protein

back-bones on the basis of their corresponding primary structure. The input consisted
of binary codes representing sequences of amino acids, while the output from the neural
networks were binary distance matrices representing inequalities describing the relative
3 dimensional positions of the residues on the back-bone. In a typical distance matrix
for a protein the sequence of amino acid residues is numbered along the vertical and the
horizontal directions. Every point in the plane corresponds to a correlation (a contact)
between two residues, indicating that the two residues are within a certain distance, e.g.
8 A, to each other. Since the sequence input i3 ultimately limited by the sequence length,
and due to certain computational constraints, the output representing the 3 dimensional
protein structure was reduced to a segment of a certain width around the diagonal trace
of the C, distance matrix. After a distance matrix has been predicted the real protein
structure is achieved by the use of a computer minimization method that basically con-
sists of a steepest descent algorithm together with some of the most essential chemistry
constraints from the back-bone geometry.

The architecture of the network employed in the study of ref. 5 is very much depen-
dent on the form of representation of input and output data that was chosen. Basically
the network consisted of an input level with 1220 (= 20 x 61} units, a hidden layer with
300 neuron elements and an output layer with 33 units, such that the first 30 neurons rep-
resented a binary number for a contact between the residue in the middle of the (61-unit)
input window and 30 residues to the left of this middle residue (see fig. 13). The output
data in this configuration then represents a 60-units wide binary band distance matrix.
Half of the band is due to reciprocal symmetry. The last 3 units were used for secondary
structure output. In one of the test cases the network was trained on 13 very similar
{with respect to their function) proteases, and then tested on a similar [?rotea.se, 2TRM
(73 % homologous to the closest protease in the training set and 223 residue long), that
was novel to the network. In a recent test the network was able to predict the double size
2 x 60 -band distance matrix of 2TRM up to an accuracy of 97 %, and the minimization
could, on the basis of the predicted binary distance matrix generate a structure that had
an RMS deviation of about 5 A compared to the native structure. In an older test (ref.
5) the resulting predicted structure deviated from the correct structure with an RMS
deviation of 3 A when the minimization started from a similar protease {PTPF instead of
starting from a random structure as in the first case (see fig. 14). Today we are able to
go down to the homology of 40 % and still maintaining an accuracy of 2 A RMS. The
methodology (neural network and minimization) has no limitation on the size of proteins,
and actually the longer the proteins the better the score because larger preoteins have
relatively more conserved regions.
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Figure 13,14.: 13: A picture of the Neural Network employed. 14: The predicted
structure of 1'TRM superimposed on the real.

$c2. Feed back Associative Memory method for predicting protein struc-
ture

Next we shall report on another method, motivated by neural network ideas, for de-
termining 3 dimensional protein structures. The basic methodology is more like a feed
back Hopfield net. In the ordinary "Hopfield” neural network the Hamiltonian encodes
relations of the spins in a set of memory spin states which are then local minima of the
resulting Hamiltonian. Thus these states can be recalled by energy minimization methods
such that the final chosen memory state is dependent on the initial spin state.

Similarly, in the case of proteins, memories of amino acid correlations are stored in an
energy function as local minima that can be recalled through a minimization procedure
but the structure corresponding to the free energy minimum should not depend on the
initial configuration of the protein chain but rather on the amino acid sequence. Therefore
a target protein with a sequence corresponding to one of the memories will have a potential
energy minimum at its native folded state. This is achieved by simultanecusly encoding
amino acid sequence correlations and correlations between pairwise distances among a-
carbons. If a pairwise distance matches a memory-distance, the energy is lowered only
if the corresponding sequences match. The amino acid sequences are encoded through
amino acid charges. The associative memory Hamiltonian that will achieve these goals is
written in the form (ref. 4):

MHam = Aam Z E 75(‘]#! '1.?, q_:'ia QE)G(T-':‘ - r:;) +H, (103}

LIRLs)
where A, is a scaling constant and 4 (¢, ¢7. ¢/, ¢) is a charge correlation function which
originally was chosen to benyf; = —(q:‘q?qfq;r +gl'qf + q}‘q}-), where ¢! iz a hydrophobic
charge for the 2’th residue. Furthermore 8{r;; —1%;) is a pairwise distance overlap function

(e.g. a Gaussian) and finally M, is the part that includes the constraints of the back-bone
structure (e.g. chain connectivity).

There has been a great deal of work on the equilibrium statistical mechanics of this
model and more abstract models related to it (see ref. 14-19).

The Hamiltonian is thus containing a set of representative memory proteins {denoted
by the index o) and a target protein charge set (denoted by the index T) whose cor-
responding 3 dimensional structure is to be found by minimization of the Hamiltonian.
Roughly the procedure (ref. 4) is: Once the Hamiltonian is constructed the potential
energy is minimized using molecular dynamics with a simulated annealing schedule. First
an initial configuration of the protein is chosen using random dihedral angles consistent
with Ramachandrian plots. The molecular dynamics (using the Verlet algorithm) are
performed using many different temperature values between 1.0 and 0.005 with about 30
timesteps at each temperature. Each time step represents approximately 30 fs of real
time. In the Verlet algorithm atom velocities are assigned at every new temperature step
consistent with the Maxwell-Boltzmann velocity distribution and constraints, e.g. of the
bond lengths, were enforced using a shake algorithm.

The overall system has given resonable results. For example the structure of a 100
residue long protein (1CCR) has been predicted with an RMS of around 5 Aprovided
the test protein had a sequence homology to the training set of around 60 %. One of the
interesting features of this method is that the various folding steps can be studied along
with the annealing achedule (ref. 4 ).

The studies of these practical implementations ef neural network techniques to pro-
tein structure prediction show that there exist two kinds of variables adequate to describe
protein tertiary structure, one set being the a- carbon coordinates and another being
the set of molecular contacts encoded in the binary distance matrix that describes which
resudues are close to which others. In the following we shall develop a physical theory of
the dynamics of the latter variables,
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. 6. Protein Structure and Chemical Reaction Kinet-
1C8

In this chapter we shall use some of all the contact teory we developed in chapter 5
for chemical reaction kinetics in the protein folding processes even though the formalism
can be extended to other processes too. It turns out that there almost exists a translation
scheme from the contact formalism to kinetic reaction theory. If this formalism is ex-
tended to include protein-protein reactions it becomes a theory of molecular recognition
which i3 especially well illustrated by the antibody-antigen reaction complex in immune
response processes. (verail one speaks about the chemical reaction network and indeed
we shall see that the resulting differential equations deseribe the evolution of particular
Boolean neural networks.

6a. Translation of Contact Dynamics to Chemical Reaction Kinetics

5a4d. An analogy to chemical activation energy

It is interesting that there is actually a deeper reason for the processes of protein fold-
ing to resemble the dynamics of neural networks as explained in chapter 5. The reason is
a profound connection between chemical reaction kinetics and neural networks. We shall
therefore in this chapter give an analogous formulation of our contact dynamics in terms
of chemical activation potentials in order to elucidate this neurc-chemistry connection.

We consider a typical allosteric kinetics problem with two states, one (lower) of not
being occupied, and one (higher) being occupied and with rate constants for transitions
between them being k..., and k,._,,. and an activation potential being proportional to
the ration of the two rate constants.

If we denote the probability for the occupied state as P, and for the not-occupied state
as P, we can connect these two probabilities to the contact variable ag as:

Ty = Pn + Pn.o. (104)
or in terms of the activation potential:
OG5 _ sl ., . _ _ AeB/keT
A—o; ¢ TS AET (105)

which means that the situation of residues i and j being in contact is analogous to being
in an occupied state and the situation of no contact is being in the not occupied state,
Stoichiometry then tells us that:

P0+Pv|.o. =1 (106}

We can write the rate of change of the probabilities in terms of the corresponding rate
constants &, ., and ko_.n,.:

dF,

dt

and introducing the activation energy functional /4, we have:

= kno—o o — kouno Po (107)

Kno.ao — e{i)ﬂ“,ﬂ'kgT (108)

0—N.0.
where the activation energy functional K, is given in terms of our energy gain expressions
W;; for forming contacts (4, 7):

Ha=W5+ Y Woou+ W) (109)
ki p!

Hence we can write our equation for fast down-hill kinetics in the form of Glauber
kinetics as:

G = son(H e AT 1) (1 4 T (110)

or with finite time steps:

aij(t + 1) = 0i5(t) = agn(HY)[—1 + e WilkaT] _[1 4 o-IHilksT ) (1) {111)

where we have changed the differential equation into a difference equation. In the low
temperature limit we get:

oii(t+1) = sgﬂ[(kBT)_l(E Wiimow + VVS + DIf(Ha) (112)
ki p'
where f(H,) is given by
F{HA) = (e7Hal%sT _ 1y | _forT -4 0 (113)

This equation describes the evolution of a Boolean neural network similar to the equa-
tion of steepest descent for contact dynamics. Thus chemical reaction kinetics can be
described as evolution of neural networks. This relation between chemistry and neural
dynamics is very much the reason for neural network methodology in protein folding pro-
cesses that after all are very much governed by reaction kinetics.

6b. Crossing of Activation Barriers and Path Integral Formalism



Let us again start from the dynamical equation for the contact variable with the free
functional:
unctional do aF

dt - aa'.-j
We can also write our contact dynamics in terms of a set of chemical kinetic equations.
We consider the transition from an occupied state to a nonocupied state, with probability
P,, and define a variable, analogous to the contact variable, as a;; = F, — B, with
stoichiometry P,, + P, = 1. We can write down the rate of change of probabilities in
terms of ky,,-, and ko_n,:

(114)

dp,
"&"t"" = kno—opno - ko—noPo (115)

and d
{e)
I = (kno-o - ko—no) + 0(_knn—a - komno) (116)
The energy cost to change occupation can be cbtained from the free energy functional.
This gives the activation energy funtional HY:

Hi =W+ 32 Winoh + W, (117)
e
Glauber kinetics then gives:
ii% = sgn(H(~1 + e WET) _ (1 4 - HIT g, (1) (118)

We make further assumption that o in H/ does not change much during the intitial stage
of folding. This resembles the spinodol decompostion where the order parameter changes
very slowly. We can treat it as constant. W has a mean value but also a fluctuating
part: . ¢ -

Wi =W+ W; {119)
If we assume the fluctuations in W are Gaussian-white noise, then we can write down

wrl , .
the distribution function of W as P(W}]) = e i where A is the Gaussian squared
average of WY, Since H is linearly related to W,»‘;, we get the same distribution of H as of
W,‘; with different Gaussian squared average A’. We can now solve the chemical kinetic

equation:
ol; = Ce™Kut {120

Here K;; is a random quantity defined as 1 + e WHANT and ol = oy - sgn(HI (-1 +
e HIVFT) (0 is a constant. Knowing the distribution of Hj we can easily obtain the
distribution of K;; by substituting H as function of K in the probability distribution:

ind(X;:-1)

P(Ky) =~ Par (121)

We can see that K;; is not Gaussian distributed but follow a log normal distribution
law which is typically for a complex energy landscape. Note that Kj; here is the decay
rate for contact dynamics. The distribution of the rates Kj; is basically describing the
distribution of the barrier heights in the energy landscape of this complex dynamics.

7. Structure of biological membranes

In this chapter we shall discuss another biological system that is likewise very faci-
nating and interesting to analyze by mathematical modelling tools. We assume a basic
knowledge about lipids and shall then start with an introduction about the cases when
lipids form aggregates.

7a. Phenomenology of bio-membranes.

Aggregates formed by small amphiphillic molecules in water display a remarkable
structural richness, e.g. micellar, hexagonal and bilayer structures [ ??]. Furthermore
monolayer structures can be formed in water-air or water-hydrocarbon interfaces. Am-
phiphiles constitute a very extensive class of compounds, which counts commeon substances
like soaps, alcohols and lipids. The lipid bilayer structures are of particular interest be-
cause they play an essential role in the organization of biological cells (see figure 15).
Hydrated lipid bilayer systems displays a wealth of polymorfic transitions, however, but
their possible significance in biological membranes are still unrevealed. Although the dis-
cussion in this paper ia restricted to lipid bilayer structures it may be applicable to a
range of other amphiphillic surfactant systems.

Figure 15. A popular picture of the biological membrane with proteins etc..

The experimental activity in revealing the structure of simple lipid bilayer systems
is considerable, This activity is promoted by a range of interests involving medical,
physical and biological sciences. The understanding of the equilibrium properties of the
simple bilayers are in particular indespensible for progress in the description of structural



stability and dynamical properties of more complicated lipid bilayers like biological mem-
branes. However, an expetimenta] characterization of the lipid-water system in terms of
equilibrium thermodynamics is in general quit difficult due to polydispersity, structural
complexity and very long relaxation times towards thermal equilibrium.

Theory has been of limited help in the characterization at the large-scale structural
transition properties of lipid bilayers iu excess water. The stabilisation of the lipids in a
bilayer structure is understood in the framework of a thermodynamic theory describing
the interplay between molecular interaction free energy, molecular geometry and entropy
[ ??]. This analysis has been suplemented by thermodynamic considerations based on
the electrolyte doublelayer theory, which can give a description of the stability of simple
bilayer shapes like cylinders and spheres [ 77).

A popular phenomenological theory for the description of shapes of individual lipid
bilayers is the Canham-Helfrich model [ 7?]. This model has even proven to be success-
full in the description of shape transformations of biological membranes like erythocytes
{7?]. Further this model has served as the basis for recent studies on the effects of thermal
ondulations on the forces between bilayers [ 77?] and the possibility of order-disorder tran-
sitions in macroscopic conformations of membranes [ 77, 7?]. We aim at a full statistical
mechanical treatement of geometrical shapes and topologies of membranes.

8. A differential geometrical model of closed membranes

Membrane systems, that are described in differential geometrical terms by a curvature
elasticity Hamiltonian (Canham-Helfrich), are analysed especially concerning their topo-
logical features and a thermodynamical theory is proposed and solved analytically. The
phase behaviour is studied for closed membranes when varying the parametres x, # rep-
resenting respectively the bending rigidity and the coefficient of the Gaussian curvature.
The phase diagram displays distinct regions caracterized by many vesicles and closed
membranes with many handles. The theory can give estimates of the size distribution
for vesicles in terms of the model parametres, including the surface tension g and the
posibilities of an aggregation phase transition is discused.

In this chapter we demonstrate that it is possible, within a mean-field approach, to
obtain important information about the phase behaviour of the theory when only closed
membranes are considered. The information is concerned with the membrane stability

against changes in surface connectivity. Some basic considerations on this topic has al-
ready been given in [ 7?].

8a. Topology in membrane phenomenology.

A range of experimental techniques have been applied in the characterization of the
phase behaviours and morphologies of lipid-water systems. For low water content, struc-
tures with long range order form and diffraction techniques can be applied. Early studies

by X-ray diffraction techniques | 77] discovered the existence of the lamellar bilayer phases

and a number of hilayer phases with bicontinous structures excibiting cubic symmetries.
These studies have been complimented and comfirmed with NMR [ 77} and freeze-fracture
electron microscopy [ ?7]. In the more diluted regimes of the phase diagram the char-
acterization of the phases is hampered by the absence of long range order in the phases
and coexistence of a large number of bilayer structures. Direct visualization by micro-
scopic tecniques probably gives the best insight in the nature of the phases in this regime
177,10

A considerable effort has been directed toward characterization of the phases in terms
of surface geometries | 7?]. The multi-lammellar and cubic phases have been characterized
in terms of infinite periodic minimal surfaces (IPMS), e.g. the surfaces having zero mean
curvatures and separating the ambient space into pericdic subspaces. An IPMS has thus
an associated point group symmetry and characteristic dimensions of its unit cell. The
topology of an IPMS (see fig.1) can be very complicated, e.g. represented by the number
of genus per unit cell. Properties of minimal surfaces can be derived from complex analy-
sis through their representation by Weierstrass-polynomials. However IPMS is still not a
tully determined group of surfaces, and the non-periodic minimal surfaces with non-trivial
topology has only recently been explored { 7?]. It is thus evident that surfaces are difficult
to treat in a statistical mechanical frame if the surfaces are assumed to be minimal. A
second difficulty in dealing with minimal surfaces in membrane physics is that a physical
principle, which dictate the crystalline properties of the IPMS, is not known. No packing
condition or internal symmetri property of the constituents can guide us, as in the case of
molecular crystals. With these difficulties we find that minimal surfaces at present do not
provide a good starting point for the description of membranes undergoing phase transi-
tions involving topology. We will restrict ourselves to closed membranes, which actually
never can be described as minimal surfaces in R®.

bf 8b. Topological thermodynamics of closed membranes.

The Model

In this section the Canham-Helfrich model of membrane elasticity will be briefly dis-
cribed. This model consider only fluid membranes which at length-scales much larger
than the molecular distances and the bilayer thickness can be modelled as a mathe-
matical surface without any internal structure. The lipid bilayers excibit a number of
low-temperature solid-like phases with in-plane order of the lipid molecules, but they
do no demonstrate the deluge of large-scale structural transitions displayed by the fluid
membranes. The model Hamiltionian takes the form

11 2, 1
H:pjdA+g-fdA(r—l+;—a)z+x dA— (126)

where the integrations are performed over the surface area. r; and r; are the local
principal curvatures of the surface and rp is the spontanous cuvature, which can arise



in bilayers with an intrinsic assymmetri between the monolayers of the bilayer. In this
work we consider full symmetry between the two bilayer halves, which is the case when the
bilayer is composed of a single molecular constituent. The notion of spontanous curvature
will thus be omitted in the following. The mean curvature ;11- + & and the gaussian
curvature ;;1?—3 are surface invariants, i.e. independent of the chosen parametrisation of
the surface. The model Hamilionian can be considered as a Landau theory with an
expansion in symmetzy invariants (reparametrization invariance in R?) where the lowest
order term is the first term in equation (1).The surface tension g, that couples to the
surface area, which due to the fixed cross-sectional areas of the lipids, must be considered
as a chemical potential for the lipids in the membrane. In most thermodynamic problems
involving interfaces the chemical potential control the interface.

For free surfactant interfaces y is generally very small [ ??]. In a closed system y must
be considered as a Lagrange multiplier insuring a fixed overall amount of lipids in the
system, Other terms may be included in Eq.[ 1] . If the membrane hag boundaries a line
tension term

BL & (127)
boundary

must be added. However the line tension g are so large that even the presence of amall
boundaries are suppressed for free membranes [ 77). Boundaries can occur if the membrane
can be attached to hydrophobic or hydrophillic elements of the experimental setup. We do
not consider these cases here and just assume that the membranes are without boundaries.
Furthermore anharmonic terms are neglegted in Eq.[ 1} . The model parameters « and &
are difficult to obtain expetimentally. However some concensus has been reached regarding
the value of & for artificial membranes. For dimyristoyl phosphatidyl choline bilayers,
values of x & 1 — 2- 10" Berg. have been obtained by pressure aspiration technicques on
individual giant vesicles [ 7] and fourier analysiz of the thermal membrane undulations
[ 27].

8b1.The Wilmore functional

In this section we discuss some results from the mathematical literature concerning
the properties of a functional which appears as the second term in Eq.(1), the Wilmore
functional. The Wilmore functional is written as

W(E) = % [ #raa (128)

where H = J- + - is the mean curvature and dA is the area element of a surface L.
Here L. is any compact surface in R* and we assume that it has no boundaries and no self-
intersections. The functional W is invatiant under conformal mappings of the ambient
3-space. Thus, if & is the image of £ under a Mébiua transformation (an isometry, a
scaling or an inversion in a sphere with center not in I), then W(Z} = W(Z)} | 77].
Recently considerable effort have been directed toward a solution of the Wilmore problem

for surfaces of any genus (the infimum of W and the related variational problem). A few
results relevant for our purpose will be given.

Following L. Simon [ 77] we write 8, = infW(X), where inf is taken over compact
genus g sufaces without self-intersections. The following inequality is fundamental:

87 < f, < 16w (129)

Equality holds on the left if and only if g = 0 and E is a round sphere [ 77]. The right
hand side inequality was observed independently by U. Pinkall and R. Kusner, see [ 77].
Simon then showed [ 77], that if we put e, = 8, — 8, then

q
e, < Zeg, (130)

Jj=1
for any integers ¢ > 2 and &, ..., 4, with .7, #; = g. Further he proved the ezistence
of W-minimizers in the following sense: For any genus g there exists a genus ¢ surface &
with W(E) = §,, unless equality holds in Eq.( ) in which case there exists a sequence Iy of
genus g surfaces and a genus g, surface I, (with go < g) such that W(E,) - W(E,) =8,
for k — oo, Thus for a given surface the minimization of W may cause a drop in genus
number. However, the fundamental conjecture § 77] is that the equality actually never
oceurs in Eq.(5), and furthermore that for every genus there is exactly one surface which

minimizes W (up to a Mébius transformations in R?.

8b2. Thermodynamics of surface topology

In this section we will evaluate some thermodynamic properties of lipid membranes
governed by Eq. {1). The description suffers from a lack of detailed about H. However,
it turns out that the recent mathematical results (mentioned in the last chapter) provide
us with sufficient information to give usefull estimates of the phase bebaviour. We will
consider four different cases corresponding to the introduction of more degrees of freedom.
In the first case the available degrees of freedom is g (the number of handles), and in the
other cases it is the number and size of vesicles (and of course g).

Going back to the original Hamiltonian Eq.{1) we have in the last chapter given bounds
on the second term, the Willmore funtional. The third term is easily evaluated by using
the Gauss-Bonnet theorem: |

dA—— = 2xx (131)
] rra

When the sutface is without boundaries the Euler characteristic x is simply related to
the genus number by x = (2 — 2¢).

The first term in Eq. (1) will be neglected here, since the membrane is considered
as an isolated system. From the previous section it is clear that the Willmore functional
restricted to compact embedded surfaces & without boundaries is realtered to H: W(L) =
L(H = fx(E)) for p = 0. In particular infyH(E;) = infrW(E,) - 4wi(l — g), where
in f,W represents the infimum of W(X,) for all boundaryless compact, embedded surfaces
¥, with genus g.

5 pages cuut out,



8bL3. Discussion and Conclusion

In the previous section the biophysical analysis on the thermodynamic properties of
closed membranes is related to a variational problem on Willmore surfaces. This math-
ematical problem is still unresolved but the results obtained so far gives sufficient infor-
mation to provide valuable results on the phase behaviour of membranes. For the three
simple cases considered, we can sumnmarize our results in the following way:

In case 1 a single membrane was considered. When S« is large a saddle point evalua-

tion is appropriate. The only remaining degree of freedom of interest is the genus number
g of the surface. Detailed information about the saddlepoint is not available but the first
approximations to the partition function can be given in terms of limits of the minimum
value of the Willmore functional for each g, parametrized by e =l and e = 2. For ¢ = 1
the system displays an abrupt, continous change in < g > at & = 0. Althoug it is accom-
panied by strong fluctuations in < g >, the transition is neighter 1. order or 2. order,
but rather oo order in the sense that ﬁ%% x (G4)" - ooforn—+coat&=0. Inan
ensemle of weakly interacting membranes this may be changed to a 1. order or a 2. order
transition.
For ¢ = 2 the transition takes place at & = 2x/( 4, where (7 represents a cut-off in the
number of genus for the surface. Our proseedure thus provide us with detailed informa-
tion about the thermodynamics of the membrane except in the narrow range of &-values
from 0 to 2x/G 4, where a transformation from ¢ = 0 to g = G4 takes place.

In case 2 a system of mernbranes which have not translational degrees of freedom
aviable are considered, and the two phases appearing in case ! are again present: Phase
1 characterized by membranes with a large number of handles and Phase 2 consisting of
simple vesicles (< g >= (). The transition between Phase 1 and Phase 2 is accompanied
by an enhancenment of the average size of the aggregates. Phase 1 and Phase 2 are limited
by a region in parameter space where this analysis is insufficient in describing the lipid
system but a transformation to other lipid atructures is expected.

In case 3 the membranes can move around in space. In this case the description is
sensitive in the whole parameter space, i.e. all regions of the parameter space can be
structurally determined when the chemical potential  is kept fixed. There appear phases
of vesicles with high genus number for large positive values of 8 or phases of larger or
smaller vesicles with no genus number in the region of negative §%. There is a sharp
change from the phase consisting of vesicles with no genus and vesicles with a high genus
number and 4 large surface area. In general, if 4 is kept fixed, the vesicle size is more
or less constant, but if 4 is varying and instead the total number of lipids is held fixed,

the size of vesicles can vary. The mean number of vesicles will increase when going from
one of these phases to the other. The size distribution of the vesicles can be determined
for various values of 3,x when g is vatying and the number of lipids is fixed. The vesicle
sizes are distributed around a peak determined by the chemical potential. An equation
of state between the vesicle size and number and the amount of lipid can be derived.

An important result of this study has been the prediction of a topological phase where
structures with high genus (many handles) are formed. As we saw, this was due to the
fact that the energy would be lowered {at least 27&) by for mig handles. Furthermore the
energy distribution (from the Willmore functional) to the formation of a sphere is at least
(when ¢ = 0) 4x&. A possible scenario for the formation of a handle is first an aggregation
of a number of vesicles. If the right phase conditions are present (e.g. £ > 0) vesicles
fuse together (perhaps through an inverse hexagonal phase [ 77)) forming a small canal
where they face each other. Such an extended structure can attach to a bigger vesicle
forming a handle or bending back into a ring structure, a torus, in either case increasing
the genus number. Such a picture is just an attempt at visualising the topological process
of forming high genus structures.

The principles behind the interplay between three dimensional structures and the
structural transitions of proteins and their biological furnction are to large extend un-
derstood. A similar relationship for the biological membranes is still considered at a
hypothetical level [ ??]. Whether the extended lipid polymorfism has any significance in
biological system is still unclear.

To conclude, it is well-known that biclogical membranes provide a large variety of
mathematical forms that are realized in aqueous surroundings inside or around the living
cell. Some of these forms represent highly non-trivial topology seen e.g. in the intra-
cellular Golgi apparatus, where a large number of handies and tubuli are connecting
different compartments between lipid layers. The purpose of this topological structure is
a need for filtration of proteins in the cellular liquid. Such topological structures have been
verified in various observations { ??], [ ??] (figure 16a) . It has therefore been tempting to
see if they among others can be explained from the more general geometrical description
presented in this paper. This topological complexity can largely be explained by the phase
structures described in the last chapter in the case of % > 0 and pictured in the phase
diagrams of Fig. 2. Here is, under certain conditions, seen a large production of handles
and tubuli fixed to the membrane structure and only limitted by material constraints such
as & finite lipid size.
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Figure 18a,b,c. Figure 16 shows the phase diagrams in the three cases mentioned in
the text.

The phase diagram contains many topological phases as functions of & and &.
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Figure 17a,b.: Figure 17a shows what happens when transversing through genus=0
in the phase diagram.

17b: shows the vesicle distribution at different values of x.

In general the lipid system displays a number of different statistical mechanical in-
plane phases, such as a high-temperature fluid phase, a low-temperature solid phase and
perhaps hexatic phases. The last mentioned are characterized by long-range orientational
order and short-range positional order. It is also known from experiments that membranes
can form a variety of different large-scale structures, a property which is extensively ex-
ploited in biclogical membrane systems. For low water content structures such as lamellar
and inverse hexagonal phases are very common and the transition between these phases
has, e.g., been described in reference | ?7] .
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9. Future outlook

We started introducing proteins and then modelled and analyzed them. Then we
went to membranes and modelled those too. A nice end on these lecture notes would
be to combine the proteins with membranes. Unfortunately there is not so much known
in details about membrane bound proteins. The scope of these lecture is the study of
protein structures in details in a distance geometry approach so perhaps we should leave
the membrane proteins for another time. However, if we were to find a relevant subject
as the basis for an outlook into the next century I cannot think about & better subject
than protein-protein interactions. In the last part of this century we have concentrated
immensely on single proteins and their folding (without super success) but the most im-
portant biological processes have to do with docking etc. of several proteins. Good luck!






