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Properties and origins of protein secondary structure
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Proteins contain a large fraction of regular, repeating conformations, called secondary structure.
A simple, generic definition of secondary structure is presented which consists of measuring local
correlations along the protein chain. Using this defirition and a simple model for proteins, the
forces driving the formation of secondary structure are explored. The relative role of energy and
entropy are examined. Recent work has indicated that compaction is sufficient to create secondary
structure. We test this hypothesis, using simple nonlattice protein models.

PACS number(s): 87.15.By

Recently, there has been a great deal of interest in the
study of proteins from a physical perspective [1-6]. Most
of these works have focused on the folding problem; i.e.,
how does the sequence of amino acids encode the three-
dimensional structure of the protein? Although progress
kas been made in this area, there is still a long way to
go before there is a complete understanding of how pro-
teins fold. However, proteins have many other interest-
ing properties. While each protein has a specific struc-
ture determined by its sequence, all proteins share several
common structural features. They are highly compact,
with very little free internal space. More striking is the
high degree of order found, which consists of regular pe-
riodic arrangements of the main chain into one of a few
universal patterns (called secondary structure). Roughly
50% of the structure of all proteins is in some form of sec-
ondary structure [7]. In this paper we define in a simple,
generic way precisely what secondary structure is. This
definition will be valid not only for proteins but for sim-
pler polymers and simple proteinlike models. We then
use it to investigate what forces are responsible for the
formation of secondary structure. Although this is not
directly related to the folding problem, a thorough un-
derstanding of what factors are responsible for secondary
structure may aid in the study of the folding problem.

There has been a great deal of past work attempting to
understand the origins of secondary structure. At first it
was believed that local interactions {local hydrogen bonds
or dihedral angle potentials, for example) were responsi-
ble. Here, the term local means close with respect to
the separation along the polymer chain. For example, a
hydrogen bond between monomer i and 7 + 4 would be
a local interaction, as would an angle potential. Several
recent studies indicate that local forces may not be the
dominant effect, rather compaction of the chain may be
the important factor. By examining exhaustive enumer-
ations of short chains on a lattice, Chan and Dill [8-10]
found that as the compactness of the chains increased .
so did the percentage of secondary structure present.
They also found that the maximally compact chains had
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roughly the same amount of secondary structure as real
proteins and the proportions of helices to sheets was also
approximately the same. Subsequently, Gregoret and Co-
hen [11] studied nomlattice models. Their results also
suggest that compactness does influence the amount of
secondary structure, but they indicate that the effect is
most pronounced at densities 30% greater than that of
real proteins. In both of these studies, however, local
interactions were present. For example, a lattice has a
specific set of allowed bond angles, which provides an
effective bond angle potential. In the nonlattice work,
compact chains were generated using a biased random
walk in which the bond angles were chosen not from a
uniform distribution but from the distribution observed
in real proteins. This also provides an effective angle
potential. Therefore, it is not clear from these works
whether compaction is sufficient to generate secondary
structure. We wish to determine whether compaction,
without local interactions, is sufficient.

There are two distinct questions to keep in mind: (1)
why do proteins (or other polymers) form regular struc-
tures and (2) why do proteins form particular types of
secondary structure? Question (1) is equivalent to asking
the following: why do proteins form helices and sheets?
The second question asks the following: why are these
helices o helices and the sheets 3 sheets? The answer
to the second question certainly involves local interac-
tions. It is the specific hydrogen bonding patterns in
proteins which favor the formation of ¢ helices. In other
polymers, different local interactions would favor other
forms. For example, the structures of 179 polymers have
been solved and 79 are found to be in one of 22 differ-
ent types of helices [9,12]. In each polymer the specific
types of local interactions determine the preferred type
of secondary structure. In this work we are interested
in studying the first question: what forces are responsi-
ble for formation of regular structures. Specifically we
will test the previous suggestions that compaction of the
chain is the key driving force. To do so we will be using
models without any local interactions. However, without
local interactions there is no way of knowing beforehand
what types of secondary structure will be formed. Most
definitions of secondary structure are specific to a given
type of structure (i.e., a helices); consequently one needs
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49 PROPERTIES AND ORIGINS OF PROTEIN SECONDARY STRUCTURE

to know a priori what types of secondary structures will
occur in order to detect their presence. To overcome this
problem we developed a generic method of determining
whether secondary structure is present without the need
to know a priori what its specific form is.

A simple way of defining secondary structure is to re-
alize that it consists of repeating patterns. Consequently
the polymer chain should be correlated with itself along
the chain. The correlation length should be related to the
average size of secondary structures. To detect secondary
structure we measure the correlations between different
points along the protein chain. Specifically, let 8; repre-
sent the value of the dihedral angle associated with the
Jth a carbon (see Fig. 1}). We then calculate

Co(A) = <e"(":‘“"a+°’>c. (1)

The average is over j; that is, over all pairs of angles sep-
arated by a distance A along the chain. The subscript
C indicates that the mean, ](e"’i”, has been subtracted

from (e*% —%+a)}_ If secondary structure is present then
Co(A) will be nonzero for A S layg where 5y, is related
to the average length of secondary structure. Note, this
definition makes no reference to any particular type of
secondary structure; therefore, any form of regular struc-
ture will be detected. For example, if helices are present
there will be a nonzero correlation length no matter what
period the helices have. Equation (1} also has the advan-
tage that it can be calculated analytically in a simple
model.

To test our definition we examined the crystal struc-
tures from 112 proteins which have been recorded in the
protein data bank [13]. The correlation function was
calculated for each protein and normalized so Cs(0) = 1.
Then an average correlation function was computed for
all proteins. Examining this correlation function (shown
in Fig. 2) we see that protein chains are positively corre-
lated up to separations of approximately nine monomers.
This is comparable to the average length of secondary
structure (roughly ten monomers) measured by oth-
ers {7]. At distances greater than nine monomers the
chains hecome negatively correlated. This negative cor-
relation may be partly due to supersecondary structure,
which consists of combinations of secondary structural
elements. For example, 3 sheets are usually followed by

i+l

FIG. 1. The dihedral (also called torsion) angle, ®;, asso-
ciated with the 7th monomer. The inset shows the view along
the bond from monomer i —1 to . The angle shown is defined
as positive by our sign convention.
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FIG. 2. Real part of the dihedral angle correlation func-
tion averaged over 112 proteins from the protein data bank.
The distance, A, is the number of monomers along the chain.
Ca(0) has been normalized to one.

reverse turns. There is also the 8£8 unit where two paral-
lel 3 sheets are separated by some piece £ which can be a
random coil, an o helix, or another sheet [14]. Eventually
the correlations fall off to zero (at around A = 16).

We now examine what forces drive the formation of
secondary structure, specifically the question of whether
the loss of entropy due to compaction is sufficient. To
do this we need a model without any local interactions.
Lattice models are not acceptable since the restricted de-
grees of freedom imply local bond angle potentials. An
off-lattice model was used instead. As in lattice and other
simple models we neglect the internal degrees of freedom
of the amino acids and represent each as a single point in
space. Monomers that are connected along the chain are
constrained to be separated by a fixed distance. The next
step is to fold the chains into compact conformations.
The following procedure was used. Take a potential en-
ergy function whose minima are compact conformations.
Then minimize this potential energy to fold the chain.
Because the model we are using is a homopolymer there
are many compact local minima (the number grows ex-
ponentially with chain length [10]). We will generate an
ensemble of compact conformations, using chains of sev-
eral different lengths. One can think of this ensemble of
different compact structures as representing the collec-
tion of native structures of many different sequences of
amino acids. We will calculate the average correlation
function [Eq. (1)] of the ensemble of compact conforma-
tions we generate and look for long range correlations
which will indicate the presence of secondary structure.
It is important to note that the previous works showing
the connection between compaction and secondary struc-
ture (8-11] also used a homopolymer model and many ho-
mopolymers show secondary structure in their compact
states [12]. Therefore, it does not appear necessary to
have a heteropolymer and a unique ground state to get
secondary structure.

There are several different potentials that have com-
pact minima. The dominant force for the folding of pro-
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teins is the hydrophobic effect [15]. This is primarily a
bulk, entropic effect caused by interactions of the poly-
mer with the surrounding water. The protein collapses
to create a hydrophobic core with polar groups on the
surface. One could simulate a polymer in a solution of
water, however, this is much more complex than neces-
sary. Instead of doing a full water-polymer simulation we
simply choose an effective potential which will also cause
the polymer to collapse. The particular one used in this
work was
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where r;; |7; — 73|, 7: is the position of the ith

monomer, and Teom = 7 2, 7; 15 the position of the cen-
ter of mass. The first term represents the covalent forces
that bind the monomers along the chain. The constants
k. and [, are both set equal to 1, determining the energy
and length units. The middle term (which is the repul-
sive part of a Lennard-Jones potential) is the excluded
volume term which prevents the chain from compacting
to a single point. The last term is the radius of gyra-
tion of the chain. This term provides the compacting
force. The two constants, € and ¢.y, are determined by
examining real proteins. The difference in energy scales
between covalent and noncovalent forces determines e.
In proteins the typical noncovalent interaction is roughly
one-hundredth the energy of a covalent bond, so € is set
equal to 0.01 [16]. The compactness of the chains will be
controlled by the value ggy. To determine the value of
0oy and measure compactness we looked at two features
of real protein structure: the pair-correlation function
(also called the radial distribution function) and the ra-
dius of gyration. First, the pair-correlation function was
measured for both real proteins and our chains. This
function gives the probability that two o carbons are
separated by a given distance, indicating how closely the
o carbons are packed together. We adjusted o., until
the position of the nearest neighbor peak for our chains
closely matched the one for real proteins [17]. Next, we
measured the radius of gyration as a function of chain
length for real proteins. Our chains had a slightly smaller
radii of gyration as proteins the same length (see Fig. 3).
This is not surprising since the potential we used will
generate nearly spherical shapes while proteins are ellip-
soidal with varying eccentricities. An ellipsoid will have
a larger radius of gyration than a sphere of equal volume.

The chains were compacted by minimizing this po-
tential energy [Eq. {2)]. The algorithm used was a
conjugate-gradient descent minimizer [18]. At each it-
eration in this algorithm the energy is decreased, so it is
somewhat analogous to a zero temperature Monte-Carlo
simulation, in that only energy reducing steps are ac-
cepted. There is the possibility that for some potentials
this type of algorithm will be trapped in local noncom-
pact minima. However, for the potential used here, this
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FIG. 3. The radius of gyration versus chain length (plot-
ted on a log-log scale) for real proteins (small circles), chains
compacted using the radius of gyration potential (diamonds),
and the Lennard-Jones potential (stars). The radius of gyra-
tion for the three systems is very similar indicating that they
all have the same level of compactness.

was not a problem. All minima that we generated were
observed to be compact; i.e., their radius of gyration was
roughly the same as those of proteins the same length
(see Fig. 3). Starting from a random initial condition
(which was taken to be a self-avoiding random walk) 200
chains, ranging in length from 50 to 450 monomers [19],
were folded. The average dihedral angle correlation func-
tion was then calculated for these chains to determine if
any secondary structure was present. Figure 4 shows the
average for the compacted chains with the correlation
function for real proteins superimposed. The compacted
chains show no long range correlations. The plot falls
almost immediately to zero, with a slight negative corre-
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FIG. 4. The two solid lines show the correlation func-
tions for the radius of gyration potential {circles) and
Lennard-Jones potential (squares). The dotted line is the
real protein correlations (from Fig. 2) for comparison.
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lation at separations of roughly two monomers. This lack
of any correlations indicates the absence of any secondary
structure.

The potential {Eq. {2)] was chosen to have no lo-
cal interactions other than the one term which bonds a
monomer to its two neighbors along the chain. Again, lo-
cal here means local (close) as measured along the chain,
not through space. The excluded volume term is through
space local, but in a folded structure any two monomers
can interact via the excluded volume term regardless of
their separation along the chain. In particular, there is
no angle term in the potential {either implicit or explicit).
The previous works which did find secondary structure
with increasing compactness did have implicit angle po-
tentials. [t appears that compacting the chain is not
enough to generate secondary structure. It is possible
that the particular form of the compacting potential we
used destroys secondary structure or was biased in favor
of compact conformation without secondary structure.

To test this we tried a different compacting potential,
the Lennard-Jones 6-12 potential. We replaced the radius
of gyration term in Eq. (2) by a +—8 term to give

2

-1

VARD = 30 ske (i = Finaf - L0)?
t_;, 0' O' s
+fZ{ o ,ff) } 3)
1<} t

By itself the 6-12 potential is too short-ranged to compact
an extended chain so we did a two stage minimization.
At the first stage we added an additional 1/r piece which
is long ranged and will collapse an extended chain. Once
the chain was semicompact, we finish the minimization
without the 1/r term. We generated an ensemble of com-
pact chains and measured the average correlation func-
tion (see Figs. 3 and 4). Again there were no long range
correlations, hence no secondary structure.

To explore the forces responsible for the formation of
secondary structure in proteins we have defined a sim-
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ple, generic method of measuring secondary structure in
polymers. This method consists of calculating the an-
gle correlation function along the chain and looking for

long range correlations. If secondary structure is present
there will be long range correlations with a length com-
parable to average size of the secondary structure., This
method does not depend on the precise details of what
type of structure is present and can be used when these
details are not known. Real proteins whose structures
have been solved were examined and long range correla-
tions were found. This technique was then used to ex-
amine whether compaction leads to the formation of sec-
ondary structure. Simple models with no local interac-
tions were used and two different compacting potentials
were examined. There were no long range correlations
indicating the absence of secondary structure. These re-
sults indicate that compaction by itself is not sufficient
to generate secondary structure. In the previous studies
demonstrating a connection between secondary structure
and compaction there was always some form of local in-
teractions present. It appears, however, that local in-
teractions are not sufficient since compactness was also
necessary to get structure. In proteins the formation of
secondary structure appears to result from the combina-
tion of both the entropic effect of compaction and local
energetic effects. The loss of entropy from compaction
is not enough to force the chain into regular conforma-
tions. Using our definition of secondary structure further
studies can be carried out to determine the relative im-
portance of these two factors.
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Using a simple three-dimensional lattice copolymer model and Monte Carlo dynamics, we study the
collapse and folding of proteinlike heteropolymers. The polymers are 27 monomers long and consist
of two monomer types. Although these chains are too long for exhaustive enumeration of all
conformations, it is possible to enumerate all the maximally compact conformations, which are 3
X 3X3 cubes. This aillows us to select sequences that have a unique global minimum. We- then
explore the kinetics of collapse and folding and examine what features determine the various rates.
The folding time has a platean over a broad range of temperatures and diverges at both high and low
temperatures. The folding time depends on sequence and is related to the amount of energetic
frustration in the native state. The collapse times of the chains are sequence independent and are a
few orders of magnitude faster than the folding times, indicating a two-phase folding process. Below
a certain temperature the chains exhibit glasslike behavior, characterized by a siowing down of time
scales and loss of self-averaging behavior. We explicitly define the glass transition temperature (7',),
and by comparing it to the folding temperature (7;), we find two classes of sequences: good folders

with Tf> Tg and non-folders with Tf< T,.

I. INTRODUCTION

It has been known for some time that for many proteins
the information necessary to specify the native structure is
contained within the amino acid sequence. There has been a
tremendous amount of research aimed at deciphering this
code and determining the final structure from the sequence.
Selving this problem is of paramount importance; however,
simply knowing how to map sequences to structures would
leave many interesting questions unanswered. How do pro-
teins fold to their native structure and, more specifically, how
do they manage to fold so quickly? What are the key factors
that determine whether or not a given sequence will fold and
what the folding time will be? One may argue that it might
be necessary to solve these problems before it will be pos-
sible to solve the folding problem (i.e.. predicting structure
from sequence).

A great deal of work (both experimental and theoretical)
has been done on the kinetics of protein folding. One ex-
tremely useful theoretical technique is to study simple het-
eropolymer models. The idea is to reduce the complex sys-
tem of proteins in solution to its bare essentials, leaving only
the key features. The advantage of studying these simpler
models is that an in-depth analysis {sometimes even an ex-
haustive one} can be performed, yielding detailed answers
and information. This information should, in turn, provide
insights into real proteins.

One class of model that is often used in theoretical poly-
mer work is the lattice model, where the monomers are con-
strained to lie on lattice sites. Excluded volume is included
by allowing only one monomer per site. To study dynamics,
the Monte Carlo algorithm with a variety of move sets is
used. Some of the earliest work using lattice models on pro-
teins was done by Go and others'* using two- and three-
dimensional lattices to examine the folding process. How-
ever. the interaction potential they used was somewhat
unusual. The native state was explicitly built into the poten-
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tial. The energy of any given conformation was determined
by counting the number of native contacts, i.e., contacts
found in the native structure. An attractive contribution to the
encrgy was added for each native contact formed. This po-
tential is somewhat unphysical, depending on an a priori
knowledge of the native structure. Although much of this
early work on lattice models was on simple cubic lattices,
Skolnick and others’’ have used more complex lattices
which are able to more faithfully represent the structure of
actual proteins. Using these lattices they are able to model
real protein structures {(e.g., secondary structure} and study
the dynamics of folding and the formation of these struc-
tures. However, with increasing complexity it becomes more
difficult to study these models in great detail.

Rather than trying to model real proteins exactly, some
have opted for simpler models which permit a more thorough
analysis. Chan and Dill®~"" have used a two-dimensional
simple cubic lattice model with two monomer types {a polar
monomer, P, and a hydrophobic one, H). The potential used
models the hydrophobic interaction and is equal to — € times
the number of hydrophobic contacts (HH). They studied
short chains, which allowed them to do exhaustive enumera-
tion to measure a variety of properties (both static and dy-
namic). For dynamics they used both Monte Carlo® and
transfer matrix methods.'™’ By using short polymers, they
were able to construct the full transfer matrix (this matrix
determines the probability of one state transforming to an-
other} and use it to solve exactly for the dynamics of the
system. Although their model is simpler than an actual pro-
tein, it has vielded a wealth of interesting information and
provided valuable insight into proteins and heteropolymers.
Their models show a two-phase process similar to that found
in proteins. There is a rapid collapse to compact states, fol-
lowed by slower reconfiguring of the chains to the native
structure. Fiebig and Dill'? show that simple searching strat-
egies, such as the formation of opportunistic hydrophobic
contacts, can lead to the globally optimal conformation (na-

© 1994 American Institute of Physics 1519
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tive state), suggesting a possible mechanism for folding.
Shakhnovich and others'*'* have studied the folding of ran-
dom heteropolymers {the interaction between monomers is
picked from a random distribution)} on the three-dimensional
simple cubic lattice. They examined 27 monomer polymers
using Monte Carlo dynamics and also found a two-stage col-
lapse process in folding. They found that by examining an
overlap function, which measures how low-energy confor-
mations differ, they could distinguish the difference between
foldable and not foldable sequences. From examination of
many different sequences, they conclude that the existence of
a pronounced energy gap between the native state and the
remaining conformations  distinguishes good  folding
sequences.'” To examine how the specific form of the inter-
action affects the dynamics of folding, Camacho and
Thirumalai'® looked at two-dimensional lattice systems.
They studied the kinetics of three different types of interac-
tion potentials. They found two transition temperatures: A
collapse temperature at which the chain forms a compact
structure and a folding temperature at which the native struc-
ture is formed. They found three stages in the transition from
open coil to native structure.

In this work we will continue using the three-
dimensional simple cubic lattice model. The polymers will
be 27 monomers long and consist of two monomer types.
Monte Carlo dynamics will be used to study the collapse and
tolding kinetics. The chains are too long for exhaustive eny-
meration of all conformations but are short enough to permit
exhaustive enumeration of all maximally compact configura-
tions. This information wiil be used to determine the mini-
mum energy structure (native state) which will allow us to
measure the folding time from extended conformations. We
will examine several different sequences and measure col-
lapse and folding time as a function of temperature and se-
quence. One question to be addressed is which kinetic quan-
tities are sequence dependent and which are sequence
independent ( self-averaging). In addition, we will examine
how the glass transition affects the ability of a sequence to
fold. A major goal is to define, as precisely as possible, vari-
ous physically important quantities. Of particular importance
will be the determination of the important time scales. One
problem with Monte Carlo dynamic simulations is the rela-
tion between Monte Carlo steps and physical time. There is
no simple connection; in fact, the precise relation may de-
pend on the move set.'"!! To circumvent this problem, we
will relate Monte Carlo steps to physical time by looking for
the natural time scales in the problem, such as the collapse
and the folding time. Using these time scales, we will then be
able to define the glass transition temperature (T,) of this
model. In the past others have speculated that the relation
between the folding temperature (T,) and the glass tempera-
ture (T,) would play an important role in protein folding.
Bryngelson and Wolynes'™'® have proposed that in order for
a chain to fold, the folding transition must occur before the
glass transition of the system, and the optimal folding tem-
perature would lie between T, and T, . Specifically, Wolynes
and others state that to optimize folding potentials for struc-
ture prediction, one should maximize the ratio of the folding
temperature to the glass temperature (Tf/T%,}.'g'm To calcu-
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FIG. 1. An example 27 length polymer on a three dimensional simple cubic
lattice. The conformation is a maximally compact cube. The light and dark
spheres represent the two different types of monomers. The sequence shown
here is 013 and the conformation shown is the native {minimum energy)
state.

late the glass transition, they used a random energy modei-
like assumption; i.¢., for each given value of the degree of
folding, the energies of the different conformation are inde-
pendent random variables. In our work we will give a direct
kinetic definition of the glass temperature that does not rely
on this assumption, and show explicitly that the relative val-
ues of T, and T, will determine the folding properties of a
given sequence,

Il. MODEL AND METHODS

The model we used in this work is a three-dimensional
lattice polymer. Monomers that are connected along the
chain are constrained to be nearest-neighbors on the lattice,
and only one monomer is allowed per site. (This is the ex-
cluded volume condition.) The chain is then a self-avoiding
walk on the lattice. The polymers are all 27 monomers long.
The maximally compact state is a 3X3X 3 cube (see Fig. 1).
Although it is not feasible to enumerate all configurations of
a 27 monomer chain, it is easy to enumerate all the compact
cubes, of which there are 103 346. If we choose a potential
that favors the formation of contacts, then the minimum en-
ergy conformation wilt usually be a compact cube. Selecting
such a potential enables us to determine the native structure
of a given sequence by enumeration of the cubes, since for
this simple model the native state is the lowest energy con-
formation. In addition, the degeneracy of the lowest energy
state can be determined. Since we are interested in protein-
like polymers which have a “single” native state,”! we will
choose sequences with a nondegenerate ground state, i.e.,
those with only one lowest energy conformation.

We want a potential that will favor compact states and
cause the chain to fold. The dominant force in protein fold-
ing is the hydrophobic effect.”? This force is a many-body
interaction between the hydrophobic side chains and the sol-
vent (water). The main effect is to cause the chain to collapse
and create a hydrophobic core. In our simulations we model
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this effect by using an attractive potential 1o collapse the
chain. This potential favors the formation of contacts be-
tween any two monomers. However, we do not want a ho-
mopolymer, so the interaction energy is dependent on
whether the two monomers in contact are of the same type or
not. The potential is given explicitly by

E= X H,,, n
(.0} !
li-jl=1
where the sum is over all nearest neighbor pairs on the lat-
tice, excluding covalently linked pairs. The type of monomer
{ is t; which we will denote with A and B, H’.J, is the

interaction matrix given by

A B
A(E, E,
H, = .
f; '!} B Eu E[ (2)

£, is the energy for a contact between monomers of the same
type, and E, is for contacts between unlike monomers. To
collapse the chain, we pick both energies to be negative with
E\<CE, <0, favoring contacts between monomers of the
same type.

We now need to specify the dynamics of the model, For
lattice systems there is no unique way to do so, and it has
been shown that different move sets may give very different
kinetic behavior. In a study of homopolymer folding kinetics,
Chan and Dill'®"! showed that various kinetic quantities, like
the collapse time and the mean first passage time, will de-
pend on the type of moves allowed. Therefore, we wish to
choose a set of moves that will give dynamics that are as
realistic as possible. Care must be taken in analyzing the
results of these simulations. In particular, one must not try to
extract too much detail from these types of simulations. The
right questions need to be asked. For example, we will look
at how folding and collapse time varies with sequence. This
1s a generic question and the behavior should be universal to
all reasonable move sets. A question which would be more
difficult {or perhaps not even valid) for this simulation to
answer would concern specific details of the folding path-
way, for instance, the role of secondary structure formation
i folding. One would imagine that depending on the move
set used one would find very different answers to this ques-
tion. To answer such questions, more realistic models with
clearly defined dynamics are necessary.

The move set used consists of local moves which pre-
serve the covalent links and keep each lattice site either sin-
gly occupied or empty. This set was developed some time
ago to study the dynamics of polymers.” > The allowed
moves consist of end moves in which the ends of the chain
move to an empty adjacent site, corner moves which flip a
single monomer and crankshaft moves which move two
monomers simultaneously (see Fig. 2). Studies involving this
move set have shown that it closely reproduces the relaxation
dynamics of the Rouse model.>>* More complex moves are
possible where more than two monomers are moved simul-
taneously. They have the advantage of allowing concerted
motion of structural elements (like helices). One must take
into account the different rates of these more complex

FIG. 2. The three types of moves used in the dynamics simulations. The
light circles represent the possible lattice points a given monomer can move
to provided that that point is not occupied. In the case of the end and
crankshaft moves one of the possible moves is picked at random. Note that
the corner and crankshaft moves are exclusive: A nonend monomer can only
make one or the other depending on the position of its neighbors along the
chain.

moves; i.e., a 5 monomer motion should occur more slowly
than the flipping of a single monomer. If this is not taken into
account, the time scales will be distorted since different
moves, all of which can be performed in one iteration of the
algorithm, will have different *‘physical” times. To correct
for this, one can assign a different probability for each of the
moves.™ Since our chains are relatively short, we use only

the simple one and two monomer moves. We do not believe

that including the possibility of concerted motions of large
subsections of the polymer will change the answers to the
questions asked here.

There is one important comment to be made about this
set of moves—they are not ergodic. In particular, it is not
possible to reach the configuration in Fig. 3 from an ex-
tended chain.”’ The question is whether the nonergodicity of
our moves will create a problem. The simple answer to this

FIG. 3. A knotted conformation {Ref. 27) which can not be unknotted by the
moves shown in Fig. 2; consequently, from an unfolded conformation it is
unreachable using the same moves. Hence those moves are nonergodic. As
long as conformations like this are not the native state they will pose no
problem. What is important is the native state is accessibie.
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TABLE [. The various sequences used in this paper. The last tour (G035, 006, 007, 013) were generated at
random. Sequence {2 was optimized by Shakhnovich (Ref. 15} Sequence 004 is a single monomer mutation
of (05 (8,;—A4). Both 002 and (04 have the lowest energies possibie tor the potential used and have native
states that are completely untrusirated. 7, is the fastest [olding time for each sequence. T, is the glass
transition tempertature {calcutated with a 7, =1 U8 x10%). T, is the Tolding temperature caiculated using the
Monte Carlo histogram method. The numbers in parenthesis indicate the uncertainty of the last digit.

Run Sequence ' - T T, T,
002 ABABBBBBABBABABAAABBAAAAAAB -84 2.0x 107 1.00 1.285(15)
004 AABAABAABBABAAABABBABABARBB — 54 1.6x107 0.96 1.26(1)
005 AABAABAABBABBAABABBABABABRERB - 82 2.3x107 0.98 1.15(2)
06 AABABBABAABBABAAAABABAABBEB —30 5.2x107 1.07 0.95(6)
007 ABBABBABABABAABABABABBBABAA —80 9.3x107 1.09 0.93(5)
013 ABBBABBABAABBBAAABBABAABABA —76 9. 7% 107 L.01 0.83(5)

problem is that we are interested in the kinetics of folding
and as long as the native state is accessible, there should no
problems due to the existence of inaccessible states. Tn par-
ticular, we can view these states as being irrelevant in the
same way that highly unlikely states are irrelevant for real
proteins. The chain in Fig. 3 actually forms a knot. We know
that real proteins do not have ‘“‘tight” knots,*®* and it is
highly unlikely that, in folding, a protein passes through a
knotted state. Strictly speaking, it is not impossible for a
protein to become knotted: it is just unlikely. Due to the
constraints of the lattice, the knotted state is now inacces-
sible rather than unlikely; however, its existence will have no
effect on the folding properties. One may argue that these
inaccessible states may still affect thermodynamic calcula-
tions. In particular, what will be the effect of the fact that our
moves restrict us to a ergodic subspace of the full phase
{conformation) space of the system? That will depend on the
relative sizes of the excluded space. In practice, for small
chains, the errors introduced by the nonergodicity of this
move set is smaller than the statistical error. Comparison
with other ergodic algorithms show no change in the
results.?

A move is made using the Metropolis Monte Carlo
algorithm.”™ A monomer is selected at random. If it is an end
monomer, then one of the neighboring lattice point is also
selected at random. If it is not an end piece, then it can do
either a corner move or a crankshaft move, depending on the
position of its neighbors along the chain. In the case of the
crankshaft, the possible direction is also selected at random.
If the move selected would violate the excluded volume con-
straint by moving the monomer to an occupied site, the old
configuration is counted once more in averaging (i.e., a step
is considered to have elapsed), and a new monomer is
picked. If a move is possible. that is, if the lattice site is
empty. then the energy of the new conformation is calculated
and compared to the original energy. If the energy decreases.
then the move is accepted unconditionally. If the energy in-
creases, then the move is accepted with the usunal Boltzmunn
probability:

P:exp{_(Encw_Enld)/T]* (3)

where E ., and £y are the new and old energies, respec-
tively, and T is the temperature. Note that we have chosen
units such that the Boltzmann’s constant is unity (ky=1).

(¥

Whether a move is accepted or not, one unit of time (a
Monte Carlo step) is considered to have elapsed.

There 13 no simple and direct connection between Monte
Carlo steps and the physically relevant times scales of the
system. One important result of this work is that we will
determine the mapping between the physically important
time scales such as the folding time and the computation
time scales (Monte Carlo steps). This will be useful in later
works tn which we will study the thermodynamics of these
systems where it will be necessary to know how long it takes
for systems to reach equilibrium and explore conformation
space. Once again, the precise connection between physical
time (like the folding time) and Monte Carlo steps will de-
pend on the details of the move set used. However, we ex-
pect that as long as the moves are chosen with care, that is,
one attempts to make it as physically realistic as possible,
then the qualitative features will remain the same. For ex-
ample, the behavior of folding time as a function of tempera-
ture will look qualitatively the same although the exact fold-
ing time {number of steps) will vary.

lll. RESULTS AND DISCUSSION

In this work we studied six sequences, all 27 monomers
long. Four were selected by the following procedure. First a
sequence was generated at random with the appropriate ratio
of monomer types. We then enumerated all cubes calculating
the number of minimum energy states. Sequences with de-
generate minimum energy states were rejected. From the re-
maining nondegenerate sequences we picked four which had
a spread in energy of the native states (—82 to —76}. One
sequence was obtained by changing a single monomer in one
of the original four; i.e., 1t is a single-site mutation, which
lowered the ground state energy. from — 82 to — 84. The last
sequence was taken from a paper by Shakhnovich'® which
gave a method for finding optimal sequences; it also has a
ground state energy of —84. Table I shows the various se-
quences along with some data for each. All six sequences
have the same ratio of monomer types, roughly 50:50 (14:13,
actuallyh. For these simulations the value for the contact en-
ergies are —3 for monomers of the same type and —1 for
unhlike monomers, Again, the wunits used are such that
kp= 1. The maximally compact conformation of a 27 mono-
mer chain 1s the 3X 33 cube. There are 28 noncovalent or
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topological contacts in this cube, so the lowest possible en-
ergy is — 84. Two of the sequences have this energy for their
minimum conformation. This corresponds to a completely
“unfrustrated” ground state. By “unfrustrated,” we mean
that the ground state has no topological contacts between
monomers of different types. The other three sequences have
ground state energies higher than —84 and, consequently,
their ground states have at least one bad topological contact
and are frustrated energetically.

Using the Monte Carlo moves described above, we
simulated the folding of these sequences and examined how
the folding behavior depends on temperature and differs
from sequence to sequence. For each sequence we started
with a random, completely unfolded, initial conformation.
Here, completely unfolded means that there are no contacts
between any of the monomers. A temperature was selected,
and the sequence was allowed to fold. Once the sequence
found its folded state (which we detected by monitoring the
energy), we stopped the simulations. The simulations were
also stopped if the sequence did not find its folded state
within 7, steps. For the simulations in this work,
Tmax=1.08 X 10” Monte Carlo steps. This maximum time was
picked both so that it was longer than the typical folding time
of most sequences and to minimize the actual computer time
used in the simulations. It is important to realize -that any
times longer than 7,,, are undefined. Ideally, we would want
to pick 7, to be longer than any interesting and relevant
physical or biological time scale. Since there is no simple
connection between Monte Carlo steps and physical time, we
cannot directly determine 7, . We chose a first value for
Tmax Which seemed reasonable and then made sure that it was
much longer than the folding time for the various sequences.

At each temperature we ran many simulations, each with
a different random initial condition (always unfolded). We
then calculated an average folding time (r/) from these runs.
This time i1s the mean first passage time from the set of
unfolded initial states to the folded state. Figure 4 shows 7,
as a function of temperature. Once again, the units of tem-
perature and energy have been chosen so that k3= 1. We ran
anywhere from 10 to 600 simulations at each temperature
and calculated the average folding time. If the folded state
was not found within 7, steps, we averaged in 7, for that
run. The error bars are the standard deviation of the mean
given by o/ VN, where o is the standard deviation of the
distribution of folding times and N is the number of runs at
that temperature. It is important to note that since we average
in T, when the chain does not fold, the error bars are not as
meaningful at temperatures where the folding time ap-
proaches 7.,,, and may be much larger at these temperatures.
In particular, at high and low temperature the points equal
Tmax With zero error. That is simply due to the fact that at
those temperatures the simulations never found the folded
state. Figure 5 shows the fraction of times the folded state
was found as a function of temperature. It has a maximum
plateau over the same temperature range that 7, has a mini-
mum plateau. At temperatures where the chain folds rapidly,
it also finds its native state 100% of the time. At tempera-
tures where the simulations did not find the folded state all
the time, the 7, shown in Fig. 4 is a lower bound to the actual
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FIG. 4. Mean folding times versus temperature for one sequence (sequence
002). Note both axes are linear scale and the time is in billions of Monte
Carlo steps. The error bars are the standard deviation of the mean: That is,
they are equal to the standard deviation of the folding-time distribution at a
given lemperature divided by the square root of the number of runs at that
temperature.

mean first passage time, Figure 6 shows the distribution of
folding times for three temperatures. At the temperature of
fastest folding (T=1.58) the distribution of times is narrow-
est. For temperatures above and below this the distribution

becomes quite broad. All three histograms appear roughly -

Poissonian. The standard deviations are approximately equal
to the means.

We observe three different temperature regions, similar
to those found in two-dimensional lattice simulations.”''
Above a temperature of ~3 and below ~0.65, the chains
did not fold within 7, steps. Between these temperatures
the folding time drops rapidly to approximately
2% 107-5X%107. The fraction of runs that find the folded
state increases sharply from 0 to 1 in this temperature range.
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FIG. 5. Fraction of times that sequence 002 folded as a function of tempera-
ture, Note that the plateau at which the chains fold 100% of the time corre-
sponds to the minimum folding time plateau in Fig. 4.
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FIG. 6. Histogram of folding times for sequence 002 a1 three different tem-
peratures, The histogram vatues have been normalized so the sum over all
bins equals cne. The minimum folding time temperature {1.58) is shown
along with distributions above and below this temperature. The distributions
are roughly Poissonian. the standard deviation being approximately equal to
the mean.

in the next plot (Fig. 7) the folding time is plotted along with
the chain compaction time. The compaction time is simply
the number of steps it takes for an unfolded state to reach a
maximally compact cube. In addition, we also show a time to
reach a nearly compact state, which we define 1o be a con-
formation with 25 (out of 28) contacts. The behavior of the
compaction time as a function of temperature is similar to
that of the folding time, but chains compact much faster than
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FIG. 7. Folding and Collapse times versus temperature for seguence (02
Note in this figure both axes are log scale and the time is in Monte Carlo
steps. The solid line is the mean felding time, 7, (same as Fig. 4, but now on
a log scale). The dotted line, 7,54, is the mean compaction time to any cube.
The last line, 7,5, 1s the mean compaction time to a partially compact
conformation with 25 {out of 28} contacts. Error bars are the standard de-
viation of the mean.

they fold. This behavior is similar to what is believed to
occur in real proteins in which the chain first folds rapidly to
a compact state and then reamranges itself to the native struc-
ture.

Above a temperature of approximately 5, the compac-
tion time approaches T, . Above this temperature the free-
energy is dominated by the entropic term which favors non
compact contormations which are far more numerous than
compact ones. In the range from 5-2, we observe the foi-
towing interesting behavior. The chains compact fairly rap-
idly, but the folding time is still quite long, In particular, at
about T==3 the chains compacted easily but never folded
within 7., steps. We can draw a parallel between this state
and the molten globule state of proteins.* At this tempera-
ture range, the temperature is low enough so that the poten-
tial, which favors contacts, drives the chain to a compact
conformation, but the temperature is still too high for the
potential to drive the chain to the native state. In this range
we can imagine the chain is fluctuating about various com-
pact states, “‘randomly” searching for the native state. This is
like the often-discussed Levinthal paradox in which it is ar-
gued that a protein could not find its folded structure by
random search. If the temperature is high enough there is no
strong driving force that favors the native state. When the
temperature is low enough, the chain is no longer randomly
searching compact conformations but is driven to the folded
state. This is, of course, the well-known resolution to the
paradox. At the appropriate temperatures proteins do not ran-
domly search for their native state but are directed (o it by
the shape of the free energy surface.

At still lower temperatures both the folding and compac-
tion time start to increase again. At temperatures slightly less
than ! the folding time reaches 7, again and at a tempera-
ture of roughly 0.63 the compaction time approaches 7, .
At low temperatures the system is beginning to slow down,
kinetically, and is now getting trapped in local mera-stable
states. Even though we expect, at these low temperatures, the
free energy to have a very pronounced minimum at the na-
tive state, the system is unable to reach it within a reasonable
time. This region is often referred to as the glass phase. We
can define a temperature at which the system undergoes a
glass transition characterized by the slowing down of various
times, such as the folding and compaction times. The auto-
correlation time of the systern would also increase in this
temperature region, indicating that the chain was locally
trapped. We define the glass transition temperature (7,) as
the temperature at which the folding time is half way be-
tween T, and 7., (where 7, is the fastest folding time
observed). Using this definition we get T,=1. Note that the
definition of glass temperature is not the usual thermody-
namic definition of temperature. It is not determined by the
inverse of the derivative of entropy with respect to energy
(1/T,=AS/3EY at the point where the entropy “vanishes. " ¥
One difficulty with this definition is its relation to the kinet-
ics of the system. The idea is that as a system is taken out of
equilibrium, the time it takes to relax back will increase as
the temperature gets closer to T,. To avoid this kind of
assumption, we have given a kinetic definition for 7', in
which we will explicitly look for a slowing down of the
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FIG. 8. Folding time as a function of temperature at several different
Tmax - The glass temperature is the point at which the folding time is halfway
between r.,, and 1.,. The legend shows the glass temperature for each
value of 7, .

system. We would expect the precise value of 7, to depend
on the moves used and therefore we will not focus on the
exact value but on the relative value. In particular later we
will compare T, to another important temperature, the foid-
ing temperature (T(), and we will discover a key relation
between the two. Additionally T, depends on the value of
Tmax > that is, it will depend on how long we run our simula-
tions. This is a subtle but extremely important fact to remem-
ber when studying finite sized systems. When talking about
glasslike behavior of a finite system the notion of glasslike
depends on the time scale you are looking at. If you wait
long enough the chain will always find the native state. To
speak of a physically meaningful glass transition one must
define the physical time scales of interest. The time scales of
importance here are related to the minimum folding time of a
good folding sequence. We want to examine our system on a
time scale that is reasonable greater then the minimum fold-
ing time. For our simple system there is no obvious greater
time to pick. For real proteins the life time of the organism
would be a reasonable choice, since proteins need to fold on
a trme scale much shorter than this to be useful. We picked a
time that was roughly two orders of magnitude greater than
the folding time. Since this is somewhat arbitrary, we inves-
tigated how T, changed as 7,,,, is varied. Figure 8 shows the
results of several simulations in which 7, was varied from
one fourth the usual value (1.08 X 10%) to almost twice this
value. We see that although T, decreases with increasing
Tmax 1t dO€s so quite slowly. The difference between the last
two is only about 4%; therefore, T, is not too sensitive to the
precise value of 7, .

The glass temperature just defined is related to the fold-
ing of the chains. One can also define a glass temperature
that has to do with the slowdown of compaction. This would
be the temperature at which the time it takes the chain to
form a cube (28 contacts) is half way between the maximum
and minimum times. Call this temperature 7,(28). Examin-
ing Fig. 7 we see that 7,,(28) is less than T, . (It is approxi-

1525

mately equal to 0.7.) One could also consider T.(25) the
glass temperature for forming 25 contacts (which is lower
still). In general the transition temperature will be a function
of some parameter, p, which is a measure of the compact-
ness of the chain and/or similarity to the native state. Bryn-
gelson and Wolynes'® first calculated T.(p) in their random
energy model.

The two regions in which the chain fails to fold are
qualitatively very different. At high temperatures the energy
differences between conformations becomes negligible so all
conformations have roughly equal probabilities. The chain is
randomly exploring the conformation space. It takes a long
time to find the native state by random search due to the vast
number of conformations. The free energy is dominated by
the entropic term so the native state is no longer the global
minimum. At low temperatures the energy differences be-
tween states becomes important and the folded state is the
global minimum free energy. The problem now is that the
barrters between states are too high and at low temnperatures
there is a very small probability for crossing them. For com-
pact conformations many moves will involve the breaking of
contacts which at low temperatures becomes unlikely. In par-
ticular, moves that break more than one contact are much
less probable that those that break only one. Instead of a
random search the chain is now forced in to a very narrow
kinetic pathway consisting of those steps with very small
free energy barriers. The chain gets trapped in the many local
minima,

If we were willing to wait long enough the system would

eventually fold. Since our system is finite, the system always
has a finite nonzero probability to find the native state. The
same is true for the high-temperature case: If we wait long
enough, the chain will eventually find the folded state. How-
ever, one must remember that at those temperatures the
folded state is not the free energy minimum and is therefore
not stable. For example, consider the following two tempera-
tures: 2.24 and 1.12. The folding time for these two tem-
peratures is roughly the same. At the higher temperature (as
we will see shortly) the chain spends almost zero time in the
folded state (less than 0.04%). At the tower temperature the
chain spends roughly 77% of the time in the folded state.
When we speak of folding time, this is simply the time it
takes the chain to find the native conformation. There is an-
other important factor here: Namely, is the folded state stable
thermodynamically? We will address this issue at the end of
this Paper, where we see that it is not enough that a chain
find its native state in a short time, but it must do so at
temperatures where the native state is thermodynamically
stable.

Let us return to the question of how long is too long to
wait for a sequence to fold. Too long is in general determined
by other time scales in the system. For proteins, there are a
number of biologically relevant time scales, the lifespan of
the organism for example. Proteins that do not fold fast
enough on this time scale can be considered not to fold at all.
Since we are studying a simple artificial system there is no a
priori time scale to pick, other than limits on the simulation
{computer) time. One of the problems with Monte Cario dy-
namics is that there is no easy way to “calibrate’ them, that
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FIG. 9. Folding and collapse times versus temperature for all sequences,
plotted on a log-log scale. The top set of solid lines are the folding times,
the middle set of dotied lines are the times to compact to a cobe and the
bottom set are the times to compact to partially compact (25 contacts) con-
formation. The Jegend shows the energy of the native states.

is to make a connection between Monte Carlo steps and
“real” physical or biological time. What we have done here
is to define the relevant time scale as the folding time (or the
compaction time) and make sure we ran simulations for long
enough that we could see the the variation of folding time as
a function of temperature.

We have examined the folding (and compaction) time as
a function of temperature for one sequence. We now would
like to see how this function varies from sequence to se-
quence. Figure 3 show a plot of the folding time and com-
paction time versus temperature for several sequences. From
this figure we notice two very interesting features of this
model. First the compaction time is sequence independent.
All six sequences have roughly the same compaction time
for temperatures above T, . In contrast the folding time is
highly sequence dependent. At a temperature of roughly 1.6
there is a difference of nearly an order of magnitude between
the fastest and slowest folding sequence. The folding time is
also roughly correlated with the energy of the folded state,
The iower the energy, the faster the folding time. However,
the relation between the energy of the native state and the
folding time is not a simple one. For example the two se-
quences with the lowest energy folded states (sequence 002
and 004, see Table I) have different folding times. The dif-
ference is slight but sequence 004 has a consistently faster
folding time at all temperatures. Sequence 005, which is a
single monomer mutation of 004, has a higher ground state
energy {—82), but its folding times are very close to those of
the lower energy sequence 002. There also appears to be a
fairly large difference between the sequences that have ener-
gies below —81 and those that have energies above.

Note that the collapse time is always much faster than
the folding time for all sequences. Even sequences that fold
slowly collapse as rapidly as the fast-folding ones. This
sequence-independent property of the collapse time is often
referred to as a self-averaging property; it does not depend

on the specifics of the sequence but rather on the general

character of the ensemble of sequences. It is important to
remember here that we are choosing a restricted ensemble of
sequences though, namely the subset of sequences with a
particular ratio of monomer types (a ratio of 14:13). Se-
quences that contain a different composition of menomers
may have different collapse times than the sequences used
here. The foiding time is not self-averaging; i.e., it depends
on the sequence. So we can view the kinetics of folding as a
two-stage process. The first involves a rapid collapse of the
polymer. The nature of this collapse is sequence independent.
We can picture the polymer in this collapsed state as fluctu-
ating about various compact cube states. This picture has
been advanced previousty by others.*? The next step is a
medium-to-slow event in which the polymer searches for the
minimum energy state among the compact states. The time it
takes for the polymer to find its minimum state depends on
the specifics of the sequence. The two-phase collapse with
two distinct time scales has also been observed for real
proteins.** 3 The first phase is a rapid collapse in which a
hydrophobic core is formed. We should expect this collapse
to be independent of the specific sequence, depending on the
ratio of hydrophobic to hydrophilic monomers. This col-
lapsed state then undergoes rearrangement to the folded
structure of the specific sequence. The collapse time below
the glass temperature loses its self-averaging property. Ex-
amining Fig. 9 we see that below T,=1 the collapse time is
no longer sequence independent. In the glass region we
would expect the kinetics to depend on the details of the
energy surfaces and these details will be sequence depen-
dence. This is expected of a system exhibiting glassy behav-
ior. Note how this contrasts with the high temperature limit,
where the collapse times remain sequence independent even
as they approach 7, .

At this point one may be tempted to conclude that we
have two types of sequences: fast folders and slow folders,
However, this is not the case. In reality what we have are
sequences that fold and sequences that do not. In order to see
this we need to look at the thermodynamics of these systems.
In particular we need to look at the thermodynamic stability
of the native state as a function of temperature. To do so, we
performed a series of thermodynamic runs using the same
Monte Carlo algorithm described above. The system was
equilibrated by first running it for 100 million steps, which is
on the order of the folding time for most of the sequences.
Care must be taken at low temperatures since near the glass
transition the system will slow down; i.e., the auto-
comelation time will diverge. We looked at temperatures
above T, to avoid this problem. We calculate the following
thermedynamic quantity:

e~ EnadT
Pl Ty=—5—, (4)
where £, is the energy of the native state and Z is the
partition function. This quantity is the probability that the
system is in the native state; that is, it is folded. We define
the folding temperature as the temperature at which
Pl Ty =10.5; that is when the folded state is half occupied.

Note that P_,(T)>0.5 is a sufficient condition that the na-
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FIG. 10. P, {T) for several sequences. 7 is defined to be the temperature at
which P (T;}=0.5. The points were calculated using the standard Monte
Carlo procedure. The solid lines are not fits to the data. They were calculated
using the Monte Carlo Histogram Method (Ref. 37}, which enables one to
calculate thermodynamic quantities at temperatures other than the simula-
tion temperature. Two of the sequences have folding temperatures above
T, . the others have temperatures below T, . The vertical line at 7=1 indi-
cates the glass transition point. The legend shows the folding termperatures,
the numbers in the parenthesis indicate the uncertainty in the last digits.

tive state be the global minimum of the free energy. Four
sequences were used, each with a different minimum energy
ranging from - 84 to —76. Several simulations were run at
a number of different temperatures. Figure 10 shows the re-
sults. In addition to running simuiations at different tempera-
tures, we also used the Monte Carlo histogram method®’ to
calculate the function P ,(T) at temperatures other then the
simulation temperature. Using histograms collected from
simulations run at 7=1.58, we were able to calculate P,
for all temperatures, extrapolating into the glass region.
These lines are plotted along with the points calculated from
the standard Monte Carlo runs.

The folding temperature, 7, varies with the value of the
minimum-energy state. The lower the minimum energy the
higher the folding temperature. More importantly we see that
the two lower energy sequences have folding temperatures
above the glass temperature, 7., while the others have
Te<T,.. At T, the lowest energy sequence (which also folds
the fastest) is 90% in the native state. The highest energy
sequence has a native state population of only 15%. At tem-
peratures at which the folded state of the high-cnergy se-
quence i thermodynamically stable this state is not kineti-
cally accessible. Therefore we would say this sequence does
not fold. In order for a sequence to be foldable it must meet
two conditions. First, it must have a reasonably fast folding
time, where by reasonable we mean on the relevant (biclogi-
cal} time scales, and second, the folding temperature must be
above the glass temperature. The analogous situation would
be a polypeptide which had a folding temperature below the
freezing point of the solvent. Such a protein would not be
considered foldable.

IV. CONCLUSIONS

Using a simple lattice model and Monte Carlo dynamics
we have studied the kinetics {and some thermodynamics) of
proteinlike heteropolymer folding. Our results agree with
previous works on other simple models and also match some
of the properties of the folding real proteins. We find that our
models display a two-stage folding behavior. First there is a
rapid collapse to a compact state, followed by a slower stage
in which the collapsed state rearranges itself to the native
structure. We find that the folding time has a minimum pla-
teau at intermediate temperatures and diverges at both high
and low temperatures. The same is true for the collapse time.
In this work we have examined the folding behavior as a
function sequence and have discovered several interesting
results. The collapse time and the glass temperature are both
sequence independent (self-averaging} quantities. The fold-
ing time and temperature are both sequence dependent. The
folding time correlates approximately with the energy of the
native state: the lower this energy the faster the chain folds.
This is consistent with the results found by Shakhnovich'’
that the larger the energy gap of the native state the better the
sequence folds. We did not measure the gap, since there is no
clear or simple definition of the gap in our system. Another
way to view this result is that sequences with unfrustrated
native states (native states with no bad contacts) fold best;
i.e., we want to minimize energetic frustration of the ground
state. However, we expect that this may be a property of

these simple systems and that in more compiex systems other .

forms of frustration (geometric or energetic frustration of
conformations other than the native state) may play an im-
portant role. One would then expect that systems with re-
duced frustration should give rise to a large number of con-
formations that are rapidly connected kinetically to the
native state (rapid compared to the folding time) or, as first
proposed by Leopold and others,”® a “dominant folding fun-
nel.”

An important point we have tried to stress is the issue of
time scales, in particular the relevant physical time scales for
this system and for protein folding in general. We note that
there was no simple way to connect the computation time
{Monte Carlo steps) to physical time. Rather than attempt to
do so, we simply ran our simulations for a reasonable num-
ber of steps and then observed the folding time for the sys-
tem. It is this folding time that now becomes the key time
scale. For example, when we say a sequence does not fold
what we mean is that is does not fold within a time that is
over an order of magnitude greater than the folding time for
the fast sequences. Since we are looking at finite systems we
know that they will all fold given enough time. What is
important 15 whether they fold in a reasonable time where
reasonable is the folding time for the faster sequences. For
real proteins, this time scale would be some suitable biologi-
cal time.

By examining the behavior of folding time versus tem-
perature we defined the glass transition temperature of this
system. Below this temperature the kinetics slow down,
causing the folding time to increase rapidly. Also the collapse
times lose their self-averaging property and are now depen-
dent on sequence. Most importantly we observed that for the
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slow-folding sequences the folding temperature (the tem-
perature at which the native state is half populated) is below
the glass temperature. This indicates that these sequences
will never fold since at temperatures where the native state is
thermodynamically stable it is kinetically inaccessible. Good
folding sequences have T, greater than T, . It has been sug-
gested by others'®? that a good design principle for optimiz-
ing folding would be to maximize the ratio T/T,. We ob-
serve this result explicitly in our simulations.

Perhaps the most interesting observation is that even
simple systems such as these display a wide variety of com-
plex and intriguing properties, many of which are shared by
real proteins. This is particularly compelling in that one can
much more easily study these simple systems and understand
their behavior in great detail. By examining slightly more
complex models we hope to understand how much of protein
behavior is unique to proteins and how much is shared by the
generai class of heteropolymer systems. Hopefully, much of
the apparent complexity of proteins will be understandable in
the context of simpler model systems.
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