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Theories of protein thermodynamics

We come to the conclusion that theory of coil-globule transitions in ho-
mopolymeric macromolecules, even in its most elaborate form does not de-
scribe the most important features of protein denaturation:

1) First-order character of denaturational transition.

2) The existence of Molten Globule state in proteins.

This implies that some very essential protein specific had been omitted

in the theoretical treatment of proteins.

This specifics might be:

1) The heterogeneity of protein chains : both ”Flory-type” Ptitsyn theory
of coil-globule transitions and Lifshitz theory treated protein as a honopoly-
meric chains.

2) Complicated architecture of a protein chain: presence of different degrees
of freedom: backbone (€, ¥ angles ("polymeric” degrees of freedom) and
degrees of freedom connected with side-chains motions (x-angles).

3) The most fundamental feature of proteins: existence of unique 3D-structure
deserves fundamental theoretic investigation and this investigation may shed
light to the origin of mystenous denaturational tramsition.

In fact, the investigation of the nature of the peculiar thermodynamic be-
havior of proteins became one of the most challenging goals for theoreticians
l working in this field and the attack followed all the three directions outlined
above.

Generally, the models of protein thermodynamics can be divided into
two groups. To the first group belong models in which no special interac-
tions other than known (hydrophobic, electrostatic, van-der-Waals, etc) were
assumed to act in proteins. The second group of models involved assump-

tion about som special "hidden” local or non-local interactions which lead to
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formation of unique 3D structure of proteins. Both groups of models consid-
ered as a cornerstone and major goal the description of the nature of high
cooperativity of protein structure. We will discuss all these exhisting models

in logical rather than chronological order.

Heteropolymer collapse

The natural way of search of the nature of cooperativity is to take into
account the heterogeneity of a protein chain. This was done within dif-
ferent theoretical treatments: the extension of Lifshitz theory for the case
of heteropolymer { (A.Yu. Grosberg & E.L.Shakhnovich, Soviet Phys JETP
64 3821 (1986), E.I. Shakhnovich & A.M.Gutin Biophys.Chem 34 187-199
(1989)) & A.M.Gutin J.Physique (France) 50 1843-1850 (1989)) and the ex-
tension of "Flory-type” theory for heteropolymers. {K.A.Dill, Biochemistry
24 p. 1501 (1985) ). It was shown within the extension of Lifshitz theory
that the coil-globule transition to the globule without unique structure
takes place in the same manner as in homopolymer with the only difference
that it occurs at somewhat higher temperature. The physical reason of this
result is quite clear: When the chain (homopolymer or heteropolymer) col-
lapses to the globule without unique well defined conformation it it explores
numerous conformations (it is worth mentioning that number of compact
conformations of a polymeric globule is still very large: change of chain en-
tropy in the coil-globule transition is very small, according to the Lifshitz
theory). A chain behaves like a living snake with all contacts possible and
explored and energy of interactions between difierent monomers becomes av-
eraged so that heteropolymer in this regime looks like homopolymer. The
detailed mathematic treatment of heteropolymer collapse problem done in
(A.Yu. Grosberg & E.I.Shakhnovich, Soviet Phys JETP 64 3821 (1986))
develops renormalisation group technique based on the idea of taking into
account of all possible fluctuations of contacts on any scale:

1). Interactions are separated into local (between, say s neighboring along
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the chain monomers) and non-local.

2). Contribution from local interactions are calculated explicifely

3) Each s monomers along the chain are united into new monomers; we come
to a new chain of N/s new monomers and new interactions between new
monomers E'ij which are obtained on stage 2 when local interactions were
excluded.

This procedure shows that "new” chains becomes more and more ho-
mopolymeric as size of "new” monomer grows. In the vicinity of transi-
tion point "new” chain main consist of only one monomer with completely
smoothed differences between types of monomers (recall that polymeric coils
are fractal, or scaling invariant objects!). This implies that heterogeneity of
the chain does not change the character of the coil-globule transition in that
chain, or, as it usually said, the transition belongs to the same universality
class for heteropolymer as for homopolymer.

The coil-globule transition within ”Flory-type” approach has been con-
sidered in the work (K.A.Dill, Biochemistry 24 p.1501 (1985)). The process

of collapse is separated into two stages:

1) Collapse of the chain as if it is homopolymer. This process was treated
in the "Flory-type” theory (with erroneous entropic term) and derivation
repeated such given in previous works.

2) Rearrangement of the compact conformation to immerse unpolar groups
_inside the globule and polar groups outside it.

It was claimed that the total transition is of the first order since the free
energy is increased after the first stage and thus a molecule encounters a
barrier on its way to final folded state. However this conclusion is an ob-
vious artifact of artificial division of the folding process into two parts: in
reality the process of collapse and immersion of unpelar groups inside oc-
cur simultaneously and there is no barrier on the way from collapsed state

to unfolded state. In the latest review ipreprint available) K.Dill mentions
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that his treatment does not address the question whether the transition is of
the first order. Moreover, the chain connectivity was not taken into account
within this treatment, i.e. it was assumed that hydrophobic and hydrophilic
groups can choose their positions on the surface of a protein or inside it as if
they were not restricted by chain conformations.

Theory of protein ”melting”: the role of side-chains.

We see now that theory of polymer collapse does not explain main features
of protein thermodynamics observed experimentally. Moreover, a question
arises, what is the source of large latent heat in this process since one can ex-
pect that protein-protein interactions may be substituted by protein-solvent
ones and therefore energies would be compensated. Following analogy with
non-polymeric substances one could consider coil state as analog of gas phase,
m olten globule as an analog of liquid, then native state should obviously the
analog of solid. Then one should expect latent heat of denaturation in the
same mananer as it exists in the melting process.

However it should be emphasized that theory that considers intramolecu-
lar melting of a protein should differ drastically from such for crystal-liquid
transitions. The reason is that in erystal structure the main effect is destruc-
tion of long-range order, crystal lattice. Obviously, there is no long-range
order 1n placement of side-chains and backbone in proteins; therefore mech-
anism of the melting transition should differ drastically.

The consistent theory of protein melting must give answer to the key
question: why destruction of a native state means transition from this native
state through free-energy barrier rather than smooth evolution of the
native state itself. In other words, why intermediate states (between native
and denatured) are unfavourable?

The theory which addresses these questions was suggested in (E.I.Shakhnovich
& A.V. Finkelstein Biopolymers 28 pp. 1667-1680 (for melting in vacuum)
and in E.I.Shakhnovich & A.V. Finkelstein Biopolymers 28 pp. 1681-1694

(for melting in solvent).



The model of a protein globule suggested there was inspired by the ex-
perimental fact that in many cases denaturation does not disrupt secondary
structure, i.e. the chain remains rather stiff. Therefore a native protein glob-
ule (and the globule in the barrier state: solvent does not penetrate!) can
be visualised as a stack of few rigid structural segments to which side-chains

bearing numerous rotational degrees of freedom are attached. (see fig. )

Q

Fig. 1. Protein globule: The scheme (a) shows the backbone (solid line) forming secondary
structure segments (here: two a-helices and a B-sheet of three strands) coanected by loops; the
backbone is covered by the numerous side chains. The space-filling model (b) shows the compact-

ness and tight packing of a protein globule.

Formation of tight packing of side chains a protein hydrophobic core is
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favourable energetically since short-range interactions (van-der-Waals forces)
cause attraction between groups. This process is unfavourable entropically
since many degrees of freedom connected with rotational isomerisation of
side chains which, besides usual rotational isomerisation potential, become

restricted due to mutual steric hindrances inside tightly packed hydrophobic

core. (see fig. )

Question arises how can destruction of tighly packed native conformation



occur? It is clear that intramolacular H-bonds (and, hence secondary struc-
ture) should be preserved during the initial stages of decompactisation while
water molecules do not penetrate inside protein interior and form H-bond
with polypetyde. Therefore first stages of denaturation in solvent should
be indistingushable from such in vacuum. Therefore exit from the native
state must occur via uniform displacements of stable segments of sec-
ondary structure bearing numerous side- chains .

The only terms of free energy which are changed during this process are
van-der-Waals interactions and entropy of torsional motions of side-chains
and loops. Consider these terms.

The van-der-Waals interactions have usual Lennard-Jopes form:

1 o\ 12 rY\ 6
fo- y e ()20
The uniformity of protein expansion implies that one macroparameter -
volume of a globule V - governs all changes of pairwise vdW interactions via:
vy =2

173
0

with Vj is the volume of most tightly packed protein.
This means that vdW energy depends on volume in a simple form:

P = 356 () - 2(2)]

The plot of this dependence is shown in fig.
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Torsional motions
Fach side-chain moves under action of two forces:
1) its own torsional potential U;(x) which is different for aromatic and aliphatic

side-chains and
2) steric hindrances from surrounding side-chains and the backbone.

For aliphatic side-chains
Uux) = 3Ui(1 - cos3X)
with Up = 3kcal/m and for aromatic side-chains
Ui(x) < RT
Each rotation is limited in some range
x? < xi < xil

by collisions with neighbouring segments. (see fig. )
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We may write the contribution to the free energy from torsional motions:
M
F(V) = Zln 2(Vo/V)
=1

with .
o/ V) = [ exe [~ ]

is a partition function of rotation of a side chain in torsional potential re-
stricted by "steric walls”.

Increase of volume corresponds to motion of the right steric wall to the
right. There are three stages in changes of torsional free energy:
1) initial swelling with increase of amplitude and entropy of librations
2) Intermediate swelling when amplitude of motions is not increased being
limited by potential of internal rotation
3) Further swelling when possibility to place second rotational isomere ap-
peares and entropy increases drastically due to it. The plot of free energy of

rotational motions is shown in fig.
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The total free energy of van-der-Waals interactions and rotational mo-
tions F' = E,, + F, is shown in the fig. above. It is clear from this fig. that
indeed there exist two stable states native (N) and molten (D)} separated by
free energy barrier. This barrier corresponds to intermediate swelling when
part of vdW interactions is lost but entropy of rotations, still hindered by
rotational potential, is not gained. The volume of denatured state can be es-
timated from the condition that pores with free volume equivalent to volume
of, say, CH, group should be formed to facilitate rotational isomerisation.
This gives Vp/V N = 1.3. Obviously, barrier state B has smaller volume.

This investigation of protein denaturation inm vacuum leads to the fol-
lowing results:

1) Denatured state of a protein is always compact.

2) Energy change (latent heat) E,(Vx) — Eo{Vp)=100kcal/m.
2) Entropy change AS = RM=200cal/m/deg.

3) Melting temperature T,,, = 500K

The role of solvent

Water molecule has volume close to such of C H;. This implies that they
cannot penetrate inside protein when it is in the barrier state. This is in
correspondence with experimental results of Segawa and Sugikhara discussed
in detail earlier. This means that presence of solvent does not influence on

.native and barrier state and hence all the qualitative features of the transition
(and first of all the existence of the barrier itself!) are not changed due to
the presence of solvent.

However, solvent is able to penetrate into denatured molecules and there-
fore it may change its density (or even swell it to coil) and may change
energetic parameters of the denatured state and, hence of the transition.

Therefore it is necessary to consider influence of solvent.
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Generally speaking there may be two possibilities:
1) solvent does not penetrate into the interior of denatured protein: Molten
Globule is "dry” and
2) solvent does penetrate into protein interior: Molten Globule is "wet”. (see

fig. ) In order to answer the question and find out how solvent influences the

*wgrT “pre= e
LLOBULE S OB [ SOMLE

MOLTER GLOBULES

CEMATURED PROTEIN

Fig. 1. Scheme of proten denaturation. The pores in the denatured globule may be either
empty (dry giobule) or may be filled with the solvent (wet globule).

denatured state we must include interaction of a protein with solvent. In fact

this must take into account interaction of solvent molecules penetrated into
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the protein interior, interaction between solvent molecules inside the protein,
and entropy of placement of N;, penetrated solvent molecules among Npore
vacanvies existing inside.

Therefore the free energy of a denatured protein in a solvent looks like:

. Vw 1 Njw Nin N;.,
F(V, N;,.) = +N, |lo—+ a—— . — 4+ —N)In{1-
(V, Nin) = Fiary Nm[qbv +2a ; ]+RT[N,,.,inN ) (Npore N n( N c]

where F,. is a free energy of a protein in vacuum, Vu is a volume of a native
protein, w is a volume of a water molecule.
The equilibrium number of penetrated solvent molecules should be defined
from the condition of equilibrium:
_ OF(V,Ni) _
b = = aN,

where p;n s are chemical potentials of water inside protein and in a bulk
solvent.

Parameter a characterizes interactions in a bulk solvent; it is connected
with the chemical potential of the solvent via:
i~ Prap
0,2 = pgutr — WPy = RT In —
Plig
with P, — latm is an external pressure, p.upsiq are densities of saturating
vapour and liquid solvent correspondingly; for water a ~ 12kcal fm
The solution of equation of water equilibrium gives the result that the

state of water inside protein is determined by the parameter

o
¥=—-
5 ¢
when ¥ < 0 Ny, = N, and globule is wet.
Of course, when solvent does not penetrate into protein it is globule. But

what happens with protein when solvent starts to penetrate inside it?7 Will

12



it inevitably transfer globule to coil or there exists a possibility of we molten
globule?

The answer is: yes, wet molten globule may (and must!) exist. Indeed,
the self-interaction in the protein chain corresponds to repulsion: 1n vacuum
protein will be compact. Therefore, additional swelling force from the pen-
etrated solvent must overcome this attraction in order to convert globule to
coil.

Addition of specific denaturants changes activity of a solvent either chang-
ing a, i.e. destroing water structure or changing ¢-interactions between pro-
tein and solvent. The most suitable for the analysis is to follow how the
curve F(V) changes when solvent is changed. This is shown in fig. for high

and low temperatures.
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Correspondingly we may follow what transitions occur when denaturant

1s added:
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Fig. 5. Plot of the equilibrium density of & proteia va the solvent qoak tempera- X
. ty for two - R
tures: (&) above and (b) below the triple point, The circies denoté the midpaints of the first-order” > 5
phase transitions. The aquare denotes. the # point, which is the point of the second.order phase 12
transition (note that swelling is a gradual pretransitional effect). The dashed parts of the curves. -5
correspond to the metastable states. The density of the coil is N- /.

All these results can be summarised in the phase diagram plotted in
"theoretical” coordinates T' — ¥:
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It is seen directly that molten globule in proteins must be wet: it follows

from the fact that denaturation occurs in the interval 300-380 K and that

denaturation temperature depends on solvent strongly.
All the above was discussed in general terms. However the solvent qual-

ity ¥ depends on temperature (temperature dependent hydrophobic effect)

and on addition of denaturant. For example it has the following empirical

dependence on GuHCI concentration:

¥(C) = ¥(0) —0.111C + 0.057C?

It makes it possible to present the phase diagram in "experimental” coordi-

nates C-T:
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We see that this theory gives some answers about the nature of denatured
state and possible driving mechanisms of denaturation. It formulates the
minimal, necessary structural changes which must occur in a protein during
denaturation.

However it does not address the very important problem: what hap-
pens with the backbone upon denaturation? Indeed, the treatment of the
backbone conformations in this theory is rather vagune: it is treated as a ho-
mopolymer, and Lifshitz theory of coil-globule transitions was applied here.

However, a key question emerges: does molten globule have unique back-
bone conformation or it is rather a mixture of different conformations as
collapsed homopolymer?

In order to answer this question a more sophisticated theory which con-

siders formation of unique structure is required as well as more sophisticated

experiment.
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Kinetics of protein folding:
theoretical approach and computer simulations.

The ultimate goal of theoretical investigation of protein folding is to re-
solve the Levinthal paradox, i.e. to find a model in which a protein chain
folds to the stable state at a reasonable time. These investigations have also
a practical goal to work out a reliable algorithm which will provide native
3D structure from a protein sequence - algorithm which will fold a protein
starting from disordered (random coil) conformation.

The first attempt to simulate protein folding was done in 1975 (M.Levitt,
A.Warshel Nature 253, p.694 (1975)) where "renaturation” of BPTI was
done. First of all, a simplified model was introduced where each aminoacid
is represented by two points: centroid of C, atom and centroid of side-chain

(see fig.)

Fig. I Relanonship between the sumplified madel of protein
structure introduced here and the real all-atom structure of
proteins. The two reference points for each residue in the
simplified model correspond to the centrond of the side chain
and the C* Each residue is only allowed one degree of freedom:
the torsion angle u between the 4 successive €9 of residues
(1= 1, 1. ¢-1.17-21. All the side chains of a given type have the
same simplified geometey. The bond lengths, bond angles, and
1 torsion angles used to define the geometry of the simplified
molecule were taken as the average values found in eight
protein conformations, though they could just as well have
been taken from amino-acid model compounds.



r.m.s. Deviation (A)

Energy (kcalorie mol ')

This representation is based on idea of averaging over displacement of
side-chains on small time and space scales so that protein structure can be
presented via coarse-grained low-resolution model.

Each residue is only allowed one degree of freedom: the torsion angle
between 4 successive C, atoms: (i-1,i,i+1,i+2).

The folding of such idealised protein can be simulated by solving the
equations of molecular dynamics (in this work simple minimization of energy
is performed in this stage). After reaching a minimum a thermal fluctuations
are reinforced and the conformation is considered to be vibrating about the
minimum so that each normal mode has energy kT. At some time the mo-
tion is stopped and each normal mode is displaced randomly by a value
(RET/X)Y? where ) is the eigenvalue of energy second derivative matrix
corresponding to some particular mode.

The process of folding by this algorithm is shown in fig.
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As a result of this simplified treatment folding proceeded quite rapidly
and lead to the structure which had r.m.s. deviation of 3.36 A from the
native one.

On the basis of this investigation authors claimed that the plausible model
of folding is maybe that at the initial stage only effective time-averaged forces
between residues play role, folding a chain to a compact structure with most
groups close to its final positions (say, within 5A) then subsequent "fine-
tuning” brings the structure to its final form. We see however that this

scenario does not differ very much from one proposed earlier (e.g. framework

model).
This approach was revisited, however, in the work of A.Hagler and B.Honig

(PNAS, 75 pp. 554-558 (1978)).

They criticized the previous approach to simulations of folding claiming
that criteria of obtaining folded structure in the work, say, of Levitt and
Warshel are too permissive (e.g. r.m.s. deviation of the simulated "native”
structure from X-ray structure is 5-6 A.). More important is that major
topological fetaures of the BPTI structure were not reproduced in the sim-

ulations, namely threading of the loop 30-51 by the chain and 180° twist in
the A-structure (see fig.)

a3



Therefore these authors conclude that "folding” within 5A reproduces
only very general features of a protein structure such as, say type and some-
times location of secondary structure elements but not the important topo-
logical features of the chain.

In the further discussion they introduced an oversimplified model of a
"BPTI1” which contains only glycine and alanine in the sequence. Glycine
was chosen to account for places in the sequence which give probable bends.

The same minimization procedure as such of Levitt and Warshel gave
sinilar results, i.e. S-sheet 16-36 and even the C-end helix, however this
helix was left-handed rather than right-handed.

The relation of simulation results and experimental results of Creighton
on BPTI folding was discussed there. It was mentioned that very subtle
features of kinetic intermediates, e.g. formation of structures with incortrect
S-S bonds may account for "threading” of a loop 30-51 by chain.

However these (and others at that time) simulations didi not answer an
important question, whether a well-concieved, unbiased simplified model can
contain enough structural and energetic information to truly predict protein
structure.

This question was addressed in the recent work of Wilson and Doniach
(Proteins, 6, p. 194 (1989)). They investigated folding of Crambin - small
globular protein consisting of 46 amino acids. Important issues - choice of
parameters and Monte-Carlo technique combined with simulated annealing
scherme were discussed in some detail there.

The choice of parameters- interaction energies between different aminoacids
- was done following the method first proposed by Myasawa and Jerni-
gan (Macromolecules, 18, p 334 (1985). These potentials were derived di-
rectly from the distribution of residues observed in known protein structures.
¢, — C, distances of all residue pairs in 100 PDB proteins were analysed and

used to generate histograms of the number of occurences versus distance for
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each amino acid pair. The observed distributions of reidue-residue distances

were converted into free energies assuming Boltsmann distribution.

Example of resulting potential is shown in fig.
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The folding kinetics was simulated by MC algorthm of Methropolis. The
procedure can be described as following:
1) Store the energy of the old configuration F,u.

2) Choose randomly a monomer to be displaced.




3) Choose randomly one of a possible (permitted by covalent bonds) dis-

placement of this monomer.

4) Calculate the energy of a new configuration Erew.

5) If Enew < Eoq accept this motion.

6) If Fnew > Fowa accept this motion with probability exp(Enew

In some versions of MC algorithm also a large-scale trial motions
e also permitted.

— Ea0)/T.

(such as

e.g. simultaneous motion of a large piece of a chain) ar
[t was shown long ago that such algorithm provides Boltsmann distribu-

tion on large time and, hence may reproduce thermodynamic features of the

transition.
Annealing scheme was proposed by Kirkpatrick and G
pp.671 (1983)) and its idea ‘s to decrease temperature slowly as simulation

elatt (Science, 220,

progresses.
As a result of simulations structures with RM
native structure were the best obtained. However, the contact matrices were

§ deviation 4.7 A from the

reproduced reasonably well (see fig.)

crystal structure map

simulation map

o
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COMPUTER SIMULATION OF THE FOLDING OF CRAMBIN

Table II. Characteristics of Fixed Temperature and Annealed Simulations*

199

Radius of rms DME DME DME
Energy avrition native native internal average
Temperature kT Total contacts tA TAD 1A LA
0.5 25316 7812 8.13 5.34 5.03 4.06
1.6 H07 2 490 TAdh T.95 5.4 5.03 4.30
20 32% 5 965 THih H Ol 336 1.94 114
3 I G577 SRR T 16 +.95 3.36
14hi) 09 7 999 7270 5.6 5.01 5.35 408
2000 2690 8 12.24 390.5 5.34 7.01 7.04 5.29
100G 33573 17 47 1697 1242 14 28 791 13.46
~imulated
annealing 2349 7 915 4251 704 476 4.21 396
Cryv-tal
<tructure 31929 970 R»76.0 — — —

Mante Carlo dvnamics w

as run at the indicated Nixed temperatires For the simulated anneahng run. the temperature was initially

~ettn 1o and gradually lowered rms native refers 1o the averame rms deviation of each model structure from the PDB erystal
structure DME indicates the average distance matrix «rrors between cach model structure and the crvstal structure mative) and
between vach model structure and every other structure internals. The average [DME 15 the distance matrix error calculated by
comparing the contact map of the o stal structure 1o the averape contact map generated brom all the model structures of a given

~tmulation



The produced structures were sequence-dependent: randomly "shiffled”
sequences did not produce reasonable agreement with X-ray structures.
The conclusions drawn by the authors of this work are the following:
1) Starting from random conformations secondary structure forms in correct

places.
2) The formation of secondary structure is influenced by long-range interac-

tions.
3) With the secondary structures assigned a-helices and 3-strands associate
as they do in the true structure.

The last conclusion seems to be the most important and meaningful.
The thing is that the intrinsic propensity to the formation of different local
secondary structure elements is the underlying feature of this model and all
other models of simulations of protein folding.

A very extensive simulations of protein folding by MC algorithm were
done in a series of papers of Scolnick and co-workers. (see, e.g. PNAS 85,
p.5057 (1988), J.Mol.Biol. 212 p.787, ibid, p.819) and references therein.

The basic model studied in these works was a chain composed of monomers
of two types (hydrophobic, hydrophilic) positioned in sites of a diamond lat-
tice. The conformational state is given by a sequence of n-3 rotational states
for the bonds. each of which may be in either the planar (trans) or one of the
two vuy .. piane gauclie states. Intrincic energies ¢, were ascribed to each
A.a. as well as energies of hydrophobic interactions. €.

The primary structure for a 8-protein was defined as following. B;(k)
is a i-th stretch in the primary sequence that consists of k residues; all
these residues have preference for 3-conformation. b denotes position of
turn and L denotes loops. Then typical sequence can be presented in the
form By (i,)by Ba(i2)b2 Ba(ia)ba... Brlix) L1

This model was investigated (as well as models where a-helical bundles

were formed by special primary structures).
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The equilibrium transition is described as an all-or-none transition be-

tween coil and native globule (see figs).
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Figure 4. Plot of mean square radius of gyration (87> versus reduced temperature T* for model A in the curves
denoted by the (a} filled diamonds and (b} filled squares. respectively. (b) In the curves denoted by the filled circles
(triangles) <S> rersus T* is calculated ria eqns (9) and (10) for model A,
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The folding trajectory was also analyzed:

f=8675.500 ?=675,750

7 =676,250 7 =676,500

! = 694,500

’ /

Figure 10. Representative folding trajectory extracted from run 4 of model B. The circle denotes the N terminus.

14




[t was also claimed that kinetic intermediates were observed in the course

of folding; this intermediate has N¢
nergy valley at which 4 of 6 B-strands are assembled

— 18 — 26 native contacts and corre-

sponds to a broad free e

and fluctuations are strong.
According to these simulations the transition state of folding involves 29

of 37 native contacts and is close to the native conformation.

Further extension of this study was proposed in the recent paper (Science,
23 November 1990, p.1121). The new lattice was applied in which side-chains

ken into account explicitely. This is the cubic lattice but adjacent C,

nnected by a vector of the type (£2,+1,0) - by some generalization of

are ta

are co
a "knight’s” walk in chess.

Folding of plastocyanin was investigated - a protein containing 99 residues
with topology of antiparallel 6-3-strand Greek key.
Again intrinsic propensities for the native g-structur

energy of native state was 939k T while contribution from secondary struc-

ture to this value was -179.5kT. However authors of this work claim that

e were assumed: total

secondary structure itself does not determine native structure.
As a result of simulations folding as” all-or-none” transition was observed

to the structure which was topologically equivalent to the best lattice fit to

the structure of crambin but had rms deviation of 6.1 A.

The time course of folding in this model is shown in fig.
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Fig. 3. For a representative folding trajectory, (A)
a plot of the numbcr of contacts between pairs of
side chains versus time and (B) the instantaneous
value of the square of the radius of gyration 52

versus time.
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The sequence of events in the folding process is shown in the next fig.

However the above approach to the protein folding problem raises some

serious questions:
1) It is not clear whether the initial assumptions such as, e.g. intrinsic

propensities of the native secondary structure does not create bias towards

already known 3D structure.
2) It is also important to note that these simulations demonstrate "all-or-

13



none” coil-globule transitions. Experimental data give evidence in favor of
"all-or-none” tramsitions from native to molten globule ststes (at least in
some cases).

3) MG state was not observed in these experiments {probably more detailed
account for side-chains is necessary to clarify this point)

One should await very rapid development of events in the near future.
Analytical investigations of the folding kinetics

1. Diffusion-Collision-Model.

This model was proposed by Karplus and Weaver (Nature, 260, p.404
(1976)). The idea of this approach is to consider regions of unfolded chain to
fluctuate between helical and condensed random coil states. These nascent

helices move diffusively until they meet and coalesce to give rise to mutual

stabilization (see fig.}

284 / Bashford er al.

” 20 ms

AV
P
Ty —

P

T

Fig. 1. The clementary step in the diffusion<collision
model. Two nascent helices move diffusively until a col-
lision resultsin their coalescence and mulual stabilizaton.
The pascent helices in the upper figure are drawn with
dashced fines 10 indicate a rapid equilibnium between heli-
cal and condensed random cail states.
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The diffusion equation is written for two components: a corresponding

to the helical state which can coalesce and r, the non-helical state which do

not coalesce:

lar  Kra ‘?“(ﬁt)
) Ba(rjt) “0\72 y%(r;tj ,
It fr[(}t) fr(f-t) Kar —Kra : fr(rt)

e , - !

The diffusion takes place in the space interval Rpin < B < Rpar (see fig.)

- R |
T T //*"\‘
S N

RW
—
NN

Fig. 2. The nascent helives of Fig 1 are dealyed as
spheres and the connecting polpeptide as a sinng

iy
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As a result the characteristic time of helix coalescence can be found:

R? 1-8V 1/2
_ Ynas 2P 7 (D,
™=35R.0 B DA )
where
- ]

B = itk kot kar

are the helix stability and characteristic time of fluctuations between helix

and coil states.

The calculation gives for for 7 the value 28 msec which is in reasonable

correspondence with the experiment.

The attempt to construct a whole passway of folding of apo-myoglobin

o done within a model where native-like helices can form only native-

was als
like contacts. The general scheme arising from these evaluation is shown in
fig.
T o
©  cH T roH
o — e
1 t
— T i
- ~  eDE
— . —

Fig. 6. The general pathway for the folding of apomyogl
Only states nsing above a probatibey of .02 are shown

Probabliity

ubin derved from analysis of diffusion-coltision calculations.

PIEY I . R

1

6 Fig. 5. The results of a diffusion-collision calculation f
apomyoglobin using the choice of B values described n
the text. Notation of the form “FGH" indicates 1h":
helices F, G, and H have coalesced into a single mic .
do:_nam as in the fourth state shown in Fig. 4, but por
helix-helix contacts are formed. s no other



The obvious limitation of the diffusion-collision model is that only native
localisation and native-like contacts of helices are considered there and thus

this model a’priori avoids the main difficulty of protein folding problem. It

is also known from experiment that some non-native conformations develop

in the course of folding.
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Proteins with Selected Sequences Fold into Unique Native Conformation

E. I. Shakhnovich

Department of Chemustry, Harvard Unwersity, 12 Ozford Street, Cambridge, Massachusetts 021398
(Received 1 December 1993}

We design sequences of 80-monomer model protein which provide very low energy in the target
{native”) structure. Then the designed sequence is subjected to lattice Monte Carlo simulation
of folding. In all runs model protein folded from random coil to the unique native conformation,
effectively “solving” the multiple minima problem. These results suggest that thermodynamically
oriented selection of sequences which makes the native conformation a pronounced deep minimum
of energy solves the problem of kinetic accessibility of this conformation as well.

PACS numbers: 87.15.Da, 61.43.-}, 64.60.Cn, 64.60.Kw

The complexity of the protein folding problem is in
the fact (often referred to as Levinthal paradox [1]) that
unique, native conformation should be chosen in the
folding process without scanning the astronomic num-
ber of possible conformations. The important question
is whether this kinetic ability of natural proteins to fold
is due to evolutionary selection of their sequences and,
if yes, how can this feature be encoded in a protein se-
quence”?

The straightforward approach (tried, e.g., in [2]) would
be to take natural amino-acid sequence and simulate a
(simplified} model of a protein expecting convergence to
the native 3D conformation. However, the difficulty with
this approach is that protein sequences could have been
evolutionary designed to fold to their native structures
with some “exact” set of potentials while simulations nec-
essarily use approximate energetics (3] for which the na-
tive structure may be neither a global nor a pronounced
local minimum. It is then hard to expect any folding al-
gorithm to converge t~ » “~ ~*~a" state whick -~y not be
distinguished by energy from many other conformations.

This suggests the idea of using protein design to study
folding of model one-domain proteins of realistic size.
The goal is to design a sequence which has very low en-
ergy in a given (arbitrary) conformation. Folding simula-
tion with the same potential function as was used at the
design stage will then reveal whether this conformation
can be reached in a reasonable time. Combination of de-
sign and folding “in one pair of hands” makes it possible
to address the basic questions of protein folding and evo-
lution separately from the problem of finding the correct
potential functions for protein simulations.

In this study we model proteins as positioned on a cu-
bic lattice. The Hamiltonian of a model protein is deter-
mined by the set coordinates of its monomers {r;} and
{quenched) sequence of monomers {r,} which denotes
the identity of each monomer. Contact approximation is
taken for the Hamiltonian,

N

Eqod Ard) = 5 YUl )8 = ry (1)

1.

0031-9007/94/72(24)/3907(4)306.00

where N is the total number of monomers and A de-
fines the contact potential between them: A(r) = 1 if
monomers are lattice neighbors and 0, otherwise. We
consider our model proteins positioned on a cubic lattice
with unit bond length.

The set of potentials U(a,3) characterizes energies
with which a monomer of type o interacts with a
monomer of type #. First we tried two-letter se-
quences {hydrophobic-hydrophilic) like ones used in two-
dimensional lattice models of proteins [4]. However, two-
letter sequences appeared to be inappropriate for study-
ing protein folding in three-dimensional models (see be-
low). Therefore in what follows twenty-letter representa-
tion of protein sequences was used. In this case U(«, 8)
is a 20 x 20 matrix; as an example we used the one de-
rived by Miyazawa and Jernigan [3] from the statistical
distribution of contacts in native proteins.

In this work we studied folding of 8@-monomer chains.
Following the idea to combine folding and design we
choose (arbitrarily) a target structure which is in our
case a compact conformation of a chain on the cubic lat-
tice. An example of the target structure is shown in Fig.
1.

After the target structure is picked, sequence design
should be made to find a sequence which fits the target
structure with low energy as determined according to Eq.
(1} where coordinates {r,} correspond to target confor-
mation. To this end the sequence-space Monte Carlo
(MC) procedure of design was used {5,6]. The idea of se-
quence design is very simple: For the design purposes just
view Eq. {1) as one where coordinates of the target struc-
ture {r;} are quenched but sequence variables {o;} are
annealed and Eq. (1)} should be optimized with respect
to them. This leads naturally to the idea of simulated
annealing in sequence space; the procedure is straight-
forward and the details are published in [5,6].

The following argument based on the theory of het-
eropolymers allows us to estimate whether the native
{target) structure corresponds to the global energy min-
imum for the designed sequence.

We divide the set of all conformations into two groups:
the ones which have significant similarity with the tar-

3907
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FIG. 1. An example of a compact conformation of an
80-monomer on a cubic lattice and the optimized sequence.
Amino acids of different types are shown by different grav
scale for illustrative purposes. This conformation as well as
several other conformations with their sequences (not shown)
were used as native structures in our studies. The shown
sequence was designed to have low energy in the shown con-
formation.

get structure and the remaining vast majority of confor-
mations which have marginal or n. similarity with the
target structure, just like two randomly superimposed
conformations.

For conformations which are not similar to the tar-
get structure the designed sequenc= is effectively random
and therefore the statistics o their energies are equiv-
alent to those of a random heteropolymer. (A similar
argument was first given by Bryngelson and Wolynes in
their discussion of the “minimal frustration” model of
protein folding (7].)

The important feature of random heteropolymers is
that there exists a threshold energy E. such that the
probability teo find conformations with energy well below
E. is extremely small [8-11]. Therefore the successful
design should create sequences whose energy Ex in the
native conformation is well below E.: In this case ran-
dom conformations (structurally nonsimilar to the native
state) will not have energies close to that of the native
conformation and therefore will not serve as deep ener-
getic traps for folding.

Ex is known directly from Eq. (1} for the designed se-
quence. To estimate E; we use the replica mean-field the-
ory of heteropolymers (8-11]. E. = Eo — JN(2lny)'/2,
where 7 is the number of conformations per monomer.
The important parameters Eq and J are the mean and
the standard deviation of interaction energies. Since we
are using parameters which are obtained from protein
statistics. we have only relative energies and do not know
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the absolute energy scale for those parameters. So we use
the energy unit at which J = 1. This requires multipli-
cation of all parameters by a scaling factor. To deter-
mine this scaling factor we generated a set of 1000 ran-
dom sequences (all having the same amino-acid composi-
tion) and fitted them into the target structure adjusting
the scaling factor so that J? = ((E?) - (EY)/N = 1.
(E) = Eo and () denotes averaging over the set of ran-
dom sequences. We took v = 3.5 which takes into ac-
count excluded volume and certain degree of compact-
ness of unfolded conformations for which variance of in-
teractions J is estimated. The estimates were done for
two sets of parameters: “two-letter” code with monomers
of two types (“H” and “P") so that U(H,H) = —-1;
U{H,P) = UPP) =0 and the twenty-letter set of
Miyazawa and Jernigan. The amino-acid composition
was set to be 50% H and 50% P monomers for two-
letter chains and corresponding to averaged composition
in proteins [12] for the twenty-letter set. The results for
80-monomer chains are given below.

(1} Two-letter heteropolymers: E. = —-72.3, En =
_61. The model is not specific enough to have unique
structure: All possible energy levels are multiple degen-
erate. No folding to unique structure is possible in that
case.

(2) Twenty-letter parameters: Ec = -123.6, En =
—156.5. The estimated gap is pronounced, ~ 23T at the
temperature at which most of the simulations have been
done. In all that follows twenty types of monomers are
used and the results are reported for that model.

Now we simulate folding of the designed sequence using
the simple lattice Monte Carlo folding algorithm (13-17]
and energy function given by Eq. {(1). The move set
which we used allows corner flips and crankshaft motions
but excludes muitiple occupancies of lattice sites. It was
argued in (17 that such a move set makes cubic lattice
simulation ergodic.

Simulations started from random coil conformations.
There was made a total of 1000 runs starting from dif-
ferent randomly chosen coil conformations. The main
result of this work is that in each run chain folded into
the unique target conformation with mean first passage
folding time close to 10° MC steps.

A typical folding trajectory recorded at temperature
T = 1 is shown in Fig. 2. Analysis of energy changes
with Monte Carlo time shows that structures with en-
ergy lower than the energy of the native state have never
been encountered. In order to estimate whether this con-
clusion is sensitive to the move set we repeated simu-
lation with enhanced move set which allowed also for
3,4,5-monomer crankshaft moves. The results are sim-
ilar: Again the target state was the lowest energy one,
and the trajectory was similar to the one shown in Fig.
2.

Pronounced fluctuations around the minimum energy
structure make this model close to the Molten Globule
(MG) [18,19). This is due to the fact that there are
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FIG. 2. A typical MC trajectory of folding simutations for
80-monomer chain. (a) The dependence of energy on MC
step. The energy of the native conformation is shown as Ey.
(b} The dependence of normalized number of native contacts
on MC step. The maximal number of contacts Niorar = 105
for a compact 80-monomer. For each conformation we nor-
malize the number of native contacts, @, by Niotal so that
@ = 1 corresponds to the native conformation.

no side chains in the model. which tight packing dis-
tinguishes the MG from the native state and makes the
native conformation more rigid [19].

The ability to fold appears to be a virtue of designed
sequences and is temperature dependent. as expected.
Steepness of the curves in Fig. 3 is consistent with the
assertion !5 that designed sequences have a first-order
folding transition. Applied to proteins this suggests that
the coil-MG transition may be also first order, like the
native-MG one. The first-order character of the natjve-
MG transition. however, may be due to a different reason.
side-chain freezing 19}, which is not considered in the
present model (see 20] for the discussion of first-order
transitions in macromolecules).

The temperature dependence of entropy can be ob-
tained from temperature dependence of energy (T} us-
ing the thermodynamic relation

. E e
s(']):s(x)—ﬁ‘%,(—%}:—)vﬁ @dt) . {2)

Here s(>c} is a high-temperature {athermal} limit of en-
tropy. The value s{x| = In(4.68) + % In{79)/79 is known
since at high T it coincides with that for an athermal
polymer on a cubic lattice 21:. Qur simulations were
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FIG. 3. Temperature dependence of energy E (a), config-
urational entropy per monomer (b}, and structural similarity
with the native state (c) for the designed sequence {squares)
and for a random sequence with the same amino-acid compo-
sition as the designed one (circles). At each temperature 10°
MC steps were made, and average energy L and structural
similarity with the target conformation Q were determined as
an average over the whole run at a given temperature. The
calculation of the entropy curve is explained in the text.

performed in the temperature range 0.5 < T < 10.0.
We took s(T = 10) = s{cc). Only part of the tem-
perature dependence corresponding to the temperature
range 0.5 < T < 3.6 is shown to provide a reason-
able scale to show the transition. The truncated part
at T > 3.6 is a trivial base line. In the low-temperature
limit (T = 0.5) = 0.007. The smallness of this number
is consistent with the main result of this work—that de-
signed sequences repetitively return to the target (native)
conformation.

The same procedure was used then to calculate confor-
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mational entropy of the random sequence. The number
of conformations is determined as usually M = exp{.Vs).
{n this case the same rate of annealing leads to freez-
ing without development of unigue structure: Different
runs end up in different. unrelated conformations. The
number of such frozen low-temperature conformations is
estimated from the calculation of entropy (Fig. 3) to be
~ 109 Note also that even in the denatured state energy
of designed sequence is noticeably lower than that of the
random sequence.

Low-temperature freezing for a random sequence is a
kinetic phenomenon: It was shown in ‘22" that in this case
the global minimum cannot be reached by any algorithm
in a reasonable less than “Levinthal” explaN)' time.
This does not contradict the assertion 9 that random
sequences can have a thermodyvnamically stable unique
structure in a certain rtemperature range. [he reason is
that the unique structure of random sequences becomes
thermodynamically stable onlv at temperatures lower
than T.. the glass transition temperature 7-11,22,23].
However. as was shown in 22] {see also the excellent
discussion in 23!}, at T < T. the kinetics become ex-
tremely slow because the ruggedness of energy landscape
of random sequences turns out to be crucial at temper-
atures lower than T.. Sequences with large gaps have
native structures which are stable at T > T.. resolving
therefore the contradiction between the requirement of
thermodynamic stability and kinetic accessibility which
is characteristic of random sequences.

Analysis of the curve Q(T) in Fig. 3(c} suggests that
the native state is sufficiently stable at temperatures at
which simulations were done. For example, at T = 0.8.
Q = 0.95 which means that 95% of native contacts per-
sist throughout the simulations. Conformations which
have 95% ~f = -~ ~ontacts dif-- “~om the native one
(shown. e.g.. in Fig. 1) by “tails” of 3-4 monomers long
stretching out of the native structure. The aiternative in-
terpretation of this result would be that the chain spends
95% of the time in the native state and 5% of the time in
unfolded conformation. The analysis of simulation data
at T = 0.8 suggests that the chains spend practically all
the time in or near native conformation, so that short-tail
fluctuations account for the fact that Q@ < 1. This can be
also illustrated from the estimate of entropy at T = 0.8.
§ = 0.05 per monomer, which suggests that fluctuations
cover ~ 100 conformations, each only slightly (by 3-4
monomers) different from the native state. This is con-
sistent with the “short-tail stretching” picture.

The same experiments were repeated with several
other sequences and several other randomly chosen tar-
get structures for proteins of different lengths (36-100
monomers). One target conformation even had a quasi-
knot (Abkevich. Grosberg, and Shakhnovich. unpub-
lished results). In all cases the results of simulations are
qualitatively the same and are quantitatively close to the
ones presented in this work.

Our design procedure generated sequences for which
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the target structure is likely to be the global (or at least
accessible stable local) energy minimum separated by a
pronounced energy gap from the set of non-native con-
formations. It is remarkable to note that such thermo-
dynamically oriented design solved at the same time the
kinetic problem making the native structure also kinet-
ically accessible. This may represent a simple and uni-
versal principle of evolutionary selection of one-domain
proteins with stable and kinetically accessible native con-
formation.

[ am grateful to Victor Abkevich, Alexander Gutin,
Martin Karplus. Peter Leopold, Oleg Ptitsyn, and Andrej
Sali for interesting discussions. Graphic program ASGL
by Andrej Sali was used to generate some of the plots.
This work was supported by the Packard Foundation.
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ABSTRACT: We have studied the folding mechanism of lattice model 36-mer proteins. Using a simulated
annealing procedure in sequence space, we have designed sequences to have sufficiently low energy in a
given target conformation, which plays the role of the native structure in our study. The sequence design
algorithm generated sequences for which the native structures is a pronounced global energy minimum.
Then, designed sequences were subjected to lattice Monte Carlo simulations of folding. In each run, starting
from a random coil conformation, the chain reached its native structure, which is indicative that the model
proteins solve the Levinthal paradox. The folding mechanism involved nucleation growth. Formation of
a specific nucleus, which is a particular pattern of contacts, is shown to be a necessary and sufficient
condition for subsequent rapid folding to the native state. The nucleus represents a transition state of
folding to the molten globule conformation. The search for the nucleus is a rate-limiting step of folding
and corresponds to overcoming the major free energy barrier. We also observed a folding pathway that
is the approach to the native state after nucleus formation; this stage takes about 1% of the simulation time.
The nucleus is a spatially localized substructure of the native state having 8 out of 40 native contacts.
However, monomers belonging to the nucleus are scattered along the sequence, so that several nucleus
contacts are jong-range while other are short-range. A folding nucleus was also found in a longer chain
80-mer, where it also constituted 20% of the native structure. The possible mechanism of folding of designed

proteins, as well as the experimental implications of this study is discussed.

Theoretical studies of the thermodynamics and dynamics
of protein folding have been reviewed recently in Karplusand
Shakhnovich (1992). The authors peinted out that different
approaches should be taken to study different parts of
configurational space. The neighborhood of the native state
and the dynamics of thermal fluctuations around this state
can be studied in detail using an all-atom representation of
a protein and applying molecular dynamics to simulate the
system. Thesimplistic point of view would be to extend these
calcutations further to explore more of the configurational
space and to also address the folding problem. However, this
is impossible due to the obvious time limitations of such
calculations. This implies that simplified models should be
used to study folding. These models should be adequate to
the problem, but free of details that are relevant on time and
length scales much smaller than the ones at which interesting
folding events occur. The adequacy of a model for the folding
problem requires that model proteins possess a uniquestructure
that is thermodynamically stable at physiological tempera-
tures. The model should have the Levinthal paradox, i.e., an
astronomically large number of conformations that cannot be
scanned exhaustively in a folding simulation.

The idea of “preaveraging” irrelevant fast degrees of
freedom leads to low-resolution models such as “beads on a
string” (Lifshitz et al., 1978) or closely related lattice models
{Ueda et al., 1978; Shakhnovich & Gutin, 1990a; Covell &
Jernigan, 1990; Lau & Dill, 1989; Skolnick & Kolinski,
1990a,b). In such models, a group of atoms of a protein is
represented by one effective moenomer; one could visualize
this as a C, representation of protein folds. These models
capture impos iant aspects of the protein folding problem: an
astronomically large number of conformations, the polymeric

' E.LS. was supported by the Packard Foundation.
® Abstract published in Advance ACS Abstracts. July 15, 1994,

structure of the chain, and the chain heterogeneity [monomers
{although represented by structureless “beads™) may be of
different types manifested by interresidue interactions of
different strengths and signs]. The identity of a model protein
is determined by the sequence of monomers. How can one
study the folding of such model proteins? The key requirement
is that simulations be unbiased to the native state and converge
repetitively to one conformation independent of initial
conditions—just as real proteins do.

The straightforward and desirable approach to foiding
proteins even within simplified models is to use the natural
amino acid sequences of some moderately sized proteins and
simulate their folding by Monte Carlo or molecutar dynamics
(Wilson & Doniach, 1989; Skolnick & Kolinski, 1990b).
However, the major problem with this approach is that protein
sequences may have been evolutionarily designed to satisfy
folding requirements with a certain “exact” force field.
Simulations necessarily use some approximate force field for
which the native structure may be neither a global nor a
pronounced kinetically accessible local minimum. When the
force field is not completely adequate, the natural sequence
is effectively random. Therefore, in order to explore this
avenue, knowledge of the precise force field is necessary. The
attempts 1o overcome this difficulty were based on the
introduction of certain biases {e.g., making only the native
contacts favorable (Ueda et al., 1978) or forcing the chain to
acquire native secondary structure (Skolnick & Kolinski,
1990b)}. However, model Hamiltonians where such biases
are introduced are somewhat unphysical.

A possible approach to unbiased simulations is to study
short chains for which some subset of conformations can be
enumerated. Then a nonspecific parameter, such as the
average attraction between monomers, can be chosen in such
a way that the global minimum would belong to this
enumerated subset and therefore is known. Folding simula-

0006-2960/94/0433-10026804.50/0 © 1994 American Chemical Society
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tions would reveal whether this conformation of the global
minimum is accessible or not.

This approach was taken by Shakhnovich et al., (1991) to
study 27-mer chains on a simple cubic lattice and later by
Miiler et al. (1992) and Camacho and Thirumalai (1993) for
-dimensional lattices. The folding of model proteins in these
works was studied by lattice Monte Carlosimulations (Verdier,
1973; Hilhorst & Deutch, 1975). The important result
obtained by Shakhnovich et al. (1991) is that folding and
nonfolding sequences exist. The detailed analysis based on
folding simulations for 200 random sequences {Sali et al,
1994) showed that the difference between folding and
nonfolding sequences is that folding sequences had as their
native structure a pronounced global energy minimum (Sali
et al.. 1994). Unfortunately, such an approach cannot be
extended beyond 27-mer chains in three dimensions because
the computational complexity of enumeration grows dramati-
cally as chain length increases. However, it is clear that one
should not necessarily enumerate all conformations; what is
really very important is 1o know the global minimum
conformation and its relation (inenergy scale) to the multitude
of remaining conformations.

This leads to the idea of combining design and folding to
study the folding of longer protein size chains. The idea is
simple: to design a sequence that will deliver sufficiently low
energy to a given structure, so that one can be certain that
this “target” structure represents a pronounced global mini-
mum for this sequence. The specific choice of force field is
not essential at this stage, provided that the design of a sequence
satisfying the conditions mentioned above is possible with this
force ficld. This sequence then can be subjected to a folding
simulation with the same force field that was used at the
design stage. At this point, one can hope that the simutation
will converge tothe target conformation for which the sequence
was designed. The key idea here is to use the same force field
for the folding simulation and for sequence design. Thisallows
us to address the fundamental questions of protein folding
separately from the nractically very important but difficult
question of which force fields are the most appropriate to
study real proteins.

A stepin this direction was made in a recent work by O'Toole
and Panagiotoupoulos {1992) in which symmetric native
structures and a simplified 2-letter, HP (hydrophobic, polar),
representation of protein sequences were used. The design
was based on the requirement to place more hydrophobic
groups inside and hydrophilic groups outside. However, this
attempt was not successful for jonger chains since the designed
sequences did not fold to their target structures. This is likely
due to the deficiency of the 3.dimensional, 2-letter HP model,
which does not have a stable unique conformation of the global
energy minimum (Shakhnovich, 1994).

The idea of combining design and folding was realized
successfully recently when an effective sequence design
algorithm based on a Monte Carlo {(MC) optimization
procedure in sequence space became available (Shakhnovich
& Gutin, 1993a,b). Thismadeit possible to use a more realistic
sequence representation of monomers of 20 types and allowed
lattice model folding of proteins of different lengths (36—100)
(Shakhnovich, 1994). This approach provides a unique
opportunity to study the mechanism by which model proteins
solve their folding problems, which is by no means simpler
than that of real proteins. Indeed, the shortest of the model
proteins we worked with is a 36-mer, which has 4.6835 ~ 102
conformations (Sykes, 1963), toolargea number to be scanned
exhaustively. (For 100-mers, which also fold in our simula-
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tions, this number is 107%!) Since we eventually can trace any
intermediate conformation in the simulation, a very detailed
study of the mechanism of folding can be done for the model
proteins.

The statistical mechanics of proteins with designed se-
quences was discussed by Shakhnovich and Gutin (1993a),
who showed that the sequences undergo a first-order folding
transition to the native state. [For the qualitative explanation
of the nature of first-order transitions in biomolecules, see
Karplus and Shakhnovich (1992).] The phenomenological
model of Bryngelson and Wolynes (1987), where the idea of
design was encapsulated in the “principle of minimal frustra-
tion™, also implied that transition to the native state may have
first-order character. But the mechanism of first-order
transitions is known to involve nucleation and growth (Lifshitz
& Pitaevskii, 1981). Therefore, it is natural to expect the
nucleation growth mechanism of protein folding.

The idea of a nucleation growth mechanism in protein
folding was suggested by Levinthal in a largely unavailable
publication (Levinthal, 1969) and was pursued in the
subsequent work of Tsong et al. (1972) on the basis of kinetic
analysis of experimental data and by Wetlaufer (1973) on the
basis of observation of existing protein structures. The
nucleation mechanism was also discussed in a recent work
(Mault & Unger, 1992). Inthese works, the nucleation growth
mechanism was based on phenomenological models, and
detailed microscopic study to support of reject this hypothesis
was missing. In this study, we suggesta detailed microscopic
analysis on the basis of the lattice model of protein folding.

METHODS

We use a 36-mer chain on a cubic lattice as a basic model
(some results for longer chains will be sketched in the
Discussion). Wetried twodifferent arbitrarily chosen compact
native structures in order to determine which conclusions
depend on the structural features of the native state and which
are independent of it (Figure 1). The next step was to design
a sequence that fits the native structure with a low energy. To
this end, we used a MC optimization algorithm in sequence
space, documented in detail by Shakhnovich and Gutin
{1993a,b).

The energy function that we used throughout this work is
taken in the nearest-neighbor approximation (Miyazawa &
Jernigan, 1985):

1 ) .
Eqtal) = 3 UloapaG= =4 ()
[

where N = 36 is the total number of monomers and A defines
the contact potential between them: A(r} = 1 if Figw <7 <
rugnand A{r) =0 otherwise. Our model protein is positioned
on a simple cubic lattice with bond length of 3.8 A. The
target native conformation is set through the coordinates of
its monomers {rt"¢}. Any two monomers that are 3.8 A
apart (sothat,say, riew = 3.7 A and ryig = 3.9 A) are considered
to be in contact. For the set of potentials U(ai0)), we used
parameters determined by Miyazawa and Jernigan (1985)
(MJ) from the statistical distribution of contacts in native
proteins. The sequence design algorithm was run at low
selective temperature [see Shakhnovich and Gutin (1993a)],
Tw = 0.2, to provide sequences that fit the native structure
with sufficiently low energy.

The MC procedure in sequence space requires the initial
setting of amino acid composition. We tried several choices.
First we designed proteins with an “average” amino acid
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FiGuURE 1 Target conformations used in this study. Sequences are
shown that fit the corresponding conformations with sufficiently low
energy to make sure that these conformations are global energy
minima for the designed sequences. We worked with three sequences
designed for structure a and one sequence designed for structure b.
Most calculations were done with structure a: hawever. for the sake
of control the nucleus was also determuned for structere b. Dashed
lines denote contacts belonging to the nucleus.

composition taken from Tabile 1.1 of Creighton (1992).
Another choice was lo take a composition like that of the
small 36-residue protein pancreatic bird polypeptide (1 ppt).

Since we are using MJ parameters that were abtained from
protein statistics, we have only relative energy and do not
know the absolute energy scale for this set of parameters
(Finkelstein et al., 1993). So we use the energy unit at which
DU = 1, where DU = ({({U?) - (£)?))"/? is the standard
deviation of the energy of different interactions; this is the
measure of their heterogeneity. { ) denotes averaging over
all possible pairwise interactions in the given sequence:

3 A
(P = L*(a,0,) (2)
NN -1)E

The design procedure generated a number of sequences; we
intensively studied the ones shown in Figure L.

The lattice Monte Carlo simulations of the folding of
designed sequences are done with a standard algorithm well
documented in earlier works (Verdier, 1973, Hilhorst &
Deutch, 1975; Salt et al., 1994). The standard move set was

taken to include corner flips and crankshaft motions (Hilhorst
& Deutch, 1975). The Metropolis criterion with the energy
function (eq 1) was used (Metropolis et al., 1953) to accept
or reject moves.

To measure the structural similarity between a current
conformation and the native state, we used the similarity
parameter ) (Shakhnovich & Gutin, 1989a,b, 1990a), which
is the normalized number of native contacts in a conformation:

N

native

Q Nlolal

where N 15 the number of contacts in the compact
conformation; N = 40 for the 36-mer. It follows from this
definition that ¢ = 1 in the native state.

Simulations started from the random coil (see an example
in Figure 2) and ended when the native target structure was
reached (Figure 3). The mean first passage time for reaching
the native state was ~ 10° Monte Carlo steps at 7' = 0.90, at
which all simulations reported in this work were performed.
The native conformation {shown in Figure la,b for cor-
responding sequences) had the lowest energy among all
conformations found in the simulations. To test this, a long
simulation of 10* Monte Carlo steps was run to make sure
that no other structures with energy egual to or lower than
the energy of the native structure were encountered. This
was indeed the case, which made us sufficiently confident
that the native is the global minimum of energy.

SEARCH FOR THE NUCLEUS

Exploring implications of the first-order transition kinetics
of folding we expect that the chain overcomes the main free
energy barrier via a nucleation growth mechanism. There
are two slightly different definitions of nuclei in the kinetics
of the first-order transitions {Lifshitz & Pitaevskii, 1981).
The critical nuciei correspond to transition states (free energy
barriers). There is a probability of roughly 1/2 that the new
phase will grow further after the critical nucleus is formed
and a probability of 1/2 that it will dissolve. One can also
define a postcritical nucleus, i.¢., the minimal sized fragment
of the new phase that inevitably grows further to the new
phase. Certainly ihere is no great difference between the two
ways of defining the nucleus because the postcritical nucleus
simply should have energy a few kg7 lower than the critical
one, the barrier state, in order to make the subsequent growth
unidirectional and irreversible. In our study, we will be
interested in posteritical nuclei, i.e., ones that subsequently
grow into the folded state.

The main difficulty in finding a nucleus comes from the
fact that they are very short-lived before they grow further
into the native or near-native conformation. By no means
should they be confused with intermediates that are long-
lived and detectabie because they are sufficiently deep local
minima. Wedefinea nucleus asa set of contacts that satisfies
the following two conditions: (i) Formation of a nucleus is
a sufficient condition for folding; i.¢., after a set of contacts
that constitutes the nucleus is formed, the subsequent folding
is guaranteed and is very fast (in our search for a nucleus we
required that folding should take place in less than 50 000
MC steps after the nucleus is formed). We are therefore
looking for postcritical nuclei. (ii) Formation of a nucleus is
a necessary condition for folding; i.c., the pattern of contacts
corresponding to the nucleus is always present in “prefolding
conformations™ when the number of native contacts is relatively
small, but subsequent folding is very fast.
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FIGURE 2: Example of a starting random <oil conformation.
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FIGURE 3. Example ol @ 10idiug ..ajectory starting in wne random
coil conformation and ending in the native state. Such types of
trajectories were used throughout this study.

The last condition requires some explanation. [t is trivial
that in the vicinity of the native state where @ = 1. some
contacts will consistently appear just befare the native state
is reached. What we are interested in is the minimal set of
contacts that must be formed before folding proceeds to the
native state. To this end, we should analyze conformations
that are not too close to the native state. As inspection of
Figure 3 suggests, in the largest part of the trajectory the
chain is fluctuating in conformations with @ not exceeding
0.6. This means that we should search for nuclei by analyzing
sets of contacts that are present in conformations belonging
to steep parts of the trajectory (Figure 4) but that are
structurally different from the native state. To this end, we
analyzed all conformations with Q < 0.6 (sec Figure 4) that
are separated by less than 50 000 Monte Carlo steps from the
final step of the simulation when the native state was reached.
The data were collected over 10 runs, each starting from a
random coil and ending in the native conformation. Qur
analysis was aimed at revealing the set of contacts common
to all 10 runs.

We discovered that rapid folding always takes place after
the fermation of a distinct set of eight contacts {shown by
dashed lines in Figure la) for the first target structure and
nine contacts for the second target structure (Figure 1b). We
can see that contacts forming the nucleus are located in the
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FIGURE 4: Partof the folding trajectory from Figure 3 used to search
for the nucleus. The horizontal line illistrates the criterion @ < 0.6
for the choice of conformations relevant to the search for the nucleus.

native structure in the vicinity of each other, not in random
positions. These contacts form a spatially localized substruc-
ture, which serves as a nucleus for folding. The formation of
this set is indeed both necessary and sufficient for fast folding.
It is the necessary condition because this set of contacts is
formed for the first time only several thousand Monte Carlo
steps before the native state is reached and in conformations
for which the number of native contacts is relatively small
{less than 25 out of 40}. It was also a sufficient condition
because after the nucleus had been formed the native state
was always reached in less than 50 000 Monte Carlo steps,
or about 1% of the total Monte Carlo time of folding from a
random conformation.

Another important finding was that the position of the
nucteus was nonspecific to the sequence chosen: for all three
sequences shown in Figure la, the position of the nucleus was
the same. We analyzed folding trajectories for 30 more
sequences designed to have the native structure, as shown in
Figure 1a, and found that in all these trajectories formation
of the nucleus shown in Figure 1a preceded subsequent fast
folding to the native state. Toavoid confusion here, we should
stress that although these sequences are nonhomologous, they
are not independent either: they were all designed to have
the structure shown in Figure la as the global minimum
conformation.
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FIGURE 5: (a) Exampleof a starting conformation containing nucleus
contacts. Other—+~ ** anfarmation was ~ndam. {b) Control:
Starting conformation containing the same number of native-like
contacts as in a, but without nucleus contacts.

EXPLORING THE NUCLEATION MECHANISM

As the first test of the proposed nucleation mechanism, we
studied folding trajectories that started from a conformation
with a preformed nucleus: otherwise this conformation was
completely random and noncompact (see Figure 5a). It
contained about ten native contacts (eight belonging to the
nucleus and two randomly formed). Therefore, @ = 0.25 in
astarting conformation. Whensimulations were started from
conformations with the preformed nucleus, as shown in Figure
5a, the native state was reached quickly (on average in less
than in 30 000 MC steps, and in many runs in less than in
1000 MC steps). The time course of a typical simulation,
which started from a conformation with a preformed nucleus
is shown in Figure 6.

However, the question may arise whether fast folding from
a conformation with a preformed nucleus is due to formation
of the nucleus or whether any eight native contacts in the
starting conformations provide such fast folding. In order to
address this issue, we ran a control experiment starting from
several conformations that contained at least eight native
contacts but that were different from the nucleus ones (sce

f—i—t

0.2+

0 2000 4000 6000 8000 10000
MC-Step
FIGURE 6: Typical folding trajectory for runs that start from a

conformation with a preformed nucleus, as shown in Figure 5a.

an example of such starting conformation in Figure 5b). In
all of these control experiments, the folding trajectories were
practically indistinguishable from the ones that started from
completely randomized conformations (Figure 3). The folding
time distribution was unaffected by the choice of initial
conformation in this case and yielded the same mean first
passage folding time as before of close to 1 million MC steps.
This can be rationakized if we look at any arbitrary trajectory
that starts from a random coil (Figure 3). Infact, 83—10native-
like contacts (i.e., conformations with @ = 0.2-0.25) are
formed at the very beginning of the simulation (in less than
100 000 MC steps). However, this does not lead to rapid
folding: a few million more steps are required to reach the
native structure. Only formation of the specific subset of
contacts, the nucleus. results in rapid folding.

As was mentioned before, formation of the postcritical
nucleus corresponds to the transition over the main free energy
barrier. Thisimpliesthat there must bea significant difference
in folding mechanism when the simulations start from
completely randomized conformations and when they start
from a conformation with a preformed nucleus, as shown in
Figure 5a. In the first case, one should expect that the rate-
limiting stage is overcoming the main barrier or formation of
the nucleus, while in the latter case the motion to the native
state would be downhill in free energy space, representing an
effective pathway or funnel (Leopold et al., 1992).

To test this, we compared the statistical characteristics of
the folding process in both cases. In the case where folding
started from a random conformation, we evaluated at each
trajectory. after each 1000 MC steps, the number of all current
contacts (y) as well as the number of the native contacts (x).
The frequency with which specific pairs (x,y) were found in
10 folding trajectories was evaluated to calculate the prob-
ability P(x,y) of finding a conformation with y contacts, x of
which are the native ones. These resuits are illustrated in
Figure 7a. Both x and y can take values from 0 to 40, and
412 = 1681 dots correspond to 1681 possible pairs of x and
y. The higher P(x,y). the lighter the corresponding dot on
Figure 7.

We should note here that our experiments were aimed at
the estimation of the mean first passage time, and therefore
simulations ended when the native conformation had been
reached. This explains the apparent low population of the
native state in Figure 7. in fact, the native state was rather
stable at that temperature, having (Q) =~ 0.8 where { ) denotes
thermal averaging over long (equilibrium) trajectories.

One can see that conformations with approximately 25 total
and 15 native contacts are most frequent. This is certainly
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Total Number of Contacts

Number of Native Contacts

Figure 7: Density plots illustrating the frequencies with which conformations having a specified number of native contacts (abscissa) and
1otal number of contacts {ordinate) are found in simulations. The brighter the dot with coordinates (x,p), the mare frequently conformations
with x total and y native contacts were found. (a} Simulations starting from completely random conformations; (b} simulations starting from

conformations with a preformed nucleus, as shown in Figure Sa.

a prebarrier minimum of free energy or a folding intermediate.
Conformations with more than 30 native contacts are rare.
This means that the chain spends most of its folding time
fluctuating around the intermediate state until it reaches a
conformation(s) corresponding to the free energy barrier, aflter
which folding is fast. The computer experiments described
earlier show that this is the set of conformations containing
the nucleus.

The same calculations were performed when folding started
from conformations that contained a preformed nucleus, as
shown in Figure Sa. Theonivdifference was that the numbers
of native and all contacts, x and v, were evaluated at each
tenth Monte Carlo step because the folding time was
substantially smaller. The results are illustrated in Figure
7b. There is a clear difference between the plots shown in
Figure 7a,b. Inthe case of folding from a preformed nucieus,
the number of native contacts is very strongly correlated with
the number of all contacts, as the light area on Figure 7b is
stretched along the main diagonal x = y. [t is also important
to note that there is no maximum of P(x,y) on Figure 7b, and
we can see that P(x,y) is approximately constant in the area
close to the diagonal x = y and vanishes everywhere else,
which implies that in this case the chain is not wandering
randomly through conformational space but folds quickly,
increasing the number of native contacts at an approximately
constant rate {a clear indication of the propagation mecha-
nism). Of course the polypeptide chain still has a tremendous
number of conformations, but the constant value of P(x.y)
suggests that a directed assembly takes place after the nucleus
is formed. Thus, the addition of any native contact decreases
free energy, and this driving force directs the process. No
significant free energy barriers are found in this part of the
configurational space.

We studied the role of the nucleus in the initiation of folding
in our model. However, for conformations with a nucleus,
proximity to the transition state may also play an important
role in unfolding, Tothis end, we studied longer trajectories,
during which several folding-unfolding events occurred
(Figure 8). Inspection of these trajectories reveals two possible

0.6

MC-Step

FiGUre 8: Part of a longer trajectory containing local unfolding
events shown by arrows and global unfolding shown by the bracket.
Local unfolding is as deep as the global one; however, locally unfolded
conformations usually refold in less than 20 000 MC steps.

scenarios of transient unfolding. The first type of behavior
corresponds to significant unfolding {up to @ = 0.2), but after
1000020000 MC steps the chain refolded back. Such
unfolded conformations after which the chain refolds quickly
will be called locally unfoided. However, sometimes the same
degree of unfolding to @ ~ 0.2 led to more dramatic
consequences: a few million MC steps were required for the
chain to refold (see Figure 8). Conformations that required
such a long time to refold will be called globally unfoided.

The question then is what is the difference between globally
and locally unfolded conformations? Westudied 10different
long {up to 100 million MC steps) folding trajectories (part
of one is shown in Figure 8) and examined all locally unfoided
conformations with less than 16 native contacts. We found
that all of these conformations contained the intact nucleus,
while globally unfolded conformations missed contacts from
the nucleus. Animplication of this observationisthat although
fluctuations in the folded state are significant, some contacts
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FiGure 9: (a} Dependence of the log of MFPT of folding on the energy of the native state for a number of sequences having different energy
of nucleus contacts and the same total energy of the other contacts. (b) Same dependence but for the set of sequences having the same energy

of nucleus but different tolal energy of remaining contacts.

are more stable than others—a clear indication of the
heterogeneity of the folded conformation in our model, which
we relate (o the molten globule state in proteins (see the
Discussion section). This result shows also that there is no
other nucleation site in our chains. [f there were, we would
see either of the nucleation sites preserved in locally unfolded
conformations, but we definitely see (repetitively} only one
subset of contacts common to all locally unfolded conforma-
tions. We note, however, that this conclusion is drawn for
36-mer chains, and it is certainly possible that longer chains
may have muitiple nucleation sites. A very interesting
question, then, is at what size of the chain (if any) the nucleation
regime changes from one nucleus to multiple nuclei.

The next issue we addressed was the dependence of the
folding time on the interaction energy of the contacts
constituting the nucleation site. To this end, using the same
design procedure (Shakhnovich & Gutin, 1993a,b), we selected
a set of sequences having a different total energy for the 8
nucleus contacts but a similar total energy for the remaining
32 native contacts. Theobjective was tostudy how the stability
of the nucleus affects the rate of folding. The resultis presented
in Figure 9a, where dependence of the togarithm of the folding
time on the total energy of the native conformation, normalized
by kT. is shown. We would like to emphasize that although
we plot the mean folding time vs the rotal energy of the native
conformation, the sequences corresponding to the different
data points in Figure 9a differ by the energy of nucleus contacts
only, having similar energy for the remaining contacts in the
native conformation. The dependence presented in Figure 9a
is close to linear with a slepe of 0.8. This should be contrasted
with the results of a control experiment in which sequences
were chosen to have similar energy for nucleus contacts and
differ in energy for the remaining contacts (Figure 9b). In
this case, the dependence of log(time) on the energy of the
structure is also close to linear, but the slope is half as great
{0.4). This indicates that stabilization of the nucleus is more

important for rapid folding than the stabilization of other
contacts, although the latter may indirectly stabilize the
nucleus, decreasing the entropic cost of its formation. This
gives rise to the acceleration of folding in that case.

DISCUSSION

In this section, we will discuss two aspects of the present
study. First, we discuss the lattice model results and their
implications. In the second part of the Discussion, we will
discuss the applicability of simplified lattice models to the
study of the loiding of real proteins: features that lattice models
calch and features that they miss.

In this paper, we have provided a body of evidence that the
folding mechanism of lattice proteins involves the formation
of a specific nucleus as a transition state, with its subsequent
growth. This is not at all unexpected because nucleation
growth is a standard mechanism of cooperative (first-order)
transitions; for instance, the vapor-liquid transition is well
known to involve a nucleation growth stage (Lifshitz &
Pitaevskit, 1981). There is, however, an essential difference
between the nucleation growth mechanism in simple liquids
and that in model proteins. In liquids a nucleus is nonspecific
and is fully characterized by its size. In model proteins the
nucleus is specific, which means that a particular set of
contacts, constituting a transition state, should be formed to
cause subsequent fast folding to the native state,

The folding process in each molecule involves two stages,
which we can characterize as stochastic and deterministic.
The stochastic stage is rate-limiting (the stage at which the
nucleus is formed via random search). Of course this does
not imply that the protein should “wait” for a multiparticle
collision to form the nucleus. Since the nucleus is a
substructure of the native state, its contacts are attractive and
therefore the partly formed nucleus does not disappear. The
possibility of a stochastic search to form nuclei was pointed
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out by Wetlaufer (1973). Thestochastic search for the nucleus
takes place in the intermediate that is formed at the burst
stage of the folding process (in less than 30 000 MC steps).
This burst intermeciate can be seen as a light area on Figure
7a as a partly compact state (having 20 out of 40 contacts,
10-12 of which are the native ones). This intermediate
represents a multitude of rapidly interconverting conforma-
tions, corresponding to a prebarrier free energy minimum.
Formation of a burst semicompact intermediate precedes the
formation of a nucleus, which is formed later when native
contacts in the intermediate include, for the first time, the
nucleus ones.

The subsequent folding, after the nucleus is formed, is fast
and practically unidirectional. Thisis not surprising because
formation of a nucleus is equivalent to overcoming the main
freeenergy barrier. We observe a folding pathway thatis the
postnucleus assembly of the protein associated with the directed
motion downhillin free energy. Indeed,as inspection of Figure
7b suggests, the number of native contacts grows stcadily
with the increase of the total number of contacts, i.e., roughly
speaking, in this regime every added contact is a native one.
It can also be seen that the chain does not encounter, at this
temperature. significant barriers as it progresses through the
pathway; the motion in configurational space is rather
diffusion-like. The evidence for this is the approximate
constant density in the light region of the diagram of Figure
7b.

It was suggested in previous works, implicitly (Wetlaufer,
1973) or explicitly (Rooman et al,, 1992a,b), that at least a
considerabie part of the nucleus should be formed by contacts
between residues that are close to each other in sequences
{local contacts). Our analysis is consistent with these
assertions. Inspection of Figure ! shows that the nucleus is
formed by both long-range as well as short-range contacts,
with some predominance of the long-range contacts. However,
the relation between the numbers of short-range and long-
range contacts in the nucleus may depend on the potential
chosen since the local component of the notential may increase
the number of local contacts in the nucleus. This question
requires further study. We believe, however, that some long-
range contacts must always be present in the nucleus since
such contacts are most effective in decreasing entropy of the
transition state and thus creating an “entrance” to the pathway.

The results reported in the present paper were obtained for
the 36-mer model proteins. A very important question is
whether these results are valid for longer sequences. Qur
approach allows for folding longer sequences (at least up to
100-mers) (Shakhnovich, 1994a,b). To test the conclusions
of a.b this work, we studied a nucleation mechanism of folding
for a 80-mer chain. Using the same procedures as described

in this work earlier. we found the nucleus for the 80-mer to

have 22 out of 105 contacts. This included 16 monomers.
Although we observed a single nucleus for the 80-mer chains,
we cannot exclude a multiple-nuclei mechanism for longer
chains. These multiple nuclei could be associated with folding
domains [observed recently in hen lysozyme (Mirankeretal.,
1991)], which may or may not develop into the structural
domains of native proteins.

The folding of long chains (36—100 residues) was possible
only because these sequences were designed to have the native
state as a pronounced energy minimum, and a special design
procedure was necessary to generatc such sequences (Sha-
khnovich & Guuin, 1993a.b). Long random sequences were
not able to fold (Shakhnovich, 19942). A complementary
approach to study folding was taken in the recent paper by
Saliet al. (1994b), where short random sequences were taken
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to study the “minimal requirements” for “one-shot™ selection
of folding sequences from the pool of random sequences.
Amnalysis of the folding of short quasirandom folding sequences
alsorevealed an activation mechanism, but it differs from the
one found in the present study. The transition state for short
random sequences turned out to contain 80-95% of native
contacts (compare with the nucleus that has § particular
contacts out of 40). This difference may be due to a number
of reasons. First of all, a random interaction energy model
was studied by Sali et al. (1994b), while here we studied a
more realistic sequence model. This difference may be
important since in the former model energies of contacts are
totally uncorrelated, while in the latter energies of different
contacts are correlated. Indeed, the identity of a protein is
characterized in the letter model by N “letters™ (primary
structure), whichdetermines ~ V2 interactions between every
pair of monomers. Thisimplies that these interaction energies
cannot be independent. In the random interaction energy
model, the identity of a protein is defined through setting all
~ N?interactions between any pair of contacts independently.
Correlations may be important for nucleus formation, which
is a contiguous subset of native, stable contacts. A second
reason, which is more likely to explain the difference between
the results of two models, is that present sequences were
designed to enable the folding of long chains. It is likely that
design in the sequence model generated a contiguous subset
of strong contacts, which turned out to be a nucleus. It was
pointed out by Sali et al. (1994b) that the model used there
is likely to describe the folding of prebiological, short, and
poorly optimized sequences. As longer proteins evolved, their
folding may have required sequence design that developed a
more effective nucleation growth mechanism. Indeed, the
characteristic folding “time” of random 27-mers in Sali et al.
(1994b) was 20-50 million steps, while in the present study
36-mers fold in 1-5 million steps and designed 80100 mers
fold in 5-10 million MC steps (Shakhnovich, 1994a,b).

The results reported in this paper were obtained using Monte
Carlo simulation in the lattice model. Two questions are in
order now: how representative is Monte Carlo for the kinetics
of folding, and what is the relationship between lattice models
and real proteins”

A comprehensive study of the role of lattice and move sets
in the apparent dynamics of a polymer was performed by
Skolnick and Kolinski {1990a, 199t), who showed that there
is nosignificant dependence of observed dynamics on the choice
of lattice (diamond or 210) or move set. Moreover, Rey and
Skolnick (1991) compared the simulation results obtained by
Monte Carlo on the simplest (diamond) lattice and by off-
lattice Brownian dynamics. Their conclusion is that the main
dynamic features observed are independent of the simulation
technique chosen. [t wasshown also by Skolnick and Kolinski
{1990) that the choice of local moves only, being most natural,
provides the most realistic time scale picture, as judged in
comparison with the master equation calculation.

Thus, in our view, the Monte Carlo approach (taking into
account its computational effectiveness) may be plausible for
depicting key features of kinetic processes associated with
protein folding. However, it is unlikely that MC simulations
can provide a description of al! of the microscopic details of
the process. Rather, general features, which are observed
over thousands of steps, are of interest. This is the case in our
study in which we focus on nucleus formation that takes place
in 108 sieps.

_ The most important question concerning the approach taken
in this study concerns the relationship between lattice model
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proteins and real proteins. There is one obvious feature of
real proteins that our model misses. This is the presence of
side chains with their degrees of freedom and tight packing
in the native state. Therefore, our model is aimed toward
describing stages (if any) of the protein folding process that
do not include the tight packing of side chains. It is widely
believed now that packing of side chains occurs at the transition
from molten globule (MG) to native {N) conformation.
Experimental evidence has been accumulating ( Williams et
al,, 1991; Hughson et al., 1990; Peng & Kim, 1994) that the
molten globule, when at equilibrium, retains a significant part
of the native-like backbone fold. in accord with theoretical
predictions (Shakhnovich & Finkelstein, 1982, 1989; Finkel-
stein & Shakhnovich, 1989}, It was suggested (Ptitsyn, 1973,
1987) that a “native-like™ molten globule may be a universal
intermediate an the protein folding pathway. Subsequent
experimental findings (Ptitsyn et al., 1990; Matouschek et
al.. 1990, 1992; Jennings & Wright, 1993) strongly buttressed
this point, providing evidence {especially in Jennins and Wright
(1993)] that the transient long-lived intermediate is structur-
ally close to the equilibrium “native-like™ molten globule.

The folded state in cur model should be related (o the “native-
like™ molten globule. It is interesting to note that a chain in
this state fluctuates around the native fold, but these
fluctuations are inhomogeneous (nucleus contacts are fluc-
tuating less than other contacts) (see Figure 8). This is in
accord with experimental information about the molten globule
(Hughson et al., 1990: Baum et al., 1989).

The nucteus transition state that we observe in this work
is the transition state between a coil, or a structureless compact
intermediate without unique structure (Elove et al., 1992;
Radford et al., 1992), and the molten globule with elements
of native-like fold. By no means should it be confused with
the transition state between the native state {IN) and the molten
globule {MG), which is usually associated with the transition
state for folding because the MG-N transition is the rate-
limiting step for the whole process. This transition N-MG
state is known, both from theory and experiment (Segawa &
Sugihara, 1984: Shakhnovich & Finkelstein, 1989; Bycroft,
1990), to be close to the native state, differing from it by some
small expansion ([so small that protein core is mainly
inaccessible to the solvent: see Segawa and Sugikhara (1984)
and Matouschek et al. (1992)].

A significant simpiification of the model is that it did not
inciude explicitly secondary structure segments, which are
stabilized by H-bonds and are able to move as a whole. This
question is related to the secondary structure framework and
related diffusion—collision hypotheses of folding (Kim &
Baldwin, 1982; Karplus & Weaver, 1976). The physical
mechanism assumed in these hypotheses is that native-like
secondary structure is formed at early stages so that subsequent
folding includes movements of segments as a whole, without
their restructuring due to long-range interactions. This may
give a kinetic advantage because the degrees of freedom
associated with secondary structure become frozen, and the
remaining search is feasible because it includes far fewer
conformations. Therefore, in order to facilitate kinetics,
secondary structure elements, after having been formed at
the ultrafast stage of folding, should be so stable that their
characteristic folding-unfolding interconversion time in the
absence of long-range interactions is longer than the time of
formation of long-range contacts [in the millisecond time range
(Radfordetal 1992; Bycroftetal., 1990; Jennings & Wright,
1893)]. The only way to increase the interconversion time
from basic nanoseconds to milliseconds, which is consistent
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with the second law, is to increase the stability of the helix.
This requires ~ 10 kcal /m/helix of stabilization, which implies
that the Boltzmann probability of such a stable isolated helix
will be very close to 1. Recent studies of isolated fragments
of myoglobin corresponding to helical segments in its native
secondary structure did not lend evidence supporting the
suggestion that isolated helixes are stable in the absence of
long-range interactions (Walthoetal., 1993; Shinetal., 1993).
Certainly, some fluctuating elements of native-like and
nonnative secondary structure may form guickly. However,
it is unclear (at least to us) how the formation of marginally
stable fluctuating a-helixes and 3-strands, with their degrees
of freedom in equilibrium with all other degrees of freedom,
can provide any kineric advantage leading to the resolution
of Levinthal's paradox.

Of course our calculations cannot rule out the framework-
type mechanism because movements of helixes or 8-strands
as a whole are not included in the move set. However, what
they show is that this mechanism, even if valid, is not the only,
or necessary, way to solve the Levinthal paradox. Qur
calculations give an example that the protein folding problem,
at a model level, can be solved without a framework-type
mechanism.

The sequences we worked with in this model were designed
to have the native conformation as a pronounced global energy
minimum. Thequestion is how canthis optimization berelated
toreal proteins. Firstof all, we note that a pronounced energy
gap between the native state and the set of nonnative
conformations is a necessary thermodynamic condition of the
uniqueness of the native structure; this is independent of the
model or the potential function chosen. The native structure
must be thermodynamically stable at physiological tempera-
ture. This can be guaranteed only if the gap between the
native structure and noanative conformations is sufficiently
large, i.e., many & T (Shakhnovich & Gutin, 1990). In other
words, a large energy gap protects a2 unique structure from
destruction by thermal fluctuations. However, our results go
further and suggest that a pronounced energy gap is also a
sufficient condition for sequences to fold rapidly to the native
conformation.

These considerations do not contradict the fact that proteins
are not highly stable. Experimental results (e.g., Privalov,
1979) suggest that the temperature of denaturation for most
proteins is not too high, and therefore the difference in free
energy between the native conformation and denatured states
is moderate: 10-12 kcal/mol for a 100-residue protein at
physiological temperature (Privalov, 1992). In order to give
a correct interpretation of the thermodynamic data on protein
stability, one should note that what is known to be small is
thedifferencein free energy between the native and denatured
states; this includes the entropic contribution. Energy dif-
ferences between the native and denatured states are much
more pronounced, as measured by the latent heat of dena-
turational transition and its cooperativity. The entropic factor
is also essential for lattice proteins, making the unfolding
temperatures not too high (=1.1 in our energy units) and the
lattice proteins marginally stable, like real ones.

CONCLUSION: IMPLICATIONS FOR EXPERIMENT

In this study, we have presented a minimal theoretical model
of protein folding. The modelis free of internal inconsistencies
and unphysical assumptions. Indeed, the simulations are not
artificially biased toward the native state: all the chain “knows”
when the simulation starts from a random coil conformation
is the amino acid sequence. The Hamiltonian is physical: the
interaction of, say, glycine with another glycine depends only

o
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on the spatial distance between the residues and does not
depend on their positions in the chain or in the native
conformation. Model proteins resolve the Levinthal paradox,
exhibiting fast folding to the unique global minimum con-
formation without scanning the astronomically large number
of possible conformations. We presented the possible mecha-
nism.

Like any theoretical work, this one deals with a simplified
representation of proteins, and the adequacy of the model for
the system it studies is at issue. The only nontautological way
to estimate the adequacy of a model is to formulate its
predictions and compare them with experiment.

It should be nated here that the model studied in this paper
represents a generic protein and is aimed toward the study of
universal features of protein folding unrelated to the specific
structural features of a protein molecule.

The theoretical analysis presented in this work has several
implications directly related to experiment, as follows.

{1) The cooperative character of the coil-molten globule
transition in natural (i.e., evolutionarily optimized) protein
sequences contrasted with the non-cooperative character and
absence of unique structure in the randomized sequence. This
explains the difference in experimental resuits for proteins
[bovine carbonic anhydrase and staphylococcal g-lactamase
(Uversky et al., 1992) and staphylococcal nuclease (Gittis et
al., 1993)], where “all-or-none” transitions were reported, and
for the quasirandom sequence of the F2 fragment of tryptophan
synthase (Chafotte et al., 1991), where the transition is non-
cooperative.

(2) Theory demonstrated the heterogeneity of the folded
state (in the context of our model, molten globule), asserting
that some contacts (in-nucleus) are less subject to fluctuations
than other contacts {off-nucleus) (see Figure 8 and the
discussion there). Corresponding, the nucleus contact inter-
conversion rate is much slower, as is manifested in higher HD
protection factors. Such heterogeneity in protection factors
in the molten globule was indeed observed in a number of
proteins (Hughson et al., 1990; Jeng et al., 1990). The
explanation is simple: conformations with the nucleus cor-
respond to the top of the barrier, the transition state.
Therefore. fluctuations that go up to the barrier are most rare
as they require higher energy. This makes the nucleus the
most protected region in a molten globule.

(3)Qur calculations predicta direct correspondence between
the residues that are most protected from HD exchange in the
equilibrium molten globule and the ones involved in folding
the nucleus, i.¢., the first stable set of contacts to be formed
in the course of the folding process. This assertionisinaccord
with the experimenta! results for myoglobin {Jennings &
Wright, 1993) and cytochrome € (Roder et al., 1988). The
observation about the implications of mutations in nuclei on
the folding rate makes this correspondence directly experi-
mentally verifiable.

OQur design-folding approach provided a possible conceptual
framework to solve the protein folding problem. Within this
approach, one can also address questions pertinent to the
folding pathway of a specific protein, e.g., how 1o determine
the folding nucleus in a given protein. To this end, it is
necessary to take the native structure of this proteinas a target
conforamtion, design a sequence Lo fit the target conformation,
and fold this sequence. This requires the incorporation of
side chains into the lattice modet, and the recent work by
Skolnick and Kolinsky (1993) demonstrated the feasibility of
suchanendeavor. Weare currently working along these lines.
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