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A maodel for food uptake, energy conversion and allocation is proposed for individuals that propagate
by fission. When simple assumptions for the environment and interactions between substrate, prey and
predator in a chemostat are made, the conservation laws for energy and biomass determine a structured
population model. This model is compared with lumped models from the literature, such as the “Double
Monod model”. Tndividual-based models consistent with these lumped models, are derived and
compared. Expressions for the parameters of the lumped model are found as funclions of parameters
in the model for the individuals making up the population. To reduce the number of parameters
body-size scaling relations are used. The existence and stability of equilibria under chemostat conditions
are studied. The dynamics of the substrate. bacterial prey and protozoan predator depend substantially

on the underlying model for the individuals.

1. Introduction

In this paper the consequences of a simple model for
the input -output behaviour of individuals interacting
in prey-predator systems under chemostat conditions
are studied. Fresh medium, in which all components
for growth of the bacterial prey except carbohydrates
are present in abundance, 1s pumped through the
chemostat with complete mixing. The bacteria are
preyed upon by pretozoa. There is no interaction
between conspecific individuals other than that they
feed on the same resource. In addition to predation
no losses of individuals other than the wash-out are
considered. We focus on individuals which propagate
through fission into two equal parts, as is appropriate,
for example, for most bacleria, some unicellular
eukaryotes, planarians and some oligochaetes. The
model for the individuals is the “dynamic energy
budget” (DEB) model, that has been proposed
in Kooijman (1993) and successfully applicd to mi-
crabes in Kooijman er al. (1991). 1t is described in
Section 2.

The primary aim is to test ils consequences
against current models such as the “Double Monod™
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{DM) model for existence and stability of microbial
prey- predator systems under chemostat conditions.
The usage of the DM modet in chemostal situations
i1 described in Nisbet ef af. (1983), Sambanis
et al. (1987) and Tsangaropoulou & Paviou (1990).
Individual-based models, consistent with different
variants of the DM model, are derived in Section 3.
The used theory of structural population dynamics is
developed in Metz & Diekmann (1986). Models for
such populations are also called segregated models:
see Fredrickson (1991). Parameters of the obtained
lumped population models, such as the growth and
yield, are expressed as functions of parameters of the
individuals making up the population. One of the
basic assumplions made in the DM model is that the
yicld is constant. An individual based model makes it
possible to derive this assumption from assumptions
with respect to the behaviour of the individuals
making up the population.

We study a food chain of bacteria and ciliates in the
chemostat described in Cunningham & Nisbet (1983}
and Nisbet ¢t al. (1983). Some assumptions—fixed
length at division, division into two equal daugh-
ters --made for the individual level are more realistic
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76 B. W. KOOI AND S. A. L. M. KOOIJMAN

for the bacteria than for the ciliates. The oral appar-
atus of ciliates is non-functional during replication,
and therefore large individuals tose the ahility to feed
some time hefore they divide, and the newborn indi-
viduals do not regain this ability until some time after
they have becn formed by fission (sce Fredrickson,
1991). However, our aim is to model also longer food
chains in the reactor (see Kooi & Kooijman, 1993).
Then, in order to keep the number of parameters
limited, one cannot handle mathematical models that
are too species-specific.

The region of stability of the food chain in the
chemostat Tor the two control parameters - the di-
lution rate and the substrate density of the inflowing
medium -depends largely on the underlying math-
ematical modcel lor the growth of the individuals, We
obtain the result reported in Nisbet er af. (1983) that
the introduction of maintenance has a stabilizing
effect especialty for low difution rates. A new result is
that when energy reserves are modelied, wash-out
occurs at much lower diiution rates and that the
region of stabifity is smaller.

To reduce complexity, we assume that surface area
is proportional to the volume of the individuals. This
is only realistic for filaments, therefore this model is
catled the DEB( (see Section 4). It is shown that this
assumption has hittle effect on the dynamic behaviour
of chemoslats.

The DEBf model is equivalent to a straightforward
extension of the Monod modei with maintenance
{proposed by Pirt, 1965) and energy reserves (pro-
posed by Droop, 1973).

This led us to arnly the DEBF model to fit time-
course data published by Dent er wl. (1976). They
were unable to obtain good quantitative agreement
between theory (Monod model) and experimental
results. In the companion paper (Koor & Koaoijman,
1994) we show that the DEBf model predicts the data
very well and that both mantenance and energy
reserves are necessary to explain a number of
phenomena ohserved and which could not be under-
stood using the Monod model

2. Formulation of the Problem

In this section we start with the DEB model for
both prey and predator individuals. Based on this
model. the models for the populations and for the
whole chemostat system are derived.

THE DER MUOBEL FOR INDIVIDUALS

In the DEB model encrgy reserve is a second state
variable in addition to size. Such a buffer imposes
some kind of inertia with respect to the response to

changing food conditions. It is motivated by the
observation that organisms undergoing a sharp
change in food density adapt only gradually to a new
growth rate. Metabolic maintenance costs at the
individual level are also introduced. The model is
mechanistic and in various papers it is shown to be a
useful model for the description of growth of individ-
uals from all over the animal kingdom, including egg
development and mammalian embryonic growth (see
Kooyman, 1986a, b, ¢). For a description of the
model see Kooijman (1993).

The individual prowth model is described by a
system of two ordinary differential equations for the
volumetric length / being the cubic root of the volume
of the individual and the energy reserves density e,
both as lunctions of the time 1

d fo—e X

S e =it T th f B =——'""T !

dr A I3 ! S ki i+ x M
d e, — 1] !
ey e bl [, =, (2)
dr 3 e, +g, ' mg;

with 7= 1,2 for the bacterial prey and protozoan
predator, respectively. The first equation medels that
there ts a force driving 10 homeostasis. The second
that energy from the reserves are used for growth and
maintenance. For the biological meaning of the par-
ameters refer to Kooijman (1993) and Table |. The
quantity x, | is the density of the food. The functional
response f; |, is Holling type II.

We assume that the individual propagates by
binary fission into two equal parts. The length at
division is denoted by /, . So, the introduction of two
equal new individuals occurs at length /, =2 "%,
with the same energy density as the mother individual.
The length /, is the maximum length an individual
might reach when it would not divide. When ¢, < il
eqn (2) shows that the individual shrinks, but we
assume in this study that /, /l, <e < 1.

THE MODEL FOR THE PREY AND PREDATOR SYSTEM

Let n(r,e,, ) denote the density of individuals
having energy density ¢, and length /, at time 1, so that

on Pl
.[ J ni(t, e, 1)df de;
y b

1s the number of individuals per volume of reactor
with an energy density between e; = e, and e, = ¢, and
a length between /. =/, and /, =/, at time t. Suppose
that we take individuals out of the population at a
constant probability rate p,,, , per individual per unit
of time. This term takes predation as well as dilution
into account,
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TaBLE |

Parameters and state rvariables: { = time,

|, = cubic root of the volime of the individual,
I, = cubic root of the volume of the reactor,

C = CcHergy

Dimension Dimension

Parameter DEB model DEBM model Interpretiation
t t 1 Time
I3 1, 1, [ength of individual
e, . - Ratio of energy reserves and ils maxinium value
ko0 [N [ Saturation canstant
fo o [ 1! Maximum food uptake rate
[ Lot 1! Encrgy conductance in DEB and DEBI model
x assimilation rate
r's - Energy investment ratio, x costs for growth
m, t! ! Maintenance rate coefficient
{ |, 1, [ength at division
b, =2""% 1 1, Length after division
X, oyt A Biovolume
£ - e Functional response
Proan ! 1! Eftux of individuals
", oy, e ! 1P ter! Density of individuals
X, [ 1.1, Substrate concentration in reservoir
D (. t! Dilution rate
Xy [ T ot Substrate deasily
I ! (. Overall populdiion growth rate
¥ — Yield

Under the regime described above, we have:

g l,
31 n(t, e, )
('-l
—a—e'(n(r e, ,) )

_pl.r+lnl(r|en’;)v (3)

where (d/dr)e, and (d/dt)f are given in eqn (1) and
(2), respectively. The boundary condition for the
hyperbohc partial differential eqn (3) reads

d
a nl(r’ g, la)

di, dl,
n'(t'e"l"')dr’ = 2n,(1, "*""')Ei}",_u' (4)
Substitution of eqn (2} yields
4ol
nit e b)) =25, L, )-A__ufi‘-’-f'- (5)

m,

Hence, the fission is tied to the growth process. This
formulation deviates from the ones used, for example,
by Sinko & Streifer (1967} and Metz & Dickman
(1986) who treat both processes as independent ones.
Note that we do not need to prescribe conditions at
the other two boundaries of the region in the ¢, ! plane
because the boundaries are moving boundaries. The
positions of these boundaries are part of the solution
of the governing equations.

THE CHEMOSTAT SYSTEM

The individuals of the prey and the predator in the
chemostat follow the DEB model with respect to their

~
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change in energy density and length, but the par-
ameters gencrally differ. We sandwich each popu-
lation between an influx of food and an efflux of
individuals.

Suppose that the substrate density in the inflowing
medium is constant at value x,. Then the supply rate
of substrate flowing into the chemostat s Dx, where
the rate of dilution D is the quotient of the rate of flow
of fresh medium and the volume of the reactor. We
assume complete mixing, so that the environment is
homogeneous.

In what follows some statistics will be of particular
interest: the total number of individuals

iy t
N} ,(r)_j J' nit, e, l)dedl, (6)
L=, Iy

¢

the mean surface area

t 1
5!,1:.,",(1:)“"[. J~ In(r, e, L)de dl, (D
DR

and the mean biovolume

1 i
&il =, i’,(r)'j J D, e.l)dedl. (8)
L=ty ety b,

Using these notions the coupling between the sub-
strate and the prey is given by
(1)L, 9

(py, — D)x, = m(, ,fur‘
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where p,, is the rate the substrate leaves the reactor
because of consumption hy bacteria and wash-out,

and

L0

fa) :A’]‘+ \..“

(10)
For the inter-level coupling we assume that the prey
uptake rate of the predator (7 = 2) equals the biovol-
ume drain rate of the prey (i = 1) and we take into
account the losses due to medium throughput, Thus
there is only a coupling via biovolumes conversion
and not via the energy storages. For the coupling
between the prey and the predator we have

(pry— D) ((EN =1, fia 4V (08D, (1

where p,, is the rate the bacteria leave the reactor
because of consumption by citiates and wash-out, and

[, = NCITIN (12
RECPE S NTLSCT )
Because we do not consider predation of the top
predator we have

=1, (13)

that is, the ciliate leave the reactor only because of
wash-out. Notice that the functional response, the
saturation constant and the predation have double
sub-indexes to emphasize  that  these  quantities
depend on both substrate-prey relations (0, 1) and
prey predator relations (1. 2), respectively. Finally
the equation of continuily for the substrate reads

d D
7 Yy = LAY, -
dr t

oy Yo (14)

In summary the mathematical model consists of a
system of one ordinary differential equation (ODF)
(14) and a sct of two first-order hyperbolic partial
differential equations (PIDE} (3) with boundary con-
ditions (5), coupled by conditions {9) and (11}. To-
gether with the initial condition for the population
densities m,(0, e, 4. i = 1.2, which we assume to be
sufficiently smooth, and the substrate density x,(0),
this set of cquations fully determines the dynamics of
the substrate and the populations. The input par-
ameters for the chemostat are v g 0 A, L, .M
and {, . fori = 1.2 The concentration of the substrate
x, in the inflowing medium and the dilution rate [ are

assumed to be under experimental control.

FROM FULI STRUCTURF TO NO STRUCTURT

One can wonder to what extent we have to keep
track of the dynamic changes in the population when
the interest is onlyv in its global behaviour. First, we
try to apply a mcthod proposed by MacDonald

.. M. KOOI!MAN

(1978) and by Murphy (1983} called the “linear chain
trick™ (seec also Meiz & Diekmann, 1989; Cushing.
1989). In that approach the equations for one popu-
lation derived in the previous section become equival-
ent to a set of QODEs. With the statistics defined in
eqns (6), (7) and (8) we obtain by integrating by parts:

d N
ot nir.e,. )—-—

d
— &0 —2JJlfl(rc 1) d{ d/,
dr’

P VS = =2

d,
< | u{r.e ) —| de (16)
- dr ',
d A =13 I’ /
dr , . l”r(r‘ti' l)

_pi.l&F"'lgt." (I7)

i()niqul't.r (15)

d/
x ar’ de, df,

These equations show that in our case, because of the
form of the boundary condition (5), we do not cnd up
with a set of ODESs for the substrale concentration x,
and the statistics for the distribution of the popu-
lation n (1, e,, 1), i =1, 2. Therefore we try to simplily
the system in another way by stripping the population
from its internal structure. We do this in two steps.
We assume that the energy density for all individ-
uals will approach the value ¢ = f, also when [is still
a function of time t. Then, egn {2) reduces 1o
fj ' r f.___’_'__._{./""' ) (18)
dr .‘ Lo t+e
Substitution of this equation in eqn (17) where », 15 a
function of time t and size [, only, yields

d tfﬁw(l/“.it

dt £ e Sl
g .
- L ELL (1)
/. :;+H; o l)

Now we define the overall population growth rate
i, with

e (20)
,,+g42"! JoLte

This result can be used to eliminate the &7 | term in
the interlevel conditions (9) and (11) and we obtain

(f: ].r+gn)“r |.l+gl"1i
Moo ):Im, . - e,
(N 21
K
AL E0
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Now we are able 1o define the variable v, used for the
food density in the expression for the functional
response f, ,, in eqn (1) precisely being the biovol-
umes x, = .4" &/} for i = 1,2 Then we end up with a
set of three coupled differential equations for the
substrate density x, and the total biovolume of the
prey x, and predator x,. To compare these ex-
pressions with those mentioned in the literature we
define the conversion coelficient y, |, concerning con-
version of biomass x, | into biomass x, as

Heo X,
(pl— [ D)xrf I‘
where g, |, is given by eqn (20) and p, |, by (21). The

use of these equations gives the following expression
for the yield y, |,

Y- = (22}

L
P - . 23
y 3 Im, _,,((3r+.ﬁ I.r)“l—l,l+g1’”r) ( )

Equations (14) and (19) become, for i =0,

d —_ Ho
dr*u—D(x:_Xu)‘_Exn (24)
for i =1
; Hy
a; % = (s = D)y —VZ X, (25)
and for j =2
d
=Xy =gy, — D)y, (26}

dt

The initial conditions x,(0), x,(0) and x,(0) complete
the formulation of the problem.

However, the growth rate g, .\, [eqn (20)] depends
on the length distribution of the individuals. To
facilitate the transition form the individual level 10 the
population level we set the energy density at the value
it would have at prolonged constant food densities f,
such that /i, <e = f < 1. In that case the growth is
of the Von Bertalanfly type and the PDE (3), where
n, s g function of time roand size 4, reduees to

—qn (t,1)= d { d / { 1
ar ol = a,‘ nl(r! f)a; ' _pr_|+l‘"f(rr -)v (2 )
while the boundary condition (5) becomes
f{ -l miﬁ/’m,
_fi e T lb, /’m‘-

The method of separation of variables yields the
solution
In2

n = "'u exp{(“f e T P )T}
- - P ]

vf o, - 1,/fm);,,_a ate I,
X| 72— T i, L (29
(3 j;-—l.f+g4 " ( )

n,(T, ij ) = 2"J(ra IJ‘ ) (28)

where g, ,, is the overall population growth rate,
equivalent 1o the quantity defined in eqn (20) (see also
Kooyman ¢r af., 1991).

_ v, In 2
b 3‘/: |;+g.) lr |.[7l|')""1"1‘.
In

/r . ’d, /Im,

The constant n, is given by the initial length distri-
bution for © = 0. Observe that the last factor of eqn
(29) shows that the length distribution depends on the
food densities f.

In what follows we investigate the situation in
which the states of substrate, prey and predator are
relatively close to the steady state. We assume that the
energy density and length distribution are adjusted
instantaneously to changing food densities. Then
egn (30) remains valid also for varying food densities
f{x)

Notice that this method does not yield the solution
of the arbitrary initial value problem for the complete
DEB model. To solve initial value problems with
variable food supply numerically one can use, for
example, the “Escalator boxcar train™ method devel-
oped in de Roos (1988).

(30)

1,

3. Comparison with DM Models

The equations derived in the preceding section
resemble those of the DM model given for example in
Nisbet er «f (1983). The classical and still very
popular Monod model (Monod, 1942) deals with the
population level but it makes implicit assumptions for
the individual level. which we make explicit first. The
procedure followed in the preceding section is now
repeaied with assumptions compatible with the DM
model. Hence we start again at the individual level
where propagation is by fission. Thereafter the popu-
fatton dynamics 1s derived and finally the dynamics of
the chemostal.

THE DA MODEL

in the DM muodet the growth of the individuals is
given by

&1

The growth rate’s being proportionat to the length
depends on the density of the food £ In this case v, /g,
has to be regarded as one compound parameter, being
the maximum growlh rate of the individual on the
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80 B. W. KOOI AND S, A. L. M. KQOOIIMAN

basis of volume. Under this regime. the population
level is described by the PDE

l _ ¢ VRS, s
aﬂ,(!. [,) = *5]'(11,(1'. /r)— ‘—.u['

_pu'i l”.‘(ro !n) (32)
The boundary condition for the PDE becomes
nit b y=2"n(t.1,) where 2, =1, (33)

We use the equivalent of eqn (17) and obtain

=R =, (34)
We see that for the DM model the growth rate of each
individual v,/g.f, |, equals the overall population
growth rate p1, |,. Because the growth is proportional
to the volume of the individuals and because at fission
there is continuity of biovolume, it makes no differ-
ence whether the population consists initially of one
large individual or many small ones. This shows that
for the DM model the unstructured and structured
models for the population level are the same. The
governing equations are equivalent with the equations
(24), (25) and (26) with the following expression for

Vi

YooL= i —EI— (3%)
Using Monod's equation
o= e (36)
we obtain
Hns
Yiow= f;'" .‘J‘,. (37)
where p, | is the maximum growth rate obtained

when /—1. In this case the conversion coefficients
¥: 1, depend only on the parameters {,  and B, .
and it will be denated as 1, | . Thus the well-known
assumption of a constant yield coefficient in the DM
model can be inferred from assumptions concerning
the individual level.

DM MODFELS WITH COSTS FOR MAINTENANCE

In this subsection extensions to the DM mode!l to
take maintenance energy into account are described.
We deal with two equivalent formulations, the en-
dogenous metabolism and the maintenance energy
requirement.

Herbert (1958} accounted for endogenous metab-
olism in growing bacteria by a modification of the

growth rate law. Then the Monod equation for
growth yu is replaced by

H, -I.tzﬁ‘lm, _|~’/;‘-!,l——mr" (38)

where m1, is the maintenance rate coefficient. We
obtain for the yield y, |,

1 m, 1
o _ (39)
Yioi ."rrrl ' ,ﬂr’ - ym, s

The DM model with costs for maintenance is termed
the Marr-Pirt model.

For the sake of completeness we mention another
model proposed by Pirt (1965) in which the overall
rate of food utilization is set equal to the rate of food
utilization for maintenance plus the rate of food
utilization for growth. Then the yield is no longer a
constant. [t is given by

LMo 1 (40)

He ., Yo, _,,
where the subscript P denotes Pirt's model. The
constants M, are called the maintenance coefficient
and the constants Yg,_, are termed “‘true growth
yield”. These expressions have to be substituted in
eqns (24) and (25).

It is easy to show that both approaches lead to the
same mathematical equations if we assume the follow-
ing relationships between the parameters of the differ-
ent models:

yl -t

s = Vo, |- (41)

IPM MODELS WITH INTERNAL MASS STORAGE

Droop (1973) extended the DM model into another
direction, namely, (he introduction of reserves via
mass storage. In a simplified Droop model for phyto-
plankton it is assumed that growth is not controlled
by the concentration of limiting nutrient in the reactor
but rather by the concentration of the nutrient g
present within the individuals themselves. For the
prey and predator system this leads to additional
differential equations for both levels,

d
a;qi=lm,_|,ﬁ- i~ M54, (42)
for i = |, 2, where g, is the so-called quota of limiting

nutrient.
The growth function is given by

= »“;n, (ql_kql—l.l')
. kql I_r'+(qr_‘ktﬂ— |.I),

- (43)
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where g, is the muaximum specitic growth rate at
infinite internal food concentration and &, |, the
value of ¢ for zero .

This completes the formulation of the DM model
with 1wo variants of Marr Pirt and Droop. In the
next subsection these models are compared with a
special variant of the DEB model.

4. The DEBf Model

In this section we introduce energy reserves and
metabolic maintenance costs at the individual level as
in the DEB model. We make an additional assump-
tion that the surface area is proportional to the
volume of the individual. In filaments, which, unlike
isomorphs grow in length, surface area is pro-
portional to volume. Thus this mede! is the DEB
model for filaments and will be referred to as the
DEBf model (see Kooijman et af., 1991). Observe that
by definition the length ({) is still the cubic root of the
volume of the individual rather than its real physical
length.

The equations for the individual energy storage and
growth now become

d
Ad_{e;=v|(ﬁ—l.r‘—€l)

d Ve, — g,

PR AR Cag 45
dr ' 3le,+g) )

ty

where v, is the specific energy conductance which
relates to the energy conductance o, in the DEB
model. Later we will make this relationship
explicit.

As in the DEB model, for the population level
we have the PDE (3) where (d/dr)e, and (d/dt ), are
given in (44) and (45), respectively. The boundary
condition for the PDE in this case is expressed by
eqn (33) as in the case of the DM model. For
the coupling between substrate, prey and predator
we have the same expressions as those of the
DEB model. Equation {17) for the DEBf model
becomes

d v.e, — gm

Sy = Pt e 1) ————de di,—p, ;.

e J; j e, 1) @ tz2) ¢ P X
(46)

When f(z) is a function of time the value for e(t) for
each individual converges exponentially to same time-
path, so that ¢(r) can be interpreted as the reserve
density of a randomly chosen individual at time 1 [see
eqn (44)]. (Mathematically this means that the sup-
port of the density n{e, ) reduces from two to one

dimension.) Then, eqns (24), (25}, (26) and (44) are
obtained together with (35) and
Ve —gm,;

{ =,

‘ [ (’, + gl‘ (47)
This mode! becomes the Droop model when there are
no costs for maintenance. When st =0 the DEBf
model is equivalent to the DM model with internal
reserves given by cgns (24), (25), (26) and (42), where
the growth rate is given by eqn (43), With

",

gk, =oMe, (48)

i
it is easy to derive the relationships

!
and k, =S (49)

"ﬂl( = V[ i v

¢

The growth rate becomes with m =0 in eqn (47)

v, e, 50

4 P T,

Heoo et e (30)
and this shows that the DEBf model becomes the
Droop model when there are no maintenance costs,
for substitution of eqns (49) and (48) in egn (50) yields
eqn (43).

For constant food density f, |, the method of
separation of variables gives the following solution
for the PDE (3) with boundary condition (33)

H, = ﬂ.o CXD {(\’, + &’L I'J ;:‘_g‘ al - p.'.l 1 )T }

,/l |,.+g.
LAV S

x’l J(gf+e|) \',If,_ |",+x,), (51)

where n,is given by the specific initial volume--energy
distribution for 1 = 0. The overall population growth
rate is now

/: [ + g! (52)
This is clarified as follows. The length of the range of
interest for the energy density ¢(t) goes lo zero
proportional with ¢ ** [see eqn (44)]. On the other
hand, in the limit t o with g, _,, =p,,,,, the popu-
lation density n,(1, ¢,, [,})— 20 as e*. This suggests that
the integral {, |, n(t,¢,/)de di, remains finite for
T— 00 as expected.

Equation (51) suggests that for 1-+c0 the length
distribution of the population density becomes pro-
portion to /¥ which is independent of the food
density, in contrast with the DEB model: see egn (29).
However, with exponential growth, as described by
eqn (45), it is well known (see Metz & Dickmann,
1986) that there is no convergence of the length

LN 3 g B i b h Lt A i A Gl A e e 31} iihifinn St nirioiior-
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distribution (see also Kooi & Kooijman, 1993). In
more realistic hiological maodels, for instance in which
propagation is through fission into two uncqual
daughters. there 15 convergence to a “stable length
distribution™ and in those cases /, * 15 a good approxi-
mation: sce Kooipman er of (1991). There is no
convergence to the energy distribution as suggested
by the last factor of egn (S1) either. This is immedi-
ately clear from cqn (44}

This completes the description of the RDEBF model.
In what lollows we show that it can be interpreted as
a straightforward cxtension of the DM models.

When we assume that the energy density is adjusted
instantancously to changing food densities, so that
e(r} = /(1) for allindividuals, we obtain equations for
the chemostat which resemble those of the DM
model. [n this situation, as in the DM model. the
governing equations are equivatent with (24), (25).
(26) and (35) with the Monod equation for i,
replaced by eqn (52).

When there are no energy reserves. i.e. when g — x|
v—oo so that vig -y, e —=fand m #0 the DEBf
model is equivalent with the Marr Pirt model. There
is a term representing the loss of biomass for mainten-
ance eqn (38). and the yield is not a constant but is
given by eqn (35). When there are also no mainten-
ance costs. i.e. when =0, the PM and DERF
madels are the same with vig 4,

)

5. Results

To illustrate  the dynamic  behaviour of  the
chemostat we present several “operating diagrams™
In these bfurcation diagrams the dynamics of the
system are shown as a function of the control par-
ameters, the rate of dilution 1 and concentration of
substrate v, The results in the operating diagrams are
based upon local stability analysis for the approxi-
mating  lumped-parameter  population  dynamic
models. We used standard techniques which are not
described here. In these diagrams the region with total
washout is indicated with a O and with washout of
the top predator with a 17 see for example Fig. 1.
In the first region the hiomasses x, and v, for steady
state are zero while v, = v, In the second region only
x, is zero. In the latter case only bacteria are present
in the chemostat. For this case the equilibrium is
stable. In region 11 there is stable co-existence of hoth
species and in region 111 unstable co-existence, limit
cycles. The line between these regions marks a non-
catastrophic or super-critical Hopf bifurcation.

A hist of the chemostat parameters for the different
models is presented in Table 2. The selection of a
comparabie set of the parameters for the DEB models
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Fri. L. Operating diagrams for the DEB model with no costs for
routine metabolism, p, = 0 and ¢, =0, (a) Diagram for the DM
model. (b) Biagram for the DEBM model both with no costs for
routing metaholism, p, - 0 and /1 =0, and with energy reserves,
£y =80 and g, = 1. The values assigned to the physiological par-
ameters are histed in Table 2. The regions shown are (O) total
wash-out, (1) wash-out of tep predator, (11} stable co-existence of
both specics and (111 unstable co-existence.

15 not unique. The parameters are chosen so that all
parameters are the same in the limiting case when all
models degenerate 10 the Monod model.

One of the important parameters is the maximum
possible growth rate g, .,- This is the growth rate
when abundant food is available. i.e. f—1 and when
there are no maintenance costs m = 0. For the DM
madel eqn (36) shows that the nomenclature is ade-
quate. When there are energy reserves but no main-
tenance costs. i.c. when mr = 0, as in the Droop model,
eqn (52) for the growth rate in the DEBT model with
g—=o. v—ow and ¢ =f = 1, becomes

v v,

lum, o -~ ﬂnd }‘m’ s = . (53)

g, ' wEﬁ]m, "
The expression for the vyield cocfficient is derived
using cgn (35) with f = 1. This equation can be used
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TaBLk 2
Parameter set for bucterium-ctliate models, after Ciomingham & Nishet (1983)

Parameter Unats Value DEBE madel DEBR model
TS M, —
Vo 04 L, =504 L o
o e . 4tn2
O Se M, - L)
o hr ! 05 v, =1 5g, 1y - e
2
Koy mgl ! 3
| hr ! 0 0 0 tn 2 0
# r = Uy m, - =
i 1 1Ky 1 g, 3(“. - I,.‘)
023, 1)
Yon: U6 1, =0206 L. - b
: " ; 06in2
w3 3, - L
o, hr ! 02 v, — U 2g, = e T
- - . n2
Ay, mgl ! 9
. rybn 2
" hr 25 iy — 1 25v, g, i, o AB25 -
M )

The mass density for hoth the bucterium and the ciliate is taken equat 10 10 *kgmm ¥ The cubic root of
the volume of the bacterium und ciliate are {, = 0-63 pm and {,, = 50-4 pm, respectively. The energy investment

ratio for the bacterium is g, == %0 for the ciliates g, = 1.

to determine /£, | from Vm, ,, and g, . For the
DEB model we take measured values for the length
at division [,. Equation (30) for the growth rate with
g—®, p—w, e =f=1and m—0 gives

v, ln2 .

t
= and ¢ =" 4
T g, 0y I e T i

The equation for the yield is derived using eqn (23).
Tihis cquation determines the value for the parameter
{, ,, from given parameter Y, . und the calculated

y-’ll

My

[
parameter p,, | and measured length at division /.

Costs for routine metabolism ure taken into ac-
count as in Nisbet ¢r «l. (1983). The parameter pois
expressed as part of the maximum possible specific
growth rate yu,,. Finally the saturation constants k, |
have the same meaning in all models.

For models with energy reserves we use the body-
size scaling relations derived in Kooijman (19864) in
order to minimize the number of remaining par-
ameters. For the energy investment ratio g we have
g:=1, /1,2, Hence, when the length at division is
supposed to be known, we have two eqns (53) and
(53) or (54) for three unknowns, ¢, g and [. We will
give the investment ratio parameter g, a specific value
and this fixes the values for the other parameters.

In our theoretical study we use the set of par-
ameters proposed by Cunningham & Nisbet (1983)
for p, |\ ya , andk, ,, withi=1,2(see Table 2).

K

R Pl

The volumetric length at division for the bacterium is
taken equal to /, =063 ym and for the ciliate it is
{;, =504 ym. For the bacterium we take p, = 0 and
g, = 80 for the ciliate p, = 0-25.

For the DM model we gel the diagram given in
Nisbet et al. (1983). The diagram is shown in

Fig. t(a). In the Fig. 1(b) the diagram for the DEBf
model with ¢ = fand wilth cnergy reserves investment
ratios, g, = %0 and g, = | but without costs for routine
metabolism, is shown. The diagram for the Droop
model is almost equal to this diagram and is not given
separately. From these figures we conclude that the
introduction of energy reserves gives washout for
much lower dilution rates. This is more apparent for
the predator than tor the prey because the energy
reserves are more importaot; g, = | whereas g, = 80.

[n Fig. 2 we show the diagram for the DEB mode!
with costs for routing metabolism. Figure 2(a) shows
the diagram for the DEB model without energy
reserves. The diagrum for the Marr-Pirt model is
almost equal to this diggram and is not given separ-
ately. The results for the DEB model with energy
reserves are shown in Fig., 2(b). The diagram for the
DEBF model with the sume values for the routine
melabolism  and  energy reserves resembles this
diagram. Comparison of Figs 1(b) and 2(b) with
Figs 1{a) and 2(a), respectively, shows that the intro-
duction of energy reserves in the DM model and in
the Marr-Pirt model has the same effect, namely,
wash-out for smaller dilution rates and a smaller
region of stability. This is clear for there is a hyper-
bolic relationship of the growth rate with respect to
the energy reserves: see eqn (47). The introduction of
cnergy reserves decreases the growth rale, the effect
being larger when ¢ is large. This is because ¢ is a
density. When an individual grows it has to ingest
food which is used partly 1o maintain the density
according the homcostasis. This works as an extra
energetic cost for growth and therefore wash-out
occurs ai lower dilution rates.
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showed that his idea fits in the context of a larger
theory which leads to a better modelling of food
chains in chemostats. Tn the companion paper (Koot
& Kooijman, 1994) we show that the DEBf model
describes the transient behaviour of food chains in
remarkable detail. The introduction of energy re-
serves gives wash-out for smaller dilution rates and a
smaller region of stability. The change in shape during
growth which leads to surface area being proportional
1o volume is less important, for the diagrams for the
DEBI model and DEB modei are almost the same, at
least for the chosen parameter values (Kooijman,
1993).

We thank Wim van der Steen for corrections in the

manuscript and Christa Ratsak for providing experimental
data.
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