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Classical chemostat models such as the Monod, Marr- Pirt and Droop models are formulated at the
population level. These models are unstructured, which means that all individuals in the population are
treated as being identical. Such models fail to describe the experimental data of Dent et al. (1976, Arch.
Micrabiol. 109, 187 194) in detail. They grew vegctalive myxamocbae of the cellular slime mould
Dictyostelium discoideun in continuous cullure with a bacterial food source, Escherichia coli B/r fed
glucose.

In this paper a new structured model is proposed, based on dynamic energy budgets (DEB) for
conspecific individuals which only interact via a commen resource. The model fit for the time-course
data of glucose, bacteria and myxamocbae is very good: il covers variations in mean cell volumes of
both bacteria and myxamoebae. Comparison with curve fitting results for the classical models reveals
the mechanisms that are responsible for the better performance of the DEB model. We show that
elements from different models, specifically maintenance (Marr- Pirt, gives stability) and energy reserves
(Droop, gives oscillations) must be combined to produce acceplable fits, Therefore we reject the
assumption made by Bazin & Saunders (1978, Narure, Lond. 275, 52-54) that additional intra-specific
interactions must be postulated to explain the data.

Introduction

In Kooijman (1993} a new maodel for the growth of
individuals is proposed on the basis of simple
mechanistic assumptions for energy uptake and
usage. [l has two state vartables: size, for which we
take “length' as the cubit root of volume; and energy
reserves. The governing equations  form  an
autonomous system of two ordinary differential
equations for the two state variables as functions of
time. This paper focusses on organisms that
propagate by bhinary fission. such as most bacteria,
uniceflular  eukarvotes. plananans and some
oligochaetes. In Kooi & Kootyman (1993, 1994}, we
derived an individual-based model for such popu-
lations which constitute a food chain in the
chemostat. The equations resemble those for the

classical models like the Monod model, but our
parameters, unlike theirs. concern the individual
level.
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In this paper the new model is applied to exper-
imental time-course data for the food chain
glucose/bacteria/myxamochae  published by Dent
et al. (1976). They measured the mean cell volumes
(MCV) and the population densities using a Coulter
Counter.  These quantities combine to  yield
biovolumes as function of time.

We will show that the experimental MCV data can
be reconstructed from the behaviour of the popu-
lations on the basis of the assumption that DNA
replication starts when the individual reaches a
species-specific fixed volume. The individual divides
when the DNA replication. which takes a fixed
amount of time while growth proceeds, is completed.
Simplifying approximations with respect to the
volume distribution of the individuals in the popu-
lation enabled us to calculate the MCV as a function
of time.

Because existing models, such as the Monod model,
could not explain the data in any detail, Bazin &
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Saunders  (1978) and  Saunders {1980)  used

catastrophe theory to cvaluate the experimental
results. The conclusions of that study were that
calastrophe theory can describe the myxamocbial
data qualitatively, conditional on smoothed data for
the bacteria, and that this pointed strongly to
interactions between the myxamoebae: the {eeding
rate per myxamoebac s proportional to the ratio of
prey (bhacterium. Fcherichia cali) and  predator
(myxamoeba, Dictvosietiim discoideim)  densities,
rather than heing just proportional o prey density.
Bazin and Saunders suggested that the interaction
involved folic acid.

In this paper we show that the food chain in the
chemostat can be described guantitatively by the
dynamic energy budgets (DEBY theory, which has no
species-specific elements. This means that the same
maodel is used for each population and that only the
values of the parameters may dilfer. The description
includes glucose and bacteria as well as myxamoebae,
rather than just myxamochae conditionally under
bacteria. This underlines the usefulness of the DEB
theory. The mechanistic assumption on which it is
based appears to be reusonable. This makes the
species-specific  approach proposed by Bazin &
Saunders (1978) superfluous.

The Model

Basic 1o the DFB theory are two quantities not
present in the Monod model The first quantity is the
(dimensionless) reserve density e, which stands for the
energy reserve as a fraction of the maximum reserves,
i.e. the reserves an individual of that size would have
il continuously exposed 1o abundant food {or
substrate} so that 0 < ¢ < | Their role is apparent
from dynamics: growth only depends on the internal
state {reserves). not on external food density directly.
The sccond quantity is the maintenance rate
coetficient m. ie. the ratio of the maintenance and
growth costs. Itis assumed that the individuals divide
into two equal daughters when they reach a species-
specific volume denoted as v, For a complete
description of the model refer to the companion paper
(Kooi & Kooijman, 1994),

Within  the framework of the DEB theory
(Kooijman. 1993), this model is based on the assump-
tion that food uptake is proportional to the surface of
the area of the individuals. For organisms propagat-
ing by binary fission the change in shape during their
life cycle appeared 1o be negligible (see Kool &
Kooijman, 1994) For the sake of simplicity the area
of the surface is taken to be proportional to the
volume of the individual. which is realistic for
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filaments which grow in length only. We call this
special case the DEBF model. In Kooi & Kooijman
(1993) we showed that the total biovolume x is an
appropriate  statistic for the description of the
population and that unstructured and structured
population models become equivalent under this
description,

The dynanues of densities of glucose () E. coli
(v ) and D, discoideum (v,) and the encrpy reserve
densities of E. coli {e,) and P. discoidewn {¢;) are
given by

d )
TV = [){-\-r - Xfl) - Imu |./O | -‘-I N (l)
dr :
d
ar Xy =y = D)y — ]ml z.fl.z-"b (2)
d
e =G~ Dxg, (&)
it
d .
e :\'I(_)(lijﬁell (4)
ds
d
S e =v(f—e). (5)
de

The parameters are described in Table 1. In these
formula the overall population growth rate 4,18 given
by

v, —mg,
Cetg
The parameter g, is proportional to energetic costs
for growth and v, is propertional to the assimilation

rate of the individuals. The growtlh rate of all the
individuals which constitute the poputation is equal

=

()

ta the overall population growth rate ;. The
quantity f , is the Holling type-11 functional
response defined by
X
L (7)
AT SR

for i = 1,2 (the hacteria and myxamoebae, respect-
ively). The parameter k, | is the saturation constant.
The initial values (1), X {0), x,(0), e,(0) and e {(})
compiete the mathematical formulation.

All parameters (7, oveg.mand & ) of this
model are defined at the individual level and the state
variables (v, and ¢,) which are functions of the time
r at the population level, where i denotes the popu-
fation. The remaining parameters, the dilution rate D
and the glucose concentration in the reservoir for the
chemostat x,. are control parameters. The first term
on the right-hand side of eqn (i) represents the
difference of the densitics of glucose in the inflow (x,)
and outflow (x,). The last term of egns (1) and (2)
represents the consumplion per unit of time of glucose
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by bacteria and bacteria by myxamoebae, respect-
ively, The parameter [,
rate. The first terms on the right-hand side of egns (2)
and (3) are the growth rate munus outtlow per unit of
time. The last two equations (4) and (5) lorm the core
of the mode! and show that there is a force driving o
homeostasis.

This model reduces to the Droop model when the
costs for maintenance are zero, (m, = (). [t becomes
the Marr-Pirt model when g, — = and v,— . such
that v,/g, equals the maximum growth rate (e
S _,,= 1 and m, = 0). When v, — 2 15 substituted in
eqns {4) and (5) we get e, =/ .. This model
degenerates to the first three equations (1), (2)
and (3)] and the overall population growth rate is
given by

is the muximum ingestion

pe=vigS o m. (8)

This model without maintenance costs, (i, = ), is Lhe
classical Monod model.

For bacteria the volume at division (17, } depends on
the food level: see Donachie (1968), Kooijman ef al.
(1991) and Kooijman (1993). DNA duplication is
triggered upon exceeding a tixed cell size ¥, and DNA
duplication lasts a fixed time period ¢, independent
from the food density. We assume thut thss holds also
for the myxamoebae, where /, refers to the dupli-
cation time of the biggest chromosome. Observe that
the growth rate g, given by eqn (6) is independent of
the volume at division }7,, i =1, 2. This allows us o
use the model described above. In order to simplify
the equations we assume that the growth rate g, given
in egn (6} is constant during the DNA duplicauon

IN CHEMOSUALS 89

(1 =47 ). Thus it 1s casy to show that the following
relationship between 1, and 1, holds

Fo=1, expinty, i (9

for i = 1,2,

To use this relationship Tor the population tevel we
have 1o make assumptions about the volume distri-
bution of individuals. Expernimental data for the
distributton of the velumes were not reported in Dent
et al (1976). As a Orst approximation we assume that
the volume distribution is proportional to ¥ ? which
is the steady-state cell size distribution for exponential
growth with fixed division size and division into two
equal daughters, Then we have for the mean cell
volume (MCF')

MCV, =4V, In2 =V, expiut, }In2 (10}

Results and Discussion

A buatch culture was moculated by Dent er ol
(1976) with bacteria and spores of myxamoebae and
the experiment was started when the spores had
germinated. The two control parameters are given in
Dent ¢t ul. (1976); the throughput rate D = 0-064 he™!
and the glucose  concentration  in the feed
x=lmgl '\ We assumed that e, (=1 and
e,(0) = 1, so the bacternia und myxamoebae were well
fed at the start of the experiment.

The estimated parameters are shown in Table 2.
These parameter values were oblained by weighted
non-linear regression (Marquardt) of the numerical
solutions of the system of five first-order ordinary
differential equations (ODEs) [eqns (1 -4)], solved

and equal to the value at the onset of the duplication numencally  with o lourth-order  Runge-Kutta

Tasre |
State variables and purameters of the model for the chenmostat ) t = tine | = cubic root of
the volume of the dividual, 1. = cubic root of the volune of the reactor

Purameter [Iimension Interpretation
' ' Tune
1, S Biovolume of pupulation ¢
. Ratio of energy reserves and its maximum value
‘g 1t Glucose
. 1 Saturation constant
£ Funcuonal response
{. v Maximum ingesiion rate
v, ¢! LEoergy conductance, o asstinilalton rate
g, Encrgy investment ratio, = custs for growth
m, t! Mauintenance rate cocflicient
X, o, Glucose goncentration in reservolr
D [ Dilution rate
F, I Volume of individual
v, I Volume at division
v, 1} Yolume at sturt of DNA replication
‘ " t Time duration of DNA replication
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TaBLE 2

The paramerer estimaies for the different models and interpretation of the DEB n'mdm'. The real values for k,,

are smaller than the given ralues

Parameter Moned Marr Pirt Droop DEBR Units Interpretation

v, (0} 045 055 1x}} {58 mg ml Initiat glucose concentration

i) 093 103 036 046 mm'ml ! Initial E. cofi density

x.((h 0 1144 (+1n74 0 (158 0070 mm'ml btial 1. discoidown density

e () fidet) el ) I idel) I idet) Il £ coli reserve density

e 1) O edely 0 rdel) I tdict) 1 tdel} Inttial £7. diseoideur reserve density

L (ol 06! RLESES 00004 mgmi ' Saturation constant E. cofi

ks IRE} 02 023 UL mm'mi ! Saturation constant D. discoideum

2 7 del) r tdel) (92 086 Investmend ratio E. cofi

£ ¢ (def) s tdel) 1-72 443 Investment ratio D. discoideum

m, 0 idef 0 004 Bidel) 1) 083 hr ! Muintenance rate coefficient £, coli

nt, U del) (092 edel) 016 hr ! Maintenance rate coefficient D). discoideum

¥ 7 (del) > (def) (45 067 hr ! Spectic energy conductance £, coli

vy ro(def) s (def) 0-69 205 hr ! Specific energy conductance D. discoideum

1., 0-72 071 (95 06s mgmm ‘hr ' Maximum ingestion rate £ cofi

For 49 055 027 026 hr ! Maximum ingestion rate D. discoideum

ViR 143 1) 54 0-59 0-80) he ! Maxumum growth rate E. coli

vy 2 33 049 043 046 hr ! Maximum growth rate D. discoideum
technique. The micasurement errors for the data be equal. The weights for all measurement points for

points are unfortunately not reported in Dent ef af.
(1976) Within each data-set the weights were taken to

by
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myxamoebal biovolume, the meuasurements being
expressed in the umits reported in the figures. The
large scatter in the data for the bacteria suggests that
the error for the biovolumes of the bacteria is very
large and therefore their weights are taken small, The
results obtained depend of course on these weighung
factors. (The mode! fit presented in Kooijman, 1993
differs shightly from the ones presented here by a
different choice for the weight coetficients.) A good
model should predict the prey and the glucose
correctly when the prediction of the predator s good
because they are connected by mass-balunce
equations,

Figures 1, 2, 3 and 4 give the weighted least-squares
fit for the Monod, Marr-Pirt, Droop and DEB
models, respectively. The Monod model predicts the
global behaviour of the myxamoebae rather well. 1t
fails, however, 10 describe the behaviour of the
bacteria and glucose. After one oscillation the system
is in a limit cycle, while the data suggest oscillations
with a diminishing amplilude and period. The

ey
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Jacobian ot the linearized systeman the corresponding
equilibrium possesses o pair of complex conjugate
eigenvalues with positive real parts. The prediction of
the rate of decrease of the myxamocbae n the
decrease  phase s much  too small.  Accurate
examination of that phase indicates that the myxam-
oebal biovolume density declines at a rate grealer
than the dilution rate O,

fn Fig. 2 maintenance 15 introduced as in the
Muarr Pirt model. The least-square sum is larger than
for the Monod model and this implies that the
minimum s a local minimum. The results for the
myxamoebae show that the model describes the first
oscillation much better than the Monod model. This
shows that the introduction of maintenance explains
why the rate of decrease of the myxamoebae can be
50 sharp. This is also clear from the equations. When
1, has a substantial value, the term s, g, can become
larger than v.f,, (Mare- Pirt maodel) or v,e, (DEB
model). For the individual level this means that the
energy reserves are deficient in the supply of encrgy
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for maintenance and this implies that the individuals
will shrink.

In Koot & Koogman (1994) we showed that the
mtroduction of maintenance implies a much larger
region i the “eperation diagram™ where the food
chain is stable. The caiculated time evolution of the
biovolumes supports this finding. This shows that
maintenance forces the oscillations 10 become VETY

heavily damped. The real parts of the eigenvalues of

the Jacobian of the lincarized
cquilibrium are all strongly nepative.

The Marr Pirt madel fails ta describe the distinet
second and third oscillation. In particular, the peak in
the response of the bacteria is much too sharp. When
they increase in number, the myxamoebae do so as
well, and this implies that the food density diminishes
sharply while the predator hecomes apparcatly
extinet. This enforces a collapse of the biovolume of
the bacteria. The cxpertmental data do not show this
dynamic behaviour. Note that a better fit can he
obtained when ncgalive  values for  the
matntenance rate coeflicient for the bacteria are
allowed.

In Fig. 3 energy reserves are introduced but without
costs for maintenance as in the Droop model. Because
of the enerpy reserves the peaks of the oscillutions of
the bacteria are much broader. The predictions
suggest, however, that the food chain is in a imit cycle
almost from the start of the experiment as in the
case of the Monod model. The rate of decrease of
the hiovolume of the myxamocbae s too small,
clearly because there is no maintenance. Therefore the
model misses the second  distinet
predicts the rhird oscitlation well

swvstenmy e the

unreal,

oscillation bt
The feast-square
sum is. however, farper than for the Manod model, so
the Droop model s even less adequate than the
Monod maedel
Margquardt
minimum for which the results are givenin Fig. 1. The
best fit for the Monod model s also the glohui
mintmum for the least-square sum for the Droop
model with g -+ » and v -+ > where v, g is the
maximum growth rate and by virtue of eqns (4) and
(3).e =1 .

The DEBE model predictions are given in Fig, 4.
The maintenance for the myxamocbae yields a good
fit for the sharp decrease of the biovolumes in the
phases of decrease. Because of the energy reserves the
bacteria can withstand the sudden disappearance of
their food. The effects of these reserves stem from two
contributions.

First, the retationship between the growth rate and
the energy reserves is hyperbolic. in the Marr Pirt
mode] the overall population growth rate is given by

This 15 explained as follows. The
technigue wields in this case a local

cgn (8) instead of egn (6) of the DEBf model. This
means that, even il all physiological parameters of
both models are the same and if ¢, =/, ,,, the DEB
growth rate is always smaller than in the Monod
model. Figure 4 gives also the results of the simulation
of the system with enforced e,=7,_,,, and all the
parameters with vatues of the DEBE. As in the Droop
modet case, the best fit for the constrained situation
is the degenerated model, which now represents the
Marr Pirt model

The global behaviour of the dynamics is about the
same as that predicted by the Marr- Pirt model in Fig.
2 but the intreduction of energy reserves has damped
the large fluctuations of the bacterial dynamics
predicted by the Marr -Pirt model. The growth rate is
damped when there is a lot of glucose, e, = 1, and this
occurs when the hiovolume of the bacteria is small.
When the biovolume increases, the glucose concen-
tration diminishes sharply and so do the energy
reserves ¢,. Consequently the growth rate decreases
less sharply than in the Marr-Pirt model.

Observe that the introduction of the energy reserves
always decreases the growth rate, the effect being
larger when ¢ is large. This is because ¢ is a density.
When an individual grows it has to ingest food which
is used partly to maintain the energy density through
homeostasis. It works as extra ecnergy costs for
growth. This explains why the estimated value of the
maximum growth riate v, /g, is larger under the DEBfI
model than under the Marr-Pirt model. In order to
have the same st dynamic response the individuals
must have a beiter assimilation rate or the energetic
costs for growth must bhe smaller.

Sccond, there is an effect of the inertia of the energy
reserves Just hike the mass inertia in mechanical
systems obeying Newtons law which is a second-order
ODE equivalent 10 a svstem of two first-order ODEs.
In Fig. 5 both functions /|, {r)and e, (¢) for i = 1,2
are shown. The energy reserves follow the functional
response with a delay which is large for the bacteria
and very small for the myxamocbae. This is clear from
the egns (4) and (%) and the values for v, in Table 2.
The bent m the response of the biovolume of the
hacteria  at  the moment the glucose becomes
exhausted disappeared in the prediction of the
DEBF model. Growth 15 now governed by a system
of two first-order ODEs which smooths out the
dynamics.

Figure 6 shows thal the relationship between mean
cell size and growth rate agrees with the DEB theory.
The chosen values for the two parameters V, and ¢,
were: V, =039 pum’, IV, =28t-4um’, 1, =4hr and
t, = 348 hr. Dent ¢1 al. (1976) state that “‘during the
declining phascs in the number density of the bacteria
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cell counts were so low and the size so small that 1t
was difficult to determine bacterial MCV?. Therefore
we did not use a regresston techiique to estimate the
four parameters. Observe that the data at the start of
the experiment suggest that the energy reserves were
nol maximal (¢, < 1), Therefore the results presented
in Fig. 6 were caleulated wath ¢.000) = 0-75 instead of
e.(0)= 1. The effects of the choce for the itiad
values in the dynamic behaviowr of the whole system
are very small; only the large change in the energy
reserves of the myxamochae shortly afler the start

disappeared.

Conclusions

The classical models for microbial tood chains in
chemostats, which are special cases of the DEB
model, fit time-course data of glucose, bacteria and
myxamoebae in a4 continuous culture substantially
less well than the DEB model, The introduction of
both maintenance and reserves in the Monod model
are necessury to grasp the dynamics. The introduction
of reserves alone makes the it even worse.

Generally, the introduction of new parameters in a
model improves the fit to experimental data, indepen-
dent from their realism. In this paper we emphasized
the basic mechanisms behind our extenstons that have
a tirm biological basis.

The maximuin rate of decrease in biovolume of the
myxamoebae exceeds the outAow rate, which means

e
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Fig. 6. Compaitson ol experimental  data for the MCV
of myxamwcebae alter Dent er «f (1976) and DEBf model
for (a) E. coli, and by O dieoidewsn { - ) superimposed
on data («).

MOV, oum*)

that volume is also lost by shrinking of the individ-
uals; this is consistent with the model.

The maodel predicts the mean cell volumes well. The
predictions for the myxamoebac are betler than those
for the bacteria, but, the experimental deternination
of the mean cell volumes of the bacteria was difficult
{see Dent er i 1976). That the predictions are good
shows that it s advantageous to use an individual-
based population madel, even when the structured
model equals the unstructured one, Parameters for
individual can be ostimated and this gives more
insight into the mechanisms that govern the growth of
populations.

The udvantage of the present analysis above Bazin
and Suunders’ explanation is that it is not species-
specitic (no spectfic interactions within the myxam-
oebae are required to understand the results) and that
our analysis explains the simultaneous behaviour of
glucose, bacteria und myxamoebae, rather than just
that of the myxamoehae on the basis of an empirical
description for the bacteria,

We thank Wim van der Steen and Martin Boer for
correcuons (o the manuscnipt and helpful discussions.

RELFERENCES

Bazin, M. )& Satsioess, POT 0(1978). Determination ol ¢ritical
variables in a microbsl predator prey system by catastrophe
theory. Nature, Lomd. 278, 52 54

7.

Y TR RS



94 B. W. KOOI ANT} §, A. L.

Dent. V. E. Bazin, M. §. & Sau~nrrs, Po T, (1976). Behaviour
of Dictyostelium  discoidenmr amoeba and - Escherichia cofi
grown together in chemosiat culture. Arch AMicrobiol. 109,
87 194

Donacite, W. D (1968) Relationship between cell size and time
of initiation of DNA replcation. Nature, Lomd. 264, 1077 1079,

Droor, M. R. (1973 Some thoughts in nulrient limitation in
Algae. J. Phveal 9, 264 272

Freprickson, A G. (1991). Segregated, structured. dsstributed
models and their role in microbial ecology: a case study hased
on work dane on the filter fecding ailiate Terrahvinena pyreformis
Microh. Fcol 22, 119 159

Koo, B. W. & Kooustan, S A LM (19935 Many limiting
behavionr m miciehud foed clenns I Conteern e Preceedings
of the b Boteongontal 0 atce o o Mok e of Popalasnon
DPosvsereec e BA e, 00 Fonne b 2 8 Avcheol 1Y eday Waers

Ml gl “tystenn

M. KOOIJMAN

Koo, B W. & KoonMan, S, A. L. M. (1994), Existence and stability
of microbial prey predator systems. J. theor. Biol. 170, 75-85.

Koouman, S, AL L. M., Munier, E. B, & SToutHaMer, A H.
(1991}, Microbial dynamics on the basis of individual budgets.
Antonie ran Leeuwenhoek 60, 159 174,

KooMan, S0 A L. M. t1993). Dynamics Energy Budgets in
Binlogical Svstems: Theory and Applications in Ecotaxicology.
Cambridge: Cambridge Umversity Press.

MrT7, 1. A L & Dikmass, O (1986). The Dynamics of
Physinlogicaliv Structwred  Populations. Lecture Netes  in
Rienarhematics, Yol 68, Berlin: Springer-Verlag,

Mooy, 141942}, Recherches sur la Croissance Bactériennes. Paris:
Ffermann.

PR, S T (1265 The munntenanee energy of bacteria in grosing
cubivres row BONoc Fond BERY, T 3N

Satot e 100 {UIROE b feteoddio ton ta Cataddrophie Lheey
ot Caenlaidpe Digiverity fecan



T — o -

— AN EY TN TR E E E T L. T e ki, il . s rm




