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1. Introduction to Communities

Populations do not cxist as isolated entities in a physical environment. They
intcract with other biological populations on a regular long term basis and,
because of these interactions, often coevolve as an ecological unit. An assemblage
of two of more biotic populations is called a community. The simplest structure,
one composed of two species, and the possible interactions between these two
components will be discussed first. These would not be considered communities in
the classical ecological literature, but I will be consistent in using this term
whenever species interactions are involved.

There exist traditional classifications of two-population systems in lerms of the
nature of the interactions, and these will provide the point of departure for these
notes. Such distinctions, however, are often diflicuit to ascertain since roles can
depend upon life cycle stage, environment, and many other circumstances.

1.1 Predation

The resource-consumer interaction described previously is an example of a more
general two population interaction called predation. One population, called the
predator population, utilizes the other population, called the prey, as a resource.
The association is traditionally viewed as “beneficial™ from the prey to the
predator and as “detrimental” from predator to the prey. Host-parasite
interactions are often put into this category despite obvious differences in detail.
From an energy fNlow viewpoint, a diagram of the predator-prey association is
given in Fig. L1

/-—-.“_‘—‘-"‘
L ]
* Fig. 1.1. The signs represent the energy flow in the
Predator Prey predator-prey influence diagram

Predation can result in a negative per capita growth rate in the prey
population; if it remains negative, then extinction of the population could resuit.
Were the predator limited to that prey, the predator itsell would go extinct.
However, as prey become scarcer and harder to find, predators switch their diets
to less expensive individuals. The same principle applies within a population:
predators tend to take those that are the easiest to capture: the young, the old, and
the weak. This has caused some to remark that stable predator-prey associations
involve “prudent™ predation.

Dyer (1980) has demonstrated that grazing can stimulate growth of the grazed
plant species. Even more remarkable is the manner in which this stimulation
occurs: the saliva of some herbivores can contain a hormone that initiates plant
growth. There is a current debate on the beneficial aspects of grazing with the
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discussion focusing upon the idea that grasses and grazers have coevolved so that
neither could coexist without the other. The reflercnces (Silvertown, 1982;
Thompson and Uttley, 1982 Owen and Wicgert, 1983; Stenseth, 1983) make
interesting reading.

The manner in which predation reacts 10 prey density 1s called the predator
Junctional response. Examples of the typical types of functional responses that exist
in the literature are those listed under resourceconsumer interactions (Sect. 4 in
the Population Ecology Chapter): lincar sigmoid, and hyperbolic.

1.2 Competition

Section 2.1 describes the intraspecific competition between individuals of the same
population for a set of resources. I two specics must struegle for the same
resources then imterspecific competition results. Again, from an energy flow
perspective, an influence diagram representing interspeciiic competition has each
component exhibiting a negative influence upon the other (Fig. 1.2}

v Fig. 1.2. An influence diagram for a community com-

Competilar | Competitor 2 posed of two competiters

It is often conventent for modelling purposes to distinguish between two
aspects of competition: exploitation and interference. Interference competition
relers to a mechanism, usualiy behavioral, that keeps a competitor from utilizing
available resources. Exploitation competition occurs when a competitor actually
utilizes the available resource.

There is much current argument about the role of competition in the
determination of structure of an ecological communsty. Indeed, this discussion is
rather spirited (Science, Vol. 221, 19 August 1983, p. 737), resulting in attacks on
data, data interpretation, and even individuals.

13 Cooperation

Another type of community which we shall consider is represented by the influence
diagram in Fig, 1.3.

Fig. 1.3, An influence diagram for energy flow m a
Coaperater Cooperator 2 cooperative community



These cooperative communities are based on the mutual benefaction of the
cooperator specics. Although such effects may be indirect, the traditional
ctassifications of cooperation generally refer only to the situation where both
species growth rates are increased directly by the presence of the cooperating
species, The past decade has scen a widening recognition of such interactions as
fundamental components of many ecosystems.

L4 Classical Examples of Two-Species “Communitics”

In Sect. 1.4 of the Population Dynamics Chapter, Figs. 1.16 representing the
dynamics of the lynx and snowshoe hare and 1.17, the bean weevil and the wasp,
represent special cases of predator-prey “communities”, although the strength of
the interaction between the lynx and the hare is open to debate {e.g. Hutchinson,
1978).

A classical laboratory predator-prey community involves the ciliates Parg-
mecium and Didinium. D. nasutum is considerably larger than P. aurelia and will,
in an unrestricted aquatic environment, consume all the Paramecium and then g0
to extinction {Luckinbill, 1973). Adding methyl cellulose 1o the medium {which
Increases the viscosity of the liquid) and decreasing the food supply of the
Paramecium will allow persistence (Fig. 1.4: from Maynard Smith, 1974), Oscilla-
tion, as in these examples, in an important characteristic of many predator-prey
communities (although see Sect. 2.4),

The dynamics of competitive communities have been studied for many
systems, and examples are given in Figs. 1.5-1.7.

This system is discussed in more detail in Sect. 3.4.
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Fig. 1.5. Upper panct, Paramecium aure-
Iia cultivated without (solid curve) and
with (dashed curve) Glaucoma scintilans:
middle panel. G, scintillans cultivated
without {solid curve) and with (dashed
curve) P. aurelia; bottom panel, phase
plane trajectory (Gause modified) (by
Hutehinson)

Fig. 1.6. Upper pancl, Population of
Paramecium aurelia and of P. bursaria
introduced into the P. aurefia culture.
Middle panel, P. aurefia and P. bursaria,
are cuitivated together. Bottom panel,
trajectories when P. caudatum, is grown
with P, ursaria (Gause, modified) (by
Hutchinson)

When cooperative (mutualistic, symbiotic) communities are discussed, the
most often cited (e.g., Boughey, 1973; De Angelis et al., 1986} exampies are lichens
(fungus-algae) and the interactions between the clown fish-sea anemone, cleaner
wrasse-large fish, ant-acacia, nitrogen fixing bacteria-legumes, mycorrhizal fungi-
plants, and plant-pollinators. However, the average ecology textbook devotes
much less space to such interaction than to predator-prey or competitive
Interactions. A possible reason for this is that the basic principles of cooperative
communities do not scem to have been as developed as those of other types of
Interactions. Some theoretical aspects of cooperation are explored later.
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1.5 Two Species Community Models

Let x, =x

Fig. 1.7. {a) populations of the Iwe grain
beciles, Tribalivm confusum and
Oryzaephilus Surinamensis, grown togeth-
ether in flour; (b) the same when refuges
(short lengths of capillary tubing) are
mixed with the flour (Crombie)

1{1) and x; = x,(¢) be measurements of two populations at time ¢; they

might, for example, denote population numbers, biomass, or densities. It is

reasonable to assume that the birt
are functions not only of x; but

The per capita growth rate is the differe

h rate, B, and the death rate, D, of population i,
also of the other interacting population.

B.‘=B|'(xhxz)- Di=Di(11-X1)' i=1,2.

rate, and the resuiting mode] is

or

1

X, dr
I dx,

nee between the birth rate and the death

dx
— “_'B](xlvx:)"'Dl(xhxz)Ef:(xl-xz)

x; di =B,(x,, x:)_Dz(xnxz)EIJ(anz)

dx
T;‘=x1f1(xhxz)

dx
E‘z' =Xzfz(x;.12)-

(1.1
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Table 1.4, The signs of the partal deriva.
tives determinc the calegory of the two
specics interaction

afy f7[1
ax, dx,
Predation - +
Competition - -
Cooperation + +

For convenience, it is assumed that the functions £, have continuous partial
derivatives in the two dimensional nonnegative cone R, x R, . Thig particular
form of 2 community model is cailed a model of Kaimogorov type.

The partial derivatives of f; determine the classification of the community (see
also Ginzburg, 1983). These are given in Table [ 4. The partial derivatives éffdx;
represent intraspecific competition effects or density dependent interactions.

The Kolmogorov model has.numerous properties that are useful tn analyzing
behavior of the communuty. From the theory ol ordinary differentiaj cquations, we
know that through each point in R2 = R, xR, there existsa unique trajectory of
(LI). The space R? is invariant for (1.1); indeed, by the uniqueness of solutions to
initial value problems, any trajectory emanating {from the first quadrantin x, —X;
space, (R, —{0}} x {R, — {0}} remains there for ail time. This has implications
when extinction is the objective of a study, as there can be no finite time extinction
for populations modelied by (1.1},

L6 Lotka-Volterra Systems

A simple form of f is a linear function: f,(x,.xz)*—-a,J-b,,x,+b:,-x2. This
traditional hypothesis results in logistic dvnamics in the absence of the interacting

interaction coefficients cannot be computed. However, though these models may
not mimic data sets exactly, they are useful ip building hypotheses. While these
types of models remain prevalent in the literature, current efforts to modei
communities are becoming much more sophisticated {see Turelli, these notes}

2. Predation
21 Volterra’s Principle

V. Volterra, in analyzing a probiem posed by his son-in-law j. D’Ancona,
concluded that a moderate amount of harvesting of a prey population can,
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increase the average number of prey while, decreasing the average number of
predators in the system. If the level of harvesting is reduced, the predator
populatien will increase and the prey population will decrease.

This result was obtaimed by using the mode!

d

“;_I =x(a, —hx;)

J (2.1)
x

’d’f =xl—a;+byx,).

This system has two equilibria: I: (0, ), ll:(:—z, g—l) Linearization shows that | is
1 1

unstable, but that no conclusion can be drawn about [f. Hence, we must work
harder to analyze I1. Fortunately,{2.1) can be written as a first order equation (by
eliminating 1} and then soived in a closed form by separating variables. This ieads
1o the solutions

@

eb:xu - FLIEE]

where ¢ is constant. It can be shown that for each c this relation defines a closed
curve in x, — x, space and, as such, represents a periodic solution of (2.1) which
contains [! in its interior. The equilibrium II is the time average of cach periodic

trajectory: e.g. a,/b, = lf)cl(s) ds, where p is the period of the trajectory.
Po

To obtain Volterra's Principle, suppose that harvesting is indiscriminate and
results in a fixed proportion (hx,) of both predator and prey being removed. The
model (2.1) with harvesting is

d

T =x@—h=bx,)

) 2y
X

d—; =xy{—a;—h+b,x,).

a, +h a, —h
b, ' b,
indiscriminate harvesting results in an increase in prey and a decrease in predators.

If the prey species is a desired species, as it was in Volterra’s situation of edible
fish (prey) and selachians (predators), harvesting is desirable. On the other hand, if
the prey species is undesirable, as occurred with the prey population of cottony
cushion scale insects (Icerya purchasi) and the predator populations of the
ladybird beetle (Novius cardinalis), harvesting is not beneficial. This latter
predator-prey system was causing only minor difficulty for the California citrus
growers until indiscriminate “harvesting™ by the insecticide (DDT) was initiated.
As predicted, the prey population exploded and trouble ensued (Braun, 1975).

The interior equilibrium of (2.2) is ( ) so, on the average,
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An excellent discussion of Volterra's Principle may be found in Braun (1975),
Harvesting in more general predator-prey models is treated in the papers by
Brauer and Soudak (1979a, b), 2nd Brauer et al. (1976}, and Brauer (1984),

2.2 Asymptotic Stability in Predator-Prey Models

Harrison (1979), cxpanding on a technique of Hsu {1978), has discussed the global
asymptotic stability of an equilibrium of a general predator-prey model. The
model is

d
% =al(x,} - f(x,} ¥x;)
2.3)

dx

Tff =n(x,)g(x;)+c(x,),

where f and g are positive on R, ; a(x,) represents the growth rate due fo all
factors except predation; c(x.} represents the rate of increase or decrease of the
predator: n(x,) and b(x,) arc assumed to be nondecreasing functions; f x,) B(x;)is
the functional response of the predator and n(x,) g(x,) is the numerical response of
the predator.

Let (x}, x3) be a positive equilibrium for the system {2.3) and assume that
[n(x ) —n(x?))[x, = xF]1>0, x,+x*;
(b(xo) =] [x; ~x3]>0,  x,4x2.
Theorem 2.1. If in a neighborhood of (xt,x?), a(x,)/f(x,) and e(x2)/g(x,) are
both nonincreasing with at least one strict! v decreasing, then the equilibrium (x},x¥)

is asymptotically stable.
If, in addition to all previous hypotheses,

{dh)éb(xi)f(x;) 0<x; <x}
alx ) Sb(x1)f(x)) xP<x; <,

{C(Xz) 2 ~nlxNglxy) O<x,<x}
e(x3)S ~nxt)glx;) xP<xy<wm,
with the inequalities strict according to whether a(x )/ f(x,) or e(x3)/g(x,) is sericely
decreasing, then (x?, x3) is globall y asymptotically stable.
Example. The Lotka-Volterra predator-prey system

dx,
E‘=x1(a:—bn-"1‘btzxz}

dx,

iy =x(—ay+by,x,)



T. G Hailam

& aby, b, :‘11) .

satisfies the conditions of the theorem, so the equilibrium ( I8

by,b

N P L ]
gtobally asymptotically stable. The difference between this model and Volterra's is
the inclusion of a carrying capacity for the prey species. The global asymptotic
stability should be contrasted with the neutrally stable (cycles of the) Volierra
model.

Indication of Proof of Theorem.

The function

Vix, xp)= | 2], L B —bxd)

Ay d
a0 f(s) 5 gls) )

is a Liapunov function for (2.3). Since ¥ can only be zero at xt or x4, LaSalle's
theorem (LaSafle and Lefschetz, 1961) on the extent ofasymptotic stability implies
that ali solutions approach (x7, x3) as t approaches infinity.

2.3 Generation of Cycles in Predator-Prey Models

Cyelic variation in communities is a documented phenomenon (Figs. 1.14-1.18).
Many of these variations do not correlate with known periodic exogenous forces

I will not belabor these points, it is my purpose to demonstrate the existence of a
reasonable community model that exhibits cyclic behavior. To this end, consider
the Kolmogorov model (L.1). The Lotka-Volterra model, with its simple non-
linearities, cannot have a limit cycle.

A subset of the following hypotheses can lead to cyclic system behavior (eg,
Coleman, 1976).

(HI} a—fi<0‘
dx,

This is a portion of the assumption that the system is of predator-prey type; (H1)

implies that an increase in the predator population decreases the per capita growth
rate of the prey.

{H2) a—fz- >0.
éx,

This completes classification as a predator-prey system and states that an increase
1n the prey population benefits the predator population,

(H3) % <0.
dx

1
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Density dependent effects are imposed independent of population densitjes,

(H3a) % <0.

xl ;=0

Anincrease in the prey population has an adverse effect upon the prey growth rate
when there are no predators around.

afy
The predator population also js limited by effects of crowding,

H3) fi(0.x1)=0 for some xI>0.

There is a size of the predator population, x, beyond which the prey population is
decreasing even when the prey population is small.

(H6) fi(x5,0=0 far some X >0.

There exists a carrying capacity, x¢, for the prey population in the absence of the
predator population. For X, >xi, the growth rate of the preyis decreasing by (H 3),

(H?) fo(x,00=0 for some x>0,

There exists a threshold prey level necessary to support the predator population
(H8) xi>x].-

If this inequality is not satisfied, extinction of the prey population wall oceur
{H9) The equation Ji{x,. x3)=0 can be solved umquely, via the Implicit
}l:(L;l;:;:l::O(;‘l Theorem, for x;=h(x,) where he C'0, x4, R <0, h0)=xT,

k2

r i

' L
c T
L 1,

Fig. L1, The prey isocline defined by x, = hix,) Fig. 2.2 The predator isocline defined by
T, =g(x.}
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This hypothesis is, of course, related to (H3), but it is given to specify the prey
isocline. The curve x, =h(x,) can be interpreted as the cacrying capacity of the
predator population at density x, of the prey population,

(H10) fi(x,,x,)=0 can be solved uniquely for x,=g(x;) where
geC'[0, ), ¢'>0, and g(0) = xT.

d éf,
(H11) x,gi(—:(x,,xl;+x,$‘;(x,.x,)<o.

Mathematically, this condition states that the change in f, along the outward
normal vecior emanating from the origin is negative,

3 a
(H12) x, %(x,,xz)+x2£(x,,x,)>0.
1

(H13) The prey isocline has a hump, Fig. 2.3 (Rosenzweig, 1969),
This ts an analogue of (H9) by replacing (H3) by (H 3a).

(H14) (x,—x{)f(x,,0)<0,
(H15) (x,~xD£00,%,) <9,
(Hi6) (xy—x%)f3(x,,00>0.

These last three conditions guarantee that equilibria on the axes are unique.

Theorem 2.2 (Limit Cycles). Let S f1 satisfy (HI), (H2), (H3a), {(H4(H38),
and (H13). In addition, suppose that the prey-predator isoclines have the configu-
ration in Fig. 2.4,

A S

‘M
f K 1y x* N
Fig. 2.3. The prey isocline has a Fig.24. An gssumed structure
hump for the predator prey isoclines
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and that a+d>0, ad - be >0 where

3
a=x"£(x7.x!).
7
b=xl‘5£l(xf.x§).
1
« .
c=x3 a—j{x? x$
3
dmxt L (xtxg

Then system (1.1} has a limit cycle in R .

Indicationof Proof. Consider the rectangle formed by the coordinate axes and
the lines x, = x| and x, = x} where x} is given by f1(x}, x4}=0. The w-limit set of
any trajectory, o{I"*), in this rectangle is a limit cycle. This may be demonstrated
by showing that «{I"*} contains no critical point. The equilibtium (x?, x?) is
repellent; all extinction type equilibria are hyperbolic. To eliminate the possibility
of a cycle graph, note that (x*, x3) cannot be in a cycle graph and if the extinction

equilibria are in the cycle graph, (7" *)is unbounded. Hence, i{I"*} is a limit cycle.
Another closely related result is

Theorem 2.3. Let hypotheses {H1), (Ha}, (H8), (H11), (H 12y (H14), (H15), and
(H16) be satisfied. In addition, suppose f1(0.0)> 0 fthat is, for small pepulations of
predator and prey, the prey population increases /- Then, the predator-prey model
(1.1} has a unigue equilibrium with positive components. If this equilibrium is not
asymptotically stable, there is a limit cycle in R2 which is asymptotically stable from
the outside.

Indication of Proof. For complete details see Albrecht et al {1974). The
hypotheses (H11}, (H14), and (H15) imply the existence of a prey isocline,
xy=h(x,), like that described in (H9) but 0 29" £9(x;)/xy; similarly, the existence
ofa predator isocline x, = g(x,) with properties similar to those indicated in (H 10)
but i’ <h(x,)/x, follows. Since x¢ > x7, a single positive equilibrium exists. It can
be shown that any trajectory must cycle about the equilibrium. The limit set could
be the equilibrium or a limit cycle which is stable from the outside.

_ Remark. Another mathematical technique that is employed to generate cycles
15 a2 Hopf bifurcation. Waltman (1964) used this method to find penodic solutions
to the Kolmogorov predator-prey system

dx
—d!—l=¢!x,f,(x,.x3),

X3
& =Xfalxnxy).



There are many recent results that gencrate cyclic behavior by applying a
bifurcation theorem (see Freedman, 1930),

Example. Another two dimensional modef that uses logistic dynamics and
mass action tnieractions for the prey population while the carrying capacity of the
predator 1s a funcuon of prey density is due to Laslie {1948). His model is

dx,
2
FRIRY —bxi-bxx,,

dx
d-rz =a;x; ~byxl/x,
This density dependence is probably best understood by considering the ratio of
the number of prey per predator. I x5/x, is small (so that there are many prey per
predator), then the predators grow exponentially. If x,/x, exceeds a,/b, (that s,
there are few prey per predator), then the predator population decreases.

The Liapenov function of Hsu-Harrison can be used to show that Leslie's
model is globally asymptotically stabie.

24 Do Predator-Prey Systems Approach Equilibria or Cycle?

Tanner {1975) studied numerous predator-prey communities and found evidence
of stable equilibrium communities and cyclic behavior. While the majority of the
systems he reviewed exhibited a dynamic behavior that approached an equilib-
rium. there was some evidence for factors that determine cycles. A propensity for a
stable limit cycle seems 10 exist when the intrinsic growth rate of the prey
population exceeds that of its predators. A prey population with a relatively high
growth rate in an environment with a relatively large carrying capacity is needed
for cyclic behavigr {(May, 1976).

Table 2.1. Life history data for 8 natyral prey-predator systems (after Tanner, 1975)

Prey-predator Geographical Apparent
location dynamical
behavior
Sparrow - hawk Europe Equilibrium
Muskrat - mink Centrat North America Equilibrivm
Hare -tynx Boreal North America Cyelic
Mule deer - mountain lion Rocky Mountains Equilibrium
White-tailed deer - wolf Ontario Equilibrium
Moose - wolf Isle Royate Equilibrium
Canbou - wolf Alaska Equilibrium
Whtte sheep - wolf Alaska Equilibrium
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2.5 Simple Food Chains

A simple food chain is a chain of predation where the dynamics of each population
is determined by those species occupying the preceding and succeeding trophic
levels. For example, the chain composed of a plant population, a herbivore
population, and a carnivore population form a simple food chain.

A Lotka-Volterra model of 1 stmple food chain of length n s

dx

T; =X|(“|o"“|r1|'a|211)
dx, _ )
ar = x,( Qo +a;,x, —ay,x,

(5.1}

dx, _
‘“d‘—l=xn‘~!(-an—lAO'i'aan.n‘!In—}_ankl,rxn)

t
dx,
‘a,?‘ 2""("ano+‘1u.n-l)‘.41)~

Inthe preceding model, all parameters are positive with the exception ofa,,, which
is nonnegative.

If the resource (lowest) level of the simple food chain has a GAUTYIng capacity,
then solutions of (5.1} with positive initial conditions are bounded. If a,, =0, then
the unbounded growth of the resource is propagated throughout the system. First,
thecasea,, > 0is developed; this model might be applicable in a situation where a
resource is limited in supply and all other trophic levels are iimited only by the
available resource gn the preceding trophic level,

Theorem 5.1. A{l solutions of (5.1} with positive initial conditions are bounded
provided a,, >0,

Indication of the Proof. The boundedness of the resource level component is
readily established by using the comparison principle.
The function u is defined by

u(x) = Z": (jilai,.'n :hl aHl.l)x}'

J=1\i=}

and satisfies

;;"(x(t))g —mu(x(t)) + b,

L
Where m= min a0, b= max| x, (Za,o—aux,) 11 aum)-
l;ii“ n b=
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Solving this inequality lcads to
(1) S u(0)exp{ —mit) + b/m .

Since v is a linear function of x;, cach component x, is bounded. The details of this
argument as well as those of the next theorem can be found in Gard and Hallam
(1979). O

Persistence of the simpie food chain is determined by a single system lcvel
parameter. Here persistence is defined in terms of the survival of the top predator:
limsupx{t)>0 The system level parameter is defined by

F=

_ a, LA @2
K=dg— apt+ ¥ [1—=——= Q350
an i=2i=2 dy -

! I .
2i-1,2i0
-z (n — )321*:.0-
IERRVER R ST T,
where

n T ln-1

fw ni2 if niseven 1o (n/2}—=1 if n iseven
_%l i n isodd " i nisodd.

Theorem 5.2. Let a,| >0. The simple food chain modelled by (5.1) is persistent
if u>0: it 1s not persistent if u<0.

Indication of the Proof. Assume, for purpose of contradiction, that the food

chain has a trajectory that satisfies lim x{t)=0 for some j, j=1,2,...,n. Then
=
again applying the comparison principle to (5.1) it follows that

]

dx;q, <10

TH A

-

and that lim x,, (1) =0. In particular, if there is extinction, the top predator must
[ -]

£0 to extinction.

Now it will be shown by using a persistence function that the existence of a
trajectory going lo extinction feads to a contradiction.

Let r>0,i=1,2,...,n and x>0 define

etx)= T x0

i=l

on the set §={xe R":0<x,<4}. By differentiating ¢ along trajectories on (5.1)
and by proper choice of the r,, some cancellations occur. This resuits in

d
?€=Q[r1#""-—1au—|,rx-]- (5.2)
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On 5, if 1 is sufficiently small, the quantity in the brackets is positive; hence

dg/dt > 0. This implies that along trajectories g{t) is increasing; however, when

x,—+0 so does ¢. This contradiction shows that persistence is valid for (5.1
Conversely if <0, then ¢ satisfies {5.2) and

[4
— < 1o .
4t =r

Thus, g—0 and an extinction must occur. ]

What is the situation when there is an apparently unlimited supply of a
resource? {ie., a,y =0). There arc lots of problems associated with dimensionality
in Lotka-Volterra models and here we find some additional ones. The persistence-
cxtinction parameter, g, of a food chain of length n=2m+1 is

LITERI Y

- i
Ho=dy19— _Z 350101
=1 i= 184y g,

Theorem 53. Let a,,=0. The food chain modetled by (5.1) is persistent
provided pg>0; it is not persistent if u, <0.

Indication of the Proof. In the previous result with carrying capacity, the
boundedness of solutions was required. As remarked above, it is not possible to
demonstrate boundedness of solutions here; however, any solution that goes to
extinction is bounded. This may be proved by using the classical Voiterra auxiiary
function:

V(X X200 Xg) = l_gl:l aix;—fB;— f;logx/B).

A proper choice of «; and §; (see Gard and Hallam, 1979) leads to V(1) <0if ¢ is
sufficiently large. This shows the boundedness of solutions that go to extinction.

The remainder of the argument is much like that of Theorem 5.2 and will be
omitted. G

As demonstrated in the next theorem, persistence in simple food chains with
carrying capacity is related to the stability of an equilibdum. An interesting
situation results for odd dimensional models without carrying capacity in that
persistence can result even though there is no positive equilibrium. In this case, for
dimension three it can be shown that the trajectories are unbounded.

Theorem 5.4. Let the system (5.1) with a,, >0 have a positive equilibrium. Then,
this equitibrium is asymptotically stable and the entire positive orthant is the domain
of attraction. If the system (5.1) is persistent, it has a positive equilibrium which is
globally asymptotically stable.

Indication of the Proof. The first part of the proofis due to Harrison, who uses
LaSaile’s theorem on the extent of asymptotic stability. The proof aliows for
carrying capacities on each trophic level of the food chain. The system is assumed



10 be of the form

dx,
a =x(b+a;_x., X =41 Xpe )

a; >0, i%j,a,,>0,
This is rewritten using the cquilibrium x* as

dx,
a_r- =d; |£I,_ t -(xl" l)]
—a,{x,~{x?)]
=& iy (e = x8 Ix;

The Volterra Liapunov function
, . Xi
Fixy= ¥ C,[x,-—x,‘mx,']n—;:,
=y b

with €, chosen as Ca,=C,, a, 1.i» has

av l .
ar =-x Caaii[xinxrlzéo-
=1

. . dv
Since a,, >0, the set of points where W =0 consists of only x*. By La Saile's

theorem, all solutions approach x* as 1— oo,

The {ast statement of the theorem may be proved by an inductive argument on
n [

2.6 Effects of Omnivory in Food Chains

To indicatc some extensions of the classical models to which the persistence
function techniques are applicable, Gard (1982} has considered the system

dx, "
Tkl ayoll, x}— ‘_gl a (¢, x)xi]

dx j=1 "
d—: =X, [—a,o(r,x)+ 'Zl aj,{t,x)xj—‘ 2oy, x)x,-] 1£/<n-] 5.2)
iw =j+1

dx

=]
d[” =x, [—am([, x)+ “El a,(t, x) xf] -

‘The a;; are continuous functions of ¢ and x that either vanish identically or
satisfy, for some constants myand M,

0<m|'j§al'1{x'x)§MU IER+;xER.'+~ (5-3)

For j#, the symmetry condition means that a;=0 il and only if 2 = 0. Multiple
level feeding can occur in these modeis.
Define the matrices 4 and b by

M My, M May
0 My, My e My
A= —M2] 0 My m,y
—'wl.n-l "‘45—1,-—1 0 Af'i.ll'l-
Ml!
M
h_ 'l2
Y Ml,afl

Theorem 6.1. Assume that (5.3} holds. If there is an n—1 column vector
r=(ry. ..., r) " withr,>0,2 <i < n, satisfying the vector matrix inequality Arzband
L]
such that pir)=m o— § rM,,>0, then lim supx,(t}>0 for any solution x(t) of
i=1 [ -]
(5.2) with x(0)> 0. i.e, the top predator persists.

Asan illustration of the criteria required for persistence in the case of omnivory
and in the casc of a simple food chain, an example is presented. In general,
omnivory enhances top predator persistence from the perspective that the
persistence criterion is more readily satisfied when omnivory is present,

Example. The Lotka-Volterra system

dx,
T =x{@y0—ay, %) —a;,x;~a,;3x,),

dx,
ar =xy(—a30+a3,x, —dy3X,),

dx,
rr =xy(—a3p+4a3,x, +as,x,),

isasimple food chainifa,y =a,, =0. It isa food chain with ommvory provided a, ,
and ay, are nonzero. The parameter that determines persistence for the simple
food chain is

a a

- 11 12
He=819— ——a30— —=@3,.

a3y ay;

To apply Theorem 6.1, r, and r, must be chosen so that

(azu a!l)(r2)>(all)
0 ay,/\ry/ 7 ay;/



A possible choice here is

dyy
(an_ _all)
ay, dy;

a3 ay

If ry 15 positive, the resuling persistence criterion is

ady;
l-au“ — dy,
a

32
Hog=djg—1t ~—- -

a
dig— L1a,>0.
tyy 32

Itis possible for u, to be positive and K, to be negative; hence, persistence of the top
predator is enhanced by omnivory.
[t is interesting that when omnivory is present, g4 >0 is not sufficient for the
perststence of the food chain. In partrcular, if
E
ay + —=ay,

a a
v=g +£d - 2
10 a 10
23

a30>0,
ay,

there are solutions close to the equilibrium

that approach this equilibrium. An argument similar to those above, using the
function g =x'xpx;", may be employed to show that v<0 js a persistence
criterion for the intermediate level predator. The full food chain persistence criteria
are yto>0 and v<0. An interpretation of these inequalities is that the intrinsic
growth rate of the resource, a, ,, must be large enough to support both predators.

For a general food web, Gard (1984) has employed the persistence function
technique to arrive at a linear programming problem. He concludes that omaivory
enhances trophic structure persistence.

2.7 Other Simple Food Chains

Freedman and Waltman ( 1977) have studied a general three dimensionai model of
a food chain:

d

7"{_1_ =xg{x,)—x,p{x,),

dx

—df_ =x2[—r+cp(x1)]-x3q(x2), (1.0

d
G =ml-s+da0)],
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where r,s,¢, and d are positive constants, They proved the persistence of (7.1)
under fairly general conditions on the functions g and q. The interested reader can
refer to the original paper or Freedman (1980). Freedman and Waltman (1984)
have extended these food chain results to a Kolmogorov model and strengthened
the results by establishing that components have a positive limit inferior as ¢
approaches infinity.

The definition of persistence as lim supx()>0 or lminfx(1)>0 s for

= ==
mathematical convenience rather than ccological reality. A more appropriate
definition of persistence would involve a threshold for all components, but few
results exist for such systems.

3. Competition

3.1 Lotka-Volterra-Gause Models

Gause {1934) developed a theory of competition based upon experimental work
and theoretical studies grounded on the Lotka-Voiterra type model,

dx
‘2}1 =x(a, -bx, =by3x,),

4 3.)
X3

7 =xz(ay ~byx;=by,x)).
It can be demonstrated that there are four ecologically feasible outcomes to the
competition modelled by (3.1} (Fig. 3.1).

The two populations can coexist. In this case, the system has a unique positive
equilibrium that is globally asymptotically stable. For later usage it is convenient
te denote this coexistence by the symbol x, « x, (Fig 3.1a).

The positive equilibrium can also be a hyperbolic (saddle) point: The winner of
the competition depends upon the initial population sizes. The function that
governs the interaction is defined by the scparatrices of the hyperbolic poiat.
Notation for this outcome is x, +x, (Fig. 3.1b).

The remaining outcomes are for the cases that one population dominates the
other, so that independent of initial population size, the dominant population
survives while the second goes to extinction. This is denoted by x, » x, or x, »x,
according to whether x, or x, wins the competition (Figs. 3.1c and d). There is
another type of system that is excluded from the above classification. This is the
¢ase where the parameters of one population, x,, are a constant multiple, k, of the
other population, x,. This leads to an infinite number of equilibria and the
relationship x, =(constant)(x,)* must hold between the two populations This
situation is related to the concept of competitive exclusion discussed later in
Sect. 3.5,

The available resources can have an cffect upon the competition between two
species. While this topic is not developed here, the reader is referred to Leon and
Tumpson (1975} and Hsu and Hubbell (1979).
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3.2 Competition Models of Kolmogorov Type

The Kolmogorov model

dx
:f-t_! =x, fi(x. X)),
3.2)
dx
_dut‘i =x, f5(x, x,),

with competitive interactions has a relatively restricted asymptotic behavior in
that no limit cycles can arise. The hypotheses required to achieve this resuit include

éfi . oh
(Cn} a(xt,x1)<0, 6_xT(x"x2)<0'

e .
A
Hence, if either population in the competition increas..
other species decreases.
(C2} There exists a K>0 such that for 2K, i=1 or .

Sfix,, x;) are nonpositive.

When cither population 15 sufliciently large, neither of them can grow.

(C3) There exist carrying capacities x4, 1 where fi{x,.0)>0 for x, <x§
and fi{x;, 0)<0for x, > <, S0, x,3>0 for x, < x, and 2(0.x,) <0
for x; > x5,

Theorem 3.1. The limit of any solution of (3.2 exists and is an equilibrium, and
hence populations tend 10 one of a Jimite number of limiting populations, provided
(C1),(C2), and (C3) are satisfied.

Indication of Proof. The complete details of the proof may be found in Hirsch
and Smale (1974). The basic analysis employs the decomposition of the population
quadrant into regions determined by flows across isochnes. Then each type of
region is anatyzed to determine the characteristics of the feasible w-limit sets. As
indicated in the theorem statement, all w-limit points are equilibria (and in
particular, there are no limit cycle behaviors associated with competitive systems
ol Kolmogorov type). The stability of these equilibra is relatively easy to
determine and it is shown that there exists at least one asymptoticaily stable
equilibrium,

3.3 Competition in Laboratory and Natural Communities:
Some Classical Examples

Gause, stimulated by the theoretical work of Volterra. undertook some laboratory
experiments that led- to outcomes much like the theoretical work predicted
{Sect. 3.1). His work on two yeast populations was not definitive because of the
production of ethyl alcohol (veast are fine for making wine but not for interacting)
which, in turn, shut down reproduction,

Apparently not discouraged. Gause continued his work in aquatic systems, this
time using ciliates. Using Glaucoma scintillans and Paramecium aurelia, he found
that the smaller organism, Glaucoma, was not inhibited by the Paramecium while
the growth of the Paramecium population was hindered by the presence of
Glaucoma.

Gause also employed three species of paramecium in some experiments: P.
aurelia, P. caudatum, and P. bursaria. The outcomes of competition between these
specics were:

L P. cavdatum > P. qureiia if metabolic products was completely removed.

2. P. aurelia » P. caudatum in most other instances; hence the winner of the
competition could be changed by a perturbation in environment.

3. P. aurelia« P. bursaria. {This might not be direct competition for a
resource since P. bursaria tended to feed on the sediments.) The data indicates that
multiple equilibria might result.



r- coudatum and P. bursaria mixtures led to inconclusive results. Stable
equilibrium coexistence did occur in certain instances, and P. caudatum < P.
hursaria, accured if P. bursarta was initially present in sufficiently high densitics.

Another classical compenition cxperiment was that of Park (1954, 1962) usng
metazoa. Tribolium confusum and T castaneum were used in a homogeneous
cavironment, with different emperature and humidity ranges.

T confusum. grown by ttsell in u hot, wet environment, reached peak densitics.
However, when it was grown with T castancum (which did moderately well in i hot
wct environiment), T castancum won the competition. In a cool dry environment,
neither species did well. In this setting, . confusum dominated the compcetition.
Two aspects of classical ccological dogma are illustrated by these cxperiments,
Environmental conditions are important factors in competition and extriction of
mformation from population to community levels is not, in general, a feasible
objective.

Many factors can provide a basis for changing the outcome of competition.
These include refuge, predation, and genetic effects. Crombic (1945, 1946) utilized
flour beetles and. by adding a refuge. changed the outcome of compelition rom
one of competitive dominance to stablc coexistence. Pimentel et al. (1965), using
houseflies and blowflies, were able to change the dominance in this system through
selection for supertor competitors.

As indicated in Fig. 1.8, Connell (£961) studied the competition between two
barnacle populations in an intertidal community. The barnacles of the genera
Balanus and Chthamalus competed interspecifically for space on the rocks in the
intettidal. The Balanus were vigorous and tended to dominate Chthemalus in the
lower zongs, while the situation was reversed in the upper regions.

3.4 Competition for s Single Nutrient
tn Continuous Cultures of Microorganisms

Hsuet al. (1977), (see also Novick and Szilard, [950; Herbert et al., 1956} developed
a theory of competition between microorganisms, such as phytoplankton, lor a
single limiting nutrient. Their modelling efforts were motivated by chemostat
experiments in which the initial input, $°, and dilution rate, D, ol the nutrient were
known constants and the environmental medium was homogeneous.

Let x,{t) denote the concentration of the ith population at time t; S(t) denote
the concentration of substrate at time ¢; m, is the maximum growth rate of the ith
population; y; is the growth yield for the ith population and g, is the Michaelis-
Menten half saturation constant. The model is

ds(n T om; x{t) S(t)

&~ -swp fgl ¥i ar+5(1)

dx,-(!) - ml-xl-(t)S([)

dr a,+5() ~Dbx,
S(0)=5°,
x(0) =x,0>0.

a;

Theorem 3.2 (Extinction). Let by=myD. If either b.<1 or B >S9 (when

by>1) then lim x{)=0. i~
[ Rl -]

Extinction results if the maximum growth rate m, of the ith population is less
than thedilution rate or if the metabolic needs of the population, a /(b, — 1) exceeds
the initial amount of nutrient present in the system,

Theorem 3.3 (Persistence of one Population). Let ke an integer, | Si<n, and
suppose 0 <afth;~ V) <a b, — 1} forallj+ij=1.2. .n Let S%>uj(b,~ 1} and
b;>1. Then

lim Sty = t: I
fmx{t) =y (So' b:: 1) '

limx{)=0 j#i.
[had-+]
The proof of this last theorem is long and involved, although not difTicult to
understand; the interested reader is referred to the ongmnal arucle for details.
This competition model has again led to a globailv asymptotically stable
equilibrium. Survival of 2 population is determined by the smallest of the ratios:
a/(b;— 1). This indicates that when a single resource is limiting for a community,
only one population can survive. The validity of this statement and the presence of
cycles in competitive systems is explored in the next section.

3.5 The Propasition of Campetitive Exclusion

Gause’s experiments with Paramecium caudatum and P. aurelia tesulted in P
aurelia dominating in the competition for a single limiting resource in most cases.
From these experiments and from the mathematical theory developed by Volterra
arose the proposition that an ecological community in which there are n species
cannot persist on less than n limiting resources. (A resource is limiting if it is
necessary for maintenance and development of the community and its supply is
exhaustable by sufficient utilization.)

While Gause's research was in the laboratory, there also exist classical studies
of competition with exclusion in natural ccosystems. R. MacArthur (1958) studied
five species of warblers that appeared 10 be 5o similar in ecological preferences that
competitive exclusion was violated. He found that they feed and occupy different
levels in their forested environment and that competilive exclusion held for this
community.

Theorctical aspects of competitive exclusion have been well developed in
recent years. The work of Hsu et al (1977) mentioned previously in Sect. 3.4
supported the concept of competitive exclusion if the ratio of the Michaelis-
Menten parameters of each population was distinct from the others. They also
demonstrated that whenever two species have equal Michaelis-Menten ratios, it is
possible for both species to survive.
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Related to competitive exclusion is the “paradox of the plankton” (Hut-
chinson, 1978). The coexistence of many species of phytoplankton in a well mixed
body of water with only a few limiting nutrients (usually one} seems to violate
competitive exclusion. The analysis of Hsu, Hubbell, and Waltman suggested that,
for the species to survive, the Michaelis-Menten parameter ratios should be very
similar. Theoretically, this aHows cxclusion to proceed very slowly.

Levin (1970) also provided a theoretical basis for a higher dimensional
competition exclusion. He considered the model:

dx
d_tl =%, filXy oo X Yy )
_, (3.3
d.
f =X,,J(;(x1|---‘xn;yh'---)"u)l

where x; are state variables representing species in the community and y, represent
environmental parameters. Any quantity that influences fi is called a limiting
factor. He also allowed combination of inMluences; forexample, if a species requires
and utlizes two resources R,, R, with utilization efficiencies @), @, then R,
+2,R, is a single limiting factor. Suppose that there exists a minimal independent
set of limiting factors {z,(x,,...,x,; Vs oo Yuds wea 2p(X gy ooy X P1s )
where p<m+n, and that the growth rates f; are linear functions

M) fi=aazi+anz,+.. +a,2,+y,.
Theorem 3.4. No asympiotically stable equilibrium or periodic solution can be

artained in a community modelled by (3.3) in which some r components are limited by
less than r limiting factors.

Indication of the Proof. If the first r components are limited by less than r
faciors, because of the linearity of the /i, there exist B, & not al! zero such that

Bufi+ . +Bf=5.

Employing the Egs. (3.3), we obtain the expression
X, X, X,
o} =4 . <=5
ﬁlx‘ +ﬁ212 + +B’X,
Integration leads to

L xE(D= Ke™

Using the equilibrium condition, we obtain that & must be zero, and that each
solution lies on the surface

M x =K,
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for some K. Any small perturbation will more the system to a different surface,
indicating the impossibility of asymptotic stabifity. [J

While the above mentioned works support the proposition of competitive
exclusion, not all theoretical research does,

McGehee and Armstrong (1977} showed, for certain standard models where
competitive exclusion occurs, that, 1opologically, the result is not robust. They,
modify a model by several small noniinear perturbations, and end up with a
persistent system {in fact, onc with a cyclic behavior}.

Kaplan and Yorke (1977) demonstrate that Levin's work is not robust in that
there exists a nonlinear n-dimensional system

%=X:‘ﬁ(r|(1)w--vﬁfx))- k<n
which has an asymptotically stable periodic solution. Related competitive
exclusion ideas will be discussed in the next section.

The concepts of competitive exclusion and niche theory have been interrelated
in the literature. The reader 1s referred to Hutchinson (1978) and Whittaker and
Levin {1975} for discussions on the theory of the niche.

3.6 Stability in Higher Dimensional Competitive Communities

The analytical theory of higher dimensional communities of competitors is only
beginning to develop. To give an indication of some of the types of available
results, I discuss persistence in a three dimensional Lotka-Volterra model For
other recent results the monograph of Waltman (1983} is 2 good reference.

Three Dimensional Lotka-Volierra Models of Competition

Persisience-Extinction Phenomena. While the case has been adequately made to
not place too much biclogical fajth in the interpretation and output of Lotka-
Voiterra type models, there are some mathernatically interesting aspects that will
be mentioned here.

The Lotka-Volterra type model for a competitive community consisting of
three populations is

d }
= =xi(aio— 5 a,,x.)f=1,2_3. (.4)
dr o Y

The systern (3.4) has a solution x ={(xy, X3, Xy} that goes to extinction if there exists
a positive initial condition such that the solution through this initial value satisfies
limx(t)=0forsome i, i=1,2 3 and some re (0, 0. For (3.4} and, in fact, for all
=t

models of Kolmogorov-type with sufficient continuity requirements, finite time
extinction is not possible provided initial value problems have unique solutions.
The extinction planes (x, =0) are invariant for such models and uniqueness of
initial value problems guarantees that no trajectory that is ever in an extinction
plane at a finite time can emanate from the population octant. If the system (3.4)
has no solution that goes 10 extinction, it is called persistent.



To determine persistence of the community model (3.4), I first classify the types
of extinction that can oceur {Hallam et al,, 1979). A comparison of components of
solutions of (3.4) with appropriate logistic equations coupled with a differential
mequality argument establishes all solutions of (3.4) are bounded. Itisevident that
complcle extinction cannot result since for small ;. all species have positive
growth rates. ‘

Two Population Extinction, Necessary conditions for the existence of u
trajectory sausfying lim x,(t) > 0 and lim x{t}=0, j+k, are
f=a

a;tahoga,oau J*k. (3.9)

ITthe weak incquality in (3.5) is replaced with strict inequaiity then the inequality
15 aiso suflicient for the existence of a trajectory that has the two population
extinction behavior described above,

Proof. Any extinction trajectory of this type must approach the equilibriym
W= ay; xF =0, jk This cquilibrium can be attracting only if it is not
situated in enther of the regions where dx;/dt>0, j+ k. This implies that inequality
(3.5) must be satisfied.

Conversely, a linearization implies that the above equilibriurn has a nontriviaj
stable manifold that intersects the positive population octant; and, hence, there
cxist salutions with the desired asymptotic behavior. [

Single Population Extinction. Define the system parameters

bu =a,04,,-a,04;,

C,,=a,£a”—a,-1ai-,

b b, S
d, =am_au[c_;]—at;[c_jj]< ki i),
A necessary condition for the existence of a trajectory satisfying lim x(t)=0 and
ltm x{£)>0, j+k, are e
biba20  itjiijk, (3.6)
4,20 (3.7

Indication of the Proof. The w-limit set of any such extinction trajectory is the
equilibrium xf =0, x* = —g’—‘ x!= =2 Thus, by, and b;; must be of the same sign;

hence. (3.6) is valid. The équilibriulm cannot be located in the region where
dx,/dt > 0; geometrically, this requires that the equilibrium carnot be below the
line which is the intersection of 5. and the x, =0 plane. This is inequality (3.7).

The converse of this extinction resuit is also valid. There are two cases. If both
bi;and b, are positive, there is a positive equilibtium in the x,x ~plane with a stable
mamlfold that intersects the positive octant. When b; <0, b; <0, and d; <0, the

Uy

equilibrium is a saddle point with only a single trajectory of single popaiation
extinction type. 0O

Persistence Results. Since the extinction resuls arc almost necessary and
suflicient, persistence can be determined when some of the extinction cnteria are
violated. The approach taken here is 10 assume that interactions between each of
the two population community, as are known, then determine what conditions,
are required for the system 1o be persistent,

Interms of the system parameters, the two species interactions can be described
by

4P xeb,>0,b,<0;
Yo xmb,>00h,>0;

X x b, <0, by <0.

Persistence can occur in the following cases:
Al x»x, x»x, x»x;
A2 xiex;, x> Yoo X B g
Al xiex;,  xeoex,, X P x,;

Ad xe—x, Xj++ Xy, X e X,

Case A.1 has been studied extensively {e.g. May and Leonard, {975: Gilpin,
1975; Grossberg, 1978). Grossberg demonstrated that the attractor is a cyeie graph
connecting the carrying capacities of the individual popuiations. This arrange-
ment of two popuiation interactions is rather unusual in that persistence is known
automatically from the interactions.

For the arrangements A.2, A3, and A4, at least one additional relationship
between the population paramcters must be prescribed. These relationships
require that a systems level parameter, d, be positive. The biological interpretation
of the d, is that of an invasibility parameter indicating the ability of a porulation
represented by x, to invade 2 community at equilibgjum: XX,

The persistence criteria are A2, d,20,A3, d,20andd, >0; A4, 4,20.4,20,
and 4,20. If, in any of the above arrangements, d, <0 then extinction of a
population occurs. With the exception of A.1 just knowing all two popuiation
intetactions is not sufficient to determine persistence. Any arrangement other than
the forms above lead to extinction. In particular, any arrangement that contains an
unstable competitive pair (x(«+x;) cannot be persistent. This is not a robust
property and is a consequence of the Lotka-Volterra model.

Stability and Persistence. This model has some interesting dynamical features,
The intransitive arrangement, A.1, has already been mentioned, with the wo-limit
set being a cycle graph. It is interesting that the arrangement A1 is persistent
without auxiliary conditions satisfied, and has an asymptotic behavior where
lim supx{t)> 0 for each <= 1,2,3, but it is not the case that lim inf x{n)>0 for

f=m

an ¢.=1,2‘3, —=o



”!.._.;uh 1977) has demonstrated that (3.4) with coeflicients given by

a;,=2,08,0.5,0.7;
a=151.0203:,=0,1,2,3,
ay,=2.1.0.2.1.09

has an asympiotically stable equilibrium (1,1,1)and a trajectory with cormponents
*, and x, that go to extinction. The underlying arrangement is of the extinction
formx, es v x, » x,. X;+b x;. Hence, it is possible {or 2 competitive system (o have
an asymplotically stable interior equilibrium  although the system 1s not
persistent.

Strobeck (1973) gave necessary and sufficient conditions for local stabtlity by
employing the Routh-Hurwitz criteria, He also presented the two examples. The
first has coeflicients

@y, = 12,1/3,2/3,473;

9 =32 0/18.1/6,1/3: j=0,1,2,3:
ay;=4,1/3,1/3,1.

give coeflicients 3a,;; a,y;; and 3ay; This does not change the equilibrium or the
species arrangement, but it does modify its stability to that of nstability,

4. Models of Cooperation

Perhaps the most interestin g and beneficial association between two species is the
act of cooperation. This interaction has been suggested as an evolutionary
objective of selection by Odum (1974) and others. The Interaction can be classified
as obligatory in the sense that survival of each population depends upon the
presence of the cther, or it can be Jacultative in that the association is not
obligatory.

Classical examples of cooperation [which to varioys degrees have also beag
referred to as mutualism, symbiosis, commensalism, or amensalism (Odum, 1974))
include the algai and fungal components of lichens, the clown fish { Amphirion
percula) and sea anemones, the ant-Acgeig system (Janzen, 1966) and plant-
pollinator systems.

4.1 Lotka-Volterra Models with Facultative Associations

In the absence of interspecific effects, the individual populations are assumed to be
governed by logistic equations; hence the model with mass action interaction

terms is

dx
- =xy(a; ~byxy +¢y3x,),

dt

dx
‘de =xay ~byxy +cyx)),

where
4, by ¢;; are positive constants.

This model has two possible types of asymptotic behavior. There can exist a
posittve equilibriem that js globatly asymptotically stable (in the case when b,{:z
—¢€12¢21 > 0). The second type of behaviar occurs b by —cy,y0,, 50: the resuit s,
as aptly described by May, “an orgy of mutual benefaction™, specifically, there is
unbounded growih for each component.

4.2 Obligatory Interactions as Modelled by Lotka-Voliterra Kinetics

For obligatory interactions it is assumed that each population, in the absence of
the interacting species, will decay exponentially and that Interactions are
represented by mass action formulations. Hence, the resulting mode] is

dx
d_tl =x,(—a1+b,x2).
4.0
dx
_dt_z =xp(—a;+byx,).

Models such as (4.1) can exhibit a stupendus orgy of mutuality since it can_bc
demonstrated that they have soiutions with a finite escape ttme (that is, t_hcrc exists
a T < w0 such that limxi)=w or imx,(t)=c]. For example, with a, =a,

=7 =T

=b; =b, =1 the substitution p = X, —x; leads to the temporal representation ¥(t)
= V(0)e . To demonstrate a finite escape, we can use the transformation w=x, !
to show that

dwidt+{~1+ V{0)e yw=~1,

The classification of those solutions w that vanish at finite time can be
obtained, and these solutions correspond to those solutions of {4.1) with finite
escape time. There is also a threshold below which initial populations of each
compenent population tend to extinction.

A graphical solution of{4.1})is presented in Fig. 4.1. The equilibrium is a saddje
point with regjons of growth and extinction determined by the separatrices of the
saddle point,



x2=0'fb‘

Fig.4.1. Phasc plane diagram of
2 Lotka-Volierra model of ob.
1 ligatory cooperation

X, = OZ/DB

4.3 Other Models of Cooperation

While the preceding model contains some desirable properties, such as ap
extinction threshold, the unbounded growth of solutions is certainly undesirable
from a modeling perspective. Vandermeer and Boucher {1978) address the
question “How should the isoclines be constructed for cooperative systems?” If
Interspecific interactions become weaker as population densities become large,
then this might have the effect of curving the isoclines towards each other s0 that
they again intersect. At this second intersection wili be a stable ¢quilibrium, and
the unpleasant unboundedness of solutions present in the original model (4.1) does
not occur here (Fig. 4.2).

The model might now have the form
dx,
dr

dx,
T =X —ar+by(x,, xy)x,),

=x(—a, +b1(11-x1)x2)*

where b, b, are decreasing functions of both Xq, Xy

X2

Fig. 42, Feasible isoclines for a coopera-
tive system. « and s indicate an unstable
x, and a stable squilibrium respectively

An example of a community where this situation might exist is the kegrme
bacteria (Rhizobium) system (Vandermeer and Boucher, 1978). Proverties of
this interaction include:

i) There is a minimal population of bacteria necessary for successtul plang
establishment. The few bacteria generally present are insufficient for cToe growth
and inoculation is often required to achieve an establishable communy.

it} Additional bacteria inoculum have little eflect on nodulation 1ad thus,
presumably, on plant growth and reproduction). This occurs above 1 Ertain
threshold level; for example, on red clover seedlings grown in culture. soditions
above 10*(mi)' of rhizosphcre produce no discernible changes in growty

iif) The number of bacteria present in the soil when symbiotic with lezzmes are
usually substantially greater then the number needed for nodulation.

In another attempt to formulate a realistic model, May (1976) Troposed
modilying the carrying capacity of the logistic equation to reflect devendence
upon the density of the complementary population. The system is written cereina
slightly different form to be consistent with earlier discussions:

ﬁ—Jc r Cixy
e U B +ax, |’

[ sl ]

B;+a,x,

This formulation has the effect of increasing the equilibrium values of caz of the
components over the individual population CaITYing capacities.

Kolmogorov-Type Models
The general model of a cooperative two dimensional community of Kolmoeoroy-
type is

.

dx
d—tl=x1fx(1pxz)|

dx
T =xahixux),

where for x, 20, x,20, the following requirements are imposed:

M1 %- >0, _&ﬁ >0 (the interaction is cooperative}
ax; ax,

M2) x,—a—fi+xza‘ﬁ§-a<0, i=1,2

ox, 3_5
(changes in £ along outward vector from origin is negative

M3) f(0.0)>0, i=1,2 (small populations grow)
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(M&Y f(K,,0)=f,(0,K,)=0

(there is a carrying capacity lor each popuiation).

The reader is referred to Albrecht et al. (1974) who demonstrated that there is a
feasible cquilibrium which is globally asymptotically stable.

4.4 Stability in Higher Dimensional Cooperative Communities

An equilibrium, x*, of the Koimogorov system
d
j—:-‘=r,g,(x), i=02 o x=(x X, x0T 4.2)

15 asymptoticaily stable if and only if the eigenvalues of the communily matrix
S=(s,)

é
5= a—x} (x,g.(x))hzx'

. dg, . . .
have negative real parts. Since 5= x! —%(x'). x* is asymptotically stable if and
i

only if all of the eigenvalues of DA gave negative real parts where D=diag(x?,
{Jgdx*))
ox;

For competitive and predator-prey sysiems, equilibrium stability is independ-
ent of the stability of the interaction matrix. That is, there exist competitive and
predator-prey communities for which the community matrix DA is unstable cven
though the interaction matrix 4 has eigenvalues with negative real parts;
conversely, there exist communities for which the community matrix DA is
asymptotically stable even though the interaction matrix is unstable (e.g. Strobeck
1973).

A pleasant property of cooperative systems is that the above difficulties are
simplified in that stability of an equilibrium is determined solely by the interaction
matnx, Assuming that {4.2) is compietely cooperative, that is,

x%, ..., x¥)and A is the interaction matrix, A=

4

da.
9 x)20, xe RS,  i+j,
dx,

we obtain the following classification of stability.

Theorem 4.1, A cooperative community modelled by (4.1) has an {asymptoti-
cally} stable, feasible equilibrium x* (x* > 0) if and only if the interaction matrix A
is asymptotically stable.

Indication of the Proof. The concept of an M-matrix is useful in the
subsequent arguments. The following criteria are equivalent
1. 4 is an M-matrix

Community Dynamics 1n 2 Homogeneous Environment 215

. All eigenvalues of A have positive real parts
. A is nonsingular and A ' 20

. There exists a z>0 such that Az>0

. There exists a v>0 such that ATy >0

6. The principal minors of {4 ure positive,

The ofl diagonal elements of the matrix D4 are nonnegative. The matrix DA is
asymptotically stable . and oniv o — DA is an M-Matrix. Property 5 vields that
—DA s an M-matnix 15 equivaent to the existence of a vector v. x >0, such that
—(DA) x=~ATDx>0. Hence. this 15 equivalent 1o the existence of a y >0 such
that —ATy>0, Since a;20fori=/ thists equivalent to the statement that — A is
an M-matrix. This results in the conclusion of the theorem. O

A B bl

There are several interesting vonsequences of Theorem 4.1. Since - A is an
M-Matrix, the stabrlity of an ecwiitbrium, x*, is equivalent 1o the existence of a
vector d > { such that 4d < (. Wninng this statement in terms of the components,
we obtain the inequality

dlaf> T da, =12 _.n. (4.3)
17
When (4.3) holds, A 1s called quasi-diagonally dominant. An interpretation of (4.3)
is that for stability of x*, the intraspecific competition must dominate the
interspecific interaction terms. {a an analogous manner, a column diagonal
dominance property can be found.

Employing property 6 of M-matrices, a simple algebraic relationship may be
obtained for the stability of an equilibrium;

gy, gy, d,g
ap dap . Aug

(~DXi ] >0, K=12,....n
9y ez - g

{is equivalent to — 4 has positive principal minors).
The above consideration has focused upon local stability properties. There are
global stability resuits that can be obtained in a similar fashion.

Theorem 4.2. For the Lotka-Volterra sysiem of cooperation,

dx, <

I =X{ Fio+ = a;xy 1, ;> 0 (44)
a feasible equilibrium, x*, is globaily asymptotically stable if and only i all the
principal minors of — A are positive.

Irrdr'a_m'on of the Proof. 1t has been previously demonstrated that x* is locaily
stable with this set of hypotheses. To establish global stability, 2 Liapunov



lunction of Volterra type is useful. The function
Li XJ
Vix)= ¥ Cix,—xt-xtln =L
t=1 Xy

has derivatives along trajectories of {4.4) expressed in terms of a quadratic form
with matrix CA+A4°C where C=dig{C,,C,.....C,) (see Goh, 1977 11
CA+ATC is negative definite, global asymplotic stability results. When the
negative of an M-matrix is stable there exists a matrix C=diag(C,,C,. G
Ci>0 such that CA+ATC 15 negative definite. Thus, giobal stability of =
follows. (7

This material is related to that found in Siljak (1975), Goh (1979), and Travis
and Post (1979}

5. Communities Composed of Populations with Different
or Mixed Functional Roles

Models of communities of two and three dimension are explored in this sectjon.
First, the stability of a community in which the functional role of a population
changes with the density is considered. Next, we turn to some three dimensional
communities of Lotka-Volterra type with determinate roles for populations, but
the coupling in the food web will be different than discussed previously. The
community matrix role in three dimensional systems is investigated,

5.1 A Two Species Model with Density Dependent Functiona! Roles

Hastings (1978) has proved a general stability theorem for Kolmogorov type
modeis.

Theorem 5.1. Sufficient conditions for the global siability of an equilibrium
(x1,x3) of

X
d_tl =x; filx,, x,),

dx

‘de =x2fz(xl.xz)v

(5.1)

are
1) (x}, x3) exists and is an unigue equilibrium that is locally asymptotically
stable,
i) Both species sustain density dependent mortalities at gl densities:

f, cf
gx—l<0. 5}:(0

iii) There exist constants A >0, B> 0 such thai
a) for any x,> B, there is 0 C>0 such that f,(C. x;)<0.
b) For any x,> A, there isa D>0 such that fi{x,, D)<0.

Indication of the Proaf. Let (x2, x3) be any initial position. The rectangle
bounded by the x,,x, axes and the Jines Xy =%, =max(x}, A, C, x%, X;=%,
=max(x}, B.D,x3) is invariant under the flow defined by (5.1 Transform the
system by using the Voiterra transformation Uy =lax,, u, =Inx,. This leads to

du
ARYACNLS
du'z My M}
Et—‘fz(e &',
Since
oh 8 _oh . 3 .
(E'I”‘E:-—af +a—gt’ <0.

the Bendixson nonexistence criterion implies that {S.1} does not have a limit cycle.
Hence, global asymptotic stability results for (5.1). O

A Functional Role Determined by Density Dependence

It is not a trivial task to determine the functional role of a population in a
community; indeed, it is often the case that a species will assume many differeqt

and other factors. The snail { Thais} is both a competitor and a prey for the starfish
(Pisaster) {see Paine, 1966). Bluegill-bass interactions are aiso indeterminate in
theirinteraction relationships: both predation and competition can oceur between
both species.

A system that models two populations where predation is the dominant
interaction at high densities of the prey population and where competition
dominates at low population levels is

x
T: =x,{l —d,x, —d:xz"dsxlxz).

dy
-d—r’ =x(1—dex; —dox, +dgx2).

Hastings (1978) has found sufficient conditions for a globally asymptotically stable
cquilibrium to be 4d>d, d, > dy, and d,d, > dyd,.
5.2 The Community Matrix

We ha\_m'- observed that the community matrix has an important role in discussions
of stability. This role is now explored in more detail. The principal model with an



cssence of lower order nonlinearity is the classical Lotka-Volterra model

dx
]

‘ ="—‘i(f;— b b.,x,). i=1.2....a.
i=n

These cquations may be written in mairix form uy

ik
if: =(diag{x,}) (r - Bx), (5.2)

where v = (x,,x,, ... x)7, r=ir.re )7, and B=(h;). A nontrivial cquilib-
rium ©* of (5.2} is {locally) dsymptotically stable if and only if the eigenvalues of
the matrix - (diag(x*))B all have negative real parts. This matrix, more
commonly written as —(diag(x,‘h,’-))(l + A) where 4 ={a,), @ =byfb,ili+fand
U, =0, wiil be called the community matrix of (5.2). There have been numerous
attempis o derive methods of estimating a; from field and laboratory data,
especially in the case of competitive communities {e.g., Gause, 1934; MacArthur
and Levins, 1967: Vandermeer, 1969 Schoener, 1974; Hallett and Pimm, 1979,
Because of the appeal of the community matrix and the fact that the parameters
d, scem (o have offered the best possibility for estimation in the past, it would be
desirable (o extract as mych information as possible from the system (5.2) using
only the matrix [+ 4. This approach can be developed without quantitative
knowledge of r, and b

As indicated in Sect. 4.4, the properties of I + A are sufficient to determine the
stability of # dimensional cooperative communities 2nd also some communities of
mixed mutualism and competition (Travis and Post, 1979}, However, the examples
of Strobeck {1973} in Sect. 3.6 show that the praperties of | + 4 are not sufficient 10
determine stability since both systems have the same community matrix.

The following result is valid only for dimension 3. Extensions to dimension 4
and higher are, at best, difficult {Clark and Hallam, 1982). Assumptions include
that r is a 3-vector with positive entries and B is a 3 x 3 matrix with positive
diagonal elements. To indicate parameter dependence, the system (2) will be
denoted by L¥(r, B): the diagonal matrix diag(x*b,,), (when B lr=x*s), by
D(r.B); and the community matrix f + A=diag(b; "V B by CM(B). The second
order principal minors of I+ 4 will be denoted by

M. =1~aza,,, My=I-a ey, Miy=l-aa,, .

The next theorem gives conditions which are sufficient to ensure that the stability

of a positive equilibrium of L¥{r, B) depends only on the community matrix. The

find examples, such as those of Strobeck, of distinct systems with the same
Lommunity matrix but with different stability propertjes,

Theorem 5.2, Ler 4 denote a 3 x 3 matrix whose diagonal elements are zero.
A If 14+ 4 satisfies either
(1) det(/+ 4)50, or

Communily Dynames in o llomogeneous Environmen by,

i} det(J +A)>0 and M, <0, i=1, 1.3; then for any choice of r and B where
CM(By=1+ 4, LY(r, BY cannor have a positive stable equilibriym.
B.Ifi+4 satisfies )
{iii) det(! + A)> 9, M20,1=1.21 X M >0, and
=1

VdetT < 4) < VM, 41 M+ VM, ;

where equality can hold onlyif M MM, =0 then for any choice f r and B where
CMiBY=1+4, 4 positive equilibrium of LV(r, B is stuble.

C. Suppose thar | + 4 satisfics none of the conditions, (1), (i), or (). If (iv): there
iS 110 pOSitive vector x such that I+ A x>0, then Jorany choice of rand B where
CM(BY=1]+ 4, L¥(r, BY cun have no [ositive equalthrium. {f (v): there exisis x >0
suchthar {{ + 4) ¢ > 0. then there exust matricesr B 7. B with the properties CM(B)
=CMBy=I+A4, B 'r= 200 B =050 y« s a stable equilibrium of
LYir B), aNd 7* is gn unstuble equilibrium of L7, §)

Twa observations are relevant to part  of Theorem 5.2, [r C(r) holds
itis always possible (o choose x* =3+ |1 4,,> 0 so that the system represents

competition, then (yiy) cannot hold and x* ang £ in C(p) may be chosen
arbitrarily.

Quast Weak Diagonal Dominance |

A matrix C=(c),.. s weakly diagonally dominan if cii>le ) fori=1,. _p
andj+i Th_c matrix {is guas: weakly diagonally dominan; i thereexists a diagonal
matrjx D with positive diagonal elements such that D'CD s weakly diagonaily

systems as it relateg Interspecific and intraspecific Interactions. The following
theorem due 1o Fiedler and Ptak (1967 lustrates this and leads 1o some
interesting observations.

Theorem 5.3 Fnz2and € s any matrix, then C is guasi weakly diggo-
aally domingnt i end oniy if. for any set of distinct indices, | Si b S,

lcfl*zclzu C,. - l‘kCIuIIJ g |Cl|'1clzl2 C,.,J (53)
Applied to the matrix g of the system LV(r B), the condition (5.3 1s a direct
fencralization of the wel] known condition which is necessary and sufficient for the
stability of a positive equilibriom of a competitive system when n~2- 1) 285,
16546350 This condition is usually lranslated as “intraspecific interactions are
s-ronger than interspecific 1nteractions™, and this Interpretation also seems
aopropnate whenn> 3. Note that (5.3) holds for Bifand only ifit holds for CMB)
=!I+ A, and, in this case, takes the form:

’af‘hal’;i, A4St (5.4)



Theorem 5.4. Letn=3;r>0; and B be a mairix with positive diagonal elements
such that B for |+ A } is quasi weakly diagonally dominant. Then, a positive
equilibrium of LV(r, B) is stable if and only if det{l + 4)>0.

As remarked previously, quasi weak diagonal dominance might be valid for
many community medels. For a competitive community, it is a consequence of
some of the formulations of the competition coefficients ay. As an illustration it is
noled that one of the more famibiar formulations first suggested by Gauseforn =2
and generalized by Levins (1968} and MacArthur (1968). can be cxtended 10
include the case of a continuous resource spectrum as follows:

ip'-(x}p,{x)dx

=t . (5.5)
Y fpix)dx
5
where p(x)dx denotes the probability that species § will utilize the portion
{x, x +dx) of the resource spectrum in a unit of time, and § denotes the resource
continuum. If*[| ||” denotes the inner product and norm in the appropriate inner

product space, it follows, for distinct indices iy, i, o,
a = (P..'P.‘;)(.Pi,’Pi,)---(P.’.‘P.‘.)
N PR T R PN

< Ul e, ) Apl loul) ... (oo bo ) _
B Ipi, ¥ Mpiy - Hlp 12

a

a"l"l

Therefore 1+ A is quasi weakly diagonally dominant.
There are extensions of these results 1o the Kolmogorov-type system

%:xij}(x), i=1,2,...,n
where
Offox; <0,

The proof of Theorems 5.2 and 5.3 are not given here; they may be found in
Clark and Hallam (1982).

5.3 A Two Dimensional Competitive Subcommanity and Another Population

The eflects of introducing a population into a compelitive subcommunity is now
explored. We have previously studied the case where the added population was a
competitor with each of the other two populations. In this section some
consequences of introducing a cooperative population or a predator population
are described. The mathematical details are similar to those for the Lotka-Volterra
competitive model.
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The Third Population is a Cooperator (Hallam, 1980)

For a Lotka-Volterra model of 2 competitive subcommunity and ap added
caoperator, certain hypotheses about the coeflicients are required to ¢liminate the
“orgy” effect. With these imposed, extinction of the populations can be classifiad.
Employing two-population interactions, there are some Interesting outcomes, The
mtreduction of cooperator can destroy the stable competitive suhcommunuy by
driving one of the competitors (0 extinction. This can be accomplished by the
symbiolic poputation helping one of the competitors too much.

The Third Population is a Predator

Models of a2 community containing a predator and two prey populations are
numerous in the recent literature (e.g, Cramer and May, 1972; Vance, 1978;
Gilpin, 1978: Freedman and Waltman, {984). Most analyses have focused upon
the processes of predation and competition as mechanisms that can generate
diversity in communities. Two of these mechanisms that can be identified by model
analysis are predator-mediated coexistence and competition-induced coexistence,

Predator-mediated coexistence is concerned with regulation of a dominant
competitor by predation in order that the complete commumty might persist.
Instances of predator mediated coexistence are well documented in the ecological
literature. Classical experiments relating to predator mediated coexistence include
those of Utida (1953} where the presence of a parasitic wasp, Neocatolaccus
mamezophagus, could lead to coexistence of two bean weevil populations and
Slobodkin (1961, 1964) where effects of predation on competing hydra populations
were investigated. Paine (1966) performed a classic experiment where a top
predator in 2 marine system was removed, and a collapse of the lower trophic
system occurred. See Connell (1975) and Caswell {1978) for additional instances of
occurrence or nonoccurrence of predator mediated coexistence.

Other references, related at least peripherally to the model studied here, in
which a predator js introduced into a competitive subcommunity include Nejll
{1975) and Addicott {1974). Yodzis (1976) discussed effects of constant rate
predation on competitive systems.

Employing a Lotka-Volterra model, an analysis of persistence and extinction
(Hallam, 1981}, shows that there can be two forms of predator mediated
coexistence; these are given by the arrangements

v P> vy vy~ p; vy p;
and
Va2 v vep plu,.

In these arrangements, the competition notation is as in Sect. 3.6 for the prey
Populations v,, v,. The interactions between predator and prey indicated by v, «p
and p | v; represent an asymptotic stability coexistence for both predator and prey
and the survival of the prey population only respectively. Both arrangements
above require invasion capability of complementary species at equilibrium
subcommunities if persistence is to occur.



SUPIL LY 18), using 4 mode] empioyed by Yance (1978), numerically demon.
strated wat chaotje behavior can arise in a three dme_nsional system composed of

is 4 limiting case of an arrangement whose persistence development is indicated in
Hallam {1981), it can be shown there are parameter sets in the persistent
arrangement that lead to chaotic motion. Not only is the phenomena of predator.
mediated coexistence of ecological interest, the Mathematical description of the
dvnamics can be very complicated as well.

The persistence analysis also lcads 19 another possible mechanism af
cocxisience, namely, “competition imduced coexistence™. An analysis of the Lotky-
Volterra model shows that this can occur in two ways:

Uyesta, vy e p; ply,

and

either of the prey species but it cap persist if it is able (g invade the stable
competitive subcommunity at its equilibrium density, Certain herbivore plant
systems could theoretically fit into this category.

The terms “predator mediated coexistence™ and “competition induced coex-

theoretically by introduction of a prey competitor into a predator-prey subsystem
i which the predator need not even be able 1o survive. The phenomenon of

probably not totally adequate descriptions.

Asa concluding comment, [ recommend the books of Cohen (1978) and Pimm
i1982), which contain many documented food webs. |t is clear from examining the
diagrammed webs that structure can be very complex and that the analysis
presented here s only an embarkation nto a study of food webs.
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