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Outline of Talk

Objective: Compare the behavior of some well-known discrete and
continuous SI, SIR, and SIS models with and without births and deaths.

[. Two Applications with Different Discrete-Tune SIR Formulations
are presented: Discrete I, Diserete 11

II. Discrete and Continuous SI Models with No Births and Deaths
Behave Similarly,
L]

[II. Discrete and Continuous SIR Models with No Births and Deaths
Behave Similarly.

L R

IV. Discrete Formudation T: SIS Model with No Births and Deaths
Exhibits Period Doubling.

s ™)

V. Discrete Fornmlation II: STR'R*S Model with No Births and
Deaths Exhibits Quasiperiodic Behavior. ;

4 -

VI Discrete Formulation I: ST and SIS Models with Births and Deaths

Exhibit Period Doubling. ¢

S ESS

VII. Discrete Formulation I: SIR Model with Births and Deaths Ex-

hibits Period Doubling.
SEREN

VIII. Final Remarks
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Discrete SIR Formulation I

Global Spread of Influenza

e Rvachev and Longini (1985)

e The model was developed to forecast global spread of influenza based
on information from the initial city in the transportation network to ex-

perience the diseasc.

o For one city define the following state variables, parameters, and
probabilities:

S = number of susceptible individuals on day n.

E,(7) = mumber of latent individuals on day n who were infected on
day n — 7.

I,(7) = number of infectious individuals on day n who were infected

on day n — 7.
R,, = number of immune individuals on day n .

a = average number of individuals with whom an infectious individual
will make sufficient contact (to pass infection) in one day.

1, = maximum length of latent period.

7, = maxirmm length of latent plus infectious period (infected period).

v, (7) = probability a latent individual becomes infectious on day 7+ 1,
given that the individual was still latent on day 7.

vo(T) = probability an infectious individual recovers on day 7+ 1 given
that the individual was still infectious on day 7.

g(T) = fraction of individuals in infectious state at time 7 who were all
infected at the same time.

The number of new latent individuals due to infectious individuals on

day n:
asS,

N

Bun(0) = 52" & Busr(0)g(7).



Discrete SIR Formulation 1
e Note that the number of new infections is

o .
FEo(0) = NS,I(Number Infections).

S“ L] = Sn - E:1+i(())

En+](T + ]) = E, (T)[l - ’Y} ]: T — 1
o T BT + [1 = 7ol )] re(T): T=0,...,7
]11+I(T+l) - I (7-)[ _n/“ )} T =T +1,...,T2—1.

T TQ
Su+ S Eu(r)+ 3 L(r)+ R, = N,
7=}

7=}

where NV is the total population size.

Initial and boundary conditions before the start of an epidemic:

aS, T

[L?H*f'l(()) - VN_ Z FrL TK )J( ) ]H(”) =

S() - ])N, E(](T) = ]()(T) = (), R{) ={] — p)N



Discrete SIR Formulation 11

Spread of Measles on a University Campus

e Allen, Jones, and Martin (1991)
e The model was developed to predict the spread of measles between
dormitory complexes on a university campus.

e The number of new infections has a different formulation in this model.

Define the following parameters:

a = average number of individuals with whom an infectious individual
will make sufficient contact to pass infection in one day.

aSI/N = average number of infections per day caused by all infectives.

p=aSI/(SN) = al/N = average number of infections per suscepti-
ble individual per day.

The probability of k successful encounters resulting in infection of a
susceptible individual by the infective class in one day is assumed to follow

a Poisson distribution:
k
L) = Cexp(—p )1

Thus, the probability that a susceptible individual does not become

infective is given by

p(0) = exp(—p) = exp (—%{) -

The number of new infections is:

Euni(0) = 5, |1 = exp (= £ 17}

T:




Discrete SIR. Formulation II

The system of equations for S, E,(7) and I,(7) is the same as the
~discrete formulation I

SH-H - *Sn — Eu+l(())
Eni(T+1) = E (7)1 —v(7)]
Lty 1) = [ P ¢ |

T:(),...,TI—I

where

Thus,
. y Tz
'SIH--I = LS” EXP (—_f\? "~ IH(\T)) .

4 T



Discrete and Congllml 51? ySI Models Behave

Continuous

: Y
Lg —_ —“4"5[
N

&
— 51
N H

—.
il

where S(0), 7{0) > 0 and S(0) + 1(0) = N.

S{t) 0 and I(t) / N.

Discrete 1
a\t
- : — __In
STH-I Sn (1 N )
a\t
-1 = In —_”Sn ’
IrH] (1 + N )

where S(), Iy >0 and Sy + Iy = N.

Solutions are positive iff

ot < 1.

S, N\, 0 and I, /* N.

e Parameter « is the average number of individuals with whom an
infectious individual will make sufficient contact (to pass infection) per

unit time.
e Subscript n represents the time nAt.



Discrete 1

F1G. 1. Number of infectives in the discrete (e @ @) and continuous

(0-0-0} ST models, At = 25, N = 100. and Iy=1. (a) a = 2. (b)
a = 3.

S0 75 100

Infectives

25




Discrete SI Model !

Discrete 11

aAt
Sn-- - Sn 2 —'*ﬁ_"_“[n)

at
= L+ S, (1 —exp (=1 )],
[n,+l In + Sn, (1 CXD ( N ))

where Sy, Iy > 0, and S, + I, = N.

SN0, Ly /SN

e The expression aAtSI/N is the average number of infections per
time At caused by the infective class.

e The expression it = aAtSI/SN = aAtl /N is the average num-
ber of infectious per susceptible individual per time At.

e The Poisson distribution gives the probability of k& successful en-
counters: p(k) = exp(—pu)pt/kt

e No successful encounters is given by p(0):

a At
() —_— 3 g - — % __"ﬁ*ﬁi[”_ .
p(0) = exp(—p) = exp ( A7 )



Discrete and Continuous SIR Models Behave

Similarly
Continuous
(¥
S — — . .87
N
- (Y
[ = ST —~]
. N !
R = ~I,

where S(0), 1{0) > 0. R(0) > 0. and S(0) + (0} + R(0) = N.

S\, Ss, I(t) =0, R(t) /R

(Y
Ry=

.
¥
i

e R="TRy< 1, TN 0. R=NRy= 1.1 =0 for te|0, ).
N A

Discrete 1

, _ STAVAN
*—Snll — ‘Sr: (l - \f Iu)

I, = 1,,( |- A
[i)'nﬂ - ]:l)'H + A/Atlu:

where Sy, Ly > 00 Ry =2 0. and Sy+ [, + 12, = N Solutions are positive

iff

At
N .S,,J
N

max{yAt, oA} < 1.

Sn N\ Svy 1, — 0, R, R,.

e R<I, I,N0O. R>1, I,.1>1, for ne{l,...,n*}.

/0,



Discrete 1

F1G. 2. Number of infectives in the discrete S1R model, At = .25,
N =100., 5,=99., and [y = 1. (a) a=2,, y=1., and R = 1.98. (b)
a = 3., v=2., and R=1.485.
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Discrete SIR Model

Discrete 11
Sl = 9 eXp ( N_'[n
| . At
[Hvl — ]H(l T Hf’At)jL‘g” (] - OXp ((P T ]”))
R.’H | RH + A/At]n |

where Sy, fy > Oand Ry > 0 and Sy + Iy + Ry = N

brn\‘* Sx ]n () RIJ/R’)(_

e S, Is the nnigue positive solation 0 < S, < N satisfying

(Y
S, CxXp (A SX,) = Syexp (

" :
Ny

VN N - Ru))

e IR = Syl — oxpl —a NI N/ Ty M) =1 then Ty > 1,

Parameters R S, I Number of Cases after I
e P e e RS l P — e+ e e e e
Al =5, AL =25 1975 | 19.93 79.02
QAL = 75, 4AL = 5| 1479 | 10.64 | 55,36

2.



Discrete 11

FiG. 3. Discrete SIR Model with Iy = 1, Sy = 99, N = 100 (a)
aAt = .5, YAt = .25, (b) aAt = .75, yAt = .5
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In the Multipopulation Discrete SIR Model,
Epidemic Behavior is Determined by Initial
Conditions

Discrete I

) | K At
S::—H — sz (1 T Z _C_Y—&IA)

= Nt
i 7! ) \“ ) A{
[n+l - ]u(l o 75‘-3” Z - 'T"'*
R,,, = R, +yAt,

where ¢ = 1,.., K, S, > 0, IS > () (Ié‘ > 0 for some k), Rf) > )

S+ I, + Rl = N'. Solutions are nounegative iff

I ‘
maxq{ > QgA;AtNA‘/NI,’YjAt} < 1.
(R v
SN Sfx, [fl — (), ;L R

G .
“\(:tl'“ ~— l [l' | | > [”’ t()l 716{[)1 T rl*}-

't

@ Ri =
Let 1, = Y,f};, [! be the total nnmber of infectives at time n.

o maxp{v, Sia /(NG <1, I, 0.

o ming {3, h AS’SQ,-A:/(’YA;N‘)} > 1, Ly > 1, for ne{0,...,n*}.

I .



F1G. 4. Number of infectives in a two-population, discrete SIR
model (population 1: e-e-e_ population 2: 0-0-0), At=.25, ay; = 2.,
Q12 = .5, a21=4., a9 = 2.,y = 2., yp = 1., N! = 100, and N2 = 200.
The initial conditions are I} = 10., SI = 90., I§ = 50., and S2 = 150.
Note that R)=.9, Ry=1.5, and ming {s2_, Sécvik/ (7N }=1.95. There
ts an epidemic in both populations.

100
i

Infectives

s,



Discrete 1

F1G. 5. Number of infectives in a two-population discrete STR
model with the same parameters as in Figure 3. The initial conditions
are Iy = 10., S} = 90., I? = 150., and S2 = 50. Note that R;=.9 and
Ro=.35. There is an epidemic in the first population.

150

100
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Infectives

50
t

/6.



Discrete I

F1G. 6. Number of infectives in a two-population discrete SIR
model with the same parameters as in Figure 3. The initial conditions
are I} = 50., S} = 50., I3 = 150., and S§ = 50. Note that Ry = .5,
Ro=5 and maxe{si, Siau/(wN")}=1. There is no epidemic in

either population.
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Discrete SIS Model Exhibits Period Doubling

Continuous
: 0
S = ——57T I
O:N o
N ’7 3
where S(0), [{0) > 0 and S{0) + I(0) = N,

Y

Ro=—
y

L R()Sl, S/N, [\(J

® R()>1, ‘S'H:'i, I—>]\[—j—,V

84

Discrete |

, AL
SH—H = 9, (1 —' —In) + ’YAl([n
| a At
I o= (1 AL —]\79) |
where Sy, Ty = 0 and Sy + 1y = N Solutions are positive iff

~AE <1 and alAt < (1 + \/"/_\f;l

b R()Sl, SIE/N? [n\()

e Ry>1 and aAt <24+~At S, - [ N~ 3’71!

ey !

o Ry>1 and alt > 2+ vAt, Period — Doubling,

/8.



Discrete 1

Fig. 7. Parameter space where solutions to the discrete SI1.S model
are positive: 0 < vAt < 1 and 0 < aAt < (1 + /A% I, in
addition, aAt < 2 4+ yAt, solutions converge to an equilibrium value,

5.0

Convergence

0.0

0.00 0.25 0.50 0.75 1.00
x = vAt



Discrete T

Fig. & Number of infectives in the discrete (e o o) and continuous
(0-0-0) SIS models, v = 2., At = 5, N = 100, and ly=1. (a)
a = 7.1~ 7.1 and Ry = 3.5, a tour-point cycle in the discrete

~~

model corresponding to r = 3.5 I equation Ty 41 = re, (1 — x,).

100
J

(a)

75

1

—
-
y ———
 I——

| ——
E—

| B—

[ =

Bl m e el e WallelWell'aWalle We e Wall ool o B o W W o B o o

Infectives
5[0
-—-.....II‘
‘4:
—--....l.‘
_<:
__.<:
-
_—q
—_«:
'“--......IIE
—(:
_<:
—<.0




Discrete I

FiGg. 8. (b) a=7.5 I* =~ 73.3, and Ry = 3.75, the exact period is
difficult to ascertain in the discrete model; it corresponds to r = 3.75

in equation z, 4, = rx, (1 — x,,).
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Discrete SIS Model

Discrete Il

\ At
S, = S,exp (~—%[ﬂ> + yAt1,

At
LH—I - [n‘(l o rYAt) + Sn, (1 — CXP (_(}N_In)) 3

where Sy, Iy > 0, and S, + [, = N.

e Ry <1, then S, —» N and [, — 0.

e Ry > 1, then S, — S* >0 and I,, — I > 0, where [* satisfies

( At ) N — 1+~
ap (=0T = =t

LST*:N_]*.

e Cooke, Calef, Level (1977)

22 .



Male-Female SIS Model With Only
Heterosexual Contact Does Not Exhibit
Period-Doubling

Let I' =2, I? =y, N' = W = # of Women, and N?> = M = # of
Men, then

Discrete [
(YuAt
Ly = In.(l _—’YIAU + W
QQ[At
W1 — WAL +

(W — -T'rx)yrl

yn+1 - (A/I _ yn)xn-

No homosexual contacts, a;; = 0. Solutions are positive iff

In_ix{aijAtNJ‘/Ni,%At} < 1.
1,13 J

X120k
Ry = ——=.
Y172

e Ry<1 x,—0, vy, — 0.

e Ry >1 Numerical Solution z, — z*, y, — y*.

e Martin, Allen, Stamp (1994)

23.



Discrete 1

FIG. 9. Number of infectives in the two-population, discrete SI1.S
model, females (z,, o-e-e), males (y,, o-0-0), At = .25 ajp = 2,
Q) = 4.,y = 2. = vy, M = 200., W = 100., Ry = 2., 2* = 33.3, and
y* = 50. (a) xy = 5. and yy = 5. (b) xy = 90. and y5 = 10. (Note
that max; ;4 {o , AtN?/NY, v At} < 1))
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x Discrete SIR!- .- R™S Model

Discrete 11

alt |
Lg“+l it Ls’n‘ ()XI) (_T[”) + 77);,{.] AtR::l
At
Iy = 1,1 —=vAt)+ 5, (1 — exp (—XTVMLL))
R'}H—l = erz(l - fYQAt) + ’)/IAtI”
xl%-l — R:Ln(l — Ym4+14A8) + meAtR;:L—]:

where S(], Iy > 0, R6 > (), and Sn + 1, + Z:n’ R;e — N

Suppose v,At = 1 fori=1,...,m, then

R() = a/\t.

o f Ry <1 thenS, — N and I, — 0.

o If Ry > 1, then the behavior depends on the munber of removed
states, m.
(1) If m = 1, numerical simulations indicate, S, — S* > 0
and I,, — I* > (.

(ii) It m > 2, the behavior depends on the magnitude of Ry.

o Cooke, Calef, Level (1977)

25,



Discrete SIR'R?*S Model

Discrete I1

at -
SJH'l = 9, CXP (—_[\T[”) + /YVAtRi

[rH—'l - [n,(l- o VIAU + Sn (1 — CXD (-gjélfn))

R, = RM1—mAt)+ v AL,
R, = Rl —yAt) +pAtR.

n+1

Let = /N and At = 1, then the systeny above can be expressed
as a third order difference equation:
Lny) = (] — Ty — Lyl — xnf‘Z) (1 — CX] (_Q’Atmn)) .

Ry = at

e Cooke, Calet, Level (1977)

26,



Discrete 11
F1c. 10. An SIR'R2S model. Initial conditions z, = 1,z =

zy = .1, and aAt = 4. An equilibrium is approached lim,,_,., z,
0.2101.
H
X
o
()]
> o
5 o
@)
()]
G
= T 1
5 50 100

1,

27.



0.4

g.2
]

Infectives, x

1

0.0

Discrete IT

Fig. 11. Quasiperiodic behavior, aAt = 5.
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Discrete 11
Fic. 12. Quasiperiodic behavior, @At = 5. Solutions (Zp—1,Zn)

are graphed for 100 points.
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v

Discrete SI and SIS Models With Births and
Deaths Exhibit Period-Doubling

Discrete [

| __ vAt
LS‘l”._‘i_l - ‘S‘f“ (l - (‘YWIH) + ’)/At]n 'Ff ’ﬁ}At(N - S”)

VAL
I, = I, (1 — AL = BAL ¥ ?N—--s,,) ,

where Sy > 0,y > 0, and Sy + Iy = N. It v = 0, then SI model.

Solutions are positive iff

(v + B)AL < 1 and aAt < (1+ (3 +3)At)

Y

Ry = |
Tyt

e« Ry<1, S, N I, =0

o Ry > 1 and aldt <24 4At+ AL S, — ON
N — N

k

o Ry >1 and alAt > 24+ vAt + BAt, Period — Doubling.

30.



Discrete SIS Model with Births and Deaths

Discrete 11

At
&H::smm%—%fag+ﬁAmN—s”+yaun

At
[Il-l"] - Iu(l o AfAt - ﬁAt) + STL (1 — €Xp (”gN_In)) )

where Sy, Iy > 0, and S, + [,, = N.

e Ry <1, thenS, — N and [, — (.

e Ry > 1, then S, — S* >0 and I,, — I > 0, where I satisfies

1( aAt) N - (1 4+ vAt + BAOT*
eXIrr — _= ..

Bl
N N —-I"

kg*:N_[*.

e Cooke, Calef, Level (1977)

31,



Discrete SIR Model With Births and Deaths

Discrete I

where LS‘[),]() > () [{(; = U ardd ;Sf() + [() -+ R() = N.

Exhibits Periodic Behavior

Y | At
I (1 — L[”) + BAHN — 8,

N
[n+l = ]u (1 o /At o /3At QJ\A[ Sn)

R, = R,(1— BAt)+ vAtl,,

nonnegative iff

@ RU = 1
}{“ ., ’\(}_,Lfﬂ_

aly+d3)

Y+ DAL T and @At < (14 BAL?.

Sy-+ S, I, =0, R, — R..

: . , ~ bt AN
and o, 7 suthciently small, S, — M-, I, —

[ 4

{7y 43}

e Ry>1 and «,F sufficiently large, Periodic Behavior.

Solutions are

322.



Discrete I

FiG. 13. Number of infectives in the discrete ST R model with births
and deaths, v = .1, 8= 1.9, At = .5, N = 100., 5o = 99., I = 1.,
and Ry = 0. (a) a =7, I" = 67.9, and Ry = 3.5, a two-point cycle.
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" Discrete I

F1G. 13. (b) a =7.7, I'* = 70.3, and Ry = 3.85, the exact period is

difficult to ascertain.
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Discrete T

F1G. 14. ST R Model with births and deaths exhibits period-doubling

behavior if aAt > [4/8At — (v + B)YA[(y + B)AL/(2 — [y + F]AL)].
In this figure, (v + #)At = 1. Thus, period-doubling behavior occurs if

4
alt > —— — 1.

BAL
=
(D -
Period-doubling
m“
*)
<
3
-
o~ 4
[an] T 1 !
0 0.25 0.50 0.75 !
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Final Remarks

e Discrete SI SIR Models with no births and deaths, 1.e., with no

positive feedbad, solutions converge to either a discase-free or endemic

cquilibrinm.

e Discrete Formulation I SIS with or without births and deaths and

SIor SIR with births and deaths, i.e., with positive feedback, exhibit
periodic behavior.

e Discrete Formulation I1: Behaves most similarly to its continuous
analogue.

o If At — 0, then Discrete Formulation I — Continuous.

36,






