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We consider and compare lour approaches to modeling the dynamics of spatially
distributed systems: mean field approaches {described by ordinary differential equa-
tions} in which every individual is considered 10 have equal probability of inter-
acting with every other individual; patch models that group discrete individuals
into patches without additional spatial structure; reaction-diffusion equations, in
which infinitesimal individuals are distributed in space; and interacting particle
systems, in which individuals are discrete and space is treated explicitly. We apply
these four approaches to three examples of species interactions ia spatially distributed
populations and compare their predictions. Each represents different assumptions
about the biology and hence a comparison among them has biological as well as
modeling implications. In the first case all four approaches agree. in the second the
spatial models disagree with the nonspatial ones, while in the third the stochastic
models with discrete individuals disagree with the ones based on dilferential
equations. We show further that the limiung reaction-diffusion equations associated
with particle systems can have different qualitative behavior {rom those oblained by
simply adding diffusion terms to mean feld equations. € 1994 Academic Press. Inc.

One of the fundamental issues in the medeling of any system is the
choice of level of detail. The retevance goes far beyond mathematical con-
venience to the heart of understanding the mechanism, specifically, which
details at one level are important to the determination of phenomena at
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2 DURRETT AND LEVIN

other levels and which can be ignored. In modeling the temporal evolution
of a spatially distributed system, describing for example the interaction of
species or the spread of an epidemic, one can choose several levels of
description involving different levels of spatial detail. The simplest
approach is to assume that the system is homogeneousiy mixing over its
entire extent and model the dynamics by a system of ordinary differential
equations or difference equations. Since each individual interacts equally
with all the others we follow physicists and call this the mean field
approach. Alternatively, one can recognize that spatial position is impor-
tant and allow individuals to move about in continuous or discrete space;
the relevant mathematical description is then a reaction diffusion system or
discrete approximation to it.

The reaction diffusion approach recognizes the importance of spatial
inhomogeneity and the inadequacy of mean field approaches when local
interactions are nonlinear (Levin, 1974), but it does not lend itself easiiy to
the treatment of local stochasticity (Levin and Paine, 1974; Chesson, 1981)
or the fact that individuals are discrete units. Both of the above approaches
are deterministic, and implicitly involve a limit in which the population size
gets large or, equivalently, that individuals become infinitesimal. Models
that relax these limitations within a spatial framework have received
mcreasing attention in the ecological literature in recent vears and are
explored in this paper.

The usual mechanism (Levin, 1974, 1976; Levin and Paine, 1974:
Chesson, 1981, 1985} is to abandon the continuum of spatial scales
availabie in the reaction diffusion approach in favor of a subdivision of
space into patches with (Levin, 1974 Durrett and Levin, 1993) or without
(Levin and Paine, 1974; Chesson, 1981) further specification of the spatial
arrangement and accesibility of the patches. The latter approach fits into
the patch dynamics framework developed by Levin and Paine (1974) and
explored later by Paine and Levin (1981) and Chesson (1981) and in
metapopulation theory (Gilpin and Hanski, 1991) and aspects of life
history evolution (Levin et al., 1984).

Chesson, in developing a general theory to deal with the interplay
between spatial localization and local stochasticity when interactions are
nonhinear and individuals are discrete, extends earlier work in several ways
to explore these influences. He demonstrates clearly that local stochastic
phenomena “have a systematic effect on average population density and
this effect does not disappear in large populations.” In demonstrating the
inadequacy of mean field models when local spatial interactions are
important, this work compiemented earlier work of Levin {1974, 1976)
who showed that multiple stable states and stochastic colonization events
could lead to coexistence of competitors that were incompatible in
mean field theory and extended work of Levin and Paine (1974) who
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THE IMPORTANCE OF BEING DISCRETE 3

argued that local stochasticity {in the form of disturbance) could lead
1o nonequilibrium coexistence even in the absence of multiple stable
states.

Chesson (1981) argues that the lack of spatial structure in the set of
patches or equivalently the assumption of equal accessibility does not affect
the main conclusions he wishes to draw. (See Section 6 of his paper.} It can
however affect other conclusions as we show in Case 2 below. In an
approach that relaxes the assumption of equal accessibility while main-
taining the restriction that individuals are discrete, Durrert and Levin
{1993) explicitly subdivide space into a grid of cells and directly model
the interactions between individuals via an interacting particie system. The
four approaches and their relationships are summarized schematically in
Fig. I, these relationships are explored in this paper. The approaches
considered in this paper do not exhaust the realm of possible models for
spatially distributed populations; among the alternatives are coupled
map lattices (Hastings, 1993), spatiaily discrete analogues of reaction
diffusion equations (Levin, 1974), cellular automata (Caswell and Etter,
1993; May and Nowak, 1992), and individual-based models (Pacala,
1986).

ODE

patch models RDE

IPS

discrete, spatial, local
and stochastic

Fic. 1. Relationship of the lour approaches studied. Here ODE stands for ordinary
differential equation, RDE for reaction diffusion equations, and IPS for interacting particle
sysiem.
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4 DURRETT AND LEVIN
1. FOUR APPROACHES TO MODELING SPECIES INTERACTIONS
This paper was originally inspired by an attempt to understand the
results of Brown and Hansell (1 "} who considered a spatial version of
Maynard Smith’s evolutionary games. In this system there are two types of

individuals, whose interaction is described by a game matrix:

H D

‘
H a b
D ¢ d
Here, H denotes a hawk and D a dove. This nomenclature is usually
reserved for Case 3 considered below, but since we find these terms a
convenient way of referring to the two strategies, we use them throughout
the paper even though they may be inappropriate for some biological or
sociological applications.

To explain the game matrix, & is, for exampie, the payoff to a hawk when
interacting with a dove. When the population consists of a fraction p of
hawks and | — p of doves then the payoff for hawks is ap + b(1 — p) and
we interpret ap + b(1 — p), which may be positive or negative, as the net
birth rate of hawks in this situation. The payofl matrix should be thought
of more broadly than as just defining game interactions—our modet appiies
to any situation where the growth rates are a linear function of the frequen-
cies of the various types. Thus b is the density independent net growth rate
for hawks inhabiting a region dominated by doves.

In additi. = to the net growth rate, we assume that there is a density
dependent death rate per individual that is proportional to the density, and

arrive at the following dynamical system for the densities of hawks («) and
doves (v):

du u v
—zu{a +b —K(U-I-U)}
dt w40 u-+v
(1)
dr
—[-——v{c - +d i —h‘{u+v)}.
dt uU+uv u+u

Note that a species specific linear term in the net birth (death) rate, r, is
easily accommodated within this framework as part of @ and b or ¢ and d.
We have occasion to refer to this possibility later.

The traditional (but occasionally incorrect) way to turn-a dynamical
system into a reaction diffusion system is to simply add diffusion terms to
the two equations:

dvo much Spac
At MmS,
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THE IMPORTANCE OF BEING DISCRETE 5
du u v
—-—=Au+u{a +b -—x(u+v)}
dt u+v v

(2}

dv
—=du+uv<c + — K(u+ v}
di u+v u+v

Here we restrict our attention to two dimensions so du= érufoxT +
d*ufcx3. For simplicity we have assumed that the two diffusion constants
are the same and we have scaled time to make them equal to 1. When
different diffusion rates are considered, an additional parameter (the ratio
of the diffusion constants) enters and the range of behaviors is enlarged.
(See Levin and Segel (1983).) At the end of this paper we use the viewpoint
of interacting particle systems to derive alternative reaction diffusion
equations that we think more accurately approximate the individual-based
accounting, but for present comparisons we take (2) as the usual descrip-
tion. While on the subject of alternative equations, we note that Vickers
(1989) and Hutson and Vickers (1992} use a different version of the death
term that is motivated by Zeeman’s (1981) equations for the evolution of
the proportions of individuals who play various strategies.

In our first two approaches the individuals are infinitesimal. To for-
mulate alternative systems that treat individuals as discrete units, we let §
be the set of sites or “patches,” and following Brown and Hansell {(1987),
assume that the state at time ¢ is given by two functions n, and {, from §
to {0,1,..}. So n,(x) and {,(x) represent the number of hawks and doves
in the patch at x at time 1. In our model, we take time to be continuous,
ie., t can be any nonnegative real number; so the temporal evolution 15
described by specifying the rate at which things happen. Here, we say
something happens at rate r if the probability of an occurrence in a short
amount of time h is rh+o(h), where o(h) denotes a quantity with
o(h)fth—0 as h—0. When@event occurs at a constant rate r (like the
migrations in the models below) then the times 7, between successive
occurrences have an exponential distribution with parameter r; that is,
Plir,>n=e""

Having explained what it means for something to happen at rate r, we
can now formulate our two models with discrete individuals. Three types
of events occur in each model but space is treated differently.

Patch Models, Qur first approach is to use the continuous time
analogue of Chesson’s (1981} formulation, adopting a well known techni-
que from the physics literature (see Nicolis and Prigogine, 1977). In these
models the subdivision into patches recognizes the importance of space at
local scales but the collection of patches, S, has no spatial structure; thus,
we choose S= {1, 2, .., N} where N is the number of patches.
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6 DURRETT AND LEVIN

(1) Migration. Each individual -~ anges its spatic  cation at rate g,
and when it moves it moves to a ran: ly chosen patcn.

(1) Deaths due ro crowding. E..: individual at x at time r dies at
rate x(q,{x)+{, (x))

(i) Game step. Let p,{x)=1n,(xV(n,{x)+{,(x)) be the fraction of
hawks at site x. Each hawk experiences a birth (or death) rate of
ap,{x)+ b{1 — p,(x}) while each dove experiences a birth (or death) rate
of ¢p,(x)+d(1 — p,(x)). The phrase “birth {or death)” means that these
numbers are interpreted as birth rates if they are positive and death rates
if they are negative,

Interacting Particle Systems. Qur second approach assumes that the
patches can be identified with the set of lattice points §= Z?, the points in
two-dimensional space with integer coordinates. Following Brown and
Hansell (1587}, the dynamics are formulated as follows:

(i) Migration. Each individual changes its spatial location at rate y
and when it moves it moves to a randomly chosen nearest neighbor of x;
ie, it picks with equal probability one of the four points x+ (1, 0),
x—(1,0), x+(0, 1), and x— (0, 1) that differ from x by 1 in one of the
coordinates.

(ii) Deaths due 1o crowding. Each individual at x at time : dies at
rate x(n,(x)+{,{x)).

(i) Game srtep. Let 4" be the interaction neighborhood for the

mc "' In this paper we consider two choices for A47;
NM={zeZjz|j+iz] <1} {0, 0) and its nearest neighbors
Ay={zeZ? 5,1 €2, |2, €2} a 5x 5 square centered at (0, 0).

For any choice of A" we let

dx)= Y mix+z) Llxd= Y Llx+o)

€.t e i”

p.(x) = 7,0/, (x) + £, (x)).

Here #,(x) and {,(x) are the number of hawks and doves in the interaction
neighborhood of x at time «, and p,(x) is the fraction of hawks. Each hawk
experiences a birth (or death! e of ap,{x)+ &(1 — p,(x)} while each dove
experier-es a birth (or dec rate of c7 (x}+d(l — p.(x)). The phrase
“birt? deat” means th  :ese numcers are interp:-zied as birth rates
if the: :posi. and death. ates if they are negative.

The choice of the nearest neighborhood 4] for the migration and the
game steps is primarily for simplicity. In most cases the qualitative features
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THE IMPORTANCE OF BEING DISCRETE 7

of the model do not depend upon the exact form of the neighborhood
chosen. (However, see the analysis of Case 3 below.) We could make the
interacting particle system model look more like the patch model by
making the game step involve only individuals in the same patch but this
would not affect the results very much.

2. COMPARISONS OF THE FOUR APPROACHES

We contrast the predictions of the four approaches by considering three
examples. No two approaches agree in all three cases. To motivate the
choice of our examples, we change variables p=uf{u+v), s=u-+vin the
dynamical system to get

dp_
E_{a—b—c+d)P(l—P)(P"'Po)

E‘-:=s{ozp:+Bp+y}~x.s'2

where

b—d

S p—

a=a—b—c+d, B=b+c-24 v=d—kKs.

The equation for dp/dr is identical to the usual equation from population
genetics for weak selection with selection coeficient a—b—c +d. If the
hawk strategy is never worse than the dove strategy, that is, 2> ¢ and
b=d. then po =1 or p, <0 (ignoring the trivial case a=c¢, b= d). The same
conclusion holds if the dove strategy dominates the hawk strategy; but if
neither strategy dominates the other, p, represents a mixed strategy equi-
librium. That 1s, if a {raction p, of the players play the hawk strategy and

a [raction 1— p, play the dove strategy, both strategies have the same
payoll. To check this note that

Pod+ {1 —polb=poc+ (1 - p,)d if and only ifp0=5-?‘bg:%.
When poe (0, 1), it may be (i) an attracting or (ii) a repelliing fixed point.
In accord with the situation in population genetics when the heterozygote
i$ superior or inferior, this occurs when (i) a<c and b > 4, or (i) a>c and
b < d. These are the first two cases we consider below. The third and most
interesting case we consider is (iii) 0>a>¢, > d>0. To keep the discus-
sion simple we consider only a single numerical example of each case,
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g DURRETT AND LEVIN

Case 1: All Four Approaches Agree.
a=04 =038
c=056 d=03

In this case the two types have an apparent svmbiotic relationship because
the fitness of each is enhanced by the presenc  “the other. Note, however,
that the terms @, b, ¢, and & could represent .. um of a constant growth
rate and negative effects of competition:

04 08 1 1 —-06 =02
(0.6 0.3) - (2 2) + ( —14 - 1.7)'
This would then correspond 10 the competition situation in which each
species inhibits itself more than it inhibits the other, for which it is well
known that coexistence results and that a globally stable internal equi-
librium exists. (See e.g. Slobodkin, 1962).

In this situation all four methods of analysis (dynamical systems, reac-
tion-diffusion equations, patch modelr 1ind interacting particle systems)
reach the same conclusion: there is a .::que equilibrium that is the limit
starting from any initial state in which both species have positive density.
The graph in Fig. 2 shows the behavior of the dynamical system.

THEOREM 1.1. From any starting poini (ug, vy) with both coordinates
positive ¢ system converges 1o the unique fixed point (u*, v*} in the positive
quadrant.

Fic. 2. Dynamical system for Case 1.
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THE IMPORTANCE OF BEING DISCRETE 9

Proof. This is easy to see from (3). The equation for p is a one-dimen-
sional ordinary differential equation with a fixed point p, that is globally
attracting in (0, 1), so p(t} = py. Once we know this, it is easy to see that
s(1) = (apl+ Bpo+ )k as t—x. |

Because the frequency dependent dynamics promote coexistence locally,
it is not surprising that coexistence also results in the other approaches as
well. For the reaction diffusion equation, we make the following conjecture.

Conjecture 1.2. T u{0, x) and (0, x) are nonnegative, continuous, and
not identically 0, then as r— o, (u(t, x), p(1, x)) converges to (u*, v*)
uniformly on compact sets.

Support for this conjecture can be found in the work of Durrett (1993),
which by building on the resuits of Redhefler e al. (1988) and many others
proves a convergence theorem for reaction diffusion equations when the
associated dynamical system has a convex Lyapunov function.

To determine the behavior of the patch models and interacting particle
system, we have to resort to simulation. Figure 3 shows a simulation of the

2.8 -
.Nr\'JJ\‘w_./’N\-. el ¥
~'M/\~L_/\_f Wi
- dovas
P 2.6 /
a
: /
t ¥
i 2.4 ;
c
1 /
.
ot 2.2
P
. hawks
r
S

s
i
t
. 1.8 4

1.8

1.4

[} 20 40 &0 a0 100 120 140
Tine

FiG. 3. Average number of hawks and doves per site in Case t for a simulation of the
paich model with 2500 sites.
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10 DURRETT AND LEVIN

patch model with N = 2500 patches when x =008 and u=1 and we start
{rom an initial condition in which the initial numbers of hawks and doves
at site x were {4 U,] and [4 = v.], where [ ] is the integer part of y
and the U, and V. are independent random variables that are uniformly
distributed on (0, 1). All of our initial states have this structure, so in what
follows we simply refer to the 4, 4 initial condition, indicating the numbers
we used to multiply U, and ¥ . This choice makes the number of hawks
or doves at each site independent and =0, 1, 2, 3 with probability 1 each,
for an expected value of 1.5. As the simulation indicates, the numbers of
hawks and doves rise from initial levels near 1.5 to equilibrate near 2.0 and
2.7 respectively, although there are fluctuations coming from the fact that
there are only 2500 patches.

To determine the behavior of the interacting particle system, we
simulated the process on a 100 x 100 system with veriodic boundary ¢~ -
tions. (That is, sites on the left edge of the sc = are considered -
neighbors of those on the right, and those on ! ~p edge are considered
to be neighbors of those on the bottom.) Figur. shows the evolution of
the system with x =008 and p = 0.4 starting from the 7.5, 7.5 initial condi-
tion. As the figure indicates the densities of hawks and doves converge
exponentially fast to their equilibrium values, although again there are
some {luctuations in the densities due to the fact that there are only 10,000
sites. Based on the simulation and on theoretical resuits due to Neuhauser
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EiG. 4 Average number of hawks () and doves (@) per site in Case | for a simulation
of the interacting particle system on 2 100 by 100 lattice.
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THE IMPORTANCE OF BEING DISCRETE 11

/

7

Fi6. 5. Dvnamical system for Case 2.

(1990) and Ding et al. (1990} for a closely related model of Schlog! (1972)

(see PartlV of Chen {1992) for a survey), we make the following
conjecture.

Conjecture 1.3. The interacting particle system has a unique equi-
librium state that is the limit starting from any initial state (a) that is
transiation invariant and (b} in which each species has a positive density.

That is, it is the limit starting from any initial state in which (a} for any
finite set { ¥us - Yie)» the joint distributions of (X + ¥ ) X+ y,) and
of J,(x+yi e bdx+ y.) do not depend on X, and (b) the probabilities
P(n,(x)=0) and P(L,(x)=0), which by assumption do not depend upon
«. are both strictly less than {. Since only hawks can give birth to hawks
and only doves can give birth to doves, the second assumption is clearly
necessary to get an interesting limit. Assumption (a} comes up several more
times below, so we add a few more words of explanation. This condition
says that the random initial state 1s spatially homogeneous, i.e., the

random picture looks the same (i.e., has the same distribution) no matter
where we stand.

Case 2: The Importance of Being Spatial.

a=0.7 h=04
c=04 d=08
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12 DURRETT AND LEVIN

This may be thought of as two species compet.  for use of the same
resource and in which the competition of each inhibits the other species
more than it does itsell. Again, of course, other interpretations are possible
since a, b, ¢, and d represent net growth terms. In this situation, the non-
spatial models disagree with the ones that treat space explicitly. As Fig. 5
suggests, and one can prove easily using (3), we have the following.

THeOREM 2.1.  The dynamical system has nwo stable equilibria (i, Q) and
(0. G) on the axes, and their basins of attraction contain the whole positive
guadrans except for a line through the origin comaining the eguilibrium
(u*, v*), which is a saddle point.

. The details of the proof are similar to those for Theorem 1.1 and are Jeft
to the reader.

Figures 6 and 7 show simulations of the patch model with x =0.8 and
#=1 for the 5,5 and 7,3 initial configurations, respectively. In the first
case the hawks died out at time 211, while in the second the doves died out
at time 237. Thus in the patch model, as in the ordinary differential equa-
tions, the species that wins cut depens on the initial densities.

7 e
f dovas
/
e e
r /
1 ; / ‘
g i
. S
5 .

.

L Bl

1 hawks

o 50 100 150 200
Time

FiG. 6. Average number of hawks and doves per site in Case 2 for a simulation of the
patch model with 2500 sites and the 5,5 initiai condition. The hawks die out at time 211,
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FiG. 7. Average number of hawks and doves per site in Case 2 {or a simulation of the
patch model with 2500 sites and the 7.3 initial condition. The doves die out at uime 237

The last conclusion 1s not true for the reaction diffusion equation. In this
case for “generic” initial conditions {u(r, x), v)i, x}) converges to (0, &)
uniformly on compact sets. To explain this, we note that results of Gardner
(1982) imply that the reaction diffusion equation has a travelling wave
sotution w(x, r)=U{x—pr1), v(ix,t)=V(x—pr), where U and V are
monotone functions with U{—ow)=0, Ulw)=4, V(-w)=2 V(iw)=0.
Since h=¢ and d>aq, it is not hard to see that in our case the velocity
p > 0. The positivity of p in this case indicates that (at least for this very
special initial condition} an interface between a region of all doves and a
region of all hawks moves in a direction that favors the doves. Based on
this observation, it should not be too surprising that the doves win. A
slight modification of the proof of Theorem 2.2 in Gardner (1982) shows
the following. :

THEOREM 2.2. There are ¢>0 and L<co so that if u(0, x| <e and
[v(0, x) = 6] <& when x is in a ball of radius L centered at some point x, then
(ufr, x), v(1, X)) converges to (0, 0) uniformly on compact sets.

It is the last result on which the first conclusion in this paragraph is

based, since a “generic” initial configuration can satisfy this condition
somewhere in space.
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14 DURRETT AND LEVIN

Figures 8 and 9 show the behavior of the number of hawks per site and
the number of doves per site for the 10,5 and 11,4 initial configurations.
Again k =0.08 and p = L. In Fig. 8 the doves win, while in Fig. 9 the hawks
win. At first glance, this may appear to agree with the predictions of the
dynamical system and patch models, but the picture changes if we consider
the second initial condition on a 200 x 200 lattice. In the simulation in
Fig. 10, the doves are cleariy winning but our ailotment of time for this run
on the Cornell supercomputer elapsed before a complete takeover by doves
could occur. The explanation of the behavior of the interacting particle
systemn is related to our analysis of the reaction diffusion equation. If a
large enough pocket of doves {i.e., a region in space that contains mostly
doves) forms then that region will grow linearly in radius and take over the
systemn. On a smail system this pocket may not have a chance to form, but
if we consider the system on the infinite lattice Z2 and start with a trans-
lation invariant initial distribution with a positive density of doves, such a
pocket forms with probability one and the hawks would die out. Thus, we
make the following.

Conjecture 2.3. Starting from any initial state that is transiation
invariant and in which each type has positive density, the hawks die out;
ie, P(n,(x)>0}—0,

Aversge Number par Grid Cell

T T 1 L) T b
L+ 500 1000 1500 2000 2500 3000 asoo

Time

FiG. 8. Average number of hawks () and doves (#) per site in Case 2 for a simulation

of the interacting particle system on a 100 by }00 lattice with 10,5 initial condition. Note that
the hawks die out just before time 3500.
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FiG. 9. Average number of hawks {33) and doves (#) per site in Case 2 for a simulation
of the interacting particle system on a 100 by t00 lattice with the 11.4 initial condition. Note
that the doves die out before time 400.
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F1G. 10. Average number of hawks (1) and doves (#) per site in Case 2 for a simulation
of the interacling particle system on a 200 by 200 lattice with the 11,4 initial condition. The
doves are starting to take over by the end of the simulation at time 4500,
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Support for this conjecture can be found in the work of Durrett and
Swindle (1993), who consider a model of the oxidation of carbon monoxide
on a catalytic surface. There the corresponding ordinary differential equa-
tion has two stable fixed points and one can identify the equilibrium for the
interacting particle system with fast migration by looking at the speed of
the traveling wave connecting the two fixed points. Such ideas were used
earlier for particle systems with state space {0,1}° by Durrett and
Neuhauser {1993). The idea that one should look at the speed of the
traveling wave to determine the relative stability of equilibria can also be
found in Hutson and Vickers (1992).

Case 3: The Importance of Being Discrete. Casesl and 2 considered
the two possibilities when neither strategy dominates the other. We now
consider what happens when the hawk strategy dominates the dove
strategy. If the matrix entries 4 and b are positive, this case is boring: the
hawks reproduce faster than the doves and drive them to extinction. The
case in which a and 4 are both negative i1s even less interesting: all entries
are negative and both species die out, Things get quite interesting when
a <0< d, however.

a= —0.6 h=09
c=—0.9 d=0.7

In this case, the hawks always do better than the doves, but a population
consisting purely of hawks dies out. (For this it 15 important that 2 <0.)
This case may be though of as a classic lugitive species (Huffaker, 1958) in
a spatial mosaic or as two competitors sharing a resource along a succes-
sional gradient (Levin and Paine, 1974; Whittaker and Levin, 1981). In
each case the dominant species eliminates the weaker one locally but then
dies out itself, and the vacant space is recolonized by the inferior species.

In Case 3, the dynamical system and reaction diffuston system agree that
both populations die out, but both of the interacting particle systems tell
us that the hawks and doves can coexist in an equilibrium. Figure 11 shows
the dynamical system. As can be easily seen from the equation (3), the
fraction of hawks increases with time, and once it gets toe large the total
density of hawks and doves decreases to 0.

THEOREM 3.1. If the initial condition for the dynamical system has
u(0) > 0 then (u(r), v(t})— (0, 0).

Again this can be demonstrated by imitating the proof of Theorem 1.1
and the proof is omitted.
A similar fate occurs for the reaction diffusion equation.



File: 653} 121117 . By:XX . Date:11:0794 . Time:08:11 LOPEM. V8.0. Page o101
Codes: 1350 Signs: 544 . Length: 45 pic Opts, 190 mm

THE IMPORTANCE OF BEING DISCRETE 17

<

Fig. 11. Dynamical system for Case 3.

THEOREM 3.2. If we consider the system in a bounded domain with
Neumann (no flux) boundary conditions, then

u(t, x)
ml‘mm—' 1 m?x{u(r, xy+ofr, x)}—0.
Proof. lnspired by the simplificaction in passing from (1) to (3} we let
p=uf{u+v)and s=u+v. Using subscripts to denote parual derivatives

Fu,(u+u)—u(u,+v_\.) U U— Ui

[

x 3

(u+0)? 5

U= D 2u+v ) (wer—rv )
P = 3 - 3 .
5 s

In one dimension using (2) we have

WU=UU U U~—Uy

i
po=——g =" pglla—c) p+ b=y (1 - p)}

2
=p.‘.‘+;s,p..+pq{(a—':) p+(b—d)(1-p)}
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and it follows easily that in general

b5 2
-£=Ap+;Vs-Vp+pq{(- p+ib- I-p)}

To analyze the last equation we look at p{t)=min, p(t, x) and let x(7) be
a pomt where the minimum 15 achieved. Vp(r, x(1})) =0 and dp(r, x(1)) =20
s0 it follows that

d
Essp(l—m{(a*c}pﬂb—d)(l -0}

In Case 3, a>c . ' b>d. so a routine comparison argument shows that
p(ry—1ast— o, .his is the {irsi conclusion and the second follows easily.
Adding the two eguations in {2),

d
a—j=ds+s{ap2+(b+ AApll=p)+(1—p)d)—xst

To analyze the last equation we look at a(7) = max . s(¢, x) and let y(r} be
a point where the n..«imum is achieved. 4p{rs, (1)) €0 so it follows that

d B 2
d—jga{ap‘+(b+r]p{i—P)+d(1—P)2}“"w-

where p is short for p(i, »(¢)). Now when p is close enough to 1 the

expression in braces is negative so another comparison argument shows
g0 ]

In contrast, the hawks and doves coexist in the two stochastic models
with discrete individuals. Figure |2 shows a simulation of the patch model
with k=002 and g=1 for the 2,8 initial condition. After an initial
dramatic increase in the number of doves, the system settles down o an
equilibrium. Some indication of how the equilibrium is maintained can be
found in Fig. 13 which describes the state of the system at time 300 for the
realization pictured in Fig. 12. At some sites the fraction of hawks is small
and the number of individuals increases in one time step, while at some
sites the fraction of hawks is low and the number of individuals decreases.
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FiG. 12.  Average number of hawks and doves per site in Case 3 for a stmulation of the
paich model with 2500 sites and the 2,8 initial condition.
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Fi. 13. A look at the distribution at time 300 in the simuiation in Fig. 12 To explain the
table, there are 424 sites with 4 hawks and 33 sites with 4 hawks and 7 doves.
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FiG. 14 Average number of hawks and doves per site in Case 3 for a simulation of the
patch model with 2500 sites and the 2,8 initial condition. The parameter « here is 0.08 instead
of the 0.02 used in Fig. 12, and the hawks die out at time 211.

Observant readers may have noticed that in the last simulation we took
x=0.02 instead of x = 0.08. Figure 14 shows the reason for this: if we set
x =0.08 (keeping =1 and the 2.8 initial condition) the hawks die out at
time 211. The effect of lowering « is to decrease the number of individuals
per site, Qur computer experiments indicate that when the number of
individuals per site is too low then the situation depicted in Fig. 13, where
there is a balance of growth at some sites and a decrease at others, cannot
become established. We leave it to others more skilled in the study of these
models to resolve this mystery.

A typical simulation of the interacting particle system in Case 3 begins
with a period in which the hawk population grows faster than the dove
popuiation until the fraction of hawks is too large and both species start
to die out. When the density gets low we have a few doves who are com-
pletely isolated and give birth at rate d=0.7. These doves start colonies
that grow and would fill up the space to the doves, preferred equilibrium
density, except for the fact that along the way they encounter a few hawks

-
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that managed to escape extinction. These hawks reproduce faster than the
doves, the fraction of hawks grows, and the cycle begins again.

Figure 15 gives a graph of the density of hawks vs time for a simulation
on a 350 x 30 grid. At first glance this figure might seem to indicate a much
more exotic {or, gasp, chaotic) behavior than simple convergence to equi-
librium, but this is simply a “finite size effect.” Figures 16 and 17 show the
hawk density vs time on 100 x 100 and 350 x 150 systems. As the system
sizes increase the oscillations decrease. The explanation for this is simple:
if we look at a 150 x 150 grid then the cycle of growth of the hawks’
fraction, decrease of the population, and regrowth from isolated doves in
any 50 x 50 subsquare is much like that of the simulation on the 50 x 50
grid. However, the 150 x 150 system consists of nine 50 x 50 subsquares
which do not osciilate in a synchronized fashion, so the cycles cancel each
other out to some extent. If we had the patience and computer time to
simulate this model on a very large system we would see a graph much like

the one in Fig 4 where the densities converge exponentially fast to an
equilibrium level.

Conjecture 3.3. 1f we start the particle system from an initial transia-
tion-invariant distribution in which each species has positive density, then

the system will converge to an equilibrium state in which each species has
positive density.

4.0 4

35+

3.0 4

Average Number per Ged Cell

2000 2500 aooe 3500

Time

FiG. 15. Average number of hawks () and doves { % } per site in Case 3 for a simulation
of the interacting particle system an a 50 by 50 lattice. The neighborhood of a point x is a
5 by 5 square centered at x.
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FiG. 16. Average number of hawks ([H) and doves (#) per site in Case 3 for a simulation

of the interacting particle system on a 100 by 100 iattice. The neighborhood of a point x is
a 5 by 5 square centered at x.
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F1G. 17.  Average number of hawks (21) and doves (# ) per site in Case 3 for a simulation
of the interacting particle system on a 150 by 150 lattice. The neighborhood of a point x is

a 5 by 5 square centered at x. Comparing with Figs. 8 and 9 we see that increasing the system
size greatly reduces the oscillations,
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The last conjecture is similar to the behavior of the patch model (when
the hawks do not die out there) but there is one substantial difference. The
equilibrium state for the particle system displays an interesting spatiai
structure which is responsible for local oscillations in the density of the
hawks and doves. Such phenomena are of course impossible unless the
patches have some spatial reiationship.

In the simulations reported in the last paragraph we have taken
.1 =43, a five-by-five square centered at the origin. If instead we use the
nearest neighbors .4~ = .4 then there are almost no oscillations. See Fig. 18
for a simulation using the neighborhood .4 on a 100x 100 grid. The
reason for this difference is simpie: the larger neighborhood over which the
averages are taken makes the local {raction of hawks less random and
makes the system behave more like the dynamical system. To explain the
last remark, consider our system on an N x N grid and suppose (i) each site
uses an interaction neighborhood equal to the entire lattice and (ii) each
particle experiences deaths at rate x(i” + 57), where 4 and ¢ are the
number of hawks and doves per site at time . Then it is easy to show
that as N — o0, 4" and ¥ converge to the solution of the differential
equation (1),

5 -
o 47t
! 4
6 b
3 31
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; b
5 2
4
)
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H 1
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o T L) T T L 1
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Time

FiG. 18. Average number of hawks {3) and doves { %) per site in Case 3 for a simulation
on a 50 by 50 lattice. The neighborhood of a point x now contains x and its four nearest
neighbors. Note that the densities no longer oscillate.
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3. PArRTIAL DIFFERENTIAL EQUATION LIMITS OF PARTICLE SYSTEMS

The last paragraph explains the connection between the interacting par-
ticle system and the dynamical system. To complete the circle of ides we
now explain how to get a reaction diffusion equation as a limit of an inter-
acting particle system by making the migration fast and scaling the iattice
appropriatety. That is, we take the diffusion constant to be u=4&¢~2 and
consider a lattice £éZ” with spacing ¢ between the points. Suppose we start
with ng(x) and {5(x), xeeZ? independent and having Poisson distribu-
tions with means w(0, x) and v(0, x). [Recall that if X is “Poisson (4),” that
is, has a Poisson distribution with mean 7, then P(X =k)=e " “i%/k! for
k=0,1,2,..] Let u'(r,x)=En‘(x) and o%(r, x)= E{(x) be the mean
number of hawks and doves at x at time 1.

Claim 4.1, As e— 0, u(1, x)— u(t, x) and v*{t, x) = v{z, x) where v and
v are the soluticns of

‘f—“=du+u{a(h+(1-—h)~f~—)
at u+v

L —x(1+u+v)}
+ U

U+

+d(h+(i—h) a )—K(l+tr+v)}

with

he l_e—l."llu+rJ
=hl o) = T

where |.47] is the number of points in the interaction neighborhood.

Zxplanation of the Claim.

It is easy to see the source of the 4u. Individual hawks perform random
walks at rate 4¢ 77 on a lattice with spacing ¢ so the central limit theorem
implies that in the limit the particles perform Brownian motions. The
constant 4 in the jump rate has been chosen so that the limiting diffusion
constant is 1.

The first step in deriving the reaction term is to recall that if we consider
particles performing independent random walks on Z? then under suitable
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assumptions' the joint distribution of the number of particles at any finite
set of points converges to independent Poisson random variables with
mean 4. See Dobrushin (1956) or Stone (1968). Combining the last obser-
vation with the fact that the migration occurs on a much faster time scale
than the game interaction, it follows that in the limit as £ — 0, sites near x
at tume 7 are independent and have a Poisson number of hawks and doves
with means u(r, x) and v(¢, x).

Proving the last ¢laim rigorously is difficuit. See Boldrighini, er al. (1587)
for a proof of the analogous result for Schidgl's model, and see Spohn
{1991) and DeMasi and Presutti (1991) for general surveys on the topic of
these “hydrodynamic limits.” If we accept the conclusion that in the limit
all the sites in an interaction neighborhood are independent and have the
indicated Poisson distributions then it is straightforward to compute how
the density of hawks and doves will change with time.

Let U and V be the number of hawks and doves at x, and let {7
and V' be the total number of hawks and doves at the neighbors y # x.
Suppressing the (¢, x) and letting N =|.#"| be the number of points in the
interaction neighborhood (whichy by definition contains 0} we see that in
the imit U, V, U’, and V' will be independent Poissons with means u, v,
{(N—1)u, and (N—1)v. Letting T= U+ U’ + V+ V", the rate of change of
the density of hawks due to the game interaction is

Uu+u V+ v
E(U{a- T +5- T }—I\UT).

To compute the expected value we condition on the vaiue of T and use the
fact that the distribution of (U, U’, (¥ + V")) conditional on T'= m ts multi-
nomal (m; p,q,r) with p=u/(Nu+ Nv), g=(N—1)u/{Nu+ Nv), and
r=v/(u+ v}, That is, the vector has the same distribution as the number of
occurrences of three disjoint events with probabilities p, ¢, and r in n
independent triais. Basic facts about the multinomial distribution imply

E(U\T=m)=pm E(UHNT=m)=mp(l — p}+ (mp)?

EUU | T=m)=m(m—1) pg.

! Specifically, we refer to the assumptions that the initial state is translation invariant and
ergodic with density 4. Loosely, ergodic means that the initial state is not 2 mixture of two
different initial states. e.g., having no particles anywhere with probability { and having 24
particles at every site with probability |

which
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Conditioning on the value of T we have

U' * "t
E(GUU; ):a Z e—(NuéNc-)(Nu+Nv)

!
. m!

2 .
xE(M‘ T=,,,)

m

- (Nu+ Ny

=g Z e—(Nu-i-Nl’)

- |

m!
x{ptl~p—g)y+mp(p+gq)}

=aifpr)l —e~M¥ NNy L (Nu+ Nv) p(p+q))

ﬂh+(luh)uiv)’

Similar computations, which are left to the interested reader, give the other
terms in the first equation. The result for duv/dr follows by symmetry,

Comparing (4) and (2) reveals two differences: there is an extra | in the
death term (which comes from the fact that E(X?)= i+ i, not 42), but
more importantly, the form of the game term has changed. To examine the
second difference, we note that A(u, v) converges to ! as {(u+v}—0 and
decreases to 0 as (v +v) T oc. When 4 is close to 0 (which occurs for exam-
ple if N=|.4"| is large) the game term is almost what it was before. When
A is close to 1, the game term is almost a in the first equation and d in the
second equation, reflecting the fact that when the density is small most
individuals are isolated and think that the universe consists exclusively of
their own type.

The changes in the limiting equation bring about a drastic change in the
behavior of the reaction diffusion equation and the associated dynamical
system. As Fig. 19 shows, we have the foilowing.

Conjecture 4.2. The dynamical system now has a globally attracting
fixed point.

Using the reasoning employed for Conjecture 1.2, we make the following.

Conjecture 43. Consider the reaction diffusion equation starting from
any initial state in which 4(0, x) and (0, X) are nonnegative, continuous,

and not identically 0. Then (s, x) — p, and v(¢, x)~ p, uniformly on com-
pact sets.

I'h/v;—:
lile e
6 b,



File: 6530 121727 . By-XX . Date:1 1:07:94 _ Time:08:11 LOPEM. VE0. Page 01:01
Codes: 1604 Signs: 941 . Length: 45 pic O pis, (90 mm

THE IMPORTANCE OF BEING DISCRETE 27

Fig, 19. Picture of dynamical system [or (4) indicating the presence of an altracting lixed
point.

Equation (4) is not the oniy limit that we can obtain. One can argue that
in computing the death rate due to crowding you should not count your-
self. and likewise in the game step you shoul not play the game against
yoursell. Thus, isolated hawks should give birth at rate r, and hawks that
have at least one other individual in their interaction neighborhoods
should give birth at rate

ﬁf('t) -1

rtap,(x) 41— 5 (x))  where B,(x)= S
ﬁr(-\'}_l*‘Cr(:\")

where #,(x) and {,(x) are the total number of hawks and doves in the
neighborhood of x at time «. If we make similar changes in the birth rates
for doves and take the limit as before we have the following.

Claim 4.4. As e—0, u*(s, x) — u(s, x) and ve(t, x) — ¢(t, x) where u and
¢ are the solutions of

Cu u v
—-—=d . —
Y u+u{r+g (au+u+bu+v) h(u+v)}

d
-_—v=dv+v{s+g-(c L +d z )—x(u+v)},
ct Ut U+

(5)
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where

g=g(h‘, U)= 1 —e‘l-‘ {tw 4+

1s the probability of having someone else in our interaction neighborhecod.

Most of the reasoning used in the explanation of Claim 4.1 applies
verbatim, so we omit the details,

The dynamical system associated with {5). like the one with {4), has an
attracting fixed point; however, it is easier 1o analyze since it responds
better to the change of vanables p=u/(u+¢) and s=u+ 0. We do not
enter into a detailed analysis of the equations in (5) since the point we
wanted to make is that even if you do not want to use interacting particle
systems as models, their viewpoint is useful for deriving appropriate
reaction diffusion equations. Of course, the other point we have tried to
make 15 that you should add interacting particle systems to your repertoire
of models. For more propaganda on the last point see Durrett and Levin
{1993).

4, SUMMARY AND D1SCUSSION

It has long been recognized (Huffaker, 1958; Levin, 1974; Smith, 1972)
that heterogeneous space can enhance the coexistence of species and
{Levin, 1974; Chesson, 1981) that corresponding consideration of space
will aiter the outcome of models of population interactions. There are,
however, a number of different ways that space makes its influence felt and
different modeling approaches isolate or emphasize the importance of
particular mechanisms. Levin (1974} discusses the interplay of spatial and
temporal scales, and focuses attention on “local uniqueness” (intrinsic
differences among habitats), "phase differences” (timing differences in
potentially identical environments), and the effects of dispersal. Locally
stochastic colonization and extinction phenomena, coupled with the enhan-
cement of differences through nonlinear dynamics, can lead to coexistence
through nonuniform patterns in space and time. Chesson (198]) explores
the interplay between nonlinearity, inhomogeneous interaction (including
the effect among patch variability, local uniqueness, and dispersal), and
within-patch vanability (including phase differences). The major new
aspects of Chesson’s work were in broadening the range of stochastic
phenomena permitted, and in the recognition of the quantum nature of
populations—that is, individuais come in discrete units. In this paper we
extend both of these approaches through the introduction of interacting
particle systems, which capture features of both (see Fig. 1).
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In recent years the importance of spatial phenomena has been recognized
increasingly in discussions of the ecology and evolution of species (Comins
and Noble, 1985; Levin, ¢7 al., 1984 ; Comins et al., 1980; Pacala 1986) and
in terms of modeling approaches (Levin, 1976; Okubo, 1980; Chesson,
1985); May and Nowak, 1992; Hastings, 1993). Each approach has its
advantages and disadvantages and leads to unique conclusions. In this
paper we select three prototypical spatial approaches from among this
bestiary and compare the predictions with the null model of no spatial
detail. Specifically, our focus is on the comparison of four different
approaches to modeling the dynamics of spatially distributed systems:

I. mean field approaches (described by ordinary differenual equa-
tions} in which every individual is considered to have equal probability of
interacting with every other individual;

2. patch models that group discrete individuals into patches without
other levels of spatial structure (i.e., individuals interact equally with all
individuals in the same patch and there is between-patch migration that
treats all other patches equally;

3. reaction-diffusion equations, in which infinitesimai individuals
diffuse in space and undergo purely local interactions;

4. interacting particle systems, in which individuals are discrete and
space is treated explicitly.

To compare and contrast these four approaches we examined three exam-
ples of ipteractions in spatially distributed populations. As the remarks
belowindicate, the diflerences we have observed in the four
approaches are of interest beyond the models and point to the consequence
of particular influences such as localization of interactions or discreteness
of individuals.

In the first case where the fitness of one type of individual is enhanced
by the presence of the other, all four approaches reach the same conclu-
sion: there is a unique equilibrium that is the limit starting from any initial
state in which both species have positive density. More generally, we expect
this consensus of opinion to occur in most cases in which the ordinary
differential equation has a globally attracting fixed point.

In the second case where two individuals compete for the same resource,
the spatial modeis disagree with the nonspatial ones. The ordinary differen-
tial equation has two stable equilibria on the axes and their basins of
attraction contain the whole positive quadrant except for a boundary line
which is attracted to the interior equilibrium. Similarly, in the patch model,
the species that wins depends on the initial densities of the two types. By
contrast, in the reaction diffusion equation and in the interacting particle
system there is one species that is the winner whenever it is present at a

Skouu




File: 653 121730 By:XX . Da1e:11:0794 . Time:DR:|] LOPEM. V8.0. Page 01:0)
Codes: 3343 Signs: 2997 . Length: 45 pic O ply, 190 mm

30 DURRETT AND LEVIN

positive density. In the spatial models, the victorious type first establishes
itself in some region which then grows linearly in time and covers the entire
space. A general picture at covers this case is that when we have two
stable equilibna, their re .cve stability in the reaction-diffusion equation
can be determined by examining the speed of the traveling wave connecting
the two equilibria. Results of Durrett and Neuhauser (1993) and Durrett
and Swindle (1993) show that the last rzasoning is valid for interacting
particle systems with fast migration.

In the third case, the first type (hawks) always reproduces faster than the
second type {doves) but a population of pure hawks dies out. In this case,
the deterministic models die out since even when the density of hawks is
10~° and the density of doves is 10~? their mixing assumptions imply that
each individual thinks that 99.9% of the world is hawks. In contrast, in the
patch model, since there is only local mixing, an equilibrium can become
established in which growth at some patches is balanced by decrease at
others. The interacting particle system in this case equilibrates by a similar
mechanism. Simulations of the particle sys' n begin with a period in which
the hawk population grows faster than th: dove population until the frac-
tion of hawks is too large and both species start to die out. When the den-
sity gets low there are some doves that are isolated and start colonies that
grow until they encounter hawks that have managed to escape extinction;
the cycle then begins again. Even though this case goes und.: the heading
of “the importance of being discrete,” we shouid note that the equilibrium
for the spatial model has interesting spatial structure not possible in the
patch model. The most familiar biological exampies are fugitive species (see
Huffaker, 1958; Levin, 1974) and the coexistence of species sharing a
successional gradient (Levin and Paine, 1974).

Finally, we show that particie systems are a vehicle for deri- “7g limiting
reaction-diffusion equations. The key to this derivation, whiz  ne reader
might find useful in other circumstances, is that if the migratio  fast com-
pared to the other rates, we can obtain a reaction-diffusion .. uation by
assuming that the states of our sites are independent Poisson random
variables and then computing how the densities change. When we apply
this procedure to the example in Case 3, the new reaction term has an
interior equilibrium point, in contrast to the ordinary differential equation
which has a family of homoclinic ort:ts that begin and end at (0, 0).
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