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Aerial photographs of migrating wildebeest herds reveal striking distributional
patterns. including wavy fronts. These patterns vary over scales that are much larger
than the individuai’s perceptual range, and thus cannot be explained simply as
random Huctuations on uniformity, Furthermore, since the individual is only aware
of its immediate surroundings, broad-range patterns must be explained in terms of
local decisions.

This paper suggests a model for the dynamics of large herds and a mechanism for
therr self-organizing pattern formation. We overcome the problem of modeling z
two-dimensionat distribution of a large population by considering only the leading
laver. The conditions under which uniform fronts are stable (or unstable) are
analyzed. In the latter case, small perturbations on uniformity evolve 1o large-scaie
patterns. as we demonstrate by computer simuiations, We suggest this as a possible
mechamism for spontaneous generation of long-range patterns.

1. Introduction

Wildebeest herds. massing in the Serengeti during migration season. are a
spectacular sight. Aertal photographs of these herds reveaj a striking variety of
patterns formed by the herd’s front (Sinclair, 1977; Scott. 1988). All share the same
characteristic zigzagged irregular wavy front with a typical wavelength large with
respect to the body-iength (e.g. see Fig. 1).

The absence of any evide.ce of long-range communication in the herd, means one
must seek explanation of such patterns in terms of local interactions. The individuai
wiidebeest lacks any knowledge about remote sections of the herd, and rather is
aware oniy of its immediate surroundings. Yet, front patterns consistently vary over
a scale much larger than the individual’s perceptual range. Were this phenomenon
the resuit of random fluctuations on uniformity, the typical waveiength wouid be
much smailer (body-length scale) and the patterns would not be easily distinguish-
able by means of aenal photography. Consequently, one must assume that they are
self-orgamzing, building and reinforcing on inhomogeneities. In this paper we seek
the mechanisms responsible for spontaneous generation of such long-range patterns.

Grouping is a common social behavior in mammals. The number of individuals in
herds can range from dozens (e.g. zebra) to hundreds (e.g. bison, buffalo
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542 S. GUERON AND §. A. LEVIN

{Mloszewski, 19837 erhaps the largest exampies are wiidebeest herds. which can
consist of 100000 :ndividuals or more (Sinclair, 1977, Herding s probabiy a
response to predation, decreasing the individual’s chance or being preved upon
(Bertram. 1978).

Many models. both discrete and continuous. have been suggested to incorporate
greganous behavior in various species (see Okubo. 1986, for review) In the
continuous models (e.g. Keller & Segel. 1971: Odell & Keller. 1976; Gueron & Liron.

1989} the population is represented by a densitv function ie, number amount of

appropriate differentia] equations. The fundamenta] assumption underlying con-
tinuous models is that “many” individuais are found in 4n area whose characteristic

this assumption may be appropriate for insect swarms fe.g. Okubo & Chiang, 1974)
Or bacterial aggregations (e.g. Gueron & Liron. 1989) it is fess suitable for most

mammalian herds. The relatively small number of individuals {compared with

at each time step (e.g. Hamilton, 1971; Grinbaum. 1992; Hyth & Wissel, 1992).
Obviously, one cannot seek to account for the behavior of every individual in g
herd involving more than a few individuals. and some simplifications are necessary.
These are justified by our recent simuiations with small herds (Gueron et al.
unpublished datal. For small herds we found that differences in (he intrinsic walking
speeds are enough to cause faster individuals (“speeders™) 10 become “leaders” (i,
the individuals at the fron:. with respect to the direction of propagations conse-
quently, we assume thar leaders emerge rom a distinet subgroup of the herd.

the scale that the patterns are observed. This enables modeling of (the front of) a
two-dimensional “array” of many individuals with the reduced computational effort
of modeling a curve in two dimensions, With this simplification. we were able to
model and simulate the teading-front band of wildebeest herds. as detailed in sections
2 and 3. The conditions that make traveling fronts stable or unsiabie are analyzed in

mteractions.

2. Modeling Assumptions and Notations

For large aggregations. such as wildebeest herds, clearly one should not endeavor
t0 account for the dynamics of every individual in the herd. Ope must strive either
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problem”,

To this end, we use the results of our recent simulations with small herds (Gueron
et al., unpublished data). Modeling of smail herds revealed that the herd “leaders”
{L.e. the individuals ar the front, with fespect to the direction of propagation) belong
o a distinet Eroup, namely those that (for whatever reason) inherently have a faster
walking pace {speeders). Without any global plan (or knowiedge of the global
distribution of the herd), speeders simply advance, overtaking siower individuals, and
finally generate 3 leading band that consists of only speedy individuals. The
Propagation direction is controiled mainly by these leaders. This allows for some
simplifications in modeling wildebeest herds at large scales. Since the pattern
development we are addressing is defined by the leaders, we regard only the “leading
band” for analvzing this phenomenon,

The front laver is modeled as a curve Wx, 1), xe(~o0, ), >0 evolving in both
time and space. Ip this model we assume that the speedy band has “perfect
directionality". This contributes a further simplification by implying that changes in
the velocity are reflected only by changes in its magnitude (while the direction
Temains constant). With no loss of generality, this direction is chosen to be the
direction of the ¥ axis,

operator
X+d
Ay(x, 1)) = 1 f Y(s, )ds— y(x, ¢). (1)
254,

A is a measure of the €xtent to which an individuaj [located at the ¥ix, 0] is

“leading”, compared with the average location of the neighborhood (ranging 4 to
each side) surrounding it,



e

544 S. GUERON AND 5. A, LEVIN
3. Traveling Front Solutions

We begin by seeking steady-state solutions that produce “wavy” front patterns
and, in particular, vary over scales that are larger than O(d) (in other words, a typical
«wavelength” should remain finite when —ao). This leads us to look for traveling
front (TF} solutions, defined as solutions of eqn (2) that have the form

y = ug(t)+/(x) 3

for some (smooth) functions u(z) and f(x). A traveling front is called uniform (UTF) if
fix) is constant (independent of x). As we shail show, no such TF solutions have the
desired properties; however, solutions that bifurcate from some of the TF solutions
do seem to mimic desired patterns.

In order to find the possible TF solutions we substitute the TF solution (3) into
eqn (2) to obtain

itolt) = volt)+ F(ALXN). (4
Therefore, a necessary condition for a TF to exist is
F(A(f(x))) = const, (5
which yields (assuming a non-trivial function F)
A( fix)) = const. (6)

It is easy to see that condition (6) is also a sufficient condition for the existence of a
TF: and if it is satisfied, u, can be computed so as to satisfy eqn (2).

The general solution of eqn (6) can be found if we restrict our discussion to
solutions of polynomial order (i.e. solutions that are bounded by cjx|* as | x|—ce, for
some positive integer 7 and a real constant ¢). Differentiating eqn (6) yieids the
differential difference equation :

1
% (flx + 8)— flx — ) = f"(x). (7

With the above restriction, the solutions of eqn (7) can be expressed as linear
combinations of functions of the type

fix) = plx) %, {8

where § is a root of the characteristic equation of eqn (7) and p(x) is a polynomial
whose degree is less than the multiplicity of § as a root (Bellman, 1963). Simple
computations show that this is equivalent to finding the real roots of the character-
istic equation

sin(3) - B = 0. 9)

The only real solution of eqn {9) is =0, and its multiplicity is 3. Therefore, any
quadratic

flx) = Ax*+Bx+C (10
is a possible TF.
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These solutions, however, are not bounded (for 4 #0o0or B=0)on xe{— 0, )
and do not yield the multiple peaks we seek.

4. Stability Analysis of Traveling Fronts

Looking at the front patterns of large herds (Fig. 1), one can clearly detect
irregular “fingers” emerging in the propagation direction. None of the TF solutions
described above exhibit such large-scale patterns, and thus we direct our efforts to
stability properties of TF solutions. Let u be a TF solution of egn (2)- Assume that

Alu(x)} = co (1D
[see eqn (6)] and that
Fleg) = b #0. (12)
The traveling front uisa (linearty) stable solution of eqn (2) if b > 0, and unstable if
h<0 For0<k<lthe TF u is always unstable.
To see this, consider a smail perturbation (k) on the TF (), namely

y = uix, )+hix, 1. (13)

Differentiating eqn (2), with respect to x, and linearizing about A(#) = ¢, yields
h, = bA(h) = %[h(x + 8, 1) —h(x—8, )] —bhx. {14)

We look for the modes [ie. solutions of the differential—difference eqn (14)] that
exhibit exponential pehavior in time. These are defined as

h = e*g(x) (15)
for some f{unction g(x). 1f all of the possible values of & satisfy Re(a) < 0, h decays
exponentially, and the TF is stable. If there is a mode for which Re(x) >0, then h
grows exponentially; and thus the UTF is considered unstable. The UTF is termed

neutrally stable if it is not unstable, but there is a mode for which Re(a)="0.
Substituting the expression (15) into eqn (14) yields

b
2g = 55 [glx +8)—g(x—d)]—bg" (16)

The (polynomial order) solutions of this difference equation are exponentials of the
type g(x) = ¢i#*_Since g(x) is the perturbation at that time ¢ = 0 [see eqn (15)], it must
be bounded on X&{— =, ), to avoid violating the assumption that his a small
perturbation on % This implies that g must be real.

Equation (16) gives

i __E_ ud _ o ind __Eli ;
(e:+k):,u.—2rS [e g = 65111(,(15) (17)

and finaily transiates to
2=b (5“‘ W) _ 1). (18)
ud

R
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The conclusion is that the signs of @ and b are opposite, which completes the proof.

We can now apply the stability analysis to the only bounded solution in this case.
namely, the UTF [ie. A=B=0, C+#0 in eqn (10)]. With A(const) =0, F becomes
the response to deviations from uniformity. With no loss of generality we assume
that F(0) =0, which allows v, to be interpreted as the walking speed when “leveled
up” with the neighbors.

The case where b > 0 implies that trailers speed up and leaders slow down. With
this interpretation it is clear that UTF is a stable solution that would evolve from
arbitrary initial conditions. In the case b <0, leaders are “encouraged” by being
ahead of the local surroundings and tend to speed up so as to maintain this situation.
The trailers do the opposite. With this behavior pattern the UTF is unstable. This
instability may potentially yield the desired patterns (the behavior of the unstable
solutions will be demonstrated in the Results).

The value of 4 that maximizes a for the case b < 0, that is of interest because it
gives a rough approximation to the characteristic wavelength observed with the non-
linear problem, is considered. Computing this value from eqn (18) yields

4493
~— 19)
umnx 5 ( /

5. Resuits
For numerical computations, eqn (2) is transformed to the discrete form
Vi=vo(t)+ F(A(y)), i=1...n (200
and A is replaced with

1 i+
Alyix, t)) = —— = Vi 21
(yilx, 1)) 2p+1,~_‘,‘-4‘_p,” y 21

The continuous (infinite) region xe(—cc, ) is reptaced with the finite set of
samples at i=1...n In order to simulate an “infinite” curve {(and overcome the
definition problem at the indices n—p < j < nand at 0 < < p), we define the running
index (j) in egqn (21) above, in a “wrap around” order [ie. j=jmodn, for
n—p<j<nand j=n+{jmodn) for 0 <j<p].

Equations (20) and (21) form a system of n coupled ordinary differential equations
for the variables y,.

v(t) represents a segment of the herd’s front layer. The interpretation we give the
discrete description is that the front-layer segment is represented by n “pixels”. The
distance between two neighboring pixels is defined as one unit. At the scale we
observe the herd, each pixel may be a cluster of several individuais. The rest of the
herd (i.e. the trailing layers), which is not modeled explicitly, lies behind the front
layer (in the negative direction of the Y axis) and “fills in the gaps” as they deveiop.
From eqn (21) it follows that each pixel interacts with p neighbors (on each side).
Local interaction is impiemented by satisfying p/n « 1.

Equations (20) and (21) are written in dimensionless form. We define our length

L S,

N N .
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and time units in such a way that the intrinsic veiocity, vy, equals 1. In the
stmulations, we chose a dimensionless time step of 0-1.

F, the response to displacement from a uniform position, satisfies F(0)=0. It
should also be bounded. Since it represents the velocity change, corresponding to a
given displacement, its magnitude should not exceed v, (to avoid negative velocities,
or exceeding twice the intrinsic velocity). F should have one positive and one
negative simple root. This ensures that when the magnitude of displacement is too
large, the behavior trend is reversed, which is important to keep the herd from
segregating (otherwise, for example, encouraged speeders will go on speeding and
never stop to “wait” for the trailers to catch up). For our simulations we used a
particular function that satisfies the above requirements, namely

F(A) = +sin(A), {22)

where the sign + is chosen as + to demonstrate the stable cases (i.e. cases where the
uniform traveling {ront is a stable solution) and for the unstable cases (cases where
the uniform traveling {ront is an unstable solution).

For the stable case, the response to lagging behind is speeding up, and the
response to being ahead is slowing down. As implied by the stability analysis, the
uniform traveiing front is a stable solution for such cases. It is expected to be an
“attractor” in the sense that any initial conditions will eventually lead to a uniform
front after a long encugh time has elapsed. This was, indeed, the case in all of the
“stable” models’ simulations. As an example we present the results of a run with
n=250 and p=2. The initial arrangement was the randomiy perturbed wave
(containing six cycles)

y(0) =5 (sin (6—?) +sin (1%?) +Ri), (23)

where —0-2 < R; <02 is a random perturbation.

Figure 2 shows plotted traces of y(t) versus i for different time steps. Clearly, the
initial pattern decays to a uniform front.

In the unstable cases, the response to lagging behind is slowing down (until the
gap reaches the saturation level where the behavior is reversed). On the other hand,
being ahead is “encouraged” by speeding up (until the gap reaches the saturation
level where the behavior is reversed). For such cases the uniform froat is an unstable
solution, and small perturbations are expected to grow and to generate some
irreguiar patterns. Our main goal was to check whether the unstable case can yield
“wavy” fronts where the typical wavelength is on a larger scale than the typical
interaction range. This was found to be true, and “local” rules produced “long range™
effects. We also found that, after bifurcating from the uniform arrangement, these
solutions reach a “semi-steady state™, although they keep changing (in time), the
changes remain on a small scale and thus the global patterns seem persistent. One of
the factors that controis that actual “shape” of the generated patterns is how local
the interaction range is (i.e. p). To demonstrate these observations we present the

™ [
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FiG. 2 The stable case. Traces of y,(r) versus i for 17 different time steps ¢ = 0. 50, 100, 150. 200, 250. 300,
350, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000.

results of three runs with n = 1000 and p = i, 2, 3, respectively. The initial conditions

were set as
y:i(0) =01 (sin (%) +sin (?) + R,»). (24)

The results are displayed in Figs 3-5. These are plots of y(t) versus i (for t = 200)
with shaded areas that represent the trailing layers as they “fill in the gaps”. The
shaded areas were added to the piots, to make the results easy to be compared with
aerial photographs of actual wildebeest herds. The qualitative agreement is, indeed,
satisfactory (see Fig. 1). Further, comparing Figs 3, 4 and 5, which represent
simulations with different values of &, reveals that the ratio of the observed
characteristic wavelengths is roughly as predicted from eqn (19).

Propagating direction >>>
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FIG. 3. The unstable case. Traces of y,{t = 2000 versus | with shaded arcas that represent the trailing
layers as they “fill in the gaps™. In this run p = 1. The smooth initial conditions produce wavy patterns.
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Fi6. 4. The unstable case. Traces of y(z = 2000) versus i with shaded arcas that represent the trailing
lavers as they fill in the gaps. In this run p = 2. The smooth initial conditions produce wavy patterns.

In order to compare the qualitative properties of the different fronts and their
dependence on n and p, we define the “effective length” (EL) as the length of the
curve (defined by the front), divided by n. With this definition, the EL of a uniform
front is 1. and larger EL values indicate more “oscillatory” patterns.

Since different values of n correspond to modeling different front segment-sizes, it
is important to verify first that the EL is independent of n. If this were not the case. it
would mean that the fronts have a fractal dimension different from one, and any
observations might depend on the discussed front-segment (i.e. the number of pixels
that are considered) rather than only on the intrinsic parameters of the model. In
Fig. 6 we display the dependence of the EL on n for p=1,2, 3 (with the unstable
case). It is shown that the EL is independent of n, which indicates that modeling a
1000-nixel front is a sufficient basis to draw conclusions.

From Fig. 6 one can also conciude that the EL is a decreasing function of p. This is

140&
120‘

Propagating direction > >

Location aiong the line

FiG. 5. The unstable case. Traces of y{t = 20001 versus i with shaded areas that represent the trailing
lavers as they fill in the gaps. [n this run p = 3. The smooth initial conditions produce wavy patterns.
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emphasized even more in Fig. 7 that shows the dependence of the EL on p, for
n = 1000. It implies that the fronts become more “erratic” as the interaction becomes
more local.

Figure 8 displays the dependence of the EL on the elapsed time. The EL reaches
an asymptotic value (depending on the different values of p) after ~400 time steps.
This indicates that pattern generation is a persistent phenomenon. A relatively short
time (less than 15 time steps) after the fronts start evolving, they attain their final
characteristics, which are maintained thereafter.

6. Discussion

The aim of the model was to éuggest a mechanism for self-organizing front
patterns. This addresses a basic question in pattern formation: how can a long range
effect emerge from very local mechanisms? Qur model suggests a simple mechanism
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FiG. 7. The dependence of the front effective length on the number of interacting pixels {p) for the
unstable case. Here, n = 1000 and the EL are measured at ¢t = 1000
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that spontaneously produces the front patterns, namely, the instability of a traveling
front.

The reason we deal with traveling front solutions and then investigate the partterns
that bifurcate from traveling fronts (as an instability effect), is the persistent appear-
ance of the fronis in different aerial photographs. This indicates that we cannot rely
on transients to explain these frequent occurrences. The results we obtain from the
unstable cases show characteristic resembiance to the experimental evidence. These
evolving fronts also have the important property of persisting for long time periods.
thus making them easily noticeable phenomena, as required. Of great interest is the
fact that the patterns fit the experimental observations better as the neighbor
interaction becomes more local. Further, simulations done with large values of p {e.g.
more than 10} yield flatter fronts. Whereas the individual cannot be expected to have
a long perceptual range, it is certainly reasonable to assume that it could adjust its
behavior according to its nearest neighbors.

We conctude with pointing out another application of our approach for modeling
narrow bands.of walking animals. such as commonly observed winding lines (two or
three individuals in width) of wildebeest, zebra or buffalo (e.z. Sinclair, 1977; Scott,
1988}, or ant trails (Wilson, 1971: Alt & Hoffmann, 1990). The analysis offered in the
previous sections can be applied to such problems as weil, in order to expiain the
generation of the wavy patterns defined by these bands. For this, one can assume
that the propagation is in the direction of the x axis and that (in this direction) the
individuals keep the same spacing from each other. In addition to marching in the x
axis direction. an individual can adjust its position compared with its (back and
front) neighbors by moving sideways. In cases where only the front neighbors. are
considered. the operator A [eqn (1)] should be defined as “one sided”. With the
modified interpretation, v, should equal 0 in eqn (2) (i.e. no tramslation in the v
direction}. The rest of the analysis remains as it is.
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