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Stochastic spatial models: a user’s guide to

ecological applications

RICHARD DURRETT! axp SIMON A. LEVIN?

'Department of Mathematics, Cornell Universuy, [thaca. New York [4853. U.5.A.
*Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, L'.5..1.

SUMMARY

Spatial pattern, how it arises and how it is maintained. are central foci for ecological theory. In recent
vears, some attention has shifted from continuum models to spatially discrete analogues, which allow
easy treatment of local stochastic effects and of non-local spartial influences. Many of these fall within the
area of mathematics known as ‘interacting particle systems’, which provides a body of results that
facilitate the interpretation of the suite of simulation models that have been considered, and point
towards future analyses. In this paper we review the basic mathemadical literature. Three influentiai
exampies from the ecological literature are considered and placed within the general framework. which
is shown to be a powerful one for the study of spaual ecological interactions.

1. INTRODUCTION

Spatial pattern and the processes that generate and
maintain pattern have been major objects of scientific
attention for decades. (See for example, reviews in
Levin & Segel {1985) and Haken (1983).) Most work
has focused on continuum descriptions; however, in
the past few years there has been a rapid increase
in the use of discretized models, in which space is
represented by a grid of ‘cells’ or ‘sites’ that can be in
one of a finite number ot states {see Durrett 1988a,é,¢,
1992: Czaran & Bartha 1992). Biology, in particular,
has been a rich area of application for such models,
especially in the study of pattern formation in ecologi-
cal systems; however, in most cases in the biological
literature, the analysis of these modeis has been
carried out without reference to the broad range of
investigations in the field of interacting partcie sys-
tems, spatial stochastic processes that include as
deterministic special cases cellular automata (see, for
example Fisch ¢« al. (1991) or Hassell et al. (1991)).
The aim of this articie is to bridge this gap by
describing some of the mathematical results that are
useful for appiications, and applying these results to
some systems that have been considered in the
literature.

We begin by describing the general set-up of our
models. In each system there is a collection of spatial
locations called sites, which in all our examples will be
the d-dimensional integer lattice, Z* that is, the points
in d-dimensional space with all integer co-ordinates.
In most cases of interest in biology we will have d=2,
or occasionally d=3; but it will also be interesting to
consider the behaviour in d=1 and 4> 3. Our models
are generally formulated on the infinite lattice as this
simplifies the mathematical theory. However, we will
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also discuss the behaviour of these systems on finite
lattices with various boundarv conditons, since this
is what one encounters in applicatons or computer
simulations.

Our svstems can evolve in discrere ime (1=0,1,2,.. .}
or continuous ime i{ is any non-negative number).
Because discrete time modeis are used almost univer-
sally in the biological literature and are simpler to
formulate, we will begin with that case. The models
are slightly more difficult to formulate in continuous
time, as one must deal with transition rates instead of
probabilities: but as we will explain in § 6, continuous
time models are simpler to anaivse than discrete time
models and thev do not need ‘coilision rules' to decide
what happens when several events occur at one site in
one time step.

At each time t=0,1,2, . . ., each site can be in one of

"a finite number of possible states; the set of all possible

states being denoted by F. The state of the site x at
time ¢ is denoted by &(x), and hence the state of the
process at time ¢ is given by a function £, that assigns
to each site in Z¥ a state in F. We will say that the
function &,:Z%—F describes the configuration of the
system at time {. In this paper, we will typically ailow
a site 10 be either vacant or to be occupied by a single
individual and we wiil interpret 0 as vacant, and a
value of { with 1 €{< Kk~ [ as indicating that the site is
occupled by one individual of type i

The temporal evolution of these models is deter-
mined by specifving, for each : and x, the conditional
probability that site x will be in state ¢ at ume 7 given
that the whole process was in configuration § at time
t— 1. This transition probability is denoted by gi{x.{).
We will always suppose that p; depends on the state at
x and on the states of a finite number of neighbours:
X4y, . . ., X+, and that it does not depend on time.
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330 R. Durrett and S. A. Levin

That is,
p(6E) = f(E(x).&x + my, .., Elx + g0 {n

Of course, because the p,s are probabilities for fixed x
and & we will have

P:(xsé) = 0 and Zp,(\"é; = 1.

Our formulation of the transition probabilities makes
the system rules spatially homogeneous. In the Jargon
our transition probabilities are ‘translation invarianc’.
That is, if we shift {or translate; the initial configu-
raton then the remporal evolution is enlv translated
in space. The assumption of translation invariance is
needed for most of the mathematical results: however,
it can be dropped if one is content 1o study the model
by simulation. Indeed. one of the attractions of
interacting particle system models is that thev can be
used to study spatiaily inhomogeneous systems.

The first step in formulating a concrete model is 10
decide on the neighbourhood set .V = {yy, . . ¥at to be
used. [n many cases in two dimensions we will take

‘0,13
M:{(— L0} / -1,0)}

n, -1
These points are often cailed the ‘nearest neighbours’
of 0, as these are the lattice points that are the closest
to 0. ¥ is someumes called the ‘von Neumann

neighbourhood’. A second common choice is the
‘Moore neighbourhood’,
(-LY oL
N={ (=10 (1,0) b
(-is'—l} (0$'-1) (1'—1)

These neighbourhoods are named for two mathemadi-
cians who were ecarly contributors to the theory of
cellular auromata. To help keep the definitions
straight via a pun, notice that the Moore neighbour-
hood has more points.

In some situations we will want to look at larger
neighbourhoods. Let ||zi| be any distance function : two
that are well suited to the d-dimensional integer lattice
are fzfl; = |z) + T2, or |zl = max{z, ..,
12;1}) and let ¥ ={z:0 < |zi| < r}, the set of points
within distance r of the origin. Here r gives the range
of the interaction. Using our new notations, we can
express the von Neumann and Moore neighbourhoods
as {z:{lzll; = 1} or {z:{}zll, = 1}, respectively. The next
two figures show the distances from O for |} ||; and || 13—
The corresponding neighbourhoods are diamonds and
squares respectively.

4
¢ 3 4
4 3 2 3 1
4 3 2 1 2 3 4
4 3 2 1 0 1 % 3 4
4 3 2 1 2 3 4
¢4 3 2 3 4
4 3 4
4
=ty

Phil. Trans. R. Soc. Lond. B /1994)

Stochastic spatial models

4 0+ 4 4 4 4 1 3 4
4 3 3 3 3 3 3 3 4
4 3 2 2 2 2 92 3 34
4+ 3 2 1 1 1 2 3 4
4 3 2 1 0 1 2 3 4
03 2 1 1 L 2 3 4
+ 03 2 2 2 2 2 3 4
+ 3 3 3 3 3 3 3 4
40+ 0+ 4 4 4 4 4 g
{0

Variants on these two choices are possibie maodifving
their shape or extent. For example, one can define the
usual Euclidean norm fxi; = (x? + + x5 and
let ¥ ={x:0 < |ixly € r}. However, one shouid not
worry too much about what neighbourhood to choose.
[n most cases the qualitative behaviour of the model
does not depend on the neighbourhood used.

The purpose of this brief introduction has been
simply to spell out in a general way the rules of the
games that we will study in more detail below. The
reasons for interest in these models and the range of
possible applications will become clearer as we study
specific examples. Qur approach will be to discuss the
theory and its applications in alternation. In the
lengthy §2 we will discuss contact processes and
introduce some general resubts. In § 3, we will apply
these results to the daffodil model of Barkham and
Hance (1982). In § 4 we will discuss the behaviour of a
version of the contact process in which dispersaj accurs
over long distances, as a prelude to analysing Crawley
and May’s (1987} model of competition of annuals
and perennials in §5. The message of these two
sections is that if dispersal occurs over large distances,
then the particle system behaves much like a system in
which all sites interact equally. In §6 we discuss
continuous time versions of the discrete time systems
studied in §§ 4 and 5 and show that in this case it is
possible to get more dertailed information. This state of
affairs is analogous 0 {and related 10) the distinction
between iteration of functions and ordinary differen-
tiai equations. In §§ 46 we are concerned with
competition of plants that fall in a successionai
sequence, In §7 we wurn our attention to models
appropriate for the competition of different genets of
the same species or different species of the same type of
plant. These results are then applied in § 8 to Inghe's
(1989) model of the competition of different genets of
a fixed perennial.

One of the features that makes the study of
interacting particie systems interesting for mathemati-
cians is that many of the results in the theory are
simple to state bur difficult to prove. We have not
fried to explain any of the more complicated aspects of
the theory here, but have included proofs of some of
the simpler results 1o make the theory a litte less
mysterious, and because some of the ideas are useful in
simulations. Proofs appear in the text with their
beginnings marked by Progf and their end by [J]. The
material between these marks can be skipped without
loss.
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2. CONTACT PROCESSES

We begin by discussing the simplest interesting model.
As we go along we will add a number of features to
enhance realism. Each site can be in state 0 = vacant
or | = occupied by a ‘particie’, which the reader
should think of as being a single plant. From the
viewpoint of the particles, the system evolves as
follows: :

1. Particles die with probability 7 and survive with
probability [ — 7. That is, in each tme step the
probability of death is y for any plant

2. If the particle at x survives, then with probability
Bix.y) it gives birth to a new particle {propagule: that
is sent to y. The birth events for different vaiues of y or
from different values of x are independent. Thart ts.
independent of what other births may have taken
place in a given time step, therc is probability Slx.y)
that a plant at x sends a propagule to site g,

3. If one or more propagules is sent to y, or if there
is a partcle at y that survives, y is occupied at the next
time step; otherwise y is vacant.

In order for the transition probability to have the
forrn given in equadon (l), we must assume that
Blry) = gly — x) and that g(z) #0 for onlv finitely
many values of z. An important special case, cailed the
basic contact process, has g{z) = A when z is one of the
nearest neighbours of the origin, and 0 otherwise. We
will concentrate on the basic contact process because
it is concrete and simple, and because, as the reader
wiil see, a large class of more complicated models have
the same qualitative behaviour.

Ruie 3 says that there can be at most one particle
per site. This is a reasonable constraint for a model of
the spread of a plant species. but this realism makes
the modei very difficult 1o analyse,

Let &! be the state at time { when initaily the sites
in 4 are occupied {that is, {J{x} =1 if and oniv if
xed). Let v = min{e: &' x) =0 for all x1 be the first
time that there are no particles. [f there are no
particles then none can be born. so at all times ¢ 2
we will have &' =0, that is, 3;'x) = 0 for all x. In
words, the ‘all O’ state is an ahsorbing stare: once the
process enters this state it cannot leave, For obvious
reasons, we sav the system dies out at time 0

The first question to be addressed is "When does the
system have positive probability of not dving out
starting from a single occupied site?” or in svmbols
‘When is P(ri% = o) > 07" Here. without loss of
generality, we have chosen the inital occupied site to
be the origin, i.e. the point in Z* with all co-ordinates
0. Note that there is probahility 7 that the iniual
particle will die before it has a chance to give birth, so
ify > 0 then P{t® = ) < |. When P(7% = ) > 0,
we sayv the process survives, otherwise we say that the
process dies out. Suppose for the moment that we hold
A fixed and vary y. Because increasing 7 makes it
harder for the process to survive, there will be a
critical value y.(A) (possibly 0 or 1) so that

=0 if
=0 if

¥ > Ye(A)

th:oo){ ¥ < 7N
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That is, when y > &, the species will almost certainly
die our; whereas for y < 7., there is positive probabi-
lity that the species will avoid extinction.

Our next goal is to give bounds on y, and to show
that 0 < y.{A) < |. The first thing we will do is ta
show that if y is too large then the system dies out. To
do this we note that if, for comparison, we change rule
3 so that each propagule results in a new particle {that
is, local competitive exclusion is ignored), then the
number of parucles alive at time ¢ is a branching
process In which each particle dies with probability y
and with probability (1 — y) gives birth to an average
of 2dA new particles. The expected number of off-
spring (counting the particle if it survives) is p =

I — 7){2dA + 1). lierating we see that the expected
number of offspring in generation ! is x'. Now the
probability of having at least one survivor is smaller
than the expected value. so if w < | the probability of
surviving until time ¢ goes to O exponentially fast. By
comparison. in the contact process some of the birth
rate will be wasted on occupied sites, so the probabi-
lity of surviving also tends to 0 if u < | and we have
proved the easy half of the following result. The
second conclusion can be proved using the methods in
Durrew 11992},

ifr

v > 2dA(2dA + 1)

then the basic contact process dies out.
If

y < | = {0.82 + 2(] — AyE-n

for some integer # 2 | then the basic contact process
survives. (2.1

These results give only very crude bounds on 7.(A):

24
> v(A) = min !l — {082 | — py@mbiza-n
For exampie, when ¢ = | and A = 1, the upper bound

is 2/3 and taking 7 = | the lower bound is y < 24 —

1.82 = 0.18 while numerical results suggest that
v..1) 2= 0.47. The lower bound in (2.1} is ugly o look
at, but it does have the nice feature thar it can be
made positive for any A > 0. ( Just take n large enough
so that (1 — Ay < (.09.) Figure | shows a picture of
the crude bounds given abave in the special cased = |
and a numerical esumate (the middle curve) of
{{A2.(0)): 0 € A < 1}, the boundary between the two
behaviours. We will have more to say later in this
section about how this boundary was esumated. For
the moment, we witl concentrate on the special case in
which A = L.

The first step in estimating 7.(l) is 1o see what
happens for various parameter values. Figure 2 shows
a stmulation of the process with y = 0.49 starting with
an interval of 160 occupied sites. In this simulation,
space goes across, time runs down the page, and the
process died out well before we reached the end of the
simuilation, which represents time 480. Figure 4 shows
a simulation of the process with y =10.45, again

by
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Figure |. Upper and lower bounds on the critical values
7.{A) for the discrete time basic contact process.

starung from an interval of occupied sites. In this case
the interval grows linearly in time; and, in berween
the two endpoints, more than half of the sites are
occupied. Finally, figure 3 shows a simulation of the
system with y = 0.47 = y.. Figure 3 and 4 are consis-
tent with the fact that the crideal vaiue can be
characterized by the asymprotc behaviour of r, =
max{x:§/~*%(x) = 1}, the position of the right-most
particie when we start with ail the nonpositive integers
occupied. Durrett (1980) has shown that for any
¥y ft—(y) as { -+ 0 and recent work of Bezuiden-
hout & Grimmertt (1991} implies that the critical
vaiue y_ = max{y:a(y) > 0}. In words, when a half
line of Is can spread into empty space at a positive
rate, the system survives; otherwise, it will die out.
Knowing this characterization of 7, and looking at
figures 3 and 4 one can convince oneself thar the drift
in the edge is close to 0 in the first case and positive in
the second.

Now that we know that the contact process does not
alwavs die out, the next question to answer is ‘What
does the process look like when it survives?” To answer

Figure 2. Discrete time batic contact process in one
dirnension with f= 1.0 and y=0.49.

Phil. Trans. R. Soc. Laond. B (1994)

Figure 3. Discrete time basic contact process in one
dimenston with 8= 1.0 and y=0.47.

this question, we begin by introducing some simpie
general results. The transition probabilities for the
contact process have the property that if &{x) € &(x)
for all x then py(x.8) < ${x,&). In words, if a configu-
ration §’ has more ls than another one ¢ then the
probabuility of having a ! at a site x on the next time
step will be larger in ¢{’. (Here, and throughout the
paper, larger means >».) When this monotonicity
property holds we say that the system is attractive, a
somewhat strange sounding term that came to the
subject from the study of the Ising model in statistical
mechanics. A more colloquial way of expressing
attractiveness is that ‘more is better’. Thar is, if we
increase the set of occupied sites then we increase the
probability of having occupied sites ar the next time
step.

The most important consequence of the attractive-
ness property is that there is a limiting probability
distribution as ¢t — @,

If we start from an initial configuration with all sites
occupied (E4(x) = | for all x) then as { — o the state
at time f converges in distribution to a limit £%,, which
is a stationary distribution for the process. (2.2)

Here the superscript | indicates that we are starting
from all 1s. The next things we have to explain are the
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Figure 4. Discrete time basic contact process in one
dimension with §=1.0 and y=0.45.

two phrases in italics. To do this we need aneother
definition. We say that £} converges in distribution 1o
&L, and write &f = {1 if for any choice of xy, . . ., x,6Z*
and 1, . . ., 4€{0,1}, the probabilities

P& (x) =4y, .. §ilm) = 4)
= P (x) =, .. Eoln) = 4.

That is, if we focus our artentton on anv finite set of
points x;, , . ., x the joint distribution of &l(x5), . . .
&Hx) converges. To say that &, is a stadonary
distibudon means that if we start from an inidal
configuration £, with this distribution then the state at
time ¢ will have this distrribution for any 2 1. In
other words, ¢!, represents a possible equilibrium
distributon for our Markov chain.

We will not prove (2.2) but only try to convince the
reader this is reasonable. The basic idea is that we are
starting with the largest possible initial state and our
system is attractive so & should be decreasing and
hence have a limit. (To turn the last idea into a proof
one shows that P(f}x) =1 for some xed) is a
decreasing sequence for any choice of 4 and thart this
implies that all the finite dimensional distributions
converge. See Liggett (1985) or Durrett (19885) for

Phil. Trans. R. Soc. Lond. B (1994}

details.) Because limit &, is the limit starting from the
largest possible initial state, it should not be surprising
that it is the largest stationary distribution. That is, if
{{x) is another stationary distribution then we can
construct { and &), on the same probability space in
such a way that {{x) < &L, (x) for all x. At the other
extreme, the distribution that assigns probability one
to the ‘all O’ stare, denoted &g, is a trivial stationary
distribution. Of course, it can happen that &, =y,
and indeed this will happen if A is too small or y is too
large. An inspired reader might guess, correctly, that

&L, # 8y if and only if P(1'% = o0 ) > 0. (2.3)

In a fair amount of generality, the survival of a process
starting from a large enough finite set implies the
existence of a non-trivial stationary distribution (see
Bezuidenhout & Gray 1991} but the converse is not
true. A counterexample is provided by a process
that mathematicians call the ‘sexual reproduction
model: pix, ) =1—7y if §x) =1, p(xd) =B if
&x) =0; and &{x+ (1,0)) =&(x+ (0,1}) =1, and
P(x,E) = 0 otherwise.

In words, a site x will be occupied at time ¢+ 1 if (i) it
was occupied at time ¢ and the particle survived or if
(1) it was vacant at time {, and its northern and
castern neighbours combined to produce a new par-
ticle. The birth rule can be liberalized to allow any
diagonally adjacent pair of partcles to make a new
one. Here we wiil be content to explore the curious
theoretical properties of the mathematically simplest
version of the model. The next two results hold both
for the simple and for the liberal versions of the model.

Ify > 0 then P(t? < 0 ) = | for any finite set A. (2.4)

That is, as long as there is positive probability of
death, the process beginning from any finite set almost
certainly will become extinet in finite ume.

Proaf. If all the s in the inidal state are inside a
rectangle B, then there will never be ls in B the
complement of B, as any point in B° has at most one
neighbour in B. Once we know that the process
cannot grow outside of B, it must die out as eventuaily
there will be a time at which bad luck produces a
death at every point in B. d

Somewhat surprisingly this process, which dies out
starting from any finite set, can have a non-trivial
stationary distribution.

If'y is small enough and § is close enough to | then the

sexual reproduction model has a non-trivial stationary
distribucion. (2.5)

[t is clear how one should go about producing such
a stationary distribution. The system is attractive so
we start from all 1s and let the system run. The hard
part is to show that if we do this the process does not
coaverge to the Os state. The intuitive explanation for
this is that if y is smail and f§ is-close to | then the
process is very good at filling in holes that develop in
the initial all ls configuradon, and this allows it to
avoid extinction starting from all sites occupied. The
conclusion of (2.5) is a special case of Toom’s Eroder

Uy
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Figure 3. Fraction of occcupied sites versus time for the two-
dimensional discrete time basic contact process with A=10.25
and y=0.32, 0.35. 0.38. 0.41, 0.44. 0.47.

Theorem (see Toom 1980). For a more recen: proof’
see Bramson & Grav (1992} and for more on this
model see Durrett & Grav {1986) and Chen (1997,

We now return to the basic contact process. Before
delving further into the theory we pause to look at
some simulations. Figure 5 gives a graph of the
[raction of occupied sites versus time for a two-
dimensional basic contact processes on a 100 x 100
lattice {0,1, . . ., 99}2 starting from all sites occupied.
To avoid boundary effects we have used periodic
boundary conditions. That is, for 0 <4 <99 we
consider (99,4) to be a neighbour of :04), and
consider (£,99) to be a neighbour of (£,0). We have
fixed A = 0.25 and looked at six values of 7: 0.32, 0.35,
0.38, 0.41, 0.44, 0.47. In the first three cases the
process survives and theory tells us (see Bezuidenhout
& Grimmett 1990} that the process will converge to
equilibrium exponentaily rapidlv. This is clearlv
visible in the top three graphs, although there are
fluctuations in the density coming from the fact that
we are only looking at 10000 sites, and in the third
case convergence to equilibrium is not complete by
the right edge of the graph, which represents time 250.
This observadon is consistent with the theoretical
result which says that the rate of convergence (o
equilibrium is small when we are close to the region
where the process dies out. Figure 6 gives a picture of
the process with A = 0.25 and y = 0.35 at time 250,
which should be a reasonable approximation to &,
Theory tells us that the states of adjacent sites are not
independent but the correlations hetween the states of
sites decay exponendally fast in the distance between
them. We will have more te¢ say about these correla-
tions in § 6.

The bottom rwo graphs have hit O before time 250
indicating that the system died out. In the third case

Phil, Trans. R. Soc. Lond. B (1994}
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Figure 6. Two-dimensional discrete time basic contact
process cquilibrium state when A=0.25 and y=0.35.

we expect that this will occur before tme 1000,
Theory tells us {see Bezuidenhout & Grimmerr 1991}
that, except for points on the boundary between
surviving and dying out, the density of occupied sites
converges to 0 exponentially fast but the rate of con-
vergence approaches 0 as we approach the boundary.
Some readers may be worried, as was Caswell (1978,
p. 135), that all of these systems will eventually die out
as they are Markov chains on a finite state space and
the = 0 state is an absorbing state. However, this will
take a very very long time. Theory tells us (see Durrett
& Liu 1988; Durrett & Schonmann 1988: Durrert
et al. 198%; Mountord 1992) that the expected time
for an ¥ x ¥ system to die out is of the order of
expicN?). Again ¢ — 0 as we approach the boundarv
of the survival region but exp(ch) is a huge number
even when A = 0.25 and 7 = 0.38. For these parameter
values one can run the system on a 100 x 100 lattice
for several billion units of time without the process
dying out.

Figure 7 shows estimates of the equilibrium densities
for the one-dimensionai basic contact process when A
is a multipie of 0.1 and 7 is a multiple of 0.01. Note
that, as expected, equilibdum density increases with
birth rate and decreases with death rate, with a sharp
increase in the density near the critical value. To
obtain our estimates for A > 0.3 we ran the process on
{0,1, . . ., 9999} with periedic boundary conditions
(i.e. 9999 is a neighbour of 0) untl time 8000,
recorded the number of occupied sites every 10 units
of time starting at time 3000, and then averaged the
counts to get our estimate of the equilibrium density,
The same procedure was used for A = 0.1 and 0.2 but
as these systems evolve more slowiy we took data from
time 15000 to time 20000. In these simulations we
waited a ‘long’ time to aliow the process to converge
to equilibrium or to die out. Qur estimates of the
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Figure 7. Estimates for the equilibrium density of the one-dimensienal discrete time basic contacr process as a
function of ¥ for f=1.0, .9, . . . 0.1.

critical value given in figure | are the largest values of
7 for which the system had not died out by the end of
our taking data. There are. much more accurate ways
of estimating y, described in Buttel et ai. {1992). That
paper also explains the trick (which will be used again
in § 5) that allows us to treat the 100 values of y for a
fixed value of 8 in one simuladon run.

At this point we have considered only the limiting
behaviour stardng from all sites occupied. The next
resuit, called the complete convergence theorem,
describes the limiting behavior starung from an
arbirrary initial configuration. The last result took
fifteen vears 10 evolve to its current form. Harris
(1974), Griffeath (1978), Durretr (1980), Durrert &
Griffeath (1982) and Durrett & Schonmann (1987)
proved increasingly more general results before Bezui-
denhout & Grimmett (1990) completed the solution.
{(For an exposition of their proof that contains most of
the results cited in this section, see Durrent 11991).) [n
words, the next result says that if the process survives
to time ¢ and ¢ is large then it looks like the system
starting from all sites occupied. An immediate conse-
quence of this result is that any stationary distribution
is 2 convex combination of 3, the point mass on the
ali 0 state and &%, the limit starting from ail Is.

Theorem. Let (&Ml > ¢) denote the distribution of &4
conditioned on the event of being alive at time 1. As

t= o, (it > ) = &L, (2.8}

The results in this section remain valid for a variety of
gencralizations of the contact process that have *asex-
ual reproduction’. They hold in particular for the class
of models we are about to describe, a class that has

Phil. Trans. R. Soc. Lond. B {1904}

been chosen to cover the biological applications we
will discuss.

. The first generalization is to allow disturbances
to affect more than one site at once. For any point x
and set D, with probability y, all the points ¥ with
y — x€D) are made vacant. The death events for
different x and D are independent, but ¥, # 0 for only
a finite number of finite sets D.

2. The second generalization is to introduce depen-
dence hetween the destinations of the propagules. If
the particle at x survives then it gives birth to 4 new
particles (propagules) with probability p,. When £
propagules are produced they are sent to locations
x+ ¥, ..., x+ Y, where (T, ..., ¥,) have a joint
distribution ¥, on 1Z*}* that is concentrated on peints
y; within a distance R of 0.

3. The third rule stavs the same. If one or more
propagules is senit to y, or if there is a partcle at y that
survives, y is occupied at the next time step; otherwise
¥ is vacant.

Section summary. In this section we have introduced the
contact process, a simple but widely applicable inter-
acting particle system, and a larger class of models
with more realistic dispersal and disturbance distribu-
tions. For all of these models the following results hold.
If the birth rates are oo small or the death rates are
too large then the process dies out with probability
one when we start with a fimite set of occupied sets.
When survival for all time starting from a single
occupied site has posttive probability there is a non-
trivial stationary distribution &, which is defined as
the limit as ¢ — o0 starting from all sites occupied. The
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last and most important result for these processes is
that (2.6) holds. That is, when the process does not die
out it looks like &5, at large times.

3. BARKHAM & HANCE’S DAFFODIL MODEL

Barkham & Hance {1982) have used a contact pro-
cess to model the spread of wild daffodils ( Varcissus
pseudonarcissus). We will begin this section by describ-
ing the model in their words {which have been edited
somewhat to shorten the description). We imagine a
| m® area divided into 10000 units of 1 cm®. Within
this area 100 adult individuals of Narcissus are ran-
domly distributed. Each is capable of reproduction
and is of a different genet. The unit of rime is
considered te be one vear. Each year, each individual
may function in one of eight ways; it may continue to
exist without reproducing, it may reproduce vegeta-
tively, it may reproduce by seed, it may reproduce
vegetatively and by seed, it may reproduce in either or
both ways and die, or it may die without reproducing.

There are three variabiles in the model: the probabi-
lity of an adult dying in a year { pm}, the probability of
an adult producing an adult vegetative offspring per
year (pv), and the probability of an adult producing
offspring from seed per vear (ps). The following
constraints were applied to the model.

l. The area occupied by each plant is a constant
1 em®

2. The vegerative daughter must occupy randomiy
any one of the eight | cm?® locations adjacent o the
parent individual.

3. An offspring produced by seed must occupy
randomly a | cm® location 15cm distant from the
parent. This distance is an approximate mean of the
length of the scape which, under normal circum-
stances, bends over at senescence and releases seeds.

4. When the location to which a potential offspring
" is randomly assigned is already occupied, the offspring
is not produced (density-dependent fertiliry),

3. When a vegerative and a seed offspring compete
for the same square, the vegetative offspring always
wins.

6. Any offspring allocated a position outside the
boundary of the 1 m® plot is lost from the analysis.

Based on field studies, Barkham & Hance assigned
the following values: shaded sites, pm = 0.036, pr =
0.059, ps = 0.001; open sites, pm = 0.038, pv = 0.167,
ps = 0.005. In the notation of the last section this
means y = pm. We interpret distance to mean the
Euclidean distance zll; = (zf + z5)"* and that off-
spring produced by seed wiil be displaced by an
amount that lies on the discrete approximation to the
circle of radius 15 given by {15,0), (15,13, {15,2),
(13,3), (15:4), (14,3), (14,6), (13,7), (13,8), (12,9),
(11,10), (10,11}, . . . . This model fits into the general
framework introduced at the cnd of the last section,
although it is not pleasant to write down the model in
that form. Here the probability of two offspring
Pz = pv - ps with ¥, {the random variable representing
the displacement of the vegetative offspring from the
parent) uniform on the eight Moore neighbours and

Phel. Trans. R. Soc. Lond. B (1994)

Y, (the random variable for the offspring produced by
seed) an independent variable uniform on our circle of
radius 5. The probability of one offspring p, =
po(l — ps) + (1 — poips with ¥, in this case being a
combination of the uniform distribution on the eight
neighbours and the uniform distribution on our circle
of radius 15. Finally, the probability of no offspring
Po = {1 —pr-1 — ps).

Barkham & Hance simulated the system with the
open sites rurameters and found to their chagrin that
‘the popui.tion rises rapidly to over 7000 m ~ 2 before
stabilizing 1t this unrealistically high level’. Readers
who have looked at figure 7 should not be surprised at
this. Equilibrium densities are high except for birth
probabilities close to the critical value. When Bark-
ham & Hance simulated the system with the shaded
sites parameters, they found that the population
became extinct rapidly. At first sight these results may
be distressing. However, they simply are a warning
that one cannot hope to make quantitative predictions
about equilibrium densities from the models. Taking a
lesson from how these models are used in statistical
physics, we can say that the precise location of the
boundary between the survivai and extinction regions
depends on the details of the model but the qualitative
properdes of the system (e.g. exponendally rapid
convergence t¢ an equilibrivm state in the survival
region) do not. In other words, because these systems
do not model the local interactions accurately, we do
not expect the quandtative information they provide
to be reliable and we should look only at their
qualitative properties.

After throwing out the field values, Barkham &
Hance attempted to stabilize the population at several
hundred plants by keeping pm and ps constant at the
field values and varying gr. However, as they found,
this can occur oniy for parameter values very close to
the boundary between survival and extinction {Bark-
ham & Hance 1982, p. 329, figure 3). Barkham &
Hance next experimented with changing pm and ps by
an order of magnitude. They found that values ten
times less (figure 4(f)) stabilize the density at a simiiar
level but oscillations are damped very markedly.

There is a simple explanaton for the last observa-
tion. Suppose we set pm = az, pv = be, and ps = ce
where ¢ is a small number, and then change the time-
scale so that one cycle of the simulation corresponds to
€ units of time. If we then let £ =0 then our process
will converge to a limiting continuous time contact
process, which will be discussed in § 6. Reducing the
probabilities by a factor of 10 in essence slows the rate
at which we are moving through time by a factor of 10
so understandably the oscillations are reduced.

The ideas of the last paragraph can also be applied
to the basic contact process to eiucidate the behaviour
of the critical curve near the point § =0, y = 0. If we
letry = ¢, A =0e, change the timescale so that one
cycle of the simulation corresponds to & units of time
and then let £ =0, the discrete time basic contact
process will converge to the continucus time basic
contact process. The latter model has only one
parameter, so it is natural to talk about 8 = the
smallest value of 4 for which survival occurs, Numeri-
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cal work suggests that 8, = 3.3 (see Brower et al. 1378),
so the critical curve will have slope approximately
1/3.3 as it nears {0,0).

Much of the rest of Barkham & Hance’s paper is
devoted to the study of a simulated 10 year coppice
cycle with alternating 5 year periods of open and
shade values. This is one type of investigation for
which partcle system models are ideally suited:
answering questions about how the - equilibrivm
densities change as various attributes of the environ-
ment are manipulated. Barkham & Hance also inves-
tigate how the genets are distributed in the piot. We
will return to that question in §8, in which we
consider Inghe’s work.

Section summary. In this section we have, following
Barkham & Hance {1982}, used the contact process to
model the spread of wild daffodils. One important
lesson here is that since interactng particle systems do
not model the local interactions accurately, we do not
expect the quantitative informartion they provide to be
reitable but only look at the qualitative properties.

4. LONG RANGE CONTACT PROCESS

To prepare for our analysis of the competition model
of Crawley & May {1987) in § 3, we will now discuss
the behaviour of the contact process in which the
birth/dispersal function is constant on a square of
side 2r + | centered at the point, i.e. #{xy) = A for
0 < ||l* — #llo < r and O otherwise. The reader should
think of r as being large and will see in 2 moment the
reason that we want to assume that propagules are
dispersed over large distances. The square shape of the
neighbourhood is for mathematical convenience only.
The main result, (4.4) below, can be extended to more
reascnable dispersal distributions. For instance, we
could set B(x.y) = Bg({x — y)/r)/r* where ¢ is a fixed
function with [¢(z)dz = . We divide by r? so that
ZBxy) +Pasr—cx0,

If we pretend that at all times the states of the sites
in our grid are independent then we can write the
following equation for the density v, of vacant sites at
time f.

o= (o + (L —0)) (1= (1 =n( =y (&1)

Here R=i{y:0 < |lgllo S =(2r+ 1)~ 1 is the
number of neighbours. To explain equation (4.1), we
notce that in order for a site 1o be vacant at time ¢ + 1
then (i) either the site is vacant at time ¢ or occupied
and the plant there dies and (ii) none of its neighbours
sends a propaguie. The first factor gives the probabi-
lity of (i), and the second gives the probability of (ii).

Physicists call the reasoning in (4.1} ‘mean field
theory’ because each site feels only the average value
of the states of the other sites. As in most contexts
where ‘mean fieid’ methods are used by physicists,
equation (4.1) is only an approximation for the
contact process as the states of various sites arc not
independent, but are positively correlated. {This
follows from a result of Hamris {1960), see Durrett

Phil. Trans. R. Soc. Lond. B {1994

{19884, p. 129).) However, as we are about to see,

- analysing (4.1) provides useful information that

becotmes exact in the limit as r — o0 . Let
B(x) = {x(1 — ) + vH1 = (1 = (1 = 7)),

so that {4.1) becomes r,., = ¢(v.).

The next result describes the behaviour of the
sequence defined by #p =0 and v, = ¢(y) for t 2 0.
The reason for interest in the limiting behaviour of », is
that starting with vy =0 (ail sites occupied) and
iterating is like starting the partcle system with all
sites occupied and letting time run. So the limit of the
% is the mean feid value of the density of vacant sites
in equilibrium. Figurc 8 shows a graph of ¢ when
A= 0.25, y = 0.35, and R = 4. There the iteration is
shown geometrically by drawing lines from (0,0) to
(0,6(0)) to (¢(0),$(0)) to (¢(0),$($(0))), etc. As that
picture shows and the next result proves, the limit of
the v, is the smallest fixed point of ¢ in {0,1].

Letyy, = Oandlety,,, = ¢(v)fort 2 0. Ast — o0, v, w
the smallest solution of ¢{w) = w in (0,1]. (4.2)

Hence the iteration in (4.1} tends to a limit, possibly
at the boundary 1.

Proof. ¢ is the product of increasing functions and
hence increasing. Now v = ¢(0) > 0 =1, s0 =
Pin) > ¢() = vy, and continuing we seec that v, >
v,_, for t 2 1. Because oy, is increasing and < 1, lim p,
exists. If we call the limit v, then letting ¢t — o0 in the
relationship v, = ¢(y,_,} shows that vy, = divg). To
see that 1., = w, we note that u < w, 30 v = ¢{te)
< $(w) = w, and continuing we have v, < w. Letdng
t = o, it follows that v, < u; but v, is a2 solution of
@(x) = x so we must have v, = w. O

The next result teils us when there is a solution < L.

There is a solution of @(x) =x with ¢ <x< 1 if
and only if ¢’(1) > 1. That is, if and only if A > ¥/
R(I — ¥). (4.3)

Proof. To see this note that u(x) = ¢(x) — xis such that
w(0) > 0,x(l) = 0,and & '(x) > 0 (as R > I). Since the
rangent line to the graph of a strictly convex function
lies strictly below the graph, it is easy to see that there
is a root of u in (0,1) if and only if &’(1) > 0. d

Remark. In treating concrete cxamples it is useful to
note that the fact that ¢ is convex implies that there is
at most one solution of ¢{x) = x in (0,1).

The function (4.3} tells us that, from the viewpoint
of mean field theory, there is a non-trivial statdonary
distribution if and only if A > y/R{l — y). Rewriting
the condition as (1 — y)RA >y, we see that it says
sormething quite reasonable biologically: the mean
number of offspring must be larger than the proba-
bility we lose a plant due to death, exactly as in
threshold theorems in epidemiology. As we mentioned
before, the argument leading to this conclusion is not
valid for the contact process, but the conclusion is half
right. A simple generalization of the first result in (2.1
implies that if A < y/R(1 = ¥), then the contact process
dies out.
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Figure 8. Treration of equation * +.2! when A=10.25 v =0.35.

[fweiet § = RAand let R — 20 then $ix; converges
to

Wix) = (7 + (L ~yxje -riton

Writing 2 = {1 — 7} and differentiating twice gives
W) = e 01—y 2 {(y + 01— y)xiall,

Yl = g (x) +em TN - e

so ¥'{x} > 0 and ¥"'(x) > 0 for 0 € x < 1. The proofs
of (4.2} and (4.3) generalize immediatelv from ¢ to .
From the formula for the derivative it is clear that
Y’i1) > 1 (and hence there is a non-triviai solution
of Yix)=x) if and only if 2+ 1 -9 > 1: that is,
B(1 - y) > y. Again, the last condition is quite reason-
able as it says that the expected number of propagules
per piant is larger than the probability of the loss of a
particie due to death. The next result justifies our
remark that the mean feld calculation is almost exact
for large r. For this resuit we will suppose that
Blxy) = Bq({x — y)fr)jr* where ¢ is a fixed function
with [g(z)dz = 1.

Theorem. Suppose that ${1 — 7) » 7 and let v be the
solution of ¥(x} = x in (0,1). If r is large then the long
range coniact process has a nontrivial stationary
distribution in which the density of vacant sites is
approximately v. (4.4)

This resulr is the discrete time analogue of the main
result of Bramson et a/. (1989) and can be proved in
the same way. (For a considerably simpler proof, see
Durrett (1989).) The key to the proof is establishing
that if ¢ ts fixed and the range is large then the sites at
all times 5 < ¢ are almost independent and hence the
density of occupied sites at time ¢ is almost the density
predicted by mean field theory. It is a consequence of
the proof of (4.4) that in the nontrivial stationary
distribution (which we know to be unique by results

Phil. Trans. R. Soc. Lond. B 11994
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cited in § 2} the states of different sites are almost
independent,

Section summary. ‘Mean field theorv’ refers o the
practice of assuming adjacent sites are independent
iwhich they are nort in the particle systern) and then
writing equations for the evolution of the density of
occupied sites. The lesson to be learned from (4.4) and
the remarks after that result is that if propagules are
dispersed over distances that are large when compared
to the size of the cells that correspond to the sites in
the model, then the mean field calculation of the
equilibrium density (and hence of the survival region)
is almost correct since the states of different sites are
almost independent.

5. CRAWLEY & MAY’S MODEL

In this section we will discuss a model of competition
between annuals and perennials, which was intro-
duced by Crawley & May (1987). In their words. the
model may be described as follows.

. There are two plant species: (i) an annual
invading onlv by seed: and (i} a perennial, invading
only by lateral spread ‘through the production of
‘ramers’).

2. The piants exist in a spatially uniform environ-
ment in which habitable sites {cells) are distributed in
a hexagonal parttern. This is the simpiest tesselation of
the plane, and is selected for convenience rather than
s a quantitatvely accurate description of the spatiaj
spread of real plants.

3. The size of a cell is such that it can accommodate
a single individual of the annual species or a single
ramet of the perennial species.

4. The time unit of the model is taken to represent
one generation of the annual planc.

5. In any one generation, the perennial is capable
of occupying only those cells that are immediately
adjacent to it: it may, however, occupy any or all of its
six first-order neighbouring cells in one generation.

8. In competition. perennial ramers alwavs exclude
the annual.

7. The annual has no effect on the demography of
the perennial.

8. In any generation, the order of events is as
follows: (i} death of the perennial ramets; (ii) birth of
the perennial ramets (occupation of empty cells); and
{iii) recruitment of annuals from seed.

9. Recruitment of annuals by seed can only occur
in empry cells {i.e. into cells not containing a surviving
or newly born perennial ramet}.

10. The probabiiity of recruitment by annuals in
any given empty cell is a function of the number of
seeds produced in the previous generation. Specifi-
cally, we assume for each cell that recruitment occurs
with probability 1 — exp( — mean number of seeds
per cell), and that the entire crop of annual seeds
is mixed and distributed at random over all ceils
whether empty or not. ’

11. Death of perennial ramets occurs in each
gencration with probability d, independent of the age
of the ramer.

12, For each empty cell, the probability of being

i~
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Figure 9. Equilibrium distribution for the two-dimensicnal
discrete time basic contact process on the hexagonal lartice
when A=0.25 and y=0.35.

invaded by a perennial ramet from a given neighbour-
ing cell containing a surviving ramet is &, and if £
. out of the six first-order neighbours contain surviving
ramets, the probability that a cell is invaded is given
by 1 — (1 = 8%

13. To minimize edge effects, the universe has
wrap-around margins, so that the upper neighbouring
row of the top row is the bottom row (and vice versal,
and the left-hand neighbouring column of the teftmost
column is the rightmost column (and vice versa}.

The hexagonal lattice is ideal because it is the
geometry that ailows us to pack in the largest number
of cireles per unit area. However, from a theoretical
point of view there is very little difference between the
contact process on the hexagonal and on the square
lattice. The survival region is larger for the hexagonal
lattice as a site has six neighbours instead of four. but
the qualitative properties of the model described in § 2
are the same. Given this, and the fact that the square
lattice is easier to implement in a computer, we wouid
have formulated the model on a square lauice for
simplicity but we will stick with Crawley & May's
choice here.

To begin to analyse this model, observe that the
reproduction of perennials (2s) is not hindered by the
presence of annuals {1s), so the set of sites occupied by
25 is a contact process in which occupied cells remain
occupied with probability | — 4, and if they remain
occupied give birth onto each neighbour indepen-
dently with probability 4. Crawley & May begin their
analysis by deriving a difference equation (see page
477 of their paper) for the density of sites not occupied
by 2s at time ¢, E;:

E..=[E(l-d)+d][1 =1 -d)(1 - E)]°, (5.1)

and then observing that there is a globally stable
equilibrium point with £* < 1 if and only if

b > di6{l — d). (5.2)

Phil. Trans. &, Soc. Lond. B (1094}

Figure 10. Sites independentiy occupied with probability
0.49.

Readers should recognize (5.1) as (4.1) with v, = £,
vad A=b, R=6, and the first factor rewritten in
the form in (4.2). As we remarked in the last section,
equation (3.1) is based on the mean-field assumption
that the states of various sites are always independent
and hence, as Crawley & May (1987} realized,
equation {35.2) gives only an approximation to the true
condition for the survival of the percnnials. The easicst
way to see that there is a significant amount of
dependence among sites is to look at a simulation.
Figure 9 gives a picture of the system with & = 0.25
and d=0.45 on a 100 x 100 lattice at time 100,
which in this case should be close to equilibrium.
There are 4901 particles present in the simulation.
The picture may look random but comparison with
figure 10, which shows sites that are independently
occupied with probability 0.49, shows that the part-
cles in fAgure 9 tend to occur in clumps.

The correlations between the states of adjacent sites
are almost impossible to calculate analytically in the
contact process, so to estimate the values for which
coexistence occurs we have to resort to simulation.
Following part (b) of figure | on p. 478 of Crawley &
Mav, we set b =0.25 and look at the density in
equilibrium as a function of the ramet death rate d.
Figure 11 gives the estimates that we obtained by
running the system with parameters 4 = 0.01,0.02, ...
(.60 until time 3000, recording the fraction of occu-
pied sites every 10 units of time starting at time 2000,
and then averaging these observations. This may
sound like a lot of work; but by taking advantage of a
trick”of Buttel et af. (1992) mentioned in § 2, we were
able to treat the 60 values of b in one simulation run,
which only took a few hours on a personal computer.
The lower curve in the graph gives our estimate of the
density of perennials in equilibrium, while the upper
curve gives the mean field value for the equilibrium
density. The two curves are quite close when 4 < 0.3,

1!
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Figure 11. Actual equilibrium densitv for the two-dimen-

sional discrece time contact process with 6=0.23 as a
function of death probability d compared with upper bound
from mean field theory.

bur diverge for larger values: the lower curve hits 0
somewhere between 0.51 and 0,52,

Although equation (5.2) is only an approximate
condition for the survival of perennials, it becomes
correct in the limit of large range if one replaces £* by
the density of sites not occupied in the perennial
equilibrium, Results quoted in § 2 above imply that
when the perennial species persists, it converges
exponentially rapidly to an equilibrium stare that has
exponent.ally . _ying correlations, so if we consider
an L x L grid with L large, the fraction of sites not
occupied by perennials will be almost constant in
time. However, the densitv of vacant sites will not be
the fixed point £* but instead the equilibrium density
of vacant sites for the contact process of perennials. If
one pretends that the density of sites not occupied by
perenniais is £ independent of ¢ then for large L the
fraction of these gaps occupied by annuals will
(almost) saasfy

Piar=1—exp{ — pF),

where ¢ is the mean number of seeds produced by each
plant. To explain (5.3), we note that at time ¢ there
are L*pF annuals each of which will send a seed t0 a
given open site with probability = ¢/L?, s0 if L is large
the number of seeds that land on a given open site
has approximately a Poisson distribution with mean
¢pF, and hence will be positive with probability
1 = exp( — cpF).

Equaton (5.3) is essentially (6) on p. 479 of
Crawley & May (1987). Let ¢(x) = | — exp( — cxF).
The absence of annuals is a stable situation (§{0) =0)
but we would like to know if they can persist at
a positive level, ic. is there a solution of ¥(x) = x
with x > 0? Differentiating we see that W'(x} = oF

{3.3)
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exp( — cxF) and W7 (x) = — {cF)? exp( — cF) so ¥ is
increasing and concave. Imitating the proof of (4.3), it

- is easy to see that there is a non-trivial solution if and

only if ¢’(0) > 1, that is, ¢> 1/F, which is the
conclusion on p. 479 of Crawley & May with the fixed
point £ ¥ replaced by the density of vacant sites F in
the perenmial contact process equilibrium.

The analysis above is based on the assumption that
annuals can disperse their seeds uniformly across the
entire system under study. By using ideas from the last
section, one can obtain the same conclusions under the
more palatable assumption that dispersal occurs over
a large distance. That is, instead of model feature 10
described on p. 338 we can assume:

10°. Each annual plant independendy produces #
seeds with probability p, and if the annual is at x these
seeds are sent to sites chosen at random according to a
distribution of the form cg((x = y)/r)jr*, where ¢ is
consrant chosen to make the sum of the probabilities
equal to I.

Theorem. Let ¢ = Zkp, be the mean number of seeds
produced by an annual plant and F the fraction of
vacant sites in the perennial equilibrium. If ¢ > |/F
and 7 is sufficientlv large then coexistence occurs. That
is, there is a non-trivial translation invariant station-
ary distribution in which both types are present.
Conversely, if ¢ < 1/F and r is sufficiendy large then
the annuals die our. That is, if we start from an initial
state with infinitely many annuals and perennials, the
probability of having an annuai at x goes to 0 as
{—= . {5.4)

For a proof of this result, see Durret: & Schinazi
(1992).

Section summary. In this section, we have presented an
analysis of the compettion of annuals and perennials
due to Crawley & May (1987). They assumed that
annual seeds were dispersed uniformly across the
entire system and used mean field reasoning. Using
interacting particle systems we have shown that the
same conclusions hold for non-uniform dispersal func-
tions that are sufficiently spread out.

6. CONTINUOUS TIME MODELS

The results in the last two sections, and indeed much
of the theory of interacting particle systems, become
simpler if time is continuous rather than discrete (i.e.
time is indexed by the non-negative real numbers
rather than by the non-negative integers). We will
devote this section to a discussion of continuous time
models. Suppose first that we are simulating a system
on {0,1, ..., L — 1}* with some boundary conditions.
In discrete time we go from time ¢ to time ¢+ i by
setting ¢,.;(x) = ¢ with probability p,(x,&), with the
choices being made independendy for each z In
continuous time, we change one site at a time: if the
current state is £, we pick a site x at random, and
change its state to { with probability p(x£), and
repeat the process, with ¢L¢ changes corresponding to
one unit of time, where ¢ is a constant that describes

[RTre——.
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the overall rate at which transidons are occuring. The
main difference then is that we update one site at a
time rather than all sites at once. In the terminoclogy
of the theory of ceflular automata we use asynchro-
nous rather than synchronous updating. Asynchro-
nous updating makes it easier to prove theorems since
the state of the system changes gradually rather than
abrupdy. From a modelling point of view asynchro-
nous updating is simpler as we do not need ‘collision
rules’ to decide what should happen when several
evenis try to influence a site at once.

We begin our explanation of continuous time
processes by formulating the basic contact process in
contnuous time. This model was mentioned in our
discussion of Barkham & Hance's work in § 3: (i)
partcles die at rate y, give birth at rate §; (ii) a
particle born at x is sent to a y chosen at random from
birth is suppressed. Here, we say something happens
at rate r if the probability of an occurrence between
times { and ¢ + 4 is ~ rA, thatis, the probability when
divided by rk converges to 1 as £ =+ 0. When the rate is
a constant r, as the death rates and birth rates are in
the basic contact process, the times ; between succes-
sive occurrences of the event arc independent and
have an exponental distnbution with parameter 7,
that is P > t) = ™",

To simulate the continuous time process when
B =+ (the only interesung case since the system dies
out when f# < ¥) we use the gencral recipe above with
¢ = B, and transition probabilities py(x,{} = y/8, when
E(x) = 1; and py(2,&) = a(x,$)/2d when {(x) =0 and
n{x,&} neighbours of x are cccupied in ¢. This recipe is
based on the idea that each site is independently
trying to change at rate B, so to make deaths happen
at ratc ¥, we kill the particle with probability y/f and
leave it alive otherwise. Likewise, only vacant sites
with all ncighbours occupied experience births ar rate
B, so to get the right rate we have to do nothing with a
probability equal to the fraction of vacant sites. This
is casily implemented in a computer simulation by
picking a neighbour ar random and making the site
occupied if the neighbour chosen is.

The competition model of the last section can be
generalized to include long-range dispersal and for-
mulated in conunuous tme. The state at time ¢ is &
Z¢ —+{0,1,2} and the system evolves as follows: (i)
particles of type ¢ die at rate ¥, and give birth at rate
B:; (ii} a particle of type i born at x is sent to a y with a
probability proportional to g{{x — y)/r)/r* where g, is
a fixed functon and ¢ is a proportionality constant
chosen to make the sum of the probabilities equal to [;
(iii} if &,(y) 2 &,(x) then the birth is suppressed.

To analyse this system we begin by observing that
the 25 do not feel the presence of the ls and are
themselves a long range contact process. As in § 5, we
will begin by considering the system in which 1s are
absent, so we will drop the subscript 2s and refer to
the process as the long range contact process. [f we
pretend that adjacent sites are independent then the
fraction of sites occupied by 2s at time {, u, will satisfy

u = = yu + B(l — w)u,. 6.1)
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The first term comes from pardcles dying art rate . To

" see the second, think about the computer formulation

of the process. When we pick a vacant site, we pick
one of its neighbours at random and a birth occurs if it
is occupied. Fvents occur at rate f and a birth occurs
if the site is vacant and the chosen neighbour is
occupied, an event of probability (1 — u)u,.

Now, u = p (i.e. constant in space and time) is
a solution of equation (6.1) if and only if —yp +
Bp{l — p) =0, so there are two solutions: p = 0 and
o =(f — y)iB, with the latter being positive only
when f > y. In order for the process not to die out, it
is trivially necessary that the partcles give birth at a
faster rate than they die. The next result due to
Bramson ez al. (1989) shows that this condition is
asymptotically sharp as r— oo

Theorem. Suppose 8 > y. If r is large then the long-
range contact process has a stationary distribution
in which the density of occupied sites is close to

(B =B (6.2)

Comparing the last result wich (4.4) shows one
immediate advantage: we now have an explicit ex-
pression for the equilibrium density. This will pay off
in an explicit condition for the coexistence region for
the competition modet.

Theorem. Suppose that fy > y; and ¥, + f;—7:
< Biye/Be. If r is large then the competition model has
a non-trivial stationary distribution in which 2s have
density close to (f2 — 72)82 and ls have density close
to

(ﬁ ;Z’ - ()32—}’2)) / By (6.3)

To explain the formula for the equilibrium density of
Is, we note that if v, is the density of sites occupied by
Is at time ¢ then reasoning as we did for {6.1)

v = — yyw — Bavath + Sl — e — ). (6.4)

The first term comes from deaths at rate y,, the second
from 25 giving birth onto sites occupied by ls, and the
third from s giving birth onto sites not occupied by is
or 2s. [f we suppose that the 25 are in equilibrium,
that is, & = {ffz — y2){B2, and ask when p,=0 is a
soluticn, we find the trivial root ¢ = 0 and a second
root with

N - (ﬂz*?’z)"'ﬁl(ﬁ—d)‘i‘o-

B2
Solving we find the formula given in (5.3), which is
positive if and only if y; + fz — 72 < Biye/Be.

The conditions for coexistence are hardly intuitive
but it is easy to sec that they have the right
monoctonicity properties in the parameters, That is,
increasing B, or y; or decreasing y; or f, makes it
easier for the Is to survive. Although the answer in
(6.3) is somewhat messy, it is much simpier than the
analogous answer in discrete time. We leave it as a
challenge for the reader to derive the discrete time
analogue of {6.4) and find the conditons for coexis-

12
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Figure 12. Voter modet dualitv.

tence that come from the equation. If you can solve
this problem, let us know. The functon 5.3} is from
Durrett & Swindle 1991}, A complete convergence
theorem {i.e. a result analogous to (2.6} was proved
for this model in Durrett & Moller 1991 ;.

Section summary. in this section we introduced inter-
acting particle systems in ‘conunuous time'. In this
formulation, only one site changes at a time, and we
do not need the collision rules that discrete rime
models need to decide what happens when several
effects try to influence a site simultanecously. An
additional bonus is that when we reformulate the
long-range limit results of the § 5 in conunuous rime
we get explicit formulas for the limiting coexisting
region.

7. SYMMETRIC COMPETITION PROCESSES

In this section we wiill consider a model that is
appropriate for the competition of different genets of
the same species of plant or several species of the same
rype of plant. We begin by describing a much simpier
system called the voter model introduced by Hollev &
Liggerr (1975} that is a spatial verston of the Wright—
Fisher model from genetics. ‘For information on the
Wright-Fisher modei, see Kingman (1980, 1982,
Donnelly (1984}, Tavaré ‘1984) and Feldman
(1989).) In the voter model, the state at time ¢ is
£:2%={1,2, ..., k). The name voter model refers to
the fact that one can think of 1,2, .. ., x as indicating
the preference of the voter at x among the k candi-
dates in an election. With this interpretation in mind,
the evolution can be formulated as follows: the state of
x at time ¢ + | is equal to the state of x at ume ¢ with
probability | — 7 and with probability v is equai 1o
that state (at time {— 1) of a randomly chosen
neighbour. Here the neighbourhood can be any finite
irreducible set 4", That is, any point ¢ in Z¢ can be
reached from O by a path x4 = 0,xy, . . ., x, = ¥ so thart
for l £m<a, x,— %._y € 4. This means that ir is
possible for any voter to influence any other through
some chain of events.

In the genctics literature, the Wright-Fisher mode!
is usually considered on a finite set {1, . . ., N} with no
spaual structure. Time ¢ is thought of as generation ¢

Phil. Trans. R. Soc. Lond. B (1994)
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and each individual at time ¢ + | chooses a parent
at random from the previous generation. The voter
model is then a version of the Wright-Fisher model in
which the spatial distribution plays a role in determin-
ing the possible genetic lines. The spatial version of the
Wright-Fisher model is usually called the stepping
stone model. See Kimura (1953), Kimura & Weiss
11964}, Rohlf & Schnell (1971), Felsenstein {1973),
Sawver (1976, 1977, 1979), and Cox & Griffeath
(1986, 1987, 1990).

Because the transitions in the voter model make
sites equal, it is natural to ask if the system will
approach consensus as { — co. That is, will we have
Pl (x)=¢&iy))—~1 as t » o for ail x and y? The
answer 10 the last question is ‘ves’ in & = 1,2 and ‘no’
in & = 3. To explain the reason for this answer we will
introduce dual processes X™ thart trace the origin of
the opinion at x ar time . We start with X5 = r and
work backwards in ume. If ¥ = y and the individual
at y at time ¢ — 5 chose to imitate z from generation
t—s5—1 then we set X%, =z (Here z =y with
probability 1 - 7 and is a randomly chosen neighbor
with probability 7.) This definition guarantees that
the genetic type of the individual at ¢ at time ¢ is the
same as that of X at time ¢ — 5. Figure 12 shows a
picture of the dual process for {0,1, . . ., 9}. The left
edge of the picture represents time 15, the right edge
time 0. To avoid edge effects we have used periodic
boundary conditions. That is, the top and bottom sites
in the figure both represent 0, so when a jump to the
left of 0 occurs the particle reappears at the top of the
picture {see time 8} or when a jump to the right from
9 occurs the particle reappears at the bottom (see time
13). Notice that the voters at 5, 6, 7, 8 and 0 trace
their opinion back to that of 8 at time 0, whereas the
other voters trace their opinions back to 9.

The process X, 05 ¢ is what is called a
random walk as the step taken at time 5, X/, — X™,
is independent of the first 5 steps. If one thinks abour
the evoluton of two of these processes, X' and X7
then 1t is easv to see that they move independentiy
until they hit ti.e. occupy the same site) and then stav
together after that. Because of this, the collection { X*:
O=s=<1t)is called a coalescing random walk. When
two particles hit they coalesce 1o one. Well known
results about randem walk imply that two indepen-
dent random walkers will hit with probability one in
d = 1,2 but can avoid each other for ail time with
positive probability in d 2 3. To see how this implies
the result given we notice that

PlEix) # {y) S PLEY # X5 =0

as t— @ in d= 1,2, (7.1}

Ta show thar consensus need not be approached in
d 2 3, we take k = 2 and start with an initial configu-
ration &§ in which sites are independently | or 2 with
probabilities # and | — #. Now two sites x and y will
nave different opinions at time ¢ if and only if they
trace their opinions back to different sites at time §
and find different opinions there so

P& (x) # &lly)) = 2001 = BYP(XT # K1) 0

as -0 in d=23. (1.2)
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Figure 13. One-dimensional voter model, times 0-239.

The density of sites with opinion 1.

P&y = 1) = PIESILY = 1) = 4. 7.3
for all &. The last equation generalizes easily 10

P&y = | for all ve 4y = £76 T4

where V' is the number of particies at tme ¢ in the
coalescing random walk starting with one partcie on
each site in 4 at time 0. Because the number of points
in a coalescing random walk oniv decreases. the right-
hand side of the last equation increases 0 a limit as
{ — ¢ . Because all finite dimensional distributions can
be written in terms of the ones in *7.41 it follows that
¢? converges to a limiting stationary distribution v, in
which |s have density 6. Holley & Liggert - 19737 have
shown that the vy are the only interesting stationary
distributions. That is, all the stationary distributions
are convex linear combinations of the v,. The reader
should note that while the contact process has oniv
one non-trivial stationary distrtbunon, the voter
model has a one parameter family of swationary
distributions. This occurs because in the voter model
the average density of sites in state | is preserved bv
the ume evolution.

To help explain the theoretical results we have just
stated, we turn to computer simulatons. In all the
cases we will examine, .¥ s the set of nearest
neighbours of 0. Our next two figures give a space-
iime picture of the voter model with x = 2 starting
from an initial state 1n which sites are independentiv
0 or | with probability 1/2. Here we are looking at
an interval {01, . . ., 319} with periodic boundarv
conditions. That is, 319 is a neighbour of 0. Figure {3
shows the system from time 0 to time 239, [t should he
clear from the picture that the intervals on which
opinions are constant are getting longer. Figure 14
shows the svstem from time [200 to time 1439, At this
time there are four large intervals of sites with the
same opinion, and the ‘houndaries’ between these
intervals :which are not preciselv defined! move like
random walks. Because random walks move about \/f
in tirne /. it should not surprise vou to learn that if we

let 7, be the first time that all the voters in {0,1. . . ..
¥ — I} have the same opinion. then
Et, ~1C/m N, i7.3)

Phil. Tians. B Nec. Lond. B 1094

Figure 14. One-dimensional voter model. times 1200-1439.

as ¥ — o where ay ~ by means that the ratio a4,/
&y — 1. The time required is inversely proportional to
+ as our voters keep their opinion for an average of 1/y
steps before they look at a neighbour. Cox 11988) has
proved (7.5) and calculated that if we start from all
sites having different opinions then the constant
Cy = 1/6. In our simulation, 7 = 2/3 (the particle at ¢
picks an opinion from x — |. x and x + | at random.
and V = 320 so Et, = 17066, The reason for Cox’s
choice of the initial conditton in which all sites are
different is that in this case the time to reach consensus
is the same as the time it takes a coalescing random
walk starting with all sites occupied to reduce to one
particle. The coalescing random walk problem is
much easier to study. In particular, by considering the
time it takes the particles at @ and .V/2 to hit, we see
that about ¥ ? units of time wiil be required or to be
precise Ety = (1/8y) N2

Figures 15 and 16 give a look at the two-dimen-
sional voter model at times 250 and 2000 starting
from an iniual state in which each site was randomly
assigned a symbol from a list of 50 possibiiities. The
message in these prctures is that in two dimensions the
clustering occurs very slowly. Cox & Griffeath (1986}

bty

Lrma s
s
e a ey

Figure 5. Two~dimensional voter model at time 250.

JS .
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o

Figure 16. Two-dimensional voter model at time 2000.

and Bramson e ai, {1988) have proved some very
Interesting mathematical results about how the clus-
tering occurs in two dimensions. Again, Cox {1988}
has studied the dme to reach consensus, T, for the
voter model on (0,1, . . ., ¥ - |}* with periodic
boundary conditions starting from all sites different
and shown that in 4 = 2

£ty ~ (2{my) ¥ ¥ log V. (7.6)

In our simujation, 7=12 and ¥N=90 so Er, =
46407. To explain why the answer is proportional to
¥?%log N, we note that the difference of two random
walks starting at (0,0) and (N2, N/2) is a random
walk that will take about .V ? steps to get close to (0,0).
The extra log N comes from the fact each site that the
random walk has hit before time ¥ % has been visited
about log N times, so the total number of sites visited
by time ¥% is only of order ¥?/log .V and we have to
wait untl time N? fog & so that the random walk has
visited a positive fraction of the sites and hence has a
positive probability of having hit (0,0).

Our final picture in figure 17 shows a two-dimen-
sional slice through a three-dimensional voter model
on{0,1, ..., 44} with periodic boundary conditions at
time 250. This should be a fairly good approximation
of the limiting equilibrium stare. Note that in contrast
to the picture of the two-dimensional voter model at
time 250, here the typical cluster of sites with the same
opinion consists of fewer than 10 sites. Again, Cox
(1988) has studied the asymprotic behaviour of the
consensus time Ty starting from all sites different and
found thatin 4> 3

Ety ~ (CirI N7, {1.7)

where C, in an explicitly computable constant-that
only depends on the dimension. The reason for the N
is that a random walk in three dimensions only visits
each site thar it has hit some constant number of times
by time N, so by that time one walk will have visited
a positive fraction of the sites in the space and hence

Phal. Trans. R. Soc. Lond. B 11994
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Figure 17. One plane from the three-dimensional vorer
mode} ar time 250.

‘two independent random walks will have a positive

prabability to have hir

Our symmetric competition model is a hybrid of the
voter model and the contact process. The state at time
tis £ Z°—{0,1, . . ., k} and we think of 0 as vacant
and 1, .., « as indicating different genets of the same
species, or different species of the same type of plant,
With these interpretations in mind the dynamics are
formulated as follows:

1. Each particle dies with probability y and sur-
vives with probability | — y.

2. If the particle at r survives and y is one of the
neighbours of ¥, then with probability A, a new
particie aof the same tvpe as x is sent to y. The birth
events for different ys and from different s are
independent.

3. If the particle at y survives it retains control of
the site. If there is no particle at ¥ or the particle at y
dies, then the new state is chosen at random from the
propagules sent to y. [f there is no survivor at y and no
propagules are sent to y then y is vacant.

If we ignore the different types and lock only at
whether the site is occupied or not then we ger a
contact process, so clearly nothing interesting will
happen unless that contact process survives. We will
suppose this for (6,8) and (6.9), which for simplicity
will be stated only for the case k = 2. By generalizing
the proofs in Neuhauser’s (1990) thesis one can show

Theorem. In dimensions d < 2, for any initial configu-
rason, we have

P(f,(x) = IyEr(y) =2)—=0

so all stationary distributions are triviai,

for all ryeZ*

(7.8)

Thearem. In dimensions d = 3, there is a one-para-
meter family of stationary distributions vy, fe (0,17,

/€6
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Figure 22. Fractuon of the initial 60 genets surviving 1o time
£ and fraction of sites occupied at time ¢ for Inghe's
compettion model with A=90.25 and single site deaths with
probability y=0.325.

have rewrten some of the ruies to more clearly
specify the dvnamics.

. Simulations are carried out in a universe of 3600
sites icells), arranged in a square of 60 rows and 60
columns. Each site can be empty or occupied by
exactly one ramet. We think of each cell as being
2 % 2 ¢cm?® so the universe is 1.2 x 1.2 m?

2. Sites are assumned to be placed in a square
lattice.

3. To avoid edge effects. the universe has wrap-
around margins, so that the upper row and the
hottom row are neighbours of each other. and the
rightmost column and the leftmost column are neigh-
hours of each other.

4. Each site has a neighbourhood of 12 sites ' to be
precise, ¥ = {y:[lyil; € 2}, see the table of probabili-
ties below). For each site ¢ in the neighbourhood, there
is a cerrain probability P, for a propagule 1o be sent
there, and providing it is the onlv propaguie sent
there, to colonize the site. If more than one propagule
competes for colonizing an empty site, the actual
probability for a ramet in position [ to colonize the
empty place, P/ is given by

P, 12

P =T(l -[Ta- R)),

T P, =t

el
where P, 1= 1,2,3, . . ., 12 are values from the 1?2
neighbouring positions if the position is occupied and
O otherwise. The expression in parentheses is the
probability that some ramet in the neighbourhood
colonizes the empty site. The expression in front of it is
the proportion of the probability assigned to the ramet
in position f. The probabilities £; are given by the
following table

Phi. Trans. R. Sec. Lond. B (1984
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a.1
025 04 025
0.1 0.4 X 0.4 0.1,
0.25 04 0325
0.1

which are intended to represent a clonal herb growing
in ‘phalanx mode’, i.e, with most of the daughter
ramets placed very near the original ramet.

3. Death of ramets is caused by randomly choosing
squares of areas 4 in a gnd of non-overlapping squares
covering the universe and killing all ramets present
within them. Edge effects are averted by letting the
position of the grid varv randomly in both spatal
dimensions between generations. The size of squares
‘measured as side length in cell units A}, and toral
number of cells affected in each generaton (L are the
two parameters varied berween simulation runs,

6. A simulation starss by ‘sowing’ 30 genets, each
consisting of one ramer, at random over the universe.
which is then exposed 1o death events according to
:31. This is called generation 0. The following genera-
tions each consist of an episode of clonal growth )
followed bv an episode of death | 31.

Inghe investigated this model for a varietv of
combinations of vaiues of 4 and L [see table on p. 261
to Inghe’s paper) and made three runs of 250
generations for each combination of parameter values.
Based on these simulations Inghe estimated the
number of ramets in equilibrium tsee figure 4 on page
263). As one should expect the number of ramets in
equilibrium decreases when L increases, and becomes
0 when L i1s too large. That is. there is a critical value
of L at which the process goes extinct. The figure also
shows the less intuitive fact thar the eritical value of L
{the total area disturbed) decreases as the size of the
disturbances increases.

Inghe also investigated the number of ramets and
genets versus time for several parameter values. To
understand the graphs in figure 5 on p. 264 of his
paper. we have performed analogous simulations for
the competition model described in the last section.
This is a version of Inghe's model in which births
occur from x to each of its nearest neighbours with
probabilitv A, and individual sites are made vacant
with probability 7. On an .\ x .V latuce this corres-
ponds to taking 4 = [ and L = Y% in Inghe's model,
with two differences: (i) we have modified the birth
probabilities to be uniform over the nearest neigh-
bours, and (ii) in our case we flip a coin for each cell
to see if ir 15 disturbed rather than disturbing a fixed
number of cells L. We have modified Inghe's model
primarily to make it simple to simulate, but also to
make the point that the qualitative properties of the
systemn do not depend on the details of the birth and
death mechanisms,

Figure 22 gives a graph of the number of ramets
and genets versus time for the model with A=0.25,
7=0.323, and N=60, which corresponds roughly to
A=1 and L=1170 in Inghe's scheme. The non-
increasing curve gives the fraction of the 60 original
genets thar remain at time . The wiggly curve gives
the fraction of sites that are occupied by a ramer of

Y
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some type. The graph we obtain is similar 1o the first
two in figure 3 on p. 264 of Inghe (1989 and performs
as we would expect from theorv, Since we start with
only 30 plants in a grid of 3600 sites. it rakes a while
for the plants to expand throughout the space. but
soon after thev do, we see onlv small fluctuations in
the number of ramets awav from the equilibrium
level. The number of genets decreases quickly from 30
to 17. The next table gives the number of genets

versus time. At intermediate times. the number of

genets is constant. For example at times 13 to 21 there
are 19 genets.

time 0 l 2 3 + 3 6 7
genets 30 36 30 27 26 24 23 22
time 9 11 12 22 27

genets 21 20 19 18 17

The inirial rapid decrease corresponds to the fact that
some of the original plants start familv lines chat die
out. In the long flat region in the graph the clusters of
the various generic types are not in equilibrium bur
are growing and fighting for territory. .\s ime goes on
we start to lose types due to competition. The next
table describes how the number of tvpes drops from 17
to i:

tme 203 233 270 393 499 3510 640

genets 16 15 14 13 121t 10
rime 1649 2283 2345 3385 13408

genets 9 8 7 6 3

time 7068 7378 13898 16875

genets 4 3 2 1

By analogy with results of Sawver (1979) and Bram-
son & Griffeath (1980), we expect that ;for the two-
dimensionai svstem under consideration) the number
of genets at time ¢ will decay to 0 like Cllog i/t where
C is a constant that depends on the number of
particles that escape dying out in the frst phase.
One of the most interesting ideas in Inghe's paper is
to investigate how the behaviour of the process
changes when disturbances affect more then one site
at once. so we have locked at a varaden of our
competition model in which deaths can affect more
than one site at once. One can, and Inghe did,
investigate disturbances thatare 2x 2, 3% 3, 4 x 4 and
50 on. Some of the most interesting behaviour occurs
when the disturbances are large, so we have looked at
a model in which there are three disturbances at each
time step that are [5x {3 squares and then births
occur from each site to its nearest neighbours with
probability A=0.55. In Inghe’s scheme this corres-
ponds to A= 15 and L=675, but we have chosen our
three squares at random from all possible 15x 153
squares rather than from a randomly translated
sublatrice of nonoverlapping squares. Figure 23 shows
a graph of the number of ramets and genets versus
time for our model on a 60 x 60 lattice. Again, the
non-increasing curve gives the fraction of the 60
original genets that remain at time ¢ and the wiggly
curve gives the fraction of sites that are occupied by a
ramet of some type. The oscillatory behaviour in the
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number of ramets versus time that occurs is compar-
able to that in the last graph in figure 5 on p. 264 of
Inghe’s paper. These oscillations are a ‘finite size
effect’. That is, the disturbance squares have a length
that is 1/4 the system size so occasionallv the place-
ment of squares at successive times will be very
effective in decimating the population. Figure 24
shows a simuiation of the svstem on a 120 x 120 and
displavs much less oscillation, If we were to simulate
the systemn on a 240 x 240 grid then the oscillations
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Figure 24. Fraction of the initial 60 genets surviving to time
{ and f[raction of sites occupied ar tume ¢ for Inghe’s
competition model with A=0.55 and threce 15x 13 death
events on a 120 x 120 lattice.
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would be reduced even further and the graph would
look much like figure 22,

Section summary. In this section we described 2 model
due to Inghe (19891 which describes the competi-
tion of genets of a given species. This model is a
discrete time anaiogue of the svmmetric competition
medel in the previous section and like those models
has behaviour closelv related to that of the voter
modet.

‘

9. SUMMARY

The analysis of pattern formation has long been one
of the unifving themes in mathemartical biology. In
ecology, the importance of such analysis has stimu-
lated much recent activity because of the need ro
relate phenomena across scales. and (o interpret
patterns on one scale in terms of processes on ather
scales.

Traditionally, most models of pattern formation
have been contnuous in space and time. refiant on
diffusion-reaction systems. Such models have shaped
our understanding of how pattern forms. but are
inadequate for investigating phenomena that have
localized stochastic events, or treat spatial influences
that are non-local. Extensions 'see Levin & Segel
1985} can address some of these problems: but a
fundamentally distinct approach, through interacting
particle systems, is ideallv suited for investigating
many phenomena. These are the focus of artention in
this paper.

The models we have described have the tollowing
general features, Space is represented bv a grid of
sites’, which in most cases is the 4-dimensional integer
lattice. Each site can be in a fnite set of states: 0
‘vacantj or:=1, ... x—1 indicating the presence of
one plant of type . When k=2 ’i.e. we are dealing
with the spread of a single species! the models can
encompass a wide variety of death and asexual birth
mechanisms. but all the svstems have the tollowing
general fearures. If the birth probabilities are not large
enough the system alwavs dies out. bur if the birth
probabilities are large enough there is a non-trivial
equilibrium state, which is tvpicallv unique and is the
limiting state whenever the system avoids extinction,
The parameter values ar which the transition from
‘dving out’ to ‘surviving’ occurs are aimost impossible
0 compure theeretically but can easily be estimated
from computer simulations.

When « 2 3, attention focuses on conditions for the
K — | species to coexist in equilibrium. Again, analvti-
cal results are hard to obtain. but become possible if
one is willing to make the assumption thar offspring
are displaced a large distance. measured on the lattice,
from their parents. Calculations were carried out for
two or more species that are (i} part of a successional
sequence, or (ii) compete on an equal footing, but
these computations generalize easily wo a variety of
other systems (e.g. the model in Casweil’s {1978)
paper on predator-mediated coexistence). In the
analysis of these systems we saw that continuous time
processes, while taking some sophistication to formu-
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late, were actually easier to analyse and did not
require collision rules that discrete time svstems need
to determine what happens when several events try to
influence a site simultaneously,

One of the attractions of interacting particle system
models is that they can easily take into account spatial
and temporal inhomogenities. However, as these
models oniv trv to capture the ‘essential’ features of
the interactions and do not trv to accurately model
the microscopic dynamics. one cannot expect to
obtain quantitative predictions but only seek to
understand how properties of the svstem change in
response to changes in the model. and to infer from
this whar aspects of a svstern are responsible for its
observed qualitative behaviour.
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