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Abstract

We investigate the evolutionarily stable seasonal timin g of life history events, such as the
start of breeding, when the risk of physical disturbance and advantages of growth or
competitive advantage are in conflict. In our model, disturbance is assumed to cause
failure of all breeding (or other life history) attempts made before it. Fora given
probability distribution of the timing of last date of environmental disturbance,
individuals starting breeding earlier face a higher risk of being disturbed. On the other
hand, the clutch laid earlier has an advantage over those laid later. either having more time
{0 grow or to prezmpt the nest sites. suitabie habitat or foraging sites. The evolutonarily
stable popuiation is determined to have a single optimal date on which all individuais start
breeding (synchronous breeding), provided the benefit of the earlier start of breeding is
given purely by the excess time for growth, not by the competitive advantage, and
provided offspring produced from many subpopulations, each having a different date of
disturbance, are pooled to form a population over which population regulation occurs. In
contrast, an ESS population may inciude a period of breeding over which some
individuals start breeding every day {asynchronous breeding), if (1] early breeding is
accompanied by competitive advantage within the local population, or {2] population
regulation occurs within the local population before being mixed with offspring produced
from other local populations, or [3] disturbance oceurs synchronousiy over the whole
population. In short. svnchronous breeding should evolve if the spatal scale over which
disturbance dates are strongly correlated (denoted by Sdisturoance) is much smaller than the
spatial scale of the population in which population reguiation occurs (denoted by

S regulation)  Asynchronous breedin g 15 expected 10 evolve if Saisturbance is similar to or

la_rgcr than Sregulauon.

keywords: life history theory, spatial scales, timing of reproduction, germination,

oviposition, bet-hedging,
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Introduction

A recurrent problem in life history theory involves the timing of events, for
example emergence, germination, breeding or migration to find new sites. In each of
these cases, the "early birds" have the greatest potential for high payoffs, and for
securing favorable habitat, but may run the greatest risks of uncertain condidons. These
tradeoffs exist as well in a number of other situations. For exampie, even without
seasonality, foraging individuals constantly must balance the relative security of a
sansfactory patch against the uncertain possibility of finding a higher pavoff
environment. In foraging as well as larval or seed dispersal, those settling in marginal
habitats may expenence increased environmental uncertainty but reduced competition,
The tradeoffs are famiiiar ones, but no general approach exists for evaluating the
tradeoffs and determining evolutionarilv stable strategies. The purpose of this paper is to
propose steps in that direction. To the extent that we focus on particular exampies,
especially uming of reproduction. they should be understood as representing the broader
class of problems inroduced above.

Suppose that following reproduction or germination there is a risk of disturbance,
for example due to frost, storm. herbivory or predation, and that such a disturbance event
would kil all offspring already produced. A case in point (Moloney er al., 1992)
involves the strategics of various annual plants in serpentine grassland: early germination
leads to death if disturbance by gophers occurs early in the season, but gains competitive
advantage otherwise. Analogous cases invoive the timing of oviposition in insects, or
breeding in birds. If the last date of disturbance were known beforehand, the
evolutionary tradeoff would be easily resoived: ail individuals would germinate or
oviposit or breed just after the last disturbance event. However, uncertainty exists
regarding dates of disturbance, both locally and regionally. Hence, evolution will select

for a compromise, balancing the radeoffs between the higher risks and higher benefits of

early germination.

- re iwl



To be specific, we shall focus henceforth on breeding birds and let x be the last
date of disturbance. and f{x} the probability distribution of x. We assume that f{x) has a
single peak. We denote the latest possible date of disturbance by 4. An example of such

a distribution is
Axy = Cx®Nep-xf - , (1)

for 0 < x < &, but zero for other x. This example will be used in illustradons to follow.

Natural selection works every generation to shape a temporai pattern of breeding.
Since the success of particular timing involves uncertainty, as determined for exampie by
the probability distribution in Eq (1), a distribunon of breeding dates may evoive. In this
case. the evolutonarily stable population would inclr-e individuals that breed on
different dates asvnchronously dependir~ nn the pc  .tion structure. spatial scale of
disturbance, mode of compettion etc.

In this paper we anaiyze the optimal or evoiutionarily stable breeding schedule.
Each piayer chooses the starting date of breeding, denoted by y. In some cases, there is
an optimai date v* or which all individuals are expected io start -zeding. In other
situations. however. an evolutionariiy stabie populadon may inciuae individuais breeding
on different dates. and there mav be a period over which some individuals start breeding

every day.
Case 1: Frequency-independent Fitness

Consider first the simplest case in which there is no frequency dependence, so
that breeding success, provided individuais are not killed by the disturbance, decreases
with the laying date y. Let wly | x) be the breeding success of an individual that begins

breeding on day y. For example
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~by , ify>x
l _ e
W(y X) { 0 , ify<x . (2)

where b indicates the strength of advantage of starting oviposition earlier. Then the
expected reproductive success is simply the success multiplied by the probability of not

experiencing disturbance.

T
¢ (v) =j wly | xhfodx
0

= j Axydxe by
0 : (3)

Because %) is 2 non-negative contnuous function on {0, 1, it (generally) attains its
maximurm at a singie date y*. Therefore, there is no possibility for a mixed strategy to
evolve.

In the above, we used the arithmetic average with respect to the dates of
environmental disturbance in calcuiating average reproductive success in Eq. (3).
Disturbance events have a certain spatial scale, and we mayv call the area disturbed by a
single event "a patch”. We assume that the whole population inciudes a number of
patches, each having a different date of disturbance. The fraction of patches having
various dates follows ffx) and is constant over generations. The output from
reproductive success in these parches will be pooled and redistributed randomly over
different patches. This mixing process may be caused by migration. The reproductive

success of a particular individual is independent of the behavior of other individuals

within the same patch (or subhabitat). This population structure reflects an assumption of

hard selection (Christiansen, 1975; van Thienderen, 1991). Because of this assumption,
the arithmetic average is the suitable method in calculating the adaptiveness of the

breeding date. In addition, the conditional reproductive success of a surviving individual

* Tw ¥



1s assumed to be e- by, c:pendent only on the breeding date v, indicating frequency
independence.

The iution that maximi- - “q. (3) suggests that all the individuals should evolve
to start breeding synchronously on .. same date. Some of them are kiiled because the
disturbance in their r-tch comes later ¢ i y*, but reproductior .. other patches in which
the disturbance ends  re y* will produce the next generation. The popuiation on the
whole is quite stable in recruiment because the fraction of disturbed and nondisturbed
patches does not change between gerar o

As explained iater, if some of the conditions described above are violated. for
example if the patches are distrhed svnchronously or if competition occurs within each
local site, then the evolutionary outcome can be very different. We turn 10 some

examples in ““e sections that follow.

Case 2 Rank-dependent Fitness

Next we examine the case in which the refative advantage of different breeding
dates is given not by the absolute date but by the ranking within the local populadon. To
illustrate this, suppose that a limited number (n) of nesting sites are available, and that
only thos .10 5.1 breec - 1¢ of these sites are able to breed. Then. to achieve
some reproductive success, one 1nust be included among the first # individuals that start
breeding after the last disturhance day x.

Alternatvely, suppose that offspring from earlier clutches grow faster and. when
hatched, enjoy a larger competitive advantage within local popuiadons. Then the
reproductive success of an individual starting breeding on y decreases with the number of
indivicuals who start earlie- *han ¥, but later than the last disturbance date x. Let gy
the d:. _ .bution of the date  .n the population. Suppose that the reproductive success

an individual that starts breeding on day y is
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ex -aﬁg(z)dz} , if y>x
wiylx) = { P{

0 . if y<x , (4)

where g is 2 parameter reflecting the intensity of compeution. A very large a indicates
very strong competition so that only those who start breeding just after the last
disturbance can have reasonable reproductve success. In coriu'ast. if a is zero, there is
no advantage to start breeding earher.

The fitness of an individual with parameter y is given by

¢(y)=j iy | xlf (x)ax
G

Y

o
= qu -d j g (z]dz}/(x}dx
L X

0 (5)

The evolutonarily stable popuiation will be comprised of a disaibution of
individuals, each with a different starting date. To show this, assume otherwise: if the
pooulation were composed only of individuais starting on a single "best date” y*, then a
mutant that started breeding just before y* would have a large advantage, enjoying the
best growing success in the population at the cost of a verv small increase of risk.
Hence, such synchronized breeding is not evolutionarily stable.

Let g*(y) be an evolutionarily stable distribution of breeding dates. Then ail
breeding individuals in the ESS wiil have the same fimess, A, and the ESS is

characterized by the two conditions:

p(y)=21 . for all y such that g*{y}> 0
Sly)<, foray such that g*(y)=0 _ (6)

The first condidon reflects the fact that individuals adopting different breeding dates must

have the same fimess. The second condition indicates that a mutant breeding outside the



ESS range will have a lower reproductive success. Similar conditions are used in
calculating the seasonal pattern of emergence of male buttertlies (Iwasa et al., 1983;
Parker & Courtney, 1983: Bulmer. [983); itis a temporal version of the ideal free
distribution (Fretwell, 1972).

Indeed, it may be shown (Appendix A) that the evolutionarily stable distribution

2(y) s
f) for y> x,
ook
s = {
0 . fory <.
(7a)
where the critical date x, is given by:
I
-_a
[ flxdx = l+a
e (7b)

Eq. (7b) indicates that the criticat date - becomes very early (X 15 very close to 0) 5
competition is very strong (large a); in this case, the evolunonarily stable distribution 2(y)
becomes close 10 f{y), the probability distribution of the last disturbance date. In
contrast, if the competitive advantage is small (small @), the cridcal date becomes close 1o
the end of the season (%« is close to r), and breeding should occur only after virtuaily all
possibie dates for disturbance have passed.

The distribution gry) specifies the number of individuals that should start breeding
on each day in the ESS population. However, this can be realized in two different ways.
The population may be a mixture of individuals having different pure strategies;
alternatively all individuals can have a single mixed strategy that causes each individual to
follow the probability distribution g(y). The result Eq. (7) derived above does not

distinguish among the two cases or from some combination of them.
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Case 3: Locally Reguiated Population

As stated earlier, use of the arithmetic mean in Case 1 is justified by considering a
popuiation composed of many patches that differ in the date of disturbance. In addition,
population regulaton 1s assumed to occur after the offspring from different patches are
pooled together, which is termed hard selection (Christiansen, 1975; van Tienderen,
1991). In contrast, popuiation size may be regulated within each patch or subhabitar,
before being pooled: this is called soft selection. The latter may apply if the difference in
the starting date of breeding causes differental growth among individuais. and
competition among offspring occurs later in the season within local populations, so that
the total reproductive success achieved in the local population is fixed.

The reproductive success of an individual with starting date y is proportional t0
that given in Eg. (2). but is normalized within each local population. Specifically the

reproductive success of an individual with starting date y in a patch with last disturbance

date x is:
TQ:L if v>x
o{z)e- dz
w(yl.r)z{
0 . if vax

(8)
The reproductive success of an individual with breeding date y is the average of ¥ over

the different local populations included in the whole population:

dly)= | —= = lxkx
L gz bzoy
: . ©)

The evolutionarily stable distribution is again given by Eq. (6). Namely



“ﬁc-by%“f(x)dx =1, fory such thatg(y)>0
ﬁff:' brg (z)dz

o {10a)
y
e by flxlde <2 . fory suchthatg(y}=0
- - J;fc'f’fg (z)dz
. (10b)

where A is a constant.
According 1o the calculation in Appendix B, we can determine the ESS
distribution g(y) satisfving Eq. (10). The solution of these equations is again a truncated

distribudon, where no Oviposition occurs before a critical date Xc but some oviposition

occurs every day after Xc. The cridcal date Xe is the soluton of:

- flxe)= bf fy)dy
0

' (11a)
and the evolutionarily distbution of oviposition dates is:
lebvdif(vigovy, i y>x,
dy” i ’
b A .
giy)=
0 . if y<x,
(11b})
where X is determined by
s
X: (llc)

Fig. 3 illustrates several examples of Eg. (11). The ESS solution g(y) is determined by
the environmental disturbance distribution f(x) and growth advantage . The critical date,
or truncation date Xc decreases with the growth advantage 4. If the growth advantage b is
very strong, then the critical date Xc becomes very early, and g(x) becomes close to f{y)

(Fig. 3A), but has a peak later than the peak of f{y}. In contrast, if the growth advantage

-10-
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b is small, the critical date Xc becomes close to !t and most breeding starts on the date all
possible disturbance ends (Fig. 3B). The mean and the variance of the distributon g(y)
given by Eq. (11b) and their parameter dependency are derived in Twasa & Haccou

(1994).
Case 4: Synchronized Disturbance

In ail three cases discussed above, it is assumed that the arithmetic average of
reprod_uctive success is the correct criterion for measuring evolutionary advantage. This
is the case if disturbance occurs on a smail spatial scale compared with the whole
population so that the evironment is fine-grained. However, if instead disturbance 1s
synchronized over the population in which the population reguiation occurs, and if the
population has no overlapping generations. then fitness is measured as the geometric
average of reproductive success, instead of the arithmetic average (Lewontin & Cohen,
1969: Levins, 1962, 1968), because the function maximized is the average of logarithmic

reproductive success. Therefore, we write the long-term average of the logarithmic rate

of population increase per generation:

o(y)= J log wly L xlf (x)dx

0 (12)

instead of Eq. (3). We here assume that the fitness ‘V{y 1x) is given by Eq. (2), i.e. we
assume neither competition within the local population nor population regulation. Then
Eg. (12) is the measure of adaptedness for a pure strategy y, i.¢. the individual laying
clutch on day y. When disturbances are synchronized, so that the enviomment is coarse-
grained, the ESS is a mixed strategy (see Yoshimura & Clark, 1991, 1993; Haccou &
Iwasa, 1994; Sasaki & Ellner, 1994), and can be specified by a probability distribution

pfy). The logarithmic fitness is given by a functional of p(y}:

-11-
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¢lp(-)=1 lo f e &vp (y)dy |f (x)dx
a . (13a)

In the population dominated by the evolutionarily stable mixed strategy, no other strategy
can have larger logarithmic average fimess as given by Eq. (13); hence the ESS mixed
strategy is the one that attains the maximum of the above functional among all

distributions satsfying

s
f pividy=1 and p(y}20
0 (13b)

This is an optimization problem with conswraint, and can be analyzed by Lagrange's

method. According to the calculation in Appendix C, the optimal mixture p*(y) satisfies:

t_r.'L_f(x)dx =4,  fory suchthatp*{y)>0 ,
Lo brpk {2\
J e p (-.ML
X
0 {14a)
a- by ek <A, fory suchthatp*(y)=0 ,

L?c' bIp* (z}dz
0 (14b)

where A is a positive constant. Interestingly, Egs. (14) are mathematically equivalent to
the condition for an evolutionarily stable mixture Eg. (10} if p*(y) is replaced by g(y).
This implies that the opiimal mixed strategy p*(y) of case 4 is the same as the solution of
the evolutionarily stable mixture g(y) obtained for case 3, the mixture solution for locally
reguiated popuiations (see Fig. 3). However there is a very important difference between
them. In case 3, both a mixed strategy and a mixture of pure strategies achieve an

evolutionary equilibrium population. In the present case of bet-hedging, a single mixed

-12-
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strategy, which is to take various behaviors with probability specified by p*(y), is

opamal; but a mixture of pure strategies is not stable.
Combinations of different mechanisms

We can also study combinations of the three mechanisms that promote the
evolution of asynchronous life history events. For example. we may consider the case in
which fitness is locally regulated and. in addition, the last date of disturbance is
synchronized over all the patches in the popuiaton. This problem is a combination of
cases 3 and 4. Let the evolutionarily stable mixture be p*(x)J, and the probability

distribution used by the mutant strategy be p*(x). Then the fitness of the mutant in the

populaton dominated by the ESS tvpe is

A

t ‘
61717 = J ;OJ f Ay dy (xx
L7x pr*(z)e‘bza’z f

, (15)

where the fimess is normalized within each patch. This equation can be rewritten as

-

Ty .
() = f Iog'Lf m’y)e"’-“d.vb‘ (x)fix-[ 10%“?!)*1_:}6' *”d?’}f(x)dx
x i ) , (16)

where the second term is independent of the mutant strategy. The fitness must be largest
when p(x) = p*(x). Hence the ESS type is simply the one that maximizes the first term
of Eq. (16) and hence is the same as the one calculated in case 3 and in case 4. We
conclude that the ESS mixed distribution when both local population regulation and

synchronized disturbance operate together is the same as that when only one of the two

mechanisms operates.

-13-



In Appendix D, we analyze (1) the case in which the population is regulated
within local populations and the fitness is rank dependent, which is a combination of
cases 2 and 3. The ESS is either a mixture of pure strategies or a mixed strategy. We
also analyze (2) the case in which the fitess is rank dependent and disturbance occurs
synchronously over the population, which is a combination of cases 2 and 4, and finally
(3) the case corresponding to synchronized disturbance, local regulation, and rank-

dependent fitness. The mixed strategy that evolves for both of these is exactly the same

as a mixture of dismibutions from cases 2 and 3.

Discussion

In matters invoiving the tming of life history events, the evolutionarily stable
popuiation may exhibit general synchrony or a distribution of individual tmes that
equalize fitness through frequency dependence. In this paper, we provide a framework
for invesdgating this question, focusing on the seasonal uming of the start of breeding.
We first consider the case (hard selection) in which fimess is frequency independent and
the environment is fine-grained. so thas natural selection operates on the average fitness
over different local patches differing in disturbance date. In this case, the ESS involves a
synchronous start of breeding,

In other situations (e.g. Case ) asynchronous breeding mayv evolve. If, as is
generally the case. the success of a stategy depends to some extent on whether others
have acted first, fitnesses are frequency dependent, and determined by order or rank: in
such a situation, asynchronous starts of breeding may evolve, either as a mixture of
individuals having pure strategies, or as a population composed of genotypes each
showing a mixed strategy, i.e. 10 choose the breeding date according to a probability
distribution. Combinations of these cap also occur. In a parallel situation, asynchronous
pupation was demonstrated to be the evolutionarily stable solution for insect life cycles

when competition among feeding larvae slows down the growth rate (Iwasa, 1991).

-14-
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Asynchronous breeding can also result under soft selection, if the population size
is regulated within local populations before being mixed together with many others, and
if those individuals within local populations experience disturbance on the same date
(Case 3) In this case the growth benefit may be frequency independent, with growth
performance being a function of breeding date only; however because of populadon
regulation within local populations, the fimess of a particular individual depends on the
success of other individuals within the local population, which creates frequency
dependence if viewed from the perspective of the whole population.

Asynchronous breeding can also result, however, in the absence (Case 4) of
frequency dependence, provided disturbance is synchronized over all patches. In this
case, a bet-hedging strategy wiil emerge, leading to an optimal mixed strategy formally
equivalent to the equation for a mixed strategy for Case 3. However, there is an
important difference: the ESS in this case is a swategy; one cannot have a mixure of many
pure strategies, as was the case for Case 2 and Case 3. We also investigate combinations
of these different mechanisms, examing the roles of frequency dependence and
disturbance scale. Disturbance scale is well known to have important effects (Levin,
1992). introducing correlations that are of both ecological and evolutionary importance.

Let Sregulation be the spatial scale of the population over which population
regulation occurs. and Sdisurbance be that of a single disturbance event. In Case 1 above,
Sregulation is assumed to be much larger than Saisturbance 50 that the population over which
regulation occurs includes many local patch each created by a single disturbance event;
genotypic fitness is caiculated by averaging reproductive success over local patches. In
this case, a pure strategy is expected to evolve though kin selection (not investigated here)
may modify this. In Case 3, though the population includes many local subpopulations
that differ in the timing of disturbance, population regulation occurs within each
subpopulation, before averaging occurs. Hence Sdisturbance is the same as or even larger
than Sregutation . In this case, a mixed strategy or a mixture of pure strategies is expected

to evolve. The same is true for Case 2, rank-dependent fitness, where a mixture of pure

-15-



strategies evolves. In Case 4, in which spatial structure is unimportant
(Sregutarion = Sdiﬂwba"fe), a mixed strategy results.

In short, we may conclude that a pure strategy should evolve if the spatial scale of
each disturbance event is smaller than the spatal scale of the population in which
regulation occurs. Otherwise, either a mixture of pure sategiesorar  d strawegy, or
some combination of them can evoive.

This paper is just a first siep in the investigation of complex life history events, in
which risks and benefits associated with oming of events must be balanced. The focus
here has been on breeding, but the consic “ations are the same for a wide variety of other
situations. Frequency dependence and  jal scale ar st shown o be consideradons

of general importance.
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Appendix A

Analysis of the ESS for Case 2 (rank-dependent fitness):
To investigate the dependence of fimess on breeding date y, differentiate (5)to

yield

=fly)-ag(y)ely)

D..‘Q.
< | ©

(A1)

For an interval in which & ') = O hoids, ¢(¥) increases since

This means that, for an ESS, g(y} can be 0 on an interval, but not for any y greater than

the first for which g(y) > 0. Hence the ESS must be of the form:

a for O<y<x.
0

gly
¥ , for x.<v<y

2{y)
For 0 < y < Xc, ¢ increases with y and reaches its maximum at ¥ = *c:

olxc) = | f (xx

(A2)
From Eq. (6), $iy)=0lxc) for xc <¥ < I, Hence, Ea. (A1) yields
2ly)= fiy)
a¢lxc) i (A3)

By integrating (A3) from Xc to I, we have

17-
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a ¢‘Ic) p o

which together with Eq. (A2)re  .ts in (7b) in the text.
Appendix B

To investigate soft selection, we begin by considering the case in which the
evolutionary equilibrium includes two inte:vals separated by a critical date X, and that
g{y) = 0 holds before Xc but g(y} > ( after Xc. Then the critical date Xc and the shape of
gfv} are determined as follows:

First we note that. for ¥ > Xc, Eq. (9) may be rewritten as

X ¥
B0)= | Sl | oy
|| doe e ["eta)e- b2t
o] e Xe * (Bl)

where integral 3 with respect x are separated into pieces before and after the critical date.

Differentiatng Eq. (B1Y. and noting that &v) = & holds for ¥ 2 o, we have:

flve oY

O=-bA+
s
glze- b2dz
L’ . (B2)
By rearranging factors and differentiating, we have
2y)= =tebrdif(ype- o]
bA ¥ ; (B3)

forY > Xc. Since the integrai of g from Xe to & must be equal to one, we have

y
1==L j ebr-d{f (y)e- &3]dy
bA dy

*e (B4)

By integration by parts, Eq. (B4) can be rewritten as

-18-
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A=t (;c) +j fy)ay

(B5)
On the other hand, since g(y) = 0 before the critical date Xe, Eq. (9) art the critical date X¢

yields:

i

,1=_.£'b"f_f Flekdx
L gz bz fy

(B6)
By combining (B6) and (B2) with ¥ = ¢, we have Eq. (11a), by which we can detemine
the critical date.

In general, the time axis may be composed of more than two intervals so that g{y)
>{ and g(y) = 0 hold altematively. With some additional argument, we can prove that
the evolutionarily stable solution must have the form explained above. Here we take an
easy step. The problem we are analyzing here is mathematically equivalent to the model
studied elsewhere in a very different context -- the seasonal pattern of male butterfly
emergence (Iwasa et al., 1983). By reversing the time axis by making the substitutions

=X =X If-Y =Y anqlr-2— Z, we can rewrite Eq. (9) as

I
oty)= | LEECTI
J:g{Zk:'b(x -2y
’ (BT}

This is the same as the fitness discussed by Iwasa er al. (1983), in which f{x) and g(x)
are the number of males and females emerging on day x , b is the daily mortality of adult
males and ¢xy) is the expected number of matin gs for a male emerging on day y. Then
Eq. (6) is the condition for the evolutionarily stable male emergence curve for a given
female emergence curve. In the Appendix of Iwasa ez al. (1983) it is proved that there

exists a single solution g(y) and, if the function / ¥} % has a single peak, the

evolutionarily stable emergence curve is a truncated distribution, such that some males

-19-



should emerge before it, and no males after it. By reversing the time axis, we have the

same solution as for Case 2 and Case 3 of the present paper.
Appendix C

The problem of optimization of Eq. (13a) under the equaiity constraint (13b) (the
value of the integral is aiways 1), can be transformed to an optimization problem without

equality constraint:

173 T tr

k

¢lp (=)= iogif e b¥p (y)dy}f{x)dx - flf p(ydy

[Jx J 0
0 (CH

under the remaining inequality condition (X¥)2 0, for all ¥), where A is a positive
constant, called Lagrange's multipiier.

To know the maximum of a smooth function in general. we calculate the
denivative of the functon. The same is true for the optimization of the functonal (C1),
but we need a functional derivative which is a pargal dcn'vati:fe of a functional with an

infinite number of variabies. We caiculate the sensitvity of ®10 the perturbagon made to

p(z) around the day v.

50 _ tm lpizieediz - y))-aipiz)

My) £ = €
y

0 . (C2)

The condition for optimality under the inequality condition A¥)2 0, forally is that the
derivative (C2) is zero if p{y} >0, but (C2) is negative or zero if pfy)=0. This is Eqg,
(14a and b) in the text
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Appendix D

Locally regulated population with rank-dependent fitness:
We may consider the case of a locally regulated population with rank dependent

fitness, which is a combination of Case 2 and Case 3. The fimess of an individua] is

expir- a’ g(z)dz]
oly}l= L ix Flxdx=A4 | for gly)> 0,
i
f g(u)‘:xg[- a[:g(z)dz}du
0 (Dla)
exp-af]slzkiz
¢ly)= 2 f{xdx <A | for gly)=0.
f_( r . h
f g(u)exg-ajjg(z)dzjdu
T D1b)

Muluply both sides of (D1a) by gy} and integrate over y, 1o obtain

where X (¥>x)= 1 if y>x; x (y>x}= 0 otherwise. [ence A=1. Eq.(Dla)can then be

rewritten as
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cx;{— a [gg(z)dz} Jix) —dx = |
] \ ]
\ u
[ gukexp - ajfog(z}dz}du
0 /0 L
(D2)
which holds for gry) > 0.
The ESS distribution gfy; satisfying Eq. (6) has a critical date Xc: g(y)=0fory <

e, and g(y) > O for v > x.. Afrer some algebra, we rewrite the equality (D2) as:

tr tr . - 1
[ fizd: =f 2zkdz + —y‘cxpf -aJVrg(z)dz{ - 1)
y v S J (D3)

From which we can compute the ESS dismibution 2(y). Since the integral of 2(y) is one,

the cridcal date x, is determined by

(D4)

Using an expression for gfy} = O similar to (D2), we can contirm that &yj increases with

yfory < x.

Synchronized disturbance and rank-dependent fitness:

Now we consider the case in which disturbance date is svnchronized over the
population and the fitness is rank dependent. This is a combination of cases 2 and 4. Let
p*(x) be the ESS mixed strategy and p(x) be the probability distribution of raits x for the

mutant that is very fow in frequency. The logarithmic average fimess of the mutant is;

i
¢(P(‘))=f10 f p(y)cxp{~ J;fp*(z)dszy (x)dx
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which is to be maximized when p(x} = p*(x). The optumality conditions under the
i

constraints (Jop(y)dy =1 and 2(¥)2 Oy are:

is zero for p*fw) > 0, and is negative for p*{w) = 0, where A is a Langrange's multiplier.

An analysis similar to that for case 4 leads to Eq (D1a) and {D1b) if p*(x) is replaced by
g(x}. Hence the optimal mixture disaibution p*(x) for rank-dependent fitness with
synchronized disturbance (combination of Case 2 and Case 4) is the same as the ESS

mixture g(x) for a locaily regulated population with rank-dependent fitness (combination

of Case 2 and Case 3).
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Figure legends

Fig. L. Tlustration of population structure assumed in the models.

(A)  Globally regulated population. The population reguiation occurs in the pool after
offspring from different subpopulations are mixed together. The different
subpopulations receive disturbance at different dates. This corresponds to Case 1 in the
text. A single pure sirategy should evolve.

(B)  Locally regulated popuiation. The population regulation occurs within each
subpopulation. This corresponds to Case 3 in text. Either a mixture of pure strategies or
a single mixed strategy should evolve.

(C)  Synchronized disturbance. The dates of disturbance for different subpopuiations
are synchronized. This corresponds to Case 4 in ext. A single mixed strategy should

evolve.

Fig. 2 The evolutionary stabie distribution of starting date for Case 2 (rank dependent
fitness). f{t) = 2.968x10°x3(10 - xP2 1y () competitive advange of starting
breeding early is large (a= 1.5} and truncation occurs relatvely earily (Xc = 4.886). In
(B), the compettive advantage is small{a = 0.3) and the truncaton date is late

(Xc = 6.705).

Fig. 3 The evolutionary stabie diswibution of starting date for Case 3 {locaily regulated
population). f{z} is the same as in Fig. 2. In (A) growth advange is large (b = 1.5) and
the truncation occurs relatively early (Xc = 2.298). In (B), the growth advantage is
small(b = 0.3) and the runcation date is late (Xc = 6.167). If we regard g(y) asa
probability distribution for a mixed strategy, the same graph gives the optimal mixed

strategy for Case 4.
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