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Limitations of Reductionist Approaches
in Ecological Modeling: Model Evaluation,
Model Complexity, and Environmental Policy

Louis J. Gross

ABSTRACT

Population ecology has traditionally relied on mathematically simple, and usually
tractable, models to mimic the basic dynamics of populations. Parameters in these
models are not generally tied to physiology, but reflect aggregate properties of individ-
ual behavioral and physiological characteristics. The models are therefore biologically
naive, with little direct reievance to practical problems of resource management or risk
assessment, although they may be useful as general descriptors of possible population
behavior. Models with higher precision and greater biological realism include many
more details of population structuring (e.g., age, size, genetics, spatial, dominance,
and satiation level), but thereby require many more parameters and assumptions about
interactions. These complex models may work well for accurately predicting future
popuiation sizes and structures under alternative scenarios for a certain time frame for
the few species in which we are willing to invest the requisite financial and research
resources. However, the structure of the dynamical systems underlying these complex
models is such that analysis of the general behavior of the model is either preciuded or
requires intensive numerical experimentation. These difficulties, coupled with the fact
that the models typically view the habitat environmental variables (physical and biotic)
as static, diminish the utility of these reductionist approaches to problems on {arger
spatial or longer temporal scales. What is needed for problems of environmental policy
may well be a hybrid of reductionist and “top-down™ approaches. Reductionism can
suggest appropriate alternative forms for macrodescriptors of large-scale systems,
which may then be coupled to methods that query policymakers as to the level of
accuracy they deem necessary to differentiate between the effects of alternative deci-
sions. Evaluarion procedures for these models will be quite different from those appro-
priate for models used mainly for development of general theory.

KEY WORDS

mathematical models, reductionism, cggresution, scafing

509

4
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INTRODUCTION

It1s a commeon fallacy to confuse scientisis’ models of reality with reality itself. A
model s a map. A map 15 not the territory it describes.
Richard Casement, in Man Suddenty Sees (o the Edge of the Universe

Despite iremendousty rapid growth in the development of mathematical models over
the past several decades, mn application 1o hosts of scientific disciplines, relatively little
attention has been paid to the actual practice of testing and evafuating models. It may
be reasonably argued that for mast of the physical sciences, in which carefully con-
trolled experimenis often lead to observations with small sampling errors, questions of
modet testing should be relegated to philosophers. In these disciplines, there is no great
_ difficulty in comparing model results with new experiments; rather the concern is
R i whether the model results are consistent with alternative experiments. In the ecological
A sciences, however, appropriate experiments to test a model may be difficult, if not
i impossible to perform, and often the data obtained have so large an inherent variation
that they do not allow discrimination between several different models. It is often
extremely difficult to control all variables that may be affecting a particular behavior
of tnterest unless the experiment is performed under taboratory conditions. How read-
s ity laboratary resuits can be subsequently extended 1o field conditions, for which there
) are many more independent and dependent variables, is typically open to much inter-
pretation by the researcher. For these reasons, careful attention 1o evaluation proce-
dures is essential, particularly if the models are to be used for policy considerations.
Yet relatively little work has been done on the development of reasonable agreed-upon
B procedures for testing models, either for practical applications or in theory.'

! The lack of substantive work on model evaluation is evident by perusing most of the
texts available on mathematical modeling. It is not unusual for these texts to say so
.1 g little on the subject that it is not even listed in the index (e.g., References 2 through 5},
L or the comments are limited to parameter estimation and statistical goodness-of-fit
: {e.g., References 6 and 7). Only a coupie of texts iilustrate concern for model testing;
although some carefully include it in a list of the important attribuzes of modeling,® the <

% i general attitude seems to be that the issue is not central to the modeling process. One of
) the exceptions is the text by Mesterton-Gibbons.? which is intused with the importance
: : ": of testing models, but proceeds mainly by case studies. This offers little in the way of a

general approach to model testing, though the author clearly stresses that one impor-
i tant criterion for models being applied in decision-making is their flexibility. France
kg and Thorniey" devote a brief chapter to mode! evaluation with emphasis on the impor-
¢ ? tance of testing throughout the modeling process and the difficulty of defining precise
4 criteria for model evaluation.
A An admitted difficulty faced by any modeler is the possibility of a conflict of interest
in the testing of a model that the same modeler may well have spent a great deal of time
+ 3 and effort developing. Some authors' " argue that criteria for model testing should be
- sl specified before mode! construction begins to ensure that bias does not creep tnto the
evaluation process. In practice, this suggestion is rarely followed in ecology, and the
literature is full of models that have never been tested in any substantive way. As Hall
and DeAngelis™ point out, “the testing of the adequacy of models vis-a-vis reality
seems to us to be poorly developed and often deliberately and arrogantly ignored.” As
3 the quote from Casement indicates, models sometimes take on a life of their own,
3 obscuring the purposes for which the model was ostensibly derived. This can lead to
' potential misuse of the model by individuals who merely pull 2 model off the shelf
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when needed without taking care that its use is compatible with the assumptions on
which it was originally based.

The main objective in this chapter is to point out the dependence of model evaluation
procedures on the problem to which the model is intended to be applied. The author
suggests thar useful classifications of models based on application and leading (o
different evatuation criteria are models for theory development; models for specific,
carefully delineated svstems; and maodels for policy decisions. The discussion includes
ways in which this relates 1o other classification schemes (c.g., the generality-realism-
precision continuum of Levins™), and point out some of the difficulties inherent in the
application of highly reductionist models based upon the behavior of individuals.
Another key point concerns the general inattention of the scientific community 1o the
criteria that policymakers use in making decisions concerning biological svstems, in
particutar the economic, sociai, and political implications.

MODEL EVALUATION

A wide variety of terms are used by different authors in discussions on maodel
evaluation, including the term evaluarion itself. Others include testing, accuracy, verifi-
catton, validation, corroboration, desirability, domain of applicability, certification,
realism, tuning, and curve-fitting. This piethora, and the very different mecanings
assigned to the terms by different researchers, contributes to the lack of agreement on
what constitutes effective evaluation. Most authors point out that evaluation is coupled
to the purposes for which the model is being consiructed. The variety of reasons for
constructing models thus teads to differing criteria for evaluauon. Several terms are
defined for the purpose of this chapter.

Verification. The model behaves as intended, in that the equations correctly represent
the stated assumptions. The equations are self-consistent and dimensionally correct,
their analysis is error free, and any computer coding has been carried out correctly.'"-"*
France and Thornley™ use the term festing synonymously with verification in this
sense, as does the present author. In contrast, Jeffers '* uses ver{ficarion to indicate that
a model behaves in wayvs that broadly fit expectations of how the modeled system
behaves, while Shugart'’ uses it to indicate that the model has been investigated to
ascertain if it can be made consistent with some set of observations. In the usage of
Shugart,'?, verification therefore becomes specific 10 a particular data set, while in that
of Jeffers,' it is specific to the modeler.

Validation. The model behavior is in agreement with the real system it represents with
respect to the specific purposes for which the model was constructed. Inherent in this is
a notion of both accuracy (that is how far apart in some metric the modetl behavior is
from some componenis of the real system), as well as a domain of applicability (a
prescribed set of conditions over which the model is intended to apply). A variety of
measures of the domain of applicability have been introduced in theory,'® but these
seem to be of little use in real applications. The metric chosen to specify model accu-
racy would depend on the purposes for which the model was constructed. For example,
if model output consists of a time-dependent vecter variable X(1) = (X,(1), .. ., X, (1)
and the data to which the model is being compared were (x,(¢,}, . . ., x, (), .. ., {x,(£,.),
<, x (r) for some time points (¢, . . ., ¢,.), then a general form of a metric would be
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IS "
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A typical choice for the f,; functions would be a time-weighted least squares such as f;,
() = ww, ¥ Here, the w, represents relative weights in time so that if emphasis were
desired on more recent times, for example, the @, would be increasing functions of 7. If
comparisons were oniy desired at a single time, then all the weights «, would be set to
zero, except at that time. The w, represents relative weights of the different output
variables. The above choice of £, (¥) assumes muliiplicatuive effects of the time vs
variable weights, though more complicated madels could be chosen.

For example, it may be importani for a model to determine the occurrence ol rare
events, one of which could be a population bottleneck; in this case the form of the f,
would not be as above but depend only upon times /7, for which x(¢) is below some.
preassigned threshold. Such a circumsiance may have occurred in the case of the
passenger pigeon, due to the interaction between social effects and population size. in
situations with limited data, investigators have utilized a variety of Monte Carlo
schemes." These involve resampling randomly from a data set split into a calibration
component and one used for validation.

Calibration. This refers to the use of a data set to estimate parameters of a model,
resulting in model behavior that is consistent with this dara set. This is also called curve
fitting or model tuning and involves many arcas of statistics tied to parameter estima-
tion. Also inherent is a notion of model accuracy, although only in the resiricted sense
of providing agreement to a particular data set.

Corraboration. The model is in agreement with a set of data independent of that used
10 consiruct and caiibrate the model. This is one aspect of validation. It is quite
different from the notion of corroboration of a scientific theory." The issue of differ-
ences between models constructed to elaborate a theory vs those constructed as calcula-
tion tools or for prediction has been discussed by a number of authors. '

Evaluation. This term comprises validation plus attention to a variety of criteria,
including appropriateness to objectives, utilily, plausibiiity, elegance, simplicity, and
flexibility.” Therefore, no set of simpiy objective criteria for evaluation exists, but a
number with different weightings assigned to each through the preferences of the
investigator. It is the areas emphasized in the evaluation criteria that serve to differenti-
ate the modeler, who is often primarily interested in either theory development or a
particular scientific question, from the manager or politician whae is in general answer-
able to the public for decisions influenced by the model.

EVALUATION CRITERIA FOR DIFFERENT TYPES OF MCDELS

One classification scheme for models considers where along the generality-realism-
precision continuum they occur,' because no single model is capable of completely
satisfving all three criteria. At the outset of a modeling project, a decision is made
regarding where on this continuum the resuiting model should be focused. This is
intimately tied with the purposes for which the model is being constructed, and the
evaluation criteria are chosen accordingly.

Models for theory development comprise the majority of the subject of mathemati-
cal ecology, with emphasis on generality, a slight amount of realism, and tvpically very
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little precision. Evaluation criteria here are tied more to piological reasonableness,
rather than 10 biological reality, for the objective is to produce 2 theory for general
patterns of nature.® Validation here takes the form of qualitative comparisons with
nature rather than quantitative comparisons. Parameters in these models are often far
removed from observable biology. Far too much effort in ecology has been wasted int
trying (o estimate model parameters such as the coefficients in Lotka-Volterra type
models. [T estimabic al all, these coefficients would result from complex interactions of
many physiological and populution-scalc processes. The models serve uselul qualitative
roles, bul trying (0 sgueeze (hem into a role for which they arc not suited is a wasted
effort. Calibration and corroboration are not appropriate for these models, for the
objective is typically to investigate how model behavior varies qualitatively over what 18
viewed as a reasonable parameter space.

In a number of instances, hewever, models developed having mainly theoretical
goals have proven 10 be useful in extensions 1O particular problems with close ties to
observable biology. One example inciudes the McKendrick-von Foerster formulation
of a population structured by age, size, OF physiological state. This partial differential
equation model is very general in form and serves as a basis for the theory of continu-
ously structured populalions. Yet it has been shown Lo be quite useful as a means 10
couple toxicological effects on individuals to population scale phenomena (sce Chapter
49). Very simplistic epidemic models have been extended in a host of ways 10 analyze
specific instances of discase spread, with varying success, and simple host-parasite
models have been extended to apply to several case studies of macroparasite infection
and spread.” Other examples include the applications of very general reaciion-
diffusion modets to many situations of animal movement.™ Here, applications (0
particular field situations typically involve discretizations of the underlying partial
differential equation of random walk model being a.y;)proximated.25 Thus, theoretical
models not only are important for the development of general paradigms, but often
lead to more realistic extensions closely coupled to biological data. This requires a step
back from the generality of the original model, however, along with an attendant
increase in model complexity and size of parameter spacc.

Models for specific systems (e.g., a given fish stock in a particular region, or
particular mammat population in a forest) are typically tied 10 dara sets that, though
often very limited, provide some guidance for choosing possible validation criteria as
... a5 possible made! formulations.® 1t makes little sense 10 construct a model with
detailed social structuring in the population, if there are no data available 1o estimate
the nature of this structuring. Population models of this sort are typically based around
some method of fancy hookkeeping, particularly discrete agc-slructured models used
for wildlife populations. The assumptions about the mortality and fecundity relation-
ships in these models are typically the weakest components, and the most difficult to
validate. Nevertheless, it is these components that detail the coupling between individ-
pals and the popuiation-scale effects of external environmental factors.”? Evaluation
criteria, therefore, may need to be more stringent in application 1o some model compo-
nents than to others. '

Of all applications of ecological modeling, the author believes the uses in policy
analysis have the poorest record of results obtained for efforts expended. A graphical
scheme to illustrate the situation is shown in Figure 1. The horizontal axis corresponds
to a simple bounded set of possible decisions. The solid line portrays a modeling effort
producing what might be considered superb results for a particular policy decision. In
this case, any particular policy chosen results in an easily understood outcome that is
completely deterministic. This outcome results from a biological analysis of the situa-
tion, with higher values corresponding to stronger negative effect on the population in
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FIGURE 1. Scheme to illusirate the combination of social and political concerns (dashed curve} along
with scientific criteria (solid curve} affecting a policy decision. Social cost and population
effect are not on commensurate scales.

question. Thus, a rational decision may be made based upon some acceptabic level of
the outcome. Possible examples are population size remaining given a certain amount
of habitat destruction, population size as a function of mean toxicant concentration
per unit area of habitat, or fraction of suitable habitat remaining to a species after a
given land-use scheme is implemented.

The difficulty with the preceding analysis is that typically quite different criteria, not
included in the biological assessment of effects, are applied in making the policy
decision. Figure ! {dashed line) illustrates the effects of the policy decision on social
factors such as loss or gain of jobs, expenditures to maintain the local economy,
infrastructure or bureaucracy needed to carry out the decision, and the opportunity
costs associated with these expenditures. These could just as well be political costs,
such as the perceived political advantage to the decision-makers of carrying out a
particular policy, including gain of financial support from certain constituents. The
dashed curve corresponds to a particular societal cost function. The solid and dashed
curves are nol commensurate quantities; combining them in some way involves
multiple-criteria optimization and construction of a utility function that makes as-
sumptions about the effects of alternative combinations. Societal costs act to effec-
tively constrain poticy responses in many instances, in particular te the endpoints of the
policy decision set.

Several possible scenarios are illustrated in Figure 1. The upper shaded region indi-
cates a threshold such that if the social costs are within this area, these costs completely
determine the policy choice with any possible population effects being ignored. Simi-
larly, the lower shaded region iilustrates a situation in which biological factors com-
pletely outweigh any political or social concerns, and policy choice is determined
completely by biology. Cases corresponding to these situations are readily available.
The recent controversy regarding the use of Alar an apples® illustrates that when direct
effects of toxicants on humans are perceived to be large, policy decisions can be made
based entirely upon social factors, independent of the biological data, which in this
case indicated minuscule relative health effects on the population. As an alternative to
this exampie of policy action being taken according 1o political and social factors,
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consider the case ol the spread of resistance 1o amibiotics in bacterial populations
endemic among humans. Here, despite the fact that many researchers feel that the
widespread use of antibiotics in animal feed has fostered the development and spread
of new bacterial strains with quite damaging human health effects, governmental
agencics have taken very little action on the issue, except to request further studies.”
This is one example of a common property resource overutilized for the benefit of one
component of soviety but not rational from a total society viewpeint.® Although in
general one may believe that an analysis ol recent past policy decisions would indicate
Lhat it is situations invoiving direct effects on human health for which the biological
impacts (the solid line in Figure 1) take precedence over the political, this may nol
always hold true. Certainly, direct human effects would more frequently take prece-
dence retative to effects on other species.

Situations for which the social and political factors fall into the unshaded region are
those in which our modcls have been least successful. In part this is due to the igno-
rance of social factors when structuring our models. what may appear to the biologists
1o be very large effects may well appear very small when viewed in a policy framework
that takes account of social factors. The level of detail of our models must therefore
take into account the level of indifference to details imposed not by biology, but by
external social factors. Dealing with externalities is a standard difficulty in
bioeconomics but with little agreement as 1o how to do so. ™.

Figure 1 is, of course highly simplified. The policy decision space is ofien not
represented as a single variable, and muitiple biological, social, and political criteria
may be applied. The underlying view of Figure 1 assumes the world is deterministic,
while often we can do ng more than specify outcomes with ceriain probabilities, or in a
mean sense. Probabilistic explanations introduce difficulties both in the analysis of
models as well as in therr explanation {0 policymakers. The view of Figure 1 is also
static, ignoring both the dynamics of the system being modeled as well as the adaptive
nature of policy decisions.

Key data are typically not available for many resource management problems. Un-
certainties in extrapolation from limited data sets can lead to potentially large errors in
predicting ecosystem response (o external inputs such as toxicants.' In such situations,
one goal of a management policy could be to explicitly attempt 1o force the system into
very contrasting outcomes. A policy that leads to large deviations from a mean re-
sponse of a system can be highly useful because it provides a method to evaluate the
applicability of a model under very different circumstances. This process of adaptive
management is a particutarly useful means to quickly increase the accuracy and utility
of models in situations with very limited data.®* Another aspect of the information
effects of policies is the potential for a policy to change the nature of currently operat-
ing social and political factors, primarily through education.

REDUCTIONISM AND ENVIRONMENTAL POLICY

A natural tendency in applying models derived for generai theory to policy concerns,
or to specific management situations, is to add complexity to increase potential preci-
sion and allow for calibration and corroboration, through the intraduction of detailed
submodels. Many of the detailed single species and multispecies models take this
approach. It is one alternative to strictly empirically based models such as those for
habitat indices, or statistical models coupled to a particular database. As noted above,
this has ted to useful results in several situations. It also requires either a much larger
database or many more assumpiions about particular model forms. These models have
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limitations, however, because they typically amalgamate all individuals within some
class (age, size, physiological state, etc.) and assume uniformity within this class.
Situations with strong neighborhood effects, or whose assumptions of uniformity
within a class break down (e.g., population sizes are so low that a class consists of few
individuals) are not readily handled by these extensions of theoretical models. Thus,
there are a number of ongoing attempts to model populations as interacting individ-
uals, tracking cach separately in a simulation formar. %

Fhe new individual-based models have great appeal for a number of reasons. First,
they allow explicit behavioral rules to be specified at the individual level and do not
require ad hoc assumptions about the effect of these behaviors a the population scale.
Second, such models are relatively easy to construct once the behavioral rules are
specified, since essentially dynamic bookkeeping is done from that point. (It should be
noted that efficient algorithms to handle this for simulatibns involving large numbers
of individuals are not easily obtained.} Third, they naturally provide a means to handle
individual interactions and neighborhood effects, and Monte Carlo methods provide
for analysis of situations with small population sizes.

The problem is thar these models quickly grow to require enormous numbers of
assumptions about individual behavior for which the available evidence is limited.
They are numerical, not qualitative, so determining the effects of a poorly understood
assumption requires numerous simulations. Validation of the submodels is precluded
without a vast amount of field observations of individual behavior. A saving grace of
these models is that they are relatively easy to explain to managers since the key objects
are individual organisms rather than more abstract population mortality and fecundity
schedules. This implies a great future for these models in policy applications, because a
key limitation in the use of models by managers may be the ability to understand, at
some level, how the models are constructed. Understanding on the part of the manager
may lead to more ready acceptance of the mode! results as well as feedback from the
manager in the decision process.

The author would argue, however, that policy applications of these models are
generally premature, mainly due to the enormous number of poorly understood as-
sumptions from which the models are constructed. The parameter space may be so rich
that essenuially any result desired can be obtained through judicious choices of the
parameters. Because the models require large Monte Carlo simulations, sensitivity
analyses of these models are quite computer intensive. To determine how sensitive the
model output is to a parameter, one must essentially conduct a Monte Carlo analysis on
a Monte Carlo simulation by varying the parameter within some range and observing
how model output is affected.

Itis the author’s belief that these highly reductionist models will be most useful ina
policy sense if they provide means to suggest appropriate large scale macrodescriptors
of svstems. These macrodescriptors should be robust so that the outcomes are not
highly sensitive 10 the details of individual behavioral assumptions. The best way to
accomplish this is using a top-down approach. Here, one starts with the manager and
attemnpts to ascertain levels of indifference 1o model outcomes. This approach provides
a means to scale the amount of reductionism necessary to meet the goals of the
manager, and reduces wasted effort dealing with minute details of biological processes,
if these are second or third order effects in the scheme of acting social and political

constraints.
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SUMMARY

Models are not a panacea. In analyzing policy issues, models have two main uses: to
allow investigation of system behavior under alternative assumptions when informa-
tion is limited about key processes affecting the system; and (2) to provide a mechanism
to predict system behavior under alternative management policies, possibly coupling
this with criteria to determine optimal policy choice. Unless information is very de-
taited about a particular naturat system, the investigation in the first use witl be neces-
sary before model results can be reliably applied to carry out the second use.

Just as modeling is an iterative process, so is social policy choice. The political process
is often one of compromise that invoives trade-offs for certain constituencies, made in an
iterative manner. The objective is to couple this iteration with the iteration of the model-
ing process—not with a single model, or even a single class of models, but rather with
models that are most effective at each stage of the policy decision process. For example,
the choice of national land-use plans would require models on much larger, regionai, or
global scales than the implementation of that policy at smaller, local scales. Managing
particular forest systems according to jocal guidelines, taking account of local wildlife,
recreational use, and wood product production, would require finer detail in any model
being utilized. When averaged over large regions, these local guidelines would conform
to the large-scale policy, but may on small scale be quite diverse.

Models used at these diverse spatial scales would be quite different in form. The
detail necessary at smaller scales can come from reductionist approaches, including
individuai-based models that mimic the behavior of numerous individual organisms to
allow prediction of population and community behavior. On larger scales, the hope is
that these reductionist approaches will suggest the form for less detailed models of
sufficient realism to be applied under very differing policy alternatives. There has been
little experience to date in developing large-scale models in this manner, yet they are a
critical component of regional and global planning. If their deveiopment is also closely
coupled to input from those responsible for policy decisions, our detailed knowledge of
local biology will have been successfully integrated with the constraints imposed by
social factors to produce a rational method of environmental social choice.
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